
Efficient Multi-Model Orchestration for Self-Hosted Large Language Models

Bhanu Prakash Vangala1, Tanu Malik2

1Department of Electrical Engineering and Computer Science
University of Missouri, Columbia

Columbia, MO 65211, USA
bv3hz@missouri.edu, tanu@missouri.edu

Abstract
Self-hosting large language models (LLMs) is increasingly
appealing for organizations seeking privacy, cost control,
and customization. Yet deploying and maintaining in-house
models poses challenges in GPU utilization, workload rout-
ing, and reliability. We introduce Pick and Spin, a practical
framework that makes self-hosted LLM orchestration scal-
able and economical. Built on Kubernetes, it integrates a
unified Helm-based deployment system, adaptive scale-to-
zero automation, and a hybrid routing module that balances
cost, latency, and accuracy using both keyword heuristics
and a lightweight DistilBERT classifier. We evaluate four
models Llama-3 (90B), Gemma-3 (27B), Qwen-3 (235B),
and DeepSeek-R1 (685B) across eight public benchmark
datasets, with five inference strategies, and two routing vari-
ants encompassing 31,019 prompts and 163,720 inference
runs. Pick and Spin achieves up to 21.6% higher success
rates, 30% lower latency, and 33% lower GPU cost per query
compared with static deployments. The results show that in-
telligent orchestration and efficient scaling enable enterprise-
grade LLM performance on self-hosted infrastructure, bring-
ing high-capacity AI within affordable reach.

Introduction
Large language models (LLMs) are rapidly transforming ap-
plications across domains. Instead of relying on a single
general purpose model for all tasks, both research and in-
dustry are moving toward a diverse ecosystem of domain
tuned models. These specialized models, trained for fields
such as scientific research, finance, law, and healthcare, pro-
vide greater precision and contextual understanding within
their respective areas. However, this specialization also in-
troduces new challenges. Organizations must decide not
only which model to use between general purpose and fine
tuned variants but also how to deploy and manage them effi-
ciently while maintaining data privacy and minimizing com-
putational cost.

This challenge has led to what can be described as the self
hosting dilemma. On one side, relying on commercial APIs
from providers such as OpenAI, Gemini, or Claude simpli-
fies deployment but introduces vendor lock in, unpredictable
costs, and data exposure risks that are unacceptable in sensi-
tive domains such as healthcare, finance, or the life sciences

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(AI 2023). On the other side, self hosting preserves privacy
and institutional control but comes with operational burdens.
Static, always on deployments keep GPUs active even when
idle, wasting resources and increasing energy consumption
and maintenance overhead (Nguyen 2025).

Although domain tuned or distilled large language models
(DT-LLMs) improve efficiency for specific use cases, they
remain optimized for narrow objectives and cannot gener-
alize to all query types. In practical applications, prompts
vary widely, some require reasoning, others summarization
or factual recall. No single model performs best across all
these dimensions in there respective domains. For example,
a model fine tuned for reasoning may perform poorly on
summarization or fact retrieval. This diversity creates a key
challenge in managing multiple models so that each input is
served by the most suitable one without wasting computa-
tional resources or increasing latency.

The open source ecosystem, enabled by initiatives such
as LLaMA and OPT, has made high quality model weights
widely available. However, efficient and affordable deploy-
ment of these models remains difficult. Each model behaves
differently across tasks, and their varying computational re-
quirements make selection and scheduling complex. Orga-
nizations must balance accuracy, responsiveness, and cost,
particularly when operating within private or resource con-
strained environments. These challenges motivate the need
for an automated system that can both select the right model
for each prompt and allocate resources intelligently

In this context, orchestration refers to the automated coor-
dination of models and computational resources. It involves
deciding which model to invoke, when to start or stop it, and
how to allocate GPUs efficiently. Prior work in distributed
systems defines orchestration as the automation and opti-
mization of workflows to ensure scalability and reliability
(Burns et al. 2016; Verma et al. 2015). Extending this prin-
ciple to multi model inference enables a balance between
accuracy, latency, and cost. Instead of keeping all models
continuously active, the orchestrator routes simple queries
to lightweight models and reserves larger ones for complex
tasks. Idle models are scaled to zero, ensuring that GPU re-
sources are used only when needed.

Existing research on model serving (Crankshaw et al.
2017), autoscaling (Baylor et al. 2017; Nguyen 2025), and
serverless inference (Yu et al. 2022; Wang 2024) focuses



on specific parts of the orchestration pipeline but does not
provide an integrated solution. These systems improve effi-
ciency within individual layers such as inference scheduling
or container scaling, yet they do not coordinate model selec-
tion and resource allocation together. Tools like Helm (Con-
tributors 2019) and Knative extend Kubernetes with declar-
ative configuration and event driven scaling, offering strong
primitives for deployment automation. However, they lack
mechanisms for task aware routing or model level coordi-
nation, which are essential for managing multiple language
models under shared infrastructure.

To address this gap, we propose Pick and Spin (PS), a
multi model orchestration framework that integrates intelli-
gent routing with orchestration aware scaling. The system’s
name encapsulates its dual nature: Pick represents the in-
telligent routing layer that selects optimal models based on
prompt complexity, while Spin represents the dynamic or-
chestration layer that manages model lifecycles, spinning
resources up on demand and down when idle. PS formu-
lates orchestration as a joint optimization problem balanc-
ing three objectives: model relevance, latency, and cost. A
lightweight routing layer selects the best model for each
query using rule based and semantic (DistilBERT) classifiers
that estimate prompt complexity and intent. The orchestra-
tion layer manages model activation and deactivation using
Kubernetes based scaling policies, ensuring efficient GPU
utilization and minimal cold start delay.

PS is implemented on Kubernetes with Helm based con-
trol, using a unified umbrella chart that automates deploy-
ment, versioning, and recovery across multiple models and
backends such as vLLM, TensorRT LLM, and TGI. This de-
sign enables reproducible deployment, zero downtime up-
grades, and automatic fault recovery while keeping resource
usage cost efficient. By combining content aware routing,
dynamic scaling, and fault tolerant orchestration, Pick and
Spin transforms static, resource heavy model hosting into a
scalable and adaptive workflow. It provides a foundation for
private multi model AI deployments that maintain perfor-
mance, privacy, and cost efficiency within institutional in-
frastructure.

Related Work
Pick and Spin (PS) connects three major research direc-
tions: efficient LLM inference, multi model orchestration,
and serverless computing. Early work such as Megatron
LM (Shoeybi et al. 2019) explored large scale parallelism
for training and serving billion parameter models. Modern
systems like Text Generation Inference (TGI) (Team 2024),
vLLM (Kwon et al. 2023), and DeepSpeed Inference (Am-
inabadi 2022) focus on runtime efficiency through mem-
ory optimization and parallel scheduling. For instance, the
PagedAttention mechanism in vLLM manages the KV cache
efficiently to reduce fragmentation and increase through-
put. FastServe (Yu 2023) and SGLang (Zheng 2024) further
streamline inference pipelines but target single model de-
ployments, lacking cross model orchestration.

The increasing diversity of models has renewed interest
in dynamic routing. Conceptually, this aligns with the Mix-
ture of Experts (MoE) paradigm where a controller routes

tokens to specialized submodules within a single network
(Kirakosyan 2025; Pandit 2023). PS generalizes this concept
to the system level by routing full prompts between indepen-
dently deployed models. Recent systems such as UniRoute
(Jitkrittum et al. 2025) and ModelSAT (Zhang, Zhan, and Ye
2025) use embeddings or instruction tuned heuristics to pre-
dict the best model efficiently, while controller based orches-
tration frameworks (Xie et al. 2025) leverage larger models
for coordination but at higher latency and cost. PS takes a
middle ground by using a DistilBERT-based classifier that
balances semantic precision and efficiency.

Serverless architectures provide a natural fit for adap-
tive model deployment. Event driven and scale-to-zero ex-
ecution models reduce idle GPU usage (Li and Yin 2024),
but applying them to LLM workloads introduces challenges
such as cold start latency (Satzke et al. 2022). Kubernetes
based frameworks like Knative and KEDA enable autoscal-
ing and asynchronous processing for AI services. InferLine
(Crankshaw 2020) and ModelSwitch (Li 2022) propose la-
tency aware scheduling and dynamic resource adaptation but
focus on homogeneous pipelines. PS builds on these ideas by
integrating Knative for low latency inference with KEDA for
background scaling, achieving responsiveness and efficiency
under fluctuating demand.

Self-hosted orchestration also contributes to responsi-
ble and accessible AI. Keeping inference within organi-
zational boundaries supports compliance with regulations
such as GDPR and HIPAA while safeguarding sensitive data
(Khezresmaeilzadeh et al. 2025; Feretzakis et al. 2024). By
combining open source tools with orchestration efficiency,
PS enables smaller organizations and research institutions to
deploy multi-model AI systems that were previously limited
to large enterprises. These prior efforts provide the founda-
tion for Pick and Spin, which unifies inference optimization,
semantic routing, and orchestration aware scaling into a sin-
gle adaptive framework.

Multi Model Orchestration Problem
We formulate the multi model orchestration problem as a
joint optimization task that balances model relevance, la-
tency, and cost. The goal is to automatically route each query
to the most suitable model while ensuring efficient GPU uti-
lization and minimal overhead.

Let L denote the set of available language models and
I the set of inference backends. Each deployable combina-
tion (Lx, Iy) forms a service instance Sx,y that can handle
a query. For every prompt p, the system selects the instance
(x∗, y∗) that maximizes performance while minimizing la-
tency and cost:

(x∗, y∗) = argmax
(x,y)

f(p, Sx,y) (1)

where the scoring function is defined as

f(p, Sx,y) = αR(p, Lx)− λT (Sx,y)− µC(Sx,y) (2)

Here, R(p, Lx) represents the relevance between the
prompt and model, T (Sx,y) measures expected latency, and



Figure 1: System architecture showing the API Gateway,
Router, Orchestrator, Service Registry, and Backend Pool in
the Pick and Spin framework.

C(Sx,y) denotes resource cost such as GPU memory or run-
time. The coefficients α, λ, and µ control the trade off be-
tween accuracy, speed, and efficiency. A higher α gives more
weight to accuracy, while larger λ and µ penalize latency and
cost.

In our experiments, these coefficients are set according
to five operator profiles: quality oriented (α = 1.0, λ =
0.1, µ = 0.1), cost optimized (α = 0.3, λ = 0.2, µ = 0.8),
speed optimized (α = 0.3, λ = 0.8, µ = 0.2), and balanced
(α = 0.5, λ = 0.3, µ = 0.3). These values were determined
through grid search over a validation set of 3,000 prompts,
optimizing for the target objective of each profile. This ob-
jective ensures that orchestration decisions are both accurate
and resource aware.

Pick and Spin Framework
The Pick and Spin framework consists of two main compo-
nents. The Pick component determines the routing strategy
and computes the relevance score used in the optimization
function. The Spin component handles orchestration and dy-
namically activates the chosen model based on routing deci-
sions and the parameters R, T , and C.

As shown in Figure 1, user prompts enter through the API
Gateway and are forwarded to the Router. The Router esti-
mates query complexity using either keyword or semantic
classification by DistilBERT and passes these scores to the
Service Registry. The Registry maintains a service matrix
of all available models and backends, including their cost,
load, and health status. The Orchestrator manages lifecycle
actions such as cold starts and scaling. It selects and acti-
vates the appropriate model backend pair in the Kubernetes
cluster and executes the inference through the Backend Pool.
The response is then sent back to the API Gateway. Teleme-
try continuously monitors latency, utilization, and service
health, feeding this data back into the Router and Orchestra-
tor for adaptive routing and scaling. Overall, Pick and Spin

Algorithm 1: Orchestration Aware Scaling with Warm Pools
Input: Model poolM, telemetry window w = 5min
Output: Active model set A

1: for each model m ∈M do
2: rm ← GetAvgRequestRate(m,w)
3: latm ← GetAvgLatency(m)
4: target← ⌈rm × latm/Concurrency⌉ {Little’s Law}
5: current← GetReplicas(m)
6: min warm←WarmPoolSize(ModelTier(m))
7: if target > current AND CooldownExpired() then
8: KubernetesScale(m,max(target,min warm))
9: else if IdleTime(m) > τ then

10: KubernetesScale(m,max(0,min warm))
11: end if
12: end for
13: return A ← {m : replicas(m) > 0}

forms a closed control loop that unifies routing and orches-
tration for efficient and modular deployment.

Algorithm 1 uses Little’s Law (line 4) for capacity plan-
ning and maintains warm pools to minimize cold starts while
scaling idle models to zero.

Pick: The Routing Design
The Router predicts the complexity of each query and as-
signs it to one of three model tiers small, medium, or large
corresponding to increasing reasoning depth and computa-
tional cost. It can operate in three modes: keyword based,
DistilBERT based, or hybrid, as shown in Figure 2. This
classification determines whether the query is routed to a
fast, balanced, or powerful model, depending on T , C, and
the predicted complexity.

Keyword Based Routing. The first routing mode relies
on detecting indicative keywords within the prompt. Words
such as “sum,” “list,” or “define” indicate low complexity,
while “prove,” “derive,” or “explain why” suggest high com-
plexity. Prompts that do not match any keyword are treated
as medium complexity. This rulebased method is determin-
istic, transparent, and introduces almost no latency.

DistilBERT Based Routing and Datasets. To capture se-
mantic context beyond keywords, a lightweight DistilBERT
classifier was trained to predict query complexity. Training
used 31,019 prompts from eight public benchmarks: Hu-
manEval (Chen, Tworek, and Jun 2021), GSM8K (Cobbe,
Kosaraju, and Bavarian 2021), MBPP (Austin, Odena, and
Nye 2021), TruthfulQA (Lin, Hilton, and Evans 2022), ARC
(Clark, Cowhey, and Etzioni 2018), HellaSwag (Zellers et al.
2019), MATH (Hendrycks, Burns, and Kadavath 2021), and
MMLU Pro (Hendrycks, Burns, and Basart 2021). These
cover a wide range of tasks, including code generation, rea-
soning, and commonsense inference, as illustrated in Fig-
ure 3.

Each prompt was tested using five inference strategies:
baseline, quality oriented, cost optimized, speed optimized,
and balanced. These were evaluated across four foundation



Input Question① Input

Complexity Classification
Method A:

Keyword-Based
Method B:

DistilBERT-Based

② Classify

Routing Decision: LOW / MEDIUM / HIGH③ Route

LOW MEDIUM HIGH

llama3-small
(Fast)

qwen3
(Balanced)

deepseek-r1
(Powerful)④ Select Model

LLM Inference Execution⑤ Execute

Final Response⑥ Output

Training
Feedback

Input Stage
Classification Stage

Routing Decision
Execution Stage

Output Stage

Smart Routing Workflow: Orchestration and Execution

Figure 2: Hybrid routing workflow showing the keyword
based and DistilBERT based paths for complexity estima-
tion and model selection.

models Llama 3, Gemma 3, Qwen 3, and DeepSeek R1 re-
sulting in over 160,000 inference runs. The best performing
model tier for each prompt, based on the accuracy latency
tradeoff, was used as the label for training. Prompts were
grouped into three complexity levels: low, medium, and high
based on tokens.

DistilBERT was fine tuned for three way classification us-
ing cross entropy loss. Training employed the AdamW op-
timizer with a batch size of 32, a learning rate of 2e 5, and
100 epochs. The classifier achieved 96.8 percent accuracy
on a 10 percent held out validation set, confirming that it
learned generalizable complexity patterns. The same dataset
was used for both the keyword based and DistilBERT based
classifiers to ensure fair comparison.

The classifier predicts the probability of each complexity
class using

pk = softmax(Wh[CLS] + b) (3)

Ĉ = argmax
k

pk (4)

where h[CLS] is the embedding of the [CLS] token from
DistilBERT, and W and b are trainable projection param-
eters. The softmax output pk gives normalized probabilities
for each complexity level, and Ĉ denotes the predicted class.
This predicted complexity Ĉ directly influences the routing
objective R(p, Lx) in Equation (1), linking semantic under-
standing to orchestration decisions.

The hybrid routing mode combines both approaches. Sim-
ple queries are routed using keywords, while ambiguous
ones are refined by DistilBERT. This design achieves a
strong balance between low latency and high routing pre-
cision.

The Orchestrator: The Spin
While Pick determines which model should handle a query,
Spin ensures that model is available and properly resourced.

Figure 3: Dataset distribution across eight benchmarks used
for DistilBERT training and routing evaluation.

The Spin component manages three key responsibilities:
maintaining warm pools for frequently accessed models, ap-
plying capacity planning based on request patterns, and en-
forcing cooldown periods to prevent scaling oscillations.

The Orchestrator executes lifecycle and scaling decisions
for active models. All components of Pick and Spin, includ-
ing the Router and Orchestrator, are deployed using a uni-
fied Helm Chart that manages configuration, scaling, and
version control across all modules. Model weights are re-
trieved from Hugging Face and stored in Persistent Volume
Claims (PVCs) for persistence and fast recovery. The system
runs on Kubernetes, enabling declarative control, autoscal-
ing, and fault tolerance. Idle services scale to zero, while ac-
tive ones scale up automatically to maintain efficiency using
knative keda.

Matrix Representation of Deployment Options. Pick
and Spin models all deployable services as a two-
dimensional matrix:

M ∈ RL×I (5)

where L represents model families and I represents infer-
ence backends. Each element Mx,y corresponds to a service
instance Sx,y that pairs model Lx with backend Iy . Rows
represent model types with different capabilities (Gemma-
3 for simple queries, Llama-3 for balanced tasks, Qwen-
3 and DeepSeek-R1 for complex reasoning), and columns
represent backends with distinct performance characteristics
(vLLM for throughput, TensorRT-LLM for latency, TGI for
memory efficiency).

Algorithm 2 shows how the orchestrator selects from this
matrix. The algorithm evaluates each viable model-backend
combination, considering only healthy services with avail-
able capacity (line 3). The scoring function in line 5 directly
applies our optimization objective from Equation (2), ensur-
ing decisions account for relevance, latency, and cost simul-
taneously. This formulation generalizes orchestration be-
yond static assignments. For example, TensorRT-LLM pro-
vides lower latency, while vLLM achieves higher through-
put. By dynamically selecting the best combination, the or-
chestrator maintains balanced GPU utilization



Algorithm 2: Matrix Selection and Routing
Input: Prompt p, service matrix M = {Sx,y}
Output: Selected service (x∗, y∗)

1: for each model Lx do
2: for each backend Iy do
3: Compute R(p, Lx), T (Sx,y), and C(Sx,y).
4: Evaluate f(p, Sx,y) = αR− λT −µC via Eq. (2).
5: end for
6: end for
7: Choose (x∗, y∗) = argmax(x,y) f(p, Sx,y) and route p.

Evaluation Metrics. Each routing method was evaluated
using four metrics: success rate, latency, throughput, and re-
sponsiveness. Let Ns denote the number of successful re-
sponses, Nt the total number of prompts, and ti the per query
latency. Time to first token (TTFT) is defined as

TTFT = tfirst token − trequest start (6)

Success rate and average latency are computed as

Success Rate =
Ns

Nt
(7)

Average Latency =
1

Ns

Ns∑
i=1

ti (8)

Throughput measures the number of completed infer-
ences per second under steady load, averaged over multiple
runs for consistency. These metrics collectively capture the
efficiency, reliability, and responsiveness of the system un-
der varying conditions.

Experimental Evaluation
Experimental Setup and Baselines. We evaluated Pick
and Spin using three foundation models: Llama3 70B,
Llama3 90B, and Gemma3 27B. Each model was tested un-
der five inference profiles to capture different deployment
trade offs. The baseline profile used default backend con-
figuration without orchestration or scaling. The quality ori-
ented profile prioritized accuracy by always selecting the
highest capacity model. The cost optimized and speed op-
timized profiles focused respectively on minimizing GPU
utilization and inference latency. The balanced profile em-
ployed the hybrid routing strategy to achieve an adaptive
balance between accuracy and efficiency.

Across all profiles, 163,720 inference runs were con-
ducted over 31,000 unique prompts drawn from eight bench-
marks. Success indicates valid completion within time and
token limits, measuring inference reliability rather than task
correctness.

Table 1 summarizes the baseline completion statistics,
showing an overall success rate of 77.1 percent. Variation
across benchmarks reflects the differing difficulty and output
complexity of tasks. Code generation datasets such as MBPP

exhibited lower reliability due to longer responses and syn-
tax related truncations, while structured reasoning datasets
such as GSM8K achieved higher completion stability.

Table 1: Baseline inference completion results across bench-
marks. The success rate indicates the proportion of runs that
returned valid completions.

Benchmark Runs Success Failures Success (%)
HumanEval 820 656 164 80.0
GSM8K 6,595 5,924 671 89.8
MBPP 2,500 1,736 764 69.4
TruthfulQA 3,950 3,167 783 80.2
ARC 5,860 4,704 1,156 80.3
HellaSwag 50,210 40,260 9,950 80.2
MATH 25,000 19,908 5,092 79.6
MMLU Pro 60,160 42,103 18,057 70.0
Total 163,720 126,237 37,483 77.1

These baseline results serve as the reference point for sub-
sequent routing and orchestration evaluations. The observed
reliability gap across tasks highlights the need for adaptive,
relevance aware model selection motivating the hybrid rout-
ing approach introduced in Pick and Spin.

Empirical analysis over 31,019 queries (Figure 4) showed
that performance variations correlated more with semantic
complexity than with prompt length. This observation mo-
tivated the inclusion of the relevance term R(p, Lx) in the
orchestration objective (Equation 2) and guided the use of
the hybrid routing mechanism introduced in Section .

LOW MEDIUM HIGH
Complexity Level

0

5000

10000

15000

20000

25000

N
um

be
r 

of
 Q

ue
st

io
ns

6,961

22,594

1,464

5,401

25,264

354

(A) Question Count by Complexity Level
Keyword-Based
DistilBERT-Based

LOW MEDIUM HIGH
Complexity Level

0

10

20

30

40

50

60

70

80

Pe
rc

en
ta

ge
 o

f 
To

ta
l (

%
)

22.4%

72.8%

4.7%

17.4%

81.4%

1.1%

(B) Percentage Distribution
Keyword-Based
DistilBERT-Based

Complexity Classification Comparison: Keyword vs DistilBERT
(Total: 31,019 Questions)

Figure 4: Comparison of query complexity distributions us-
ing keyword based and DistilBERT based classification.
Clear separation supports relevance driven routing.

Routing Performance and Model Allocation Pick and
Spin routes queries to model tiers (L1–L3) based on com-
plexity estimated using two approaches: keyword based
heuristics and semantic classification with a DistilBERT
model. These routing strategies were compared to analyze
their impact on accuracy, latency, and resource utilization.
Figure 5 and Table 2 summarize the comparative perfor-
mance across benchmarks.

The DistilBERT based routing achieved higher semantic
accuracy, particularly for reasoning heavy benchmarks such
as TruthfulQA and ARC, but introduced additional latency
due to the classification step. Keyword routing remained ef-
fective for structured and deterministic datasets such as Hu-
manEval and MATH. Figures 6 and 7 illustrate the trade-



LOW MEDIUM HIGH Overall
Complexity Level

0

20

40

60

80

100

Su
cc

es
s 

R
at

e 
(%

)

100.0%
97.2%

99.6% 98.0%100.0%
95.1% 95.8% 96.0%

+0.0%
-2.1%

-3.8% -2.0%

Baseline: 77.1%

Success Rate Comparison: Keyword vs DistilBERT Routing
(Total: 31,019 Questions)

Keyword-Based
DistilBERT-Based

Figure 5: Routing success rate comparison between keyword
based and DistilBERT based strategies.

Table 2: Routing performance across keyword based and
DistilBERT based strategies.

Strategy Accuracy (%) Latency (%↓) GPU Util. (%)

Keyword based 4.8 21.5 62.3
DistilBERT based 8.6 27.4 68.9

offs between response speed and semantic precision for both
methods.

Model Selection within the Service Matrix The matrix
based orchestration policy (Algorithm 2) was evaluated us-
ing three selection strategies: random assignment, latency
only, and the multi objective matrix policy used in Pick and
Spin. Each benchmark query was executed under all config-
urations using the metrics defined in Section 3.6.

Table 3: Model backend selection results across orchestra-
tion strategies.

Selection Strategy Accuracy (%) Latency (s) Cost (USD) Gain (%)
Random assignment 78.4 63.1 0.020
Latency only 82.9 48.6 0.017 +11.4
Multi objective 88.3 42.5 0.015 +21.7

The multi objective matrix selection improved accuracy
by 21.7 percent, reduced mean latency by 33 percent, and
lowered cost by 25 percent compared with random allo-
cation. The improvements were most evident in reasoning
tasks, where the relevance term R(p, Lx) guided routing to-
ward appropriate models and efficient backends such as Ten-
sorRT LLM.

Efficiency and Cost Effectiveness Routing efficiency was
defined as accuracy gain per cost overhead:

η =
Ar/Ab

Cr/Cb
, (9)

where Ar, Ab represent routed and baseline accuracies,
and Cr, Cb their corresponding inference costs. Across all
experiments, η = 1.43, representing a 43 percent improve-
ment in accuracy per unit cost.

Hu
ma
nE
va
l

MB
PP

GS
M8
K

MA
TH

Tr
ut
hfu
lQ
A

AR
C

He
lla
Sw
ag

MM
LU
-Pr
o

Benchmark

0

20

40

60

80

100

M
ed

ia
n 

La
te

nc
y 

(s
ec

on
ds

)

57.1s

103.0s

90.6s

64.3s 64.5s

75.4s

45.1s 44.1s

110.5s 110.4s
108.4s

76.5s

95.4s

80.2s

56.9s 55.1s

+93.7% +7.1%
+19.7%

+19.1%

+48.0%

+6.3%

+26.1%
+24.8%

Latency Comparison: Keyword vs DistilBERT Routing Across Benchmarks

Keyword-Based
DistilBERT-Based

Figure 6: Latency comparison between keyword based and
DistilBERT based routing. Lower values indicate faster re-
sponse.

30 40 50 60 70
Median Latency (seconds)

70

75

80

85

90

95

100

Su
cc

es
s 

R
at

e 
(%

)

LOW
100.0%

MEDIUM
97.2%

HIGH
99.6%

LOW
100.0%

MEDIUM
95.1%

HIGH
95.8%

Performance Trade-off by Complexity Level
(Accuracy vs Latency)

Keyword-Based Routing
DistilBERT-Based Routing
Baseline (77.1%)

Figure 7: Tradeoff between accuracy and latency for routing
methods.

Dynamic orchestration reduced recovery time by over
75 percent and decreased cost by approximately one third
through on demand scaling. Figure 8 shows the reduced la-
tency overhead achieved by activating models only when re-
quired.

Multi Metric Performance Analysis To evaluate overall
efficiency, performance was compared across five metrics
accuracy, latency, scalability, utilization, and robustness nor-
malized using min–max scaling:

Ni = 10× xi −min(x)

max(x)−min(x)
. (10)

Table 4: Cost and recovery comparison between static and
dynamic deployment.

Configuration Cost / Query (USD) Recovery (s)

Static deployment 0.021 45

Pick and Spin (base) 0.016 12

Pick and Spin (auto) 0.014 4



Hu
ma
nE
va
l

MB
PP

GS
M8
K

MA
TH

Tr
ut
hfu
lQ
A

AR
C

He
lla
Sw
ag

MM
LU
-Pr
o

Benchmark

0

10

20

30

40

50

La
te

nc
y 

O
ve

rh
ea

d 
(s

ec
on

ds
)

53.5s

7.4s

17.9s

12.3s

30.9s

4.7s

11.8s 11.0s

Avg: 18.7s

(A) Absolute DistilBERT Overhead

Hu
ma
nE
va
l

MB
PP

GS
M8
K

MA
TH

Tr
ut
hfu
lQ
A

AR
C

He
lla
Sw
ag

MM
LU
-Pr
o

Benchmark

0

20

40

60

80

La
te

nc
y 

O
ve

rh
ea

d 
(%

)

93.7%

7.1%

19.7% 19.1%

48.0%

6.3%

26.1% 24.8%

Avg: 30.6%

(B) Relative DistilBERT Overhead

DistilBERT Latency Overhead Analysis

Figure 8: Average inference cost and latency overhead under
static and dynamic orchestration.

Success Rate
KW: 98.0% | DB: 96.0%

Response Speed
KW: 48.9s | DB: 65.4s

Consistency
(P95 Latency)

KW: 117.5s | DB: 119.8s
Mean Performance

KW: 55.4s | DB: 65.1s

Reliability
KW: 98.0% | DB: 96.0%

0

2

4

6

8

10

8.0

6.0

7.8

3.6

5.6

5.0

6.5

3.3

8.0

6.0

Multi-Metric Performance Comparison
Keyword-Based vs DistilBERT-Based Smart Routing Keyword-Based

DistilBERT-Based

All metrics normalized to 0-10 scale (Higher = Better Performance)
Based on 31,019 total questions across 8 benchmarks

Normalization: Min-Max scaling within reasonable performance ranges

Figure 9: Normalized comparison of keyword and Distil-
BERT routing across five dimensions.

Figure 9 shows that keyword routing performs better in
latency and utilization, while DistilBERT routing achieves
higher robustness and accuracy, indicating a clear tradeoff
between semantic depth and computational efficiency.

Responsiveness and Scalability Responsiveness was
measured using Time to First Token (TTFT) as defined in
Equation (8). Figures 10 and 11 show that DistilBERT based
routing adds minor latency due to classification but enhances
reasoning accuracy.

Across 31,019 queries, keyword routing achieved a me-
dian TTFT of 45.5 s compared with 56.2 s for DistilBERT.
Despite a 23.5 percent increase in TTFT, DistilBERT rout-
ing improved semantic relevance for reasoning tasks. Under
load scaling from 10 to 1,000 queries per second, through-
put scaled linearly with recovery latency maintained below
5 s via Kubernetes auto redeployment.

Discussion and Limitations
The experiments show that both routing approaches offer
complementary strengths. Keyword-based routing provides
faster responses and lower resource usage, while Distil-
BERT routing yields higher accuracy on complex queries.
Orchestration aware scaling further improves responsive-
ness by reducing recovery delay. Although the DistilBERT
classifier generalizes well, performance may decline for do-

Hu
ma
nE
va
l

MB
PP

GS
M8
K

MA
TH

Tr
ut
hfu
lQ
A

AR
C

He
lla
Sw
ag

MM
LU
-Pr
o

Benchmark

0

20

40

60

80

100

Ti
m

e 
To

 F
ir

st
 T

ok
en

 (
se

co
nd

s)

25.4s

85.9s

64.7s

15.3s

57.5s
54.5s

38.7s

21.6s

87.2s

92.5s

101.2s

29.0s
31.9s

35.4s
39.5s

32.5s

+242.9%

+7.7%

+56.5%

+90.1%

-44.5%
-35.2%

+1.9%

+50.1%

TTFT Comparison: Keyword vs DistilBERT Routing
(Lower is Better - Faster Response)

Keyword-Based
DistilBERT-Based

Figure 10: Median TTFT comparison between keyword and
DistilBERT routing.

P50
(Median)

P95 P99

TTFT Percentile

0

20

40

60

80

100

120

Ti
m

e 
To

 F
ir

st
 T

ok
en

 (
se

co
nd

s)

45.5s

95.4s

106.7s

56.2s

111.4s

117.9s

+10.7s
(+23.5%)

+16.0s
(+16.8%)

+11.2s
(+10.5%)

TTFT Percentile Comparison: Keyword vs DistilBERT
(Average Across 8 Benchmarks)

Keyword-Based
DistilBERT-Based

Figure 11: Percentile wise TTFT (P50, P95, P99) for both
routing strategies.

main specific prompts. Future work will explore reinforce-
ment based routing for adaptive decision making and energy
aware scheduling for sustainable multi model deployment.

Conclusion and Future Work
This work introduced Pick and Spin, a modular framework
for self-hosted orchestration of LLMs. The system unifies
deployment, routing, and scaling within a Kubernetes based
architecture. By combining rule-based and semantic rout-
ing, it enables relevance aware model selection and adap-
tive orchestration. The orchestration aware scaling demon-
strated improvements in latency, cost, and resource effi-
ciency across benchmarks.

Pick and Spin shows that efficient and scalable or-
chestration of LLMs can be achieved without enterprise
scale infrastructure. Future work will extend this frame-
work through reinforcement driven routing, energy efficient
scheduling, and integration of multimodal models for pri-
vacy preserving, cost effective LLM deployment.

References
AI, P. 2023. “BYO LLM: Privacy Concerns and Other Chal-
lenges with Self Hosting”. Blog post. Published October 18,
2023.
Aminabadi, R. Y. 2022. DeepSpeed Inference: Enabling Ef-



ficient Inference of Transformer Models at Unprecedented
Scale. arXiv preprint arXiv:2207.00032.
Austin, J.; Odena, A.; and Nye, M. 2021. Program
Synthesis with Large Language Models. arXiv preprint
arXiv:2108.07732.
Baylor, D.; Breck, E.; Cheng, H.-T.; Fiedel, N.; Foo, C. Y.;
Haque, Z.; Haykal, S.; Ispir, M.; Jain, V.; Koc, L.; Koo, C. Y.;
Lew, L.; Mewald, C.; Modi, A. N.; Polyzotis, N.; Ramesh,
S.; Roy, S.; Whang, S. E.; Wicke, M.; Wilkiewicz, J.; Zhang,
X.; and Zinkevich, M. 2017. TFX: A TensorFlow-Based
Production-Scale Machine Learning Platform. In Proceed-
ings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’17), 1387–
1395.
Burns, B.; Grant, B.; Oppenheimer, D.; Brewer, E.; and
Wilkes, J. 2016. Borg, Omega, and Kubernetes: Lessons
from Three Container-Management Systems over a Decade.
ACM Queue, 14(1): 70–93.
Chen, M.; Tworek, J.; and Jun, H. 2021. Evaluating
Large Language Models Trained on Code. arXiv preprint
arXiv:2107.03374.
Clark, P.; Cowhey, I.; and Etzioni, O. 2018. Think you have
solved question answering? Try ARC, the AI2 reasoning
challenge. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics.
Cobbe, K.; Kosaraju, V.; and Bavarian, M. 2021. Train-
ing Verifiers to Solve Math Word Problems. arXiv preprint
arXiv:2110.14168.
Contributors, H. 2019. Helm: The package manager for Ku-
bernetes.
Crankshaw, D. 2020. InferLine: ML Inference Pipeline
Composition Framework for Real-Time Applications. In
NSDI.
Crankshaw, D.; Wang, X.; Zhou, G.; Franklin, M. J.; Gon-
zalez, J. E.; and Stoica, I. 2017. Clipper: A Low-Latency
Online Prediction Serving System. In 14th USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI ’17), 613–627. Boston, MA.
Feretzakis, G.; Papaspyridis, K.; Gkoulalas-Divanis, A.; and
Verykios, V. S. 2024. Privacy-Preserving Techniques in
Generative AI and Large Language Models: A Narrative Re-
view. Information, 15(11): 697.
Hendrycks, D.; Burns, C.; and Basart, S. 2021. Measuring
Massive Multitask Language Understanding. arXiv preprint
arXiv:2009.03300.
Hendrycks, D.; Burns, C.; and Kadavath, S. 2021. Measur-
ing Mathematical Problem Solving with the MATH Dataset.
arXiv preprint arXiv:2103.03874.
Jitkrittum, W.; Narasimhan, H.; Rawat, A. S.; Juneja, J.;
Wang, C.; Wang, Z.; Go, A.; Lee, C.-Y.; Shenoy, P.; Pani-
grahy, R.; Menon, A. K.; and Kumar, S. 2025. Universal
Model Routing for Efficient LLM Inference. arXiv preprint
arXiv:2502.08773.
Khezresmaeilzadeh, T.; Zhang, J.; Andreadis, D.; and
Psounis, K. 2025. Preserving Privacy and Utility in
LLM-Based Product Recommendations. arXiv preprint
arXiv:2505.00951.

Kirakosyan, N. 2025. Mixture of Experts LLMs: Key Con-
cepts Explained. Blog post, Neptune Labs. Published Jan-
uary 31, 2025.
Kwon, W.; Li, Z.; Zhuang, S.; Sheng, Y.; Zheng, L.; Yu,
C. H.; Gonzalez, J. E.; Zhang, H.; and Stoica, I. 2023. Ef-
ficient Memory Management for Large Language Model
Serving with PagedAttention. In Proceedings of the 29th
ACM SIGOPS Symposium on Operating Systems Principles
(SOSP ’23), 1–17. Koblenz, Germany.
Li, H. 2022. ModelSwitch: Fast Switching of DNN Models
for Cost-Effective Inference. In ACM Symposium on Cloud
Computing (SoCC).
Li, P.; and Yin, H. 2024. Best Practices for AI Model Infer-
ence Configuration in Knative. Blog post, Alibaba Cloud.
Published July 31, 2024.
Lin, S.; Hilton, J.; and Evans, O. 2022. TruthfulQA: Measur-
ing How Models Mimic Human Falsehoods. arXiv preprint
arXiv:2109.07958.
Nguyen, P. 2025. Cost-optimized ML on production: Au-
toscaling GPU Nodes on Kubernetes to Zero using KEDA.
Blog post, CodeLink. Published on CodeLink blog.
Pandit, B. 2023. What Is Mixture of Experts (MoE)? How
It Works, Use Cases & More. Blog post, DataCamp. Ac-
cessed: 2025-10-19.
Satzke, K.; Akkus, I. E.; Chen, R.; Rimac, I.; Stein, M.;
Beck, A.; Aditya, P.; Vanga, M.; and Hilt, V. 2022. Effi-
cient GPU Sharing for Serverless Workflows. Slide deck for
“TCSS562” course, University of Washington.
Shoeybi, M.; Patwary, M.; Puri, R.; LeGresley, P.; Casper,
J.; and Catanzaro, B. 2019. Megatron-LM: Training Multi-
Billion Parameter Language Models Using Model Paral-
lelism. arXiv preprint arXiv:1909.08053.
Team, H. F. 2024. Text Generation Inference (TGI): A
toolkit for deploying and serving large language models.
Version 3.x; supports Tensor Parallelism, continuous batch-
ing, OpenAI-compatible API, and multiple hardware back-
ends.
Verma, A.; Pedrosa, L.; Korupolu, M. R.; Oppenheimer, D.;
Tune, E.; and Wilkes, J. 2015. Large-Scale Cluster Man-
agement at Google with Borg. In Proceedings of the 10th
European Conference on Computer Systems (EuroSys ’15),
18:1–18:17. Bordeaux, France.
Wang, L. 2024. Advancing Serverless Computing for Scal-
able AI Model Inference – Challenges and Opportunities.
ACM Transactions on Cloud Computing, 12(4): 1–25.
Xie, T.; Wu, Y.; Luo, Y.; Ji, J.; and Zheng, X. 2025.
Training-Free Multimodal Large Language Model Orches-
tration. arXiv preprint arXiv:2508.10016.
Yu, C. 2023. FastServe: Efficient Multi-Tenant Model Serv-
ing for Large Language Models. In Proceedings of the 2023
USENIX Annual Technical Conference.
Yu, H.; Luo, X.; Li, Z.; Wang, W.; Chen, R.; Nie, D.;
Yang, H.; and Ding, Y. 2022. Characterizing X86 and
ARM Serverless Performance Variation: A Natural Lan-
guage Processing Case Study. In Proceedings of the 2022
ACM/SPEC International Conference on Performance En-
gineering (ICPE ’22), 69–75.



Zellers, R.; Holtzman, A.; Bisk, Y.; Farhadi, A.; and Choi,
Y. 2019. HellaSwag: Can a Machine Really Finish Your
Sentence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics.
Zhang, Y.-K.; Zhan, D.-C.; and Ye, H.-J. 2025. Capabil-
ity Instruction Tuning: A New Paradigm for Dynamic LLM
Routing. arXiv preprint arXiv:2502.17282.
Zheng, H. 2024. SGLang: Efficient Execution of Structured
LLM Programs. In arXiv preprint arXiv:2407.07447.


