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Abstract. Head and neck (H&N) cancer segmentation from PET/CT
is challenging due to heterogeneous imaging protocols across centers
and the small proportion of tumor and lymph node volumes relative to
the full field-of-view. We propose a two-stage coarse-to-fine framework
for automatic segmentation of primary tumors (GTVp) and metastatic
lymph nodes (GTVn) in the HECKTOR 2025 challenge. The frame-
work first applies a head localization stage using an nnUNet to extract
a coarse region-of-interest (ROI). In the fine segmentation stage, we in-
tegrate predictions from two complementary backbones: nnUNetResEn-
cUNetLarge and MONAI-based SegResNet, both trained with five-fold
cross-validation. To further enhance tumor delineation, especially on CT
modality and across centers, we introduce multi-channel CT representa-
tions by concatenating raw CT, its squared intensity, cubic-root inten-
sity, and PET as four input channels for nnUNetResEncUNetLarge. This
design improves sensitivity to tumor intensity patterns and robustness
against inter-center heterogeneity. The framework was evaluated quanti-
tatively on the official test set of task 1 for the HECKTOR2025 challenge,
achieving a GTVp DSC of 0.7341, a GTVn aggregated DSC of 0.7312,
and a GTVn aggregated F1 score of 0.7260 as team SJTU_lab426.

Keywords: Head an Neck Cancer Automatic segmentation · Coarse-to-
Fine Segmentation · Multi-Channel CT Enhancement · nnUNet · Seg-
ResNet

1 Introduction

Head and Neck (H&N) cancer ranks among the top five most prevalent cancer
types globally [1]. Accurate segmentation of the primary gross tumor volume
(GTVp) and involved lymph nodes (GTVn) is critical for radiotherapy treat-
ment planning and outcome prediction[2, 3]. Traditionally, tumor delineation is
performed manually by clinicians, which is labor-intensive, time-consuming, and
prone to variability.
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With the availability of 3D multimodal imaging modalities such as CT and
PET, automatic segmentation using deep learning has become a promising ap-
proach. PET highlights metabolic activity but at relatively low resolution, whereas
CT provides high-resolution anatomical details. Leveraging both modalities has
shown improved performance in H&N tumor delineation.

The HEad and neCK TumOR (HECKTOR) challenge, organized in three
editions in conjunction with MICCAI, serves as a benchmark for automated
head and neck (H&N) cancer analysis using multimodal PET/CT imaging. In
the latest edition, HECKTOR 2025, the evaluation protocol now emphasizes not
only Dice similarity coefficient (DSC) but also lymph detection performance and
cross-center robustness.

Previous editions, such as HECKTOR 2022, highlighted the difficulty of ac-
curate segmentation under heterogeneous imaging conditions. The winning en-
try[4] (Myronenko et al.) employed an ensemble of MONAI-based SegResNet[5]
models trained with five-fold cross-validation, achieving an aggregated DSC of
0.788. The runner-up solution leveraged nnUNet[6] with coarse-to-fine process-
ing and multi-model ensembling, demonstrating the effectiveness of localization
strategies and strong baselines. These top solutions reveal two essential insights:
(1) accurate ROI extraction and model ensembling are key to achieving strong
performance; (2) although PET provides reliable localization, its tumor bound-
aries are often indistinct. In contrast, CT offers richer boundary information but
suffers from limited contrast between lesions and surrounding tissues, as well as
inter-center intensity variations that reduce generalization. Therefore, enhanc-
ing CT-based representations is crucial to fully exploit its structural advantages
while mitigating these limitations.

Motivated by these observations, our method adopts a two-stage coarse-to-
fine strategy with nnUNet for robust head localization, followed by an ensemble
of nnUNetResEncUNetLarge and MONAI SegResNet for fine segmentation. To
strengthen CT-driven delineation and improve robustness across heterogeneous
multi-center data, we introduce CT enhancement by augmenting the raw CT
with squared and cubic-root intensity transforms, concatenated with PET as
four-channel input. This design explicitly enriches CT representation, facilitating
sharper lesion boundary detection and stronger cross-center generalization.[7]

2 Method

2.1 Dataset

The HECKTOR 2025 challenge[8] provides an extended multimodal dataset[9]
for head and neck (H&N) tumor lesion segmentation and diagnosis which con-
tains 680 cases from 7 centers.

Each case comprises a co-registered 3D PET/CT pair and a voxel-wise binary
mask delineating the primary tumor and any metastatic lymph nodes. Scanning
coverage differs across centers,as shown in Fig 1: some studies are restricted to
the head-and-neck region, others extend to the thorax or upper abdomen, and
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a subset provides whole-body acquisitions, introducing substantial anatomical-
coverage heterogeneity.

Fig. 1. Variation of image size from 7 centers. (a) whole upper body. (b) only head
region. (c) head and upper body.

2.2 Overview of the Proposed Framework

Our method follows a two-stage coarse-to-fine pipeline designed to efficiently
localize the head-and-neck (H&N) region and perform accurate tumor and seg-
mentation. The overall workflow can be seen in Fig2 and can be summarized as
follows:

1. Head Localization (Coarse Stage): An nnUNet model is trained to de-
tect the H&N region from the full-body CT scan. A bounding box is gen-
erated to crop the relevant region-of-interest (ROI), thereby reducing input
size and eliminating irrelevant anatomy.
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Fig. 2. two-stage coarse-to-fine pipeline of the whole framework

2. Coarse Segmentation Stage: We define the coarse ROI as the entire
head-and-neck volume within which tumors and metastatic lymph nodes are
expected to reside, and we obtain this initial region using a standard nnUNet
model trained for coarse segmentation.

3. Fine Segmentation Stage: Within the localized ROI, two complementary
segmentation backbones are applied:
– nnUNetResEncUNetLarge – a residual encoder-decoder variant of nnUNet.
– MONAI SegResNet – a widely adopted encoder-decoder architecture

with deep supervision.
Both models are trained with five-fold cross-validation. Their predictions are
ensembled to produce robust final outputs.

4. Multi-Channel CT Enhancement: To strengthen CT-driven lesion delin-
eation and improve robustness across heterogeneous multi-center datasets,
we augment the CT modality by generating squared (x2) and cubic-root
(x1/3) intensity channels in addition to the raw CT (x). Together with PET
(y), these form a four-channel input [x, x2, x1/3, y]. Then we used it as multi-
channel inputs for nnUNetResEncUNetLarge.

5. Inference and Post-processing: During inference, predictions from the
ensemble are averaged. Small isolated false positives are removed via connected-
component analysis.

2.3 Network Architecture and Details

Head Localization Model To cope with the large variability along the z-axis
(ranging from a few dozen to several hundred slices) while the transverse plane
remains 512 × 512, we first isolated a dedicated head-and-neck ROI. Because
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heads always appear near the top but may be left- or right-shifted (due to dif-
ferent acquisition centers), an automatically defined bounding box is unreliable.
We therefore adopted a coarse-to-fine strategy: the initial step simply localizes
the approximate head region rather than producing an exact segmentation. For
this localization task we trained a standard nnUNet using CT images only. Each
volume is resampled—starting from the top of the original scan—to a uniform
grid of 256 × 256 × 128 voxels at 2 × 2 × 3 mm spacing, employing B-spline
interpolation. Forty CT scans were randomly selected from the training set and
manually labeled for the head region in just a few hours. Prior to training, all
intensities were clipped to [–110, 190] HU and normalized to [–1, 1].

Although isotropic spacing is often recommended, we followed nnU-Net’s de-
fault preprocessing strategy, which determines anisotropic voxel spacing based
on the median physical resolution of the dataset. This choice preserves the na-
tive resolution characteristics of head-and-neck scans and avoids unnecessary
resampling artifacts.

The detailed parameters of the head-locating model are listed in the table1
below.

Table 1. nnU-Net 3D Full Resolution Configuration for Head Localization Model

Property Configuration
Preprocessor DefaultPreprocessor
Batch Size 2
Patch Size 96× 160× 160

Median Image Size 128× 256× 256

Spacing (3.0, 2.0, 2.0) mm
Normalization Z-Score normalization (no mask)
Resampling B-spline (order=3, data),

Nearest-neighbor (order=1, segmentation)
Network Class PlainConvUNet (3D)
Number of Stages 6
Features per Stage [32, 64, 128, 256, 320, 320]
Kernel Sizes 3× 3× 3 (all stages)
Strides {(1,1,1), (2,2,2), (2,2,2), (2,2,2), (2,2,2), (1,2,2)}
Convolutions per Stage (Encoder) [2, 2, 2, 2, 2, 2]
Convolutions per Stage (Decoder) [2, 2, 2, 2, 2]
Convolution Bias True
Normalization Layer InstanceNorm3d (ϵ = 10−5, affine=True)
Nonlinearity LeakyReLU (inplace=True)
Dropout None
Loss Function Cross-entropy + Dice (batch Dice = False)
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Coarse Segmentation Model To define the coarse region that encompasses
both primary tumors and metastatic lymph nodes within the head-and-neck
area, we employ a straightforward nnU-Net model. CT and PET volumes are
first cropped according to this coarse ROI. Intensities inside the CT crop are
clipped to [–110, 190] HU and then linearly scaled to [–1, 1], whereas PET values
are simply normalized to [0, 1] at the same coarse level. Once the coarse ROI
is available, we derive the subsequent fine ROI from the union of all tumor and
lymph-node labels. The bounding box of the fine ROI is centered on the centroid
of these labels (blue square in Fig. 3). This cube is resampled to 144 × 144 ×
144 voxels at 1 × 1 × 1 mm spacing via B-spline interpolation—identical to last
year’s setup—yielding a 144 mm isotropic volume comfortably larger than an
average neck or chin diameter and thus sufficient to enclose every target. The
specific parameters of the coarse-segmentation model are provided in the table2
below.

Table 2. nnU-Net 3D Full Resolution Configuration for Coarse Segmentation Model

Property Configuration
Preprocessor DefaultPreprocessor
Batch Size 2
Patch Size 128× 128× 128

Median Image Size 144× 144× 144

Spacing (2.0, 2.0, 2.0) mm
Normalization Z-Score normalization (2 channels, no mask)
Resampling B-spline (order=3, data),

Nearest-neighbor (order=1, segmentation)
Network Class PlainConvUNet (3D)
Number of Stages 6
Features per Stage [32, 64, 128, 256, 320, 320]
Kernel Sizes 3× 3× 3 (all stages)
Strides {(1,1,1), (2,2,2), (2,2,2), (2,2,2), (2,2,2), (2,2,2)}
Convolutions per Stage (Encoder) [2, 2, 2, 2, 2, 2]
Convolutions per Stage (Decoder) [2, 2, 2, 2, 2]
Convolution Bias True
Normalization Layer InstanceNorm3d (ϵ = 10−5, affine=True)
Nonlinearity LeakyReLU (inplace=True)
Dropout None
Loss Function Cross-entropy + Dice (batch Dice = False)

Fine Segmentation Models The fine ROI tightly encloses tumors and metastatic
lymph nodes. CT and PET volumes are resampled from the original study using
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this ROI; CT intensities are clipped to [−110, 190] HU and linearly scaled to
[−1, 1], whereas PET values are normalized to [0, 1].

Fine segmentation proceeds in two stages: distributed training followed by
simple probability averaging.

The specific parameters of the coarse-segmentation model are provided in
table3 and table4

Table 3. nnU-Net ResUNet 3D Full Resolution Configuration for Fine Segmentation
Models

Property Configuration
Preprocessor DefaultPreprocessor
Batch Size 4
Patch Size 160× 160× 160

Median Image Size 144× 144× 144

Spacing (1.0, 1.0, 1.0) mm
Normalization CT Normalization + Z-Score (2 channels, no mask)
Resampling B-spline (order=3, data),

Nearest-neighbor (order=1, segmentation)
Network Class ResidualEncoderUNet (3D)
Number of Stages 6
Features per Stage [32, 64, 128, 256, 320, 320]
Kernel Sizes 3× 3× 3 (all stages)
Strides {(1,1,1), (2,2,2), (2,2,2), (2,2,2), (2,2,2), (2,2,2)}
Residual Blocks per Stage [1, 3, 4, 6, 6, 6]
Convolutions per Stage (Decoder) [1, 1, 1, 1, 1]
Convolution Bias True
Normalization Layer InstanceNorm3d (ϵ = 10−5, affine=True)
Nonlinearity LeakyReLU (inplace=True)
Dropout None
Loss Function Cross-entropy + Dice (batch Dice = False)

1. Distributed training. Two architectures are trained with 5-fold cross-
validation each, producing 10 models in total:
(1)nnUNet Large ResUNet: 4-channel input[

x, x2, x1/3, y
]
,

where x denotes CT and y denotes PET. The additional x2 and x1/3 chan-
nels strengthen CT-driven lesion delineation and improve robustness across
heterogeneous multi-center data.
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(2)MONAI SegResNet: 2-channel input [CT, PET]. Every model outputs
two independent binary probability maps (tumor foreground and lymph-
node foreground).

2. Probability averaging. The 20 resulting probability maps (2 classes × 10
models) are averaged class-wise; the two averaged volumes are then thresh-
olded to obtain the final binary labels.

Table 4. AutoSeg3D (SegResNetDS) Configuration for Fine Segmentation

Property Configuration
Input Modality CT (2 channels, plus optional PET)
Output Classes 3 (tumor, lymph_node, background)
ROI Size 144× 144× 144

Spacing (Median / Lower / Upper) (1.0, 1.0, 1.0) mm
Normalization Range normalization, crop foreground
Batch Size 1
Optimizer AdamW (weight decay 1e−5)
Loss Function Dice + Cross-Entropy Loss

(include background, squared pred, softmax)
AMP True
Network Architecture SegResNetDS
Initial Filters 32
Downsampling Blocks [1, 2, 2, 4, 4]
Residual Depth 4
Normalization Instance Normalization (INSTANCE_NVFUSER)
Input Channels 2
Output Channels 3
Nonlinearity LeakyReLU (in MONAI default)
Channels Last True
Data Augmentation Random crop, crop foreground,

auto scale ROI/filter allowed
Resampling Disabled (native resolution 1mm³)
Intensity Bounds [0.3204, 0.6318]

2.4 Training Details

All models were trained on two NVIDIA RTX 3090 GPUs with 24 GB memory
each. The training configurations in terms of number of epochs and loss functions
are summarized below:

– Head locating nnU-Net: 500 epochs, using Dice + Cross-Entropy loss.
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– Coarse segmentation nnU-Net: 1000 epochs, using Dice + Cross-Entropy
loss.

– Fine segmentation nnU-Net (Residual Encoder UNet): 1000 epochs,
using Dice + Cross-Entropy loss.

– Fine segmentation SegResNet: 300 epochs, using Dice + Cross-Entropy
loss.

The loss functions are defined as follows:

Dice Loss For a single class c, the Dice coefficient is

Dicec =
2
∑

i pi,cgi,c∑
i p

2
i,c +

∑
i g

2
i,c

,

where pi,c is the predicted probability for voxel i and class c, gi,c is the ground
truth (one-hot), and i sums over all voxels. The Dice loss is then

LDice = 1− 1

C

C∑
c=1

Dicec.

Cross-Entropy Loss

LCE = − 1

N

N∑
i=1

C∑
c=1

gi,c log pi,c,

where N is the total number of voxels and C is the number of classes.
The loss formulation used in AutoSeg3D is mathematically identical to that

of nnU-Net, both combining Dice and Cross-Entropy losses in equal proportion.
AutoSeg3D adopts the same Dice + CE structure through MONAI’s imple-
mentation, which serves as a unified loss interface across multiple sub-models.
Therefore, while AutoSeg3D provides a framework-level wrapper for ensemble
training and logging, it does not alter the underlying loss definition or weighting
scheme.

3 Results and Discussion

Sanity-check Leaderboard

Table 5 summarizes our four preliminary submissions on the public sanity-check
set (Task 1). Models are listed in the order they were uploaded; the ranking
therefore reflects earlier rather than final performance.

Validation Leaderboard

Table 6 reports our two submissions on the hidden validation set (Task 1). The
first row employs the full pipeline (nnUNet Large ResUNet + MONAI SegResNet
+ CT enhancement), while the second row uses the same two backbones without
the additional CT channels.
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Table 5. Sanity-check results (Task 1). The column GTVp Dice denotes primary-tumor
Dice; GTVn Aggr. Dice / F1 denote lymph-node metrics. Abbreviations: nL-RU =
nnUNet Large ResUNet, SRN = SegResNet (MONAI), CTE = CT Enhancement.
The first row corresponds to the full ensemble and enhancement pipeline, subsequent
rows progressively ablate components.

Model GTVp Dice GTVn Aggr. Dice GTVn Aggr. F1

nL-RU + SRN + CTE 0.8851 0.7973 0.8000
SRN + CTE 0.8778 0.7755 0.8000
nL-RU + CTE 0.8727 0.7503 0.8000
nL-RU (baseline) 0.8718 0.7222 0.7500

Table 6. Validation results (Task 1). Metrics are computed on the hidden validation
set. Abbreviations: nL-RU = nnUNet Large ResUNet, SRN = SegResNet (MONAI),
CTE = CT Enhancement.

Model GTVp Dice GTVn Aggr. Dice GTVn Aggr. F1

nL-RU + SRN + CTE 0.7547 0.7743 0.6235
nL-RU + SRN 0.7217 0.7820 0.5975

Test Leaderboard

Table 7 reports our official submission on the hidden test set (Task 1). The
results are for the full pipeline (nnUNet Large ResUNet + MONAI SegResNet
+ CT Enhancement).

Table 7. Test set results (Task 1). Metrics are computed on the official hidden test
set. Abbreviations: nL-RU = nnUNet Large ResUNet, SRN = SegResNet (MONAI),
CTE = CT Enhancement.

Model GTVp Dice GTVn Aggr. Dice GTVn Aggr. F1

nL-RU + SRN + CTE 0.7341 0.7312 0.7260

Discussion

The experimental results highlight several important findings. First, the coarse-
to-fine design proves effective: the initial head-localization and coarse segmen-
tation stages substantially reduce irrelevant anatomy, simplifying the fine seg-
mentation task. This strategy not only accelerates training and inference but
also mitigates false positives in distant regions. Second, integrating complemen-
tary backbones (nnU-Net Large ResUNet and MONAI SegResNet) consistently
improves robustness. The sanity-check leaderboard (Table 5) shows that the en-
semble with CT enhancement achieves the best Dice scores for both GTVp and
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GTVn, confirming the benefit of multi-model fusion. Importantly, this ensemble-
based strategy was used throughout all final submissions, ensuring consistency
between model description and reported results.

Another key observation lies in the role of CT enhancement. By concate-
nating squared and cubic-root intensity transforms with raw CT, the model
becomes more sensitive to subtle tumor-intensity variations while remaining ro-
bust to inter-center heterogeneity. This robustness is further supported by the
model’s stable validation performance across institutions included in the official
split, suggesting improved generalization to varying scanner characteristics and
acquisition protocols.

Nevertheless, the effect of CT enhancement differs between tasks. As shown
in Tables 5 and 6, the enhanced CT input yields higher GTVp Dice but slightly
lower GTVn Dice. This discrepancy can be attributed to the intrinsic con-
trast differences between primary tumors and metastatic lymph nodes. While
intensity-based transformations enhance tumor boundaries, they may amplify
CT noise or intensity bias near small lymph nodes, which exhibit lower con-
trast and greater inter-center variability. Consequently, CT enhancement tends
to favor GTVp delineation but may compromise the consistency of GTVn pre-
dictions. Future work could address this trade-off via adaptive channel selection
or loss reweighting between tumor and lymph-node classes.

Our approach ranked 5th overall on the HECKTOR2025 test set and demon-
strated exceptional performance in metastatic lymph-node detection—the clini-
cally critical task of identifying GTVn lesions. Specifically, our method achieved
the highest GTVn Aggregated F1 score (0.7260), surpassing the next best result
by 9.4% (0.7260 vs 0.6638). This significant improvement in detection F1—which
jointly reflects precision and recall—suggests that our multi-model ensemble
combined with CT enhancement provides superior sensitivity for localizing small
metastatic lesions in heterogeneous PET/CT data.

Despite these gains, several limitations remain. First, although the ensemble
improves stability, it increases computational cost during training and inference.
Second, the reliance on intensity-based CT transformations may limit general-
ization to unseen imaging protocols. More sophisticated methods, such as self-
supervised pretraining or radiomics-inspired feature augmentation, could further
strengthen cross-center robustness. Finally, our current post-processing is lim-
ited to connected-component filtering; incorporating uncertainty estimation or
anatomical priors could more effectively reduce false positives.

Overall, the results demonstrate that combining coarse-to-fine localization,
backbone ensembling, and CT enhancement provides a robust and generaliz-
able solution for multi-center head-and-neck cancer segmentation. Future work
will focus on improving lymph-node delineation and reducing the computational
burden of ensemble inference.
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