
Divide-and-Conquer Posterior Sampling for Denoising
Diffusion Priors

Yazid Janati∗,1 Badr Moufad∗,1

Alain Durmus1 Eric Moulines1,3 Jimmy Olsson2

1 CMAP, Ecole polytechnique 2 KTH Royal Institute of Technology 3 MBZUAI

Abstract

Recent advancements in solving Bayesian inverse problems have spotlighted de-
noising diffusion models (DDMs) as effective priors. Although these have great
potential, DDM priors yield complex posterior distributions that are challeng-
ing to sample. Existing approaches to posterior sampling in this context address
this problem either by retraining model-specific components, leading to stiff and
cumbersome methods, or by introducing approximations with uncontrolled er-
rors that affect the accuracy of the produced samples. We present an innovative
framework, divide-and-conquer posterior sampling, which leverages the inher-
ent structure of DDMs to construct a sequence of intermediate posteriors that
guide the produced samples to the target posterior. Our method significantly
reduces the approximation error associated with current techniques without the
need for retraining. We demonstrate the versatility and effectiveness of our ap-
proach for a wide range of Bayesian inverse problems. The code is available at
https://github.com/Badr-MOUFAD/dcps

1 Introduction

Many problems in machine learning can be formulated as inverse problems, such as superresolution,
deblurring, and inpainting, to name but a few. They all have the same goal, namely to recover a
signal of interest from an indirect observation. One line of research addresses these problems through
the lens of the Bayesian framework by specifying two components: a prior distribution, which
embodies the specification of the signal, and a likelihood that describes the law of the observation
conditionally on the signal. Once these elements are specified, the inverse problem is solved by
sampling from the posterior distribution, which, after including the observation, contains all available
information about the signal and thus about its uncertainty as well [12]. The importance of the
specification of the prior in solving Bayesian ill-posed inverse problems is paramount. In the last
decade, the success of priors based on deep generative models has fundamentally changed the field
of linear inverse problems [40, 55, 19, 36, 24]. Recently, denoising diffusion probabilistic models
(DDMs) have received special attention. Thanks to their ability to learn complex and multimodal
data distributions, DDM represent the state-of-the-art in many generative modeling tasks, e.g. image
generation [45, 20, 50, 52, 15, 46, 49], super-resolution [43, 1], and inpainting [45, 11, 22].

Popular methods to sample from posterior distribution include Markov chain Monte Carlo (MCMC)
and variational inference; see [53, 6] and the references therein. These methods are iterative schemes
that require an explicit procedure to evaluate pointwise the prior distribution and often its (Stein)
score function [21] in order to compute acceptance ratios and construct efficient proposals. While

* Equal contribution
Corresponding authors: {yazid.janati,badr.moufad}@polytechnique.edu

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Badr-MOUFAD/dcps

sampling from the DDM priors is straightforward, posterior sampling is usually challenging since
the intractability of the posterior density and its score make them computationally prohibitive and
thus invalidate all conventional simulation methods. Although approximations exist, their associated
iterative sampling schemes can be computationally intensive and exhibit high sensitivity to the choice
of hyperparameters; see e.g. [24].

This paper proposes the DIVIDE-AND-CONQUER POSTERIOR SAMPLER (DCPS), a novel approach
to posterior sampling in Bayesian inverse problems with DDM priors. Thanks to the Markov property
of the data-generating backward diffusion, the posterior can be expressed as the marginal distribution
of a Feynman–Kac (FK) path measure [13], whose length corresponds to the number of diffusion
steps and whose user-defined potentials serve to bias the dynamics of the data-generating backward
diffusion to align with the likelihood of the observation. Besides, for a given choice of potentials, the
FK path law becomes Markovian, making it possible to express the posterior as the marginal of a
time-reversed inhomogeneous Markov chain.

This approach is tempting, yet, the backward Markov decomposition remains difficult to apply in
practice as these specific potential functions are difficult to approximate, especially when the number
of diffusion steps is large. We tackle this problem with a divide-and-conquer approach. More
precisely, instead of targeting the given posterior by a single simulation run through the full backward
decomposition, our proposed scheme targets backward a sequence (πkℓ

)Lℓ=0 of distributions along the
path measure leading to the target posterior distribution (section 3). These distributions are induced
by a sequence of increasingly complex potentials and converge to the target distribution. Starting
with a sample from πkℓ+1

, a draw from πkℓ
is formed by a combination of Langevin iterations and the

simulation of an inhomogeneous Markov chain. In other words, πkℓ
is expressed as the final marginal

distribution of a time-reversed inhomogeneous Markov chain of moderate length kℓ+1−kℓ ∈ N∗ with
an initial distribution πℓ

kℓ+1
. This chain, whose transition densities are intractable, is approximately

sampled using Gaussian variational inference. The rationale behind our approach stems from the
observation that the Gaussian approximation error can be reduced by shortening the length of the
intermediate FK path measures (i.e., by increasing L); a result that we show in Proposition A.1. We
finally illustrate that our algorithm can provide high-quality solutions to Bayesian inverse problems
involving a variety of datasets and tasks.

To sum up our contribution, we

• show that the existing approximations of the Markovian backward decomposition can be im-
proved using a bridge-kernel smoothing technique

• design a novel divide-and-conquer sampling approach that enables efficient bias-reduced sam-
pling from the posterior, and illustrate its performance on several Bayesian inverse problems
including inpainting, outpainting, Poisson imaging, and JPEG dequantization,

• propose a new technique to efficiently generate approximate samples from the backward decom-
position using Gaussian variational inference.

Notation. For (m,n) ∈ N2 such that m < n, we let Jm,nK := {m, . . . , n}. We use N(x;µ,Σ)
to denote the density at x of a Gaussian distribution with mean µ and covariance matrix Σ. Id is
the d-dimensional identity matrix and δa denotes the Dirac mass at a. W2 denotes the Wasserstein
distance of order 2. We use uppercase for random variables and lowercase for their realizations.

2 Posterior sampling with DDM prior

DDM priors. We provide a brief overview of DDMs [45, 50, 20]. Suppose we can access an
empirical sample from some data distribution pdata defined on Rdx . For n ∈ N large enough
and k ∈ J0, nK, define the distribution qk(xk) :=

∫
pdata(x0) qk|0(xk|x0)dx0 with qk|0(xk|x0) :=

N(xk;
√
αkx0, (1− αk)Idx

), where (αk)
n
k=0 is a decreasing sequence with α0 = 1 and αn approxi-

mately equals zero. The probability density qk corresponds to the marginal distribution at time k of
an auto-regressive process on Rdx given by Xk+1 =

√
αk+1/αkXk +

√
1− αk+1/αkϵk+1, with

X0 ∼ pdata and (ϵk)
n
k=0 being a sequence of i.i.d. dx-dimensional standard Gaussians.

DDMs leverage parametric approximations x̂θ
0|k of the mappings xk 7→

∫
x0 q0|k(x0|xk)dx0, where

q0|k(x0|xk) ∝ pdata(x0)qk|0(xk|x0) is the conditional distribution of X0 given Xk = xk. Each x̂θ
0|k

2

is defined as x̂θ
0|k(xk) := (xk−

√
1− αk ϵ̂

θ
k(xk))/

√
αk, where ϵ̂θk is a noise predictor network trained

by minimizing a denoising objective; see [46, Eq. (5)] and Appendix A for details. Following [15,
Section 4.2], ϵ̂θk also provides an estimate of the score ∇ log qk(xk) given by ŝθk(xk) := −

(
xk −√

αkx̂
θ
0|k(xk)

)
/(1−αk). We denote by θ⋆ the minimizer of the denoising objective. Having access to

θ⋆, we can define a generative model for pdata by adopting the denoising diffusion probabilistic model
(DDPM) framework of [20]. As long as n is large enough, qn can be confused with a multivariate
standard Gaussian. Define the bridge kernel qk|0,k+1(xk|x0, xk+1) ∝ qk|0(xk|x0)qk+1|k(xk+1|xk)

which is a Gaussian distribution with mean µk|0,k+1(x0, xk+1) and diagonal covariance σ2
k|k+1Idx

defined in Appendix A.1. Define the generative model for pdata as

pθ
⋆

0:n(x0:n) = pn(xn)
∏n−1

k=0 p
θ⋆

k|k+1(xk|xk+1) , (2.1)

where for every k ∈ J1, n− 1K, the backward transitions are

pθ
⋆

k|k+1(xk|xk+1) := qk|0,k+1(xk|x̂θ⋆

0|k+1(xk+1), xk+1) , (2.2)

with pθ
⋆

0|1(·|x1) := δx̂θ⋆

0|1(x1)
and pn(xn) = N(xn; 0, Idx). In the following, we assume that we

have access to a pre-trained DDM and omit the superscript θ⋆ from the notation, writing simply
p and x̂0|k when referring to the generative model and the denoiser, respectively. In addition,
we denote by pk the k-th marginal of p0:n and write, for all (ℓ,m) ∈ J0, nK2 such that ℓ < m,
pℓ|m(xℓ|xm) :=

∏m−1
k=ℓ pk|k+1(xk|xk+1).

Posterior sampling. Let g0 be a nonnegative function on Rdx . When solving Bayesian inverse
problems, g0 is taken as the likelihood of the signal given the observation specified using the forward
model (see the next section). Our objective is to sample from the posterior distribution

π0(x0) := g0(x0) p0(x0)/Z , (2.3)

where Z :=
∫
g0(x0) p0(x0)dx0 is the normalizing constant and the prior p0 is the marginal of (2.1)

w.r.t. x0, in which case the posterior (2.3) can be expressed as

π0(x0) =
1

Z

∫
g0(x0)

n−1∏
k=0

pk|k+1(xk|xk+1) pn(xn) dx1:n .

Thus, Equation (2.3) can be interpreted as the marginal of a time-reversed FK (Feynman–Kac) model
with a non-trivial potential only for k = 0; see [13] for a comprehensive introduction to FK models.
In this work, we twist, without modifying the law of the FK model, the backward transitions pk|k+1
by artificial positive potentials (gk)

n
k=0, each being a function on Rdx , and write

π0(x0) =
1

Z

∫
gn(xn) pn(xn)

n−1∏
k=0

gk(xk)

gk+1(xk+1)
pk|k+1(xk|xk+1) dx1:n . (2.4)

This allows the posterior of interest to be expressed as the time-zero marginal of an FK model with
initial distribution pn, Markov transition kernels (pk|k+1)

n−1
k=0 , and (gk)

n
k=0.

Recent works that aim to sample from the posterior (2.3) generally employ the FK representation
(2.4). These studies, however, adopt varying auxiliary potentials [10, 47, 60, 4, 54, 59]. FK models
can be effectively sampled using sequential Monte Carlo (SMC) methods; see, e.g., [13, 9]. SMC
methods sequentially propagate weighted samples, whose associated weighted empirical distributions
target the flow of the FK marginal distributions. The effectiveness of this technique depends heavily
on the choice of intermediate potentials (gk)

n
k=1, as discussed in [54, 59, 7, 16]. However, SMC

methods require a number of samples proportional and often exponential in the dimensionality of the
problems hence limiting their application in these setups due to the resulting probabitive memory cost
[2]. On the other hand, reducing the number of samples makes them vulnerable to mode collapse.

In the following, we will focus on a particular choice of potential functions (gk)
n
k=1 for which the

posterior π0 can be expressed as the time-zero marginal distribution of a time-reversed Markov
chain. The transition densities of this chain are obtained by twisting the transition densities of
the generative model with the considered potential functions. More precisely, define, for all k,

3

the potentials g⋆k(xk) :=
∫
g0(x0) p0|k(x0|xk) dx0. Note that these potentials satisfy the recursion

g⋆k+1(xk+1) =
∫
g⋆k(xk) pk|k+1(xk|xk+1) dxk. Builing upon that, define the Markov transitions

πk|k+1(xk|xk+1) :=
g⋆k(xk)

g⋆k+1(xk+1)
pk|k+1(xk|xk+1), (2.5)

allowing the posterior (2.4) to be rewritten as

π0(x0) =

∫
πn(xn)

n−1∏
k=0

πk|k+1(xk|xk+1) dx1:n , πn(xn) = g⋆n(xn)pn(xn)/Z . (2.6)

In other words, the distribution π0 is the time-zero marginal of a Markov model with transition
densities (πk|k+1)

0
k=n−1 and initial distribution πn. According to this decomposition, a sample

X⋆
0 from the posterior (2.3) can be obtained by sampling X⋆

n ∼ πn and then, recursively sampling
X⋆

k ∼ πk|k+1(·|X
⋆
k+1) from k = n − 1 till k = 0. In practice, however, neither the Markov

transition densities πk|k+1 nor the probability density function πn are tractable. The main challenge
in estimating πk|k+1 stems essentially from the intractability of the potential g⋆k(xk) as it involves
computing an expectation under the high-cost sampling distribution p0|k(·|xk).

Recent works have focused on developing tractable approximations of p0|k(·|xk). For the Diffusion
Posterior Sampling (DPS) algorithm [10], the point mass approximation δx̂

0|k(xk) of p0|k(·|xk)
results in the estimate ∇xk

log g0(x̂0|k(xk)) of ∇xk
log g⋆k(xk). Then, given a sample Xk+1, an

approximate sample Xk from πk|k+1(·|Xk+1) is obtained by first sampling X̃k ∼ pk|k+1(·|Xk+1)

and then setting
Xk = X̃k + ζ∇xk+1

log g0(x̂0|k+1(xk+1))|xk+1=Xk+1
, (2.7)

where ζ > 0 is a tuning parameter. As noted in [48, 7, 4], the DPS updates (2.7) do not lead to
an accurate approximation of the posterior π0 even in the simplest examples; see also Section 4.
Alternatively, [47] proposed the Pseudoinverse-Guided Diffusion Model (ΠGDM), which uses a
Gaussian approximation of p0|k(·|xk) with mean x̂0|k(xk) and diagonal covariance matrix set to
(1− αk)Idx

, which corresponds to the covariance of q0|k(·|xk) if pdata had been a standard Gaussian;
see [47, Appendix 1.3]. More recently, [17, 4] proposed to approximate the exact KL projection of
p0|k(x0|xk) onto the space of Gaussian distributions by noting that both its mean and covariance
matrix can be estimated using x̂0|k(xk) and its Jacobian matrix. We discuss in more depth the related
works in Appendix B.

3 The DCPS algorithm

Smoothing the DPS approximation. The bias of the DPS updates (2.7) stems from the point mass
approximation of the conditional distribution p0|k(·|xk). This approximation becomes more accurate
as k tends to zero and is crude otherwise. We aim here to mitigate the resulting approximation
errors. A core result that we leverage in this paper is that for any (k, ℓ) ∈ J0, nK2 such that ℓ < k,
we can construct an estimate p̂ℓ|k(·|xk) of pℓ|k(·|xk) that bears a smaller approximation error than
the estimate δx̂

0|k(xk) relatively to p0|k(·|xk). Formally, let p̂0|k(·|xk) denote any approximation of
p0|k(·|xk), such as that of the DPS or ΠGDM, and define the approximation of pℓ|k(·|xk)

p̂ℓ|k(xℓ|xk) :=

∫
qℓ|0,k(xℓ|x0, xk)p̂0|k(x0|xk) dx0 , (3.1)

where qℓ|0,k(xℓ|x0, xk) is defined in (A.4). We then have the following result.

Proposition 3.1 (informal). Let k ∈ J1, nK. For all ℓ ∈ J0, k − 1K and xk ∈ Rdx ,

W2(p̂ℓ|k(·|xk), pℓ|k(·|xk)) ≤
√
αℓ(1− αk/αℓ)

(1− αk)
W2(p̂0|k(·|xk), p0|k(·|xk)) . (3.2)

The proof is postponed to Appendix A.3. Note that the ratio in the right-hand-side of (3.2) is less than
1 and decreases as ℓ increases. As an illustration, using the DPS approximation of p0|k(·|xk), we
find that p̂ℓ|k(xℓ|xk) = qℓ|0,k(xℓ|x̂0|k(xk), xk) improves upon DPS in terms of approximation error.

4

This observation prompts to consider DPS-like approximations on shorter time intervals; instead of
approximating expectations under p0|k(·|xk), such as the potential g⋆k(xk), we should transform our
initial sampling problem so that we only have to estimate expectations under pℓ|k(·|xk) for any ℓ

such that the difference k − ℓ is small. This motivates the blocking approach introduced next.

Intermediate posteriors. We approach the original problem of sampling from π0 via a series of
simpler, intermediate posterior sampling problems of increasing difficulty. More precisely, let us
consider the intermediate posteriors defined as

πkℓ
(xkℓ

) := gkℓ
(xkℓ

)pkℓ
(xkℓ

)
/
Zkℓ

, with Zkℓ
:=

∫
gkℓ

(xkℓ
)pkℓ

(xkℓ
) dxkℓ

, (3.3)

where (gkℓ
)Lℓ=1 are potential functions designed by the user and (kℓ)

L
ℓ=0 is an increasing sequence

in J0, nK such that k0 = 0 and kL = n. Here, L is typically much smaller than n. To obtain an
approximate sample from π0 = πk0

, the DCPS algorithm recursively uses an approximate sample
Xkℓ+1

from πkℓ+1
to obtain an approximate sample Xkℓ

from πkℓ
. Indeed, mirroring (2.6) it holds

πkℓ
(xkℓ

) =

∫
πℓ
kℓ+1

(xkℓ+1
)

kℓ+1−1∏
m=kℓ

πℓ
m|m+1(xm|xm+1) dxkℓ+1:kℓ+1

, (3.4)

where for m ∈ Jkℓ, kℓ+1 − 1K,
πℓ
kℓ+1

(xkℓ+1
) := gℓ,⋆kℓ+1

(xkℓ+1
)pkℓ+1

(xkℓ+1
)
/
Zkℓ

,

πℓ
m|m+1(xm|xm+1) := gℓ,⋆m (xm)pm|m+1(xm|xm+1)

/
gℓ,⋆m+1(xm+1)

and for m ∈ Jkℓ + 1, kℓ+1K,

gℓ,⋆m (xm) :=

∫
gkℓ

(xkℓ
)pkℓ|m(xkℓ

|xm) dxkℓ
. (3.5)

We emphasize that the initial distribution πℓ
kℓ+1

in (3.4) is different from the posterior πkℓ+1
as the

former involves the user-defined potential whereas the latter the intractable one. The main advantage
of our approach lies in the fact that, unlike the potentials in the transition densities (2.5), which involve
expectations under p0|k(·|xk), the potentials (3.5) are given by expectations under the distributions
pkℓ|m(·|xm), which are easier to approximate in the light of Proposition 3.1. In the sequel, we use
this approximation for the estimation of the potentials (3.5); this yields approximate potentials

ĝℓ,⋆m (xm) :=

∫
gkℓ

(xkℓ
)p̂kℓ|m(xkℓ

|xm) dxkℓ
, m ∈ Jkℓ + 1, kℓ+1K , (3.6)

which serve as a substitute for the intractable gℓ,⋆m . Let us now summarize how our algorithm works.
Starting from a sample Xkℓ+1

, which is approximately distributed according to πkℓ+1
, the next sample

Xkℓ
is generated in the next two steps:

1. Perform Langevin Monte Carlo steps initialized at Xkℓ+1
and targeting πℓ

kℓ+1
, yielding Xℓ

kℓ+1
.

2. Simulate a Markov chain (Xj)
kℓ

j=kℓ+1
initialized with Xkℓ+1

= Xℓ
kℓ+1

and whose transition
from Xj+1 to Xj is the minimizer of

KL(λφ
j|j+1(·|Xj+1) ∥ πℓ

j|j+1(·|Xj+1)), (3.7)

where λφ
j|j+1 is a mean-field Gaussian approximation with parameters φ := (µ̂, σ̂) ∈ Rdx×Rdx

>0.

Xj is drawn from λ
φj(Xj+1)

j|j+1 (·|Xj+1), where φj(Xj+1) is a minimizer of the proxy of (3.7).

In the following, we elaborate more on Step 1 and Step 2 and discuss the choice of the intermediate
potentials. The pseudo-code of the DCPS algorithm is in Algorithm 1.

Sampling the initial distribution. In order to perform Step 1, we use the discretized Langevin
dynamics [38] with the estimate ∇ log ĝℓ,⋆kℓ+1

+ ŝkℓ+1
of the score ∇ log πℓ

kℓ+1
. This estimate results

from the use of ŝkℓ+1
as an approximation of ∇ log pkℓ+1

in combination with the approximate
potential (3.6). We then obtain the approximate sample Xℓ

kℓ+1
of πkℓ+1

by running M steps of the
tamed unadjusted Langevin (TULA) scheme [5]; see Algorithm 1. Here, the intractability of the
involved densities hinder the usage of the Metropolis-Hastings corrections to reduce the inherent bias
of the Langevin algorithm.

5

Sampling the transitions. We now turn to Step 2. Given Xj+1, we optimize the following estimate
of Equation (3.7), where we simply replace gℓ,⋆j by the approximation (3.6):

−
∫

log ĝℓ,⋆j (xj)λ
φ
j|j+1(xj |xj+1) dxj + KL(λφ

j|j+1(·|xj+1) ∥ pj|j+1(·|xj+1)) .

Letting λφ
j|j+1(xj |xj+1) = N(xj ; µ̂j ,diag(e

υ̂j)), where the variational parameters µ̂j , υ̂j are in Rdx ,
the previous estimate yields the objective

Lj(µ̂j , υ̂j ;xj+1) := −E
[
log ĝℓ,⋆j (µ̂j + eυ̂j/2Z)

]
+
∥µ̂j − µj|j+1(xj+1)∥2

2σ2
j|j+1

− 1

2

dx∑
i=1

(
υ̂j,i −

eυ̂j,i

σ2
j|j+1

)
, (3.8)

where Z is dx-dimensional standard Gaussian and µj|j+1(xj+1) is the mean of (2.2). Note here that
we have used the reparameterization trick [26] and the closed-form expression of the KL divergence
between two multivariate Gaussian distributions. We optimize the previous objective using a few
steps of SGD by estimating the first term on the r.h.s. with a single sample as in [26]. For each
j ∈ Jkℓ, kℓ+1 − 1K, we use µj|j+1 and log σ2

j|j+1 as initialization for µ̂j and υ̂j .

Intermediate potentials. Here, we give general guidelines to choose the user-defined potentials
(gkℓ

)Lℓ=1. Our design choice is to rescale the input and then anneal the initial potential g0. Therefore,
we suggest

gkℓ
(x) = g0(

x
βkℓ

)γkℓ , (3.9)

where γkℓ
, βkℓ

> 0 are tunable paramerters. This design choice is inspired from the tempering
sampling scheme [33] which uses the principle of progressively moving an intial distribution to
the targeted one. We provide some examples in the case of Bayesian inverse problems where the
unobserved signal and the observation are modelled jointly as a realization of (X,Y) ∼ p(y|x)p0(x),
where p(y|x) is the conditional density of Y given X = x. In this case, the posterior π0 of X given
Y = y is given by (2.3) with g0(x) = p(y|x).
Linear inverse problems with Gaussian noise. In this case, g0(x) = N(y;Ax, σ2

yIdy
), where

A ∈ Rdy×dx . Popular applications in image processing include super-resolution, inpainting, outpaint-
ing, and deblurring. We use (3.9) with (βkℓ

, γkℓ
) = (

√
αkℓ

, αkℓ
),

gkℓ
(x) = N(

√
αkℓ

y;Ax, σ2
yIdy) , (3.10)

which corresponds to the likelihood of x given the pseudo observation √αkℓ
y under the same linear

observation model that defines g0. This choice of gkℓ
enables exact computation of (3.6) and allows

information on the observation y to be taken into account early in the denoising process.

Low-count (or shot-noise) Poisson denoising. In a Poisson model for an image, the grey levels
of the image pixels are modelled as Poisson-distributed random variables. More specifically, let
A ∈ Rdy×dx be a matrix with nonnegative entries and x ∈ [0, 255]C×H×W , where C is the
number of channels and H the height and W the width. For every i ∈ J1, dyK, Yi is Poisson-
distributed with mean (Ax)i, and the likelihood of x given the observation is therefore given by
x 7→

∏dy

j=1(λAx)
yj

j e−(λAx)j/yj ! where λ > 0 is the rate. Following [10] we consider as likelihood
its normal approximation, i.e. g0 =

∏dy

j=1 N(yj ;λ(Ax)j , yj). This model is relevant for many tasks
such as low-count photon imaging and computed tomography (CT) reconstruction [35, 39, 31]. We
use (3.9) with βkℓ

= γkℓ
=
√
αkℓ

:
gkℓ

(x) =

dy∏
j=1

N(
√
αkℓ

yj ;λ(Ax)j ,
√
αkℓ

yj) . (3.11)

JPEG dequantization. JPEG [57] is a ubiquitous method for lossy compression of images. Use hq to
denote the JPEG encoding function with quality factor q ∈ J0, 100K, where a small q is associated
with high compression. Denote by h†

q the JPEG decoding function that returns an image in RGB
space with a certain loss of detail, depending on the degree of compression q, compared to the
original image. Since we require the potential to be differentiable almost everywhere, we use the
differentiable approximation of JPEG developed in [44], which replaces the rounding function used
in the quantization matrix with a differentiable approximation that has non-zero derivatives almost
everywhere. In this case, g0(x) = N(h†

q(y);h
†
q(hq(x)), σ

2
yIdy

), where y is in YCbCr space. Combin-
ing this with Equation (3.9) with (βkℓ

, γkℓ
) = (αkℓ

, αkℓ
) and assuming that the composition h†

q ◦ hq

is a homogenious map, the intermediate potentials are gkℓ
(x) = N(

√
αkℓ

h†
q(y);h

†
q(hq(x)), σ

2
yIdx

) .

6

4 Experiments

DCPS DDRM DPS ΠGDM REDDIFF MCGDIFF

Figure 1: First two dimensions of samples (in red) from each algorithm on the 25 component Gaussian mixture
posterior sampling problem with (dx, dy) = (100, 1). The true posterior samples are given in blue.

In this section, we demonstrate the performance of DCPS and compare it with DPS [10], ΠGDM
[47], DDRM [24], REDDIFF [32], and MCGDIFF [7] on several Bayesian inverse problems. We
also benchmark our algorithm against DIFFPIR [62], DDNM [58], FPS [16], and SDA [42] but we
defer the results to the Appendix C.5.

First, we consider a simple toy experiment in which the posterior distribution is available in closed
form. Next, we apply our algorithm to superresolution (SR 4× and 16×), inpainting and outpainting
tasks with Gaussian and Poisson noise, and JPEG dequantization. For these imaging experiments, we
use the FFHQ256 [23] and ImageNet256 [14] datasets and the publicly available pre-trained models
of [8] and [15]. Finally, we benchmark our method on a trajectory inpainting task using the pedestrian
dataset UCY for which we have trained a Diffusion model. All details can be found in Appendix C.1.

Gaussian mixture. We first evaluate the accuracy of DCPS on a linear inverse problem with a
Gaussian mixture (GM) prior, for which the posterior can be explicitly computed: it is also a Gaussian
mixture whose means, covariance matrices, and weights are in a closed form; see Appendix C.2.

Table 1: 95% confidence interval for the SW
on the GM experiment.

dx = 10, dy = 1 dx = 100, dy = 1

DCPS50 2.91± 0.74 4.04± 1.00
DCPS500 2.19± 0.68 3.29± 0.95
DPS 5.80± 0.75 5.68± 0.73
DDRM 3.77± 0.96 5.70± 0.78
ΠGDM 4.23± 0.90 4.61± 0.68
REDDIFF 6.36± 1.27 7.47± 0.87
MCGDIFF 2.28± 0.75 2.83± 0.71

In this case, the predictor x̂θ∗

0|k is available in a closed form;
see Appendix C.2 for more details. We consider a Gaussian
mixture prior with 25 components in dimensions dx = 10
and dx = 100. The potential is g0(x) = N(y;Ax, σ2

yIdy)
with dy = 1 and A is a 1 × dx vector. The results are
averaged over 30 randomly generated replicates of the
measurement model (y,A, σ2

y) and the mixture weights.
Then, for each pair of prior distribution and measurement
model, we generate Ns = 2000 samples with each algo-
rithm and compare them with Ns samples from the true
posterior distribution using the sliced Wasserstein (SW)
distance. For DCPS, we used L = 3 blocks and K = 2
gradient steps, respectively, and compared two configurations, denoted by DCPS50 and DCPS500, of
the algorithm with M = 50 and M = 500 Langevin steps, respectively. See Algorithm 1. The results
are reported in Table 1. It is worthwhile to note that DCPS outperforms all baselines except for
MCGDIFF. However, by increasing the number of Langevin steps, its performance closely matches
that of MCGDIFF.

Imaging experiment. Table 2 reports the results for the linear inverse problems with Gaussian
noise with two noise variance levels σy = 0.05 and σy = 0.3, Table 3 for the JPEG dequantization
problem with σy = 10−3, QF ∈ {2, 8}, and Table 6 for the Poisson denoising task with rate
λ = 0.1. For all tasks and datasets, we use the same parameters for DCPS and therefore do not
perform any task or dataset-specific tuning. We use L = 3, K = 2 gradient steps, and M = 5
Langevin steps. To ensure a fair comparison with DPS and ΠGDM we use 300 DDPM steps
for DCPS and 1000 steps for both DPS and ΠGDM, which ensures that all the algorithms have
the same runtime and memory footprint; see Table 4. For MCGDIFF, which has a large memory
requirement, we use N = 32 particles in the SMC sampling step and then randomly draw one
sample from the resulting particle approximation of the posterior. Finally, for DDRM we use 200
diffusion steps and for REDDIFF we use 1000 gradient steps and the parameters recommended
in the original paper. We provide the implementation details for all algorithms in Appendix C.1.

7

Observation DCPS DDRM DPS ΠGDM REDDIFF MCGDIFF Observation DCPS DDRM DPS ΠGDM REDDIFF MCGDIFF

Figure 2: Sample images for inpainting with center, half, expand masks and for Super Resolution
with 4× and 16× factors. On the left: FFHQ dataset and on the right ImageNet dataset.

Table 2: Mean LPIPS value on different tasks. Lower is better.

Dataset / σy Task DCPS DDRM DPS ΠGDM REDDIFF MCGDIFF

FFHQ / 0.05

Half 0.20 0.25 0.24 0.26 0.28 0.36
Center 0.05 0.06 0.07 0.19 0.12 0.24
SR 4× 0.09 0.18 0.09 0.33 0.36 0.15

SR 16× 0.23 0.36 0.24 0.44 0.51 0.32

FFHQ / 0.3

Half 0.25 0.30 0.31 0.64 0.76 0.80
Center 0.10 0.13 0.11 0.62 0.75 0.55
SR 4× 0.21 0.26 0.19 0.77 0.77 0.65

SR 16× 0.35 0.41 0.43 0.64 0.74 0.52

ImageNet / 0.05

Half 0.35 0.40 0.44 0.38 0.44 0.83
Center 0.18 0.14 0.31 0.29 0.22 0.45
SR 4× 0.24 0.38 0.41 0.78 0.56 1.32

SR 16× 0.44 0.72 0.50 0.60 0.83 1.33

ImageNet / 0.3

Half 0.40 0.46 0.48 0.82 0.76 0.86
Center 0.24 0.25 0.40 0.68 0.71 0.47
SR 4× 0.43 0.50 0.47 0.87 0.83 1.31

SR 16× 0.72 0.77 0.57 0.72 0.92 0.67

Average 0.28 0.35 0.32 0.57 0.60 0.67

For the JPEG dequantization task,
we use σy = 10−3 and λ = 0.1.
We only benchmark our method
against ΠGDM and REDDIFF,
since MCGDIFF and DDRM
do not handle non-linear inverse
problems. We did not include
DPS in our benchmark because
we have not managed to find a
suitable choice of hyperparam-
eters to achieve reasonable re-
sults. Finally, for the Poisson-
shot noise case, we compare
against DPS. We use the step
size for super-resolution recom-
mended in the original paper [see
10, Appendix D.1], and found, via a grid search, that the same value is also effective for the other tasks.

Table 3: Mean LPIPS value on JPEG dequanti-
zation.

Dataset Task DCPS ΠGDM REDDIFF

FFHQ QF = 2 0.20 0.37 0.32
QF = 8 0.08 0.15 0.18

ImageNet QF = 2 0.44 0.93 0.50
QF = 8 0.24 0.95 0.31

Evaluation. As shown in Table 2, DCPS outper-
forms the other baselines on 13 out of 16 tasks
and has the best average performance. In par-
ticular, it compares favorably with ΠGDM and
DPS, its closest competitors, while exhibiting the
same runtime and memory requirements; see Ta-
ble 4, where we give the average runtime and
memory usage for each algorithm. The mem-
ory consumption is measured by how many sam-
ples each algorithm can generate in parallel on
a single 48GB L40S NVIDIA GPU for the Diffusion model trained on FFHQ [15].
We emphasize that DCPS is more robust to larger noise levels than ΠGDM and REDDIFF, as
evidenced by the large increase in the LPIPS value for these algorithms in the case σy = 0.3. On
the JPEG dequantization task (Table 3), DCPS also shows better performance than these algorithms
and even more so for the high compression level (QF = 2). On the Poisson-shot noise tasks, DCPS
outperforms DPS by a significant margin; see Table 6. Finally, we display various reconstructions
obtained with each algorithm. More specifically, we have generated 4 samples each, with the same
seed. Figure 2 displays the first sample and the remaining ones are deferred to Appendix D. For
MCGDIFF we show 4 random samples of the same particle filter. Due to the collapse of the particle
filter in very large dimensions [2], they are all similar. Surprisingly, the samples produced by DDRM
and REDDIFF for the outpainting tasks also show striking similarities, although the samples have
been drawn independently.

8

h†(y) DCPS ΠGDM REDDIFF Observation DCPS DPS Observation DCPS DPS

Figure 3: Left: JPEG dequantization with QF = 2. Middle: Poisson denoising. Right: SR 4× Poisson denoising.

0 100 200
Runtime (s)

0.3

0.4

0.5

0.6

L
PI

PS

DCPS (ours)
DDRM

MCGDIFF
DPS

ΠGDM
REDDIFF

25 45 65
Max. samples per GPU

Table 4: LPIPS metric against the runtime and
memory cost of the algorithms.

Table 5: ℓ2 distance quantiles with MCGDIFF
as reference.

σy = 0.005 σy = 0.01
q50 q25 q75 q50 q25 q75

DCPS 1.31 1.33 1.47 1.33 1.42 1.42
DPS 1.34 1.40 1.61 1.36 1.48 1.52
DDRM 1.48 1.46 1.61 1.59 1.62 1.61
ΠGDM 1.36 1.35 1.47 1.37 1.43 1.42
REDDIFF 1.67 1.57 1.82 1.56 1.54 1.65

Trajectory prediction. We evaluate our algorithm
on the UCY dataset consisting of pedestrian trajecto-
ries, encoded as 2D time series with 20 time steps
[27, 29, 18, 30]. We pre-train a trajectory model on
this dataset and then use it for trajectory reconstruc-
tion tasks. The model architecture and implementation
are detailed in Appendix C.4. We focus on the com-
pletion of trajectories where only a few timesteps are
observed. The missing steps are filled in based on the
observations and the pre-trained prior model, similar
to the inpainting task in the previous section. We use
MCGDIFF with 5000 particles to obtain approximate
samples from the posterior. Indeed, as the dimension of
the observation space is low (dx = 40) and MCGDIFF
is asymptotically exact as the number of particles tends
to infinity, it yields an accurate approximation of the
posterior; see [7, Proposition 2.1]. Then, we compute
the ℓ2 distance between the median, quantile 25, and
quantile 75 of the MCGDIFF samples and the recon-
structions of each algorithm. We report these results
in Table 5. Finally, in Figure 4 we illustrate the recon-
structed trajectories on a specific trajectory completion
problem.

Figure 4: Trajectory completion where only the middle part of the trajectory is observed. The figures in the 1st

row display 3 reconstructions per algorithm. The 2nd and 3rd rows show confidence intervals across different
time steps. The Groundtruth is a trajectory taken from the UCY dataset.

5 Conclusion.

In this paper, we introduce DCPS to handle Bayesian linear inverse problems with DDM priors
without the need for problem-specific additional training. Our divide-and-conquer strategy helps to
reduce the approximation error of existing approaches, and our variational framework provides a

9

principled method for estimating the backward kernels. DCPS applies to various relevant inverse
problems and is competitive with existing methods.

Limitations and future directions. Our method has some limitations that shed light on opportu-
nities for further development and refinement. First, the intermediate potentials that we considered
were specifically designed for each problem, meaning our method is not universally applicable to all
inverse problems. For instance, our approach can not be applied to for linear inverse problems using
latent diffusion models [41] since there is no clear choice of intermediate potentials. Therefore, in our
opinion, deriving a learning procedure that is capable to automatically design effective intermediate
potentials applicable to any g0 is an important research direction. Moreover, there is an aspect of
the choice of the intermediate potentials and the number of blocks L that remains to be understood
properly. Indeed, while our backward approximations reduce the local approximation errors w.r.t.
DPS and ΠGDM; nonetheless DCPS requires appropriate intermediate potentials in order to perform
well. DCPS can still provide decent performance with irrelevant intermediate potentials as long as
the number of Langevin steps, in-between the blocks, is large enough. Finally, although our method
provides decent results with the same computational cost as DPS and ΠGDM, it remains slower
than REDDIFF and DDRM which which do not compute vector-jacobian product over the denoiser.
Therefore, overcoming this bottleneck when optimizing the KL objective would be a significant
improvement for our method.

Acknowledgments. The work of Y.J. and B.M. has been supported by Technology Innovation
Institute (TII), project Fed2Learn. The work of Eric Moulines has been partly funded by the European
Union (ERC-2022-SYG-OCEAN-101071601). Views and opinions expressed are however those
of the author(s) only and do not necessarily reflect those of the European Union or the European
Research Council Executive Agency. Neither the European Union nor the granting authority can be
held responsible for them.

10

References

[1] Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, and Christian Etmann. Conditional
image generation with score-based diffusion models. arXiv preprint arXiv:2111.13606, 2021.

[2] P. Bickel, B. Li, and T. Bengtsson. Sharp failure rates for the bootstrap particle filter in high
dimensions. In B. Clarke and S. Ghosal, editors, Pushing the Limits of Contemporary Statistics:
Contributions in Honor of Jayanta K. Ghosh, pages 318–329. Institute of Mathematical Statistics,
2008.

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[4] Benjamin Boys, Mark Girolami, Jakiw Pidstrigach, Sebastian Reich, Alan Mosca, and
O Deniz Akyildiz. Tweedie moment projected diffusions for inverse problems. arXiv preprint
arXiv:2310.06721, 2023.

[5] Nicolas Brosse, Alain Durmus, Éric Moulines, and Sotirios Sabanis. The tamed unadjusted
langevin algorithm. Stochastic Processes and their Applications, 129(10):3638–3663, 2019.

[6] Daniela Calvetti and Erkki Somersalo. Inverse problems: From regularization to Bayesian
inference. Wiley Interdisciplinary Reviews: Computational Statistics, 10(3):e1427, 2018.

[7] Gabriel Cardoso, Yazid Janati, Eric Moulines, and Sylvain Le Corff. Monte carlo guided
denoising diffusion models for bayesian linear inverse problems. In The Twelfth International
Conference on Learning Representations, 2024.

[8] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh Yoon.
Ilvr: Conditioning method for denoising diffusion probabilistic models. arXiv preprint
arXiv:2108.02938, 2021.

[9] Nicolas Chopin, Omiros Papaspiliopoulos, et al. An introduction to sequential Monte Carlo,
volume 4. Springer, 2020.

[10] Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul
Ye. Diffusion posterior sampling for general noisy inverse problems. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

[11] Hyungjin Chung, Byeongsu Sim, and Jong Chul Ye. Come-closer-diffuse-faster: Accelerating
conditional diffusion models for inverse problems through stochastic contraction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12413–12422,
2022.

[12] Masoumeh Dashti and Andrew M. Stuart. The Bayesian Approach to Inverse Problems, pages
311–428. Springer International Publishing, Cham, 2017.

[13] Pierre Del Moral. Feynman-kac formulae. In Feynman-Kac Formulae, pages 47–93. Springer,
2004.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[15] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

[16] Zehao Dou and Yang Song. Diffusion posterior sampling for linear inverse problem solving:
A filtering perspective. In The Twelfth International Conference on Learning Representations,
2024.

[17] Marc Anton Finzi, Anudhyan Boral, Andrew Gordon Wilson, Fei Sha, and Leonardo Zepeda-
Núñez. User-defined event sampling and uncertainty quantification in diffusion models for
physical dynamical systems. In International Conference on Machine Learning, pages 10136–
10152. PMLR, 2023.

11

[18] Tianpei Gu, Guangyi Chen, Junlong Li, Chunze Lin, Yongming Rao, Jie Zhou, and Jiwen
Lu. Stochastic trajectory prediction via motion indeterminacy diffusion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 17113–17122,
2022.

[19] Bichuan Guo, Yuxing Han, and Jiangtao Wen. Agem: Solving linear inverse problems via deep
priors and sampling. Advances in Neural Information Processing Systems, 32, 2019.

[20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

[21] Aapo Hyvärinen. Some extensions of score matching. Computational statistics & data analysis,
51(5):2499–2512, 2007.

[22] Bowen Jing, Gabriele Corso, Renato Berlinghieri, and Tommi Jaakkola. Subspace diffusion
generative models. In European Conference on Computer Vision, pages 274–289. Springer,
2022.

[23] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 4401–4410, 2019.

[24] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
models. Advances in Neural Information Processing Systems, 35:23593–23606, 2022.

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

[26] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[27] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. Crowds by example. In Computer
graphics forum, 2007.

[28] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

[29] Karttikeya Mangalam, Yang An, Harshayu Girase, and Jitendra Malik. From goals, waypoints
& paths to long term human trajectory forecasting. In IEEE/CVF, 2021.

[30] Weibo Mao, Chenxin Xu, Qi Zhu, Siheng Chen, and Yanfeng Wang. Leapfrog diffusion model
for stochastic trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5517–5526, 2023.

[31] Willem Marais and Rebecca Willett. Proximal-gradient methods for poisson image reconstruc-
tion with bm3d-based regularization. In 2017 IEEE 7th International Workshop on Computa-
tional Advances in Multi-Sensor Adaptive Processing (CAMSAP), pages 1–5. IEEE, 2017.

[32] Morteza Mardani, Jiaming Song, Jan Kautz, and Arash Vahdat. A variational perspective on
solving inverse problems with diffusion models. In The Twelfth International Conference on
Learning Representations, 2024.

[33] Radford M Neal. Annealed importance sampling. Statistics and computing, 11:125–139, 2001.

[34] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic
models. In International conference on machine learning, pages 8162–8171. PMLR, 2021.

[35] Robert D Nowak and Eric D Kolaczyk. A statistical multiscale framework for poisson inverse
problems. IEEE Transactions on Information Theory, 46(5):1811–1825, 2000.

[36] Xingang Pan, Xiaohang Zhan, Bo Dai, Dahua Lin, Chen Change Loy, and Ping Luo. Exploiting
deep generative prior for versatile image restoration and manipulation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44(11):7474–7489, 2021.

[37] Michael K Pitt and Neil Shephard. Filtering via simulation: Auxiliary particle filters. J. Amer.
Statist. Assoc., 94(446):590–599, 1999.

12

[38] Gareth O. Roberts and Richard L. Tweedie. Geometric convergence and central limit theorems
for multidimensional Hastings and Metropolis algorithms. Biometrika, 83:95–110, 1996.

[39] Isabel Rodrigues, Joao Sanches, and Jose Bioucas-Dias. Denoising of medical images corrupted
by poisson noise. In 2008 15th IEEE international conference on image processing, pages
1756–1759. IEEE, 2008.

[40] Yaniv Romano, Michael Elad, and Peyman Milanfar. The little engine that could: Regularization
by denoising (red). SIAM Journal on Imaging Sciences, 10(4):1804–1844, 2017.

[41] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.

[42] Franccois Rozet and Gilles Louppe. Score-based data assimilation. Advances in Neural
Information Processing Systems, 36:40521–40541, 2023.

[43] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(4):4713–4726, 2022.

[44] Richard Shin and Dawn Song. Jpeg-resistant adversarial images. In NIPS 2017 workshop on
machine learning and computer security, volume 1, page 8, 2017.

[45] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International Conference on Machine
Learning, pages 2256–2265. PMLR, 2015.

[46] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In
International Conference on Learning Representations, 2021.

[47] Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
models for inverse problems. In International Conference on Learning Representations, 2023.

[48] Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz,
Yongxin Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable
generation. In International Conference on Machine Learning, pages 32483–32498. PMLR,
2023.

[49] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. Advances in Neural Information Processing Systems, 34:1415–
1428, 2021.

[50] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

[51] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[52] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2021.

[53] Andrew M Stuart. Inverse problems: a Bayesian perspective. Acta numerica, 19:451–559,
2010.

[54] Brian L. Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay, and
Tommi S. Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-
scaffolding problem. In The Eleventh International Conference on Learning Representations,
2023.

[55] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 9446–9454, 2018.

13

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[57] Gregory K Wallace. The jpeg still picture compression standard. IEEE transactions on consumer
electronics, 38(1):xviii–xxxiv, 1992.

[58] Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion
null-space model. In The Eleventh International Conference on Learning Representations,
2023.

[59] Luhuan Wu, Brian L. Trippe, Christian A Naesseth, John Patrick Cunningham, and David Blei.
Practical and asymptotically exact conditional sampling in diffusion models. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

[60] Guanhua Zhang, Jiabao Ji, Yang Zhang, Mo Yu, Tommi Jaakkola, and Shiyu Chang. Towards co-
herent image inpainting using denoising diffusion implicit models. In International Conference
on Machine Learning, pages 41164–41193. PMLR, 2023.

[61] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 586–595, 2018.

[62] Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, and Luc
Van Gool. Denoising diffusion models for plug-and-play image restoration. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1219–1229,
2023.

14

A Methodology details

A.1 Denoising Diffusion models

DDMs learn a sequence (x̂θ
0|t)

T
t=1 of denoisers by minimizing, using SGD, the objective

T∑
t=1

wtE
[
∥ϵt − ϵ̂θt (

√
αtX0 +

√
1− αtϵt)∥2

]
(A.1)

w.r.t. the neural network parameter θ, where (ϵt)
T
t=1 are i.i.d. standard normal vectors and (wt)

T
t=1

are some nonnegative weights. We denote by θ⋆ an estimator of the minimizer of the previous loss.
Having access to θ⋆, we can define a generative model for pdata. Let (tk)nk=0 be an increasing sequence
of time instants in J0, T K with t0 = 0. We assume that tn is large enough so that qtn is approximately
multivariate standard normal. For convenience, we assign the index k to any quantity depending on
tk; e.g., we denote ptk by pk. For (j, k) ∈ J1, n− 1K2 such that j < k, define

µj|0,k(x0, xk) :=

√
αj(1− αk/αj)

1− αk
x0 +

√
αk/αj(1− αj)

1− αk
xk , (A.2)

σ2
j|k :=

(1− αj)(1− αk/αj)

1− αk
. (A.3)

Then the bridge kernel

qj|0,k(xj |x0, xk) = qj|0(xj |x0)qk|j(xk|xj)
/
qk|0(xk|x0) (A.4)

is a Gaussian distribution with mean µj|0,k(x0, xk) and covariance σ2
j|kIdx

. DDPM [20] posits the
following variational approximation

pθ0:n(x0:n) = pn(xn)

n−1∏
k=0

pθk|k+1(xk|xk+1) ,

where pθk|k+1(xk|xk+1) = qk|0,k+1(xk|x̂θ
0|k+1(xk+1), xk+1) and pθ0|1(·|x1) = δx̂θ

0|1(x1). An effi-
cient generative model is then obtained by plugging in the parameter θ⋆.

A.2 Further details on DCPS

In this section we provide further details on Steps 1 and 2 detailed in the main paper. The complete
algorithm is given in Algorithm 1.

Tamed unadjusted Langevin. For the tamed unadjusted Langevin steps we simulate the Markov
chain (X̃j)

M
j=0 where

X̃j+1 = X̃j + γGℓ
γ(X̃j) +

√
2γZj , X̃0 = Xℓ + 1 , (A.5)

and (Zj)
M−1
j=0 are i.i.d. dx-dimensional standard normal, Xℓ +1 is an approximate sample from πℓ+1

obtained from the previous iteration of the algorithm, and for all x ∈ Rdx and γ > 0,

Gℓ
γ(x) :=

∇ log ĝℓ,⋆ℓ+1(x) + ŝℓ+1(x)

1 + γ∥∇ log ĝℓ,⋆ℓ+1(x) + ŝℓ+1(x)∥
. (A.6)

We then set Xℓ
ℓ+1 := X̃M , which serves as an initialization of the Markov chain in Step 2.

Potential computation. In order to perform the tamed Langevin steps and to optimize the variational
approximation using the criterion (3.8), it is crucial to be able to compute exactly the potential (3.6).
The optimal potentials we have proposed for both linear inverse problems with Gaussian noise (3.10)
and low-count Poisson denoising (3.11) (for ℓ > 0) are available in a closed form:

ĝℓ,⋆j (xj) = N(
√
αℓ y,Aµℓ|j(xj),Σ

ℓ
j) , (A.7)

15

where

Σℓ
j = σ2

ℓ|jAA⊺ + σ2
yIdy

, (Linear inverse problem)

Σℓ
j = σ2

ℓ|jAA⊺ +
√
αℓdiag(y) , ℓ > 0 , (Poisson-shot noise)

µℓ|j(xj) := µℓ|0,j(x̂0|j(xj), xj), and σ2
ℓ|j is defined in (A.2). As a result, the first term of the

variational criterion L(µ̂j , υ̂j ;xj+1) in (3.8), given by

E
[
log ĝℓ,⋆j (µ̂j + eυ̂j/2Z)

]
=

∫
log ĝℓ,⋆j (xj)λ

φ
j|j+1(xj |xj+1) dxj ,

can be computed exactly. Indeed, as µℓ|j is a linear function of xj , this expectation is simply that of a
quadratic function under a Gaussian density, given by

E
[
log ĝℓ,⋆j (µ̂j + eυ̂j/2Z)

]
= −1

2

[∥∥√αℓ y −Aµℓ|j(µ̂j)
∥∥2
(Σℓ

j)
−1 + tr

(
(Σℓ

j)
−1diag(eυ̂j)

)]
+ C .

Hence, for these cases, (3.8) has a closed-form expression. However, it involves the computation of
an inverse matrix which, for many problems, can be prohibitively expensive. To avoid this inversion,
we instead optimize a biased estimate of Lj(µ̂j , υ̂j ;xj+1) obtained by drawing two noise vectors
(Z,Z ′) ∼ N(0dx , Idx) and setting

L̃j(µ̂j , υ̂j ;xj+1) := − log gℓ(µℓ|j(µ̂j + eυ̂j/2Z) + σ2
ℓ|jZ

′)

+
∥µ̂j − µj|j+1(xj+1)∥2

2σ2
j|j+1

− 1

2

dx∑
i=1

(
υ̂j,i −

eυ̂j,i

σ2
j|j+1

)
. (A.8)

This estimator is computable for any choice choice of potential and we have found in practice that it
is sufficient to ensure good enough performance for our algorithm. Regarding the tamed unadjusted
Langevin steps, we use the same biased estimate when the matrix inversions are expensive to compute;
i.e. at each Langevin step, we approximate Gℓ

γ(X̃j) by

G̃ℓ
γ(X̃j) :=

∇xℓ+1 log gℓ(µℓ|ℓ+1(xℓ+1) + σℓ|ℓ+1Z̃ℓ) + ŝℓ+1(xℓ + 1)

∥∇xℓ+1 log gℓ(µℓ|ℓ+1(xℓ+1) + σℓ|ℓ+1Z̃ℓ) + ŝℓ+1(xℓ + 1)∥
. (A.9)

Algorithm 1 DIVIDE-AND-CONQUER POSTERIOR SAMPLER (DCPS)

Input: timesteps (kℓ)
L
ℓ=0, learning-rate ζ, numbers K and M of gradient and Langevin steps,

respectively.
Initial sample XkL

∼ N (0dx
, Idx

);
for ℓ = L− 1 to 0 do

Draw Z ∼ N(0dx
, Idx

) and compute G̃ℓ
γ(X

ℓ
kℓ+1

) (A.9);
Xℓ

kℓ+1
← Xkℓ+1

for i = 1 to M do
Z ∼ N(0dx

, Idx
);

Xℓ
kℓ+1
← Xℓ

kℓ+1
+ γG̃ℓ

γ(X
ℓ
kℓ+1

) +
√
2γZ;

end for
for j = kℓ+1 − 1 to kℓ do

µ̂j ← µj|j+1(X
ℓ
j+1); υ̂j ← log σ2

j|j+1 · 1dx
;

for r = 1 to K do
Draw (Z,Z ′) ∼ N(0dx

, Idx
) and compute L̃j(µ̂j , υ̂j ;X

ℓ
j+1) (A.8);[

µ̂j

υ̂j

]
←
[
µ̂j

υ̂j

]
− ζ∥∇µ̂j ,υ̂j L̃j(µ̂j , υ̂j ;X

ℓ
j+1)∥−1∇µ̂j ,υ̂j L̃j(µ̂j , υ̂j ;X

ℓ
j+1)

end for
ε ∼ N (0dx

, Idx
)

Xℓ
j ← µ̂j + diag(eυ̂j/2)ε;

end for
Xkℓ
← Xℓ

kℓ
;

end for

16

A.3 Proof of Proposition 3.1

For all k ∈ J0, n− 1K we denote by qk|k+1(xk|xk+1) the exact backward kernel which satisfies

qk+1(xk+1)qk|k+1(xk|xk+1) = qk(xk)qk+1|k(xk+1|xk) . (A.10)

Note that the backward kernels pk|k+1 are to be understood as Gaussian approximations of the true
backward kernels qk|k+1. Below we give a complete statement of the proposition and provide a proof.

Proposition A.1. Let k ∈ J1, nK. Assume that qk|k+1(xk|xk+1) = pk|k+1(xk|xk+1) for all
(xk, xk+1) ∈ (Rdx)2. For all ℓ ∈ J0, k − 1K and xk ∈ Rdx ,

W2(p̂ℓ|k(·|xk), pℓ|k(·|xk)) ≤
√
αℓ(1− αk/αℓ)

(1− αk)
W2(p̂0|k(·|xk), p0|k(·|xk)) .

Proof of Proposition A.1. Under the assumptions of the proposition, we have, for all m > ℓ,

pℓ|k(xℓ|xk) = qℓ|k(xℓ|xk) =

∫
qℓ|0,k(xℓ|x0, xk) q0|k(dx0|xk) .

Indeed, by definition of the backward kernel q0|k(x0|xk) and (A.10), it holds that∫
qℓ|0,k(xℓ|x0, xk)q0|k(x0|xk) dx0 =

∫ qℓ|0(xℓ|x0)qk|ℓ(xk|xℓ)

qk|0(xk|x0)

q0(x0)qk|0(xk|x0)

qk(xk)
dx0

=
qk|ℓ(xk|xℓ)

qk(xk)

∫
q0(x0)qℓ|0(dxℓ|x0) dx0

= qℓ|k(xℓ|xk) .

As a result, we have that

pℓ|k(xℓ|xk) =

∫
qℓ|0,k(dxℓ|x0, xk)q0|k(x0|xk) dx0 ,

p̂ℓ|k(xℓ|xk) =

∫
qℓ|0,k(dxℓ|x0, xk)p̂0|k(x0|xk) dx0 ,

where, by definition, p̂0|k(·|xk) is a Gaussian approximation of q0|k(·|xk) as defined in the main
paper.

Next, let Π0|k(·|xk) denote a coupling of q0|k(·|xk) and p̂0|k(·|xk), i.e., for all A ∈ B(Rdx),∫
1A(x0)1Rdx (x̂0)Π0|k(x0, x̂0|xk) dx0dx̂0 =

∫
1A(x0) q0|k(x0|xk) dx0 ,∫

1Rdx (x0)1A(x̂0)Π0|k(x0, x̂0|xk) dx0dx̂0 =

∫
1A(x̂0) p̂0|k(x̂0|xk) dx̂0 .

Consider then the random variables

Xℓ|k =

√
αℓ(1− αk/αℓ)

1− αk
X0|k +

√
αk/αℓ(1− αℓ)

1− αk
xk +

√
(1− αℓ)(1− αk/αℓ)√

1− αk
Z ,

X̂s|k =

√
αℓ(1− αk/αℓ)

1− αk
X̂0|k +

√
αk/αℓ(1− αℓ)

1− αk
xk +

√
(1− αℓ)(1− αk/αℓ)√

1− αk
Z ,

where (X0|k, X̂0|k) ∼ Π0|k(·|xk) and Z ∼ N (0dx
, Idx

). Then (Xℓ|k, X̂ℓ|k) is distributed according
to a coupling of p̂ℓ|k(·|xk) and pℓ|k(·|xk), and consequently

W2(p̂ℓ|k(·|xk), pℓ|k(·|xk)) ≤ E
[
∥Xℓ|k − X̂ℓ|k∥2

]1/2
≤
√
αℓ(1− αk/αℓ)

(1− αk)
E
[
∥X0|k − X̂0|k∥2

]1/2
.

The result is obtained by taking the infinimum of the rhs with respect to all couplings of q0|k(·|xk)

and p̂0|k(·|xk).

17

B Related works.

In this section we discuss in more details existing works that bear some similarities with DCPS.

SMC based approaches. The MCGDIFF, the Twisted Diffusion sampler (TDS) of [59] using the
FK representation (2.4). MCGDIFF is specific to linear inverse problems and the potentials used
are gk(xk) = N(

√
αk y;Axk, (1 − αk)Idy

) when σy = 0. TDS applies to any potential g0 and
relies on the DPS approximation for its potentials; i.e. gk(xk) = g0(x̂0|k(xk)). In either cases, a
particle approximation of the posterior of interest π0 is obtained using the Auxiliary Particle filter
framework [37]. [16] also use particle filters for the posterior distribution; the potentials used are
gk(xk) = N(

√
αkyk;Axk, αkσ

2
yIdx) where (yk)

n
k=0, with y0 = y is a sequence of observations

sampled according to an auto-regressive process; see [16, Equation 7]. The posterior is thus viewed as
approximately the time 0 marginal of a Hidden Markov model with transition pk|k+1 and observation
likelihood gk, which is different from the FK representation (2.4). Our choice of intermediate
potentials for linear inverse problems with Gaussian noise differs from that of MCGDIFF by the
standard deviation of the observation model, which we set to be σy. A major difference of DCPS
with these works lies in the fact that we do not rely on particle filters, thus avoiding the collapse in
very large dimensions. As we have shown in the experimental section DCPS can achieve comparable
performance to MCGDIFF in low dimensions, see Table 1 while also being efficient in very large
dimensions, see Table 2. A second and major difference is that we have derived potentials for both
the JPEG dequantization and Poisson-shot denoising tasks, which may be used to extend MCGDIFF
and FPS-SMC [16] to these problems.

RedDiff. In this work we have also proposed to use Gaussian variational inference to approximate
the intractable backward transition πℓ

k|k+1. One particularity of our approach is that we do not
use amortized variational inference [26] and instead optimize the variational distribution at each
step of the diffusion. A similar approach is used in REDDIFF [32] but in a different way. Indeed,
the authors use a non-amortized Gaussian variational approximation for the posterior π0, meaning
that in order to draw one sample from REDDIFF, several steps of optimization are performed on a
score-matching-like loss. Interestingly, this approach does not require differentiating through the
denoising network and is thus faster and more memory efficient. However, we found that this comes
at the cost of performance as can be seen in Table 1, 2 and 3.

SDA. In [42], the authors introduce a posterior sampling algorithm for inverse problem where the
chosen potential approximation is

gℓ(xℓ) = N(y;Ax̂θ
0|ℓ(xℓ), σ

2
y +

γ(1− αℓ)

αℓ
AAT) ,

with γ > 0 being a tunable parameter. Noteworthy, this potential is similar to one used in [47] with
a slightly different choice of variance. Then, the Score-based Data Assimilation (SDA) algorithm
proceed following the Predictor-Corrector framework [51]. In the Prediction stage, a sample Xk

given Xk+1 is drawn using the conditional score

ŝk+1(xk+1) = ∇ log p̂k+1(xk+1) +∇ log gk+1(xk+1) .

In the Correction stage, a Langevin MC targeting the marginal distribution gk(xk)pk(xk) is simulated
starting from the predicted sample following

Xi+1
k = Xi

k + δk(X
i
k)ŝk(X

i
k) +

√
2δk(Xi

k)Zi , Zi ∼ N(0, I) ,

where δk is a state-dependent step-size. We emphasise that due to the dependence of the step sizes
on the states, these are only Langevin-like updates that do not inherit the theoretical guarantees of
the unadjusted Langevin algorithm. While SDA and our algorithm DCPS both use Langevin, the
pivotal difference is that its purpose, in our case, is not to correct to ensure that the sample Xkℓ

is distributed according to the marginal πkℓ
(xkℓ

) ∝ gkℓ
(xkℓ

)pkℓ
(xkℓ

), but rather to ensure that the
sample is distributed according to the next distribution πkℓ

(xkℓ
), which is the initial distribution of

the next block, as per Equation (3.4). Hence, in our case, Langevin MC is used between blocks and
not within blocks.

18

C Experiments

C.1 Implementation details

In this section we provide the global implementation details for each algorithm. We provide the
specific parameters (when needed) used for each experiment (Gaussian mixture, image restoration
and trajectory inpainting) in the dedicated sections below.

DCPS. For all the experiments we implement Algorithm 1. We use the same parameters K = 2,
L = 3 and ζ = 1 for all the experiments. For the number of Langevin steps, we set it to M = 50
and M = 500 (respectively) for the Gaussian mixture experiment and M = 5 for the imaging and
trajectory inpainting experiments.

DDRM. We have used the official implementation1 and used the recommended parameters in the
original paper. We use 200 steps for DDRM and found that it works better than when we used 1000
steps.

DPS. We have implemented both Algorithm 1 (for linear inverse problems) and Algorithm 2 (for
Poisson-shot restoration) given in [10]. In all the experiments we run DPS with 1000 Diffusion steps.

RedDiff. For RedDiff, we have used the publicly available implementation2. We have empirically
found that RedDiff works best in the low observation standard deviation regime and produces spatially
coherent reconstructions in the larger noise regime but struggles with getting rid of the noise as
evidenced by the large increase in LPIPS values in Table 2. Note also that it is not clear how the
parameters of the algorithm depend on the inverse problem standard deviation; indeed, looking at
Algorithm 1 and then Appendix C.2 where the authors consider a noisy inverse problem3 there seems
to be no clear dependence of λ on σv (σy with our notations). In fact the authors use λ = 0.25
similarly to the noiseless experiments in the main paper and we believe that the tuning is performed
only on the initial step-size of Adam. As a result, for the experiments with σy = 0.3, we have tuned
it using a grid-search in [0.1, 0.25] and retained 0.1.

ΠGDM. Regarding ΠGDM [47], note that there is no publicly available implementation and we
have thus implemented the noisy version of [47, Algorithm 1] in the original paper. However, we
did not manage to obtain appropriate results and found it to be quite unstable. We have further
investigated the issue and found that ΠGDM is implemented in the github repository of RedDiff4,
which is by the same authors. We have noted that it has a slight difference with Algorithm 1 of the
ΠGDM paper; the gradient term, coined g in [47, Algorithm 1], is multiplied by

√
αt−1αt instead

of simply
√
αt. We have found that this stabilizes the algorithm significantly for the linear inverse

problem experiment. We use the same rescaling for the Gaussian mixture and trajectory inpainting
experiment. However, even with this modification to the algorith we found that ΠGDM does not
perform well when the noise standard deviation is large; see Table 2. For the JPEG experiment we do
not use this rescaling as we found that the algorithm remains stable.

MCGDiff. For MCGDiff we have used the official implementation5 with N = 32 particles for the
imaging experiments. There are no further tuning parameters as far as we can tell.

DIFFPIR We implemented [62, Algorithm 1] and use the hyperparameters recommended in the
official, released version6.

DDNM. We adapted the implementation in the released code7 to our code base.

1https://github.com/bahjat-kawar/ddrm
2https://github.com/NVlabs/RED-diff
3https://openreview.net/pdf?id=1YO4EE3SPB
4https://github.com/NVlabs/RED-diff
5https://github.com/gabrielvc/mcg_diff
6https://github.com/yuanzhi-zhu/DiffPIR
7https://github.com/wyhuai/DDNM

19

https://github.com/bahjat-kawar/ddrm
https://github.com/NVlabs/RED-diff
https://openreview.net/pdf?id=1YO4EE3SPB
https://github.com/NVlabs/RED-diff
https://github.com/gabrielvc/mcg_diff
https://github.com/yuanzhi-zhu/DiffPIR
https://github.com/wyhuai/DDNM

SDA. We implement the posterior sampling algorithm by combining [42, Algo 3 and 4 in Appendix
C]. In the experiments, we use two Langevin corrections steps and found that γ = 0.1 works well
across problems for the diagonal approximation the same as τ = 0.1 for the Langevin correction
steps size.

FPS We implement [16, Algorithm 2] provided in the appendix.

C.2 Gaussian mixtures

For a given dimension dx, we consider pdata a mixture of 25 Gaussian random variables. The means
of the Gaussian components of the mixture are (mi)

25
i=1 := {(8i, 8j, · · · , 8i, 8j) ∈ Rdx : (i, j) ∈

{−2,−1, 0, 1, 2}2}. The covariance of each component is identity. The mixture (unnormalized)
weights wi,j are independently drawn from a Dirichlet distribution.

Metrics. To assess the performance of each algorithm we draw 2000 samples and compare against
2000 samples from the true posterior distribution using the Sliced Wasserstein distance by averaging
over 104 slices. In Table 1 we report the average SW and the 95% confidence interval over 30 seeds.
We found DPS and ΠGDM to be sometimes unstable, resulting in NaN values. To account for these
unstabilities when computing the average SW distance, we replace NaN with 7 which is the typical
value obtained when a stable algorithm fails to sample from the posterior.

Parameters. For DPS we use ζm = 0.1/∥y − Ax̂θ⋆

0|m(xm)∥ at step m of the Diffusion. As to
DCPS we use γ = 10−2 for the Langevin step-size.

Denoisers. Note that the loss (A.1) can be written as

T∑
t=1

wtE
[
∥ϵt − ϵ̂θt (

√
αtX0 +

√
1− αtϵt)∥2

]
=

T∑
t=1

wt

1− αt
E
[
∥
√
1− αtϵt −

√
1− αtϵ̂

θ
t (
√
αtX0 +

√
1− αtϵt)∥2

]
=

T∑
t=1

wt

1− αt
E
[
∥Xt −

√
αtX0 −

√
1− αtϵ̂

θ
t (Xt)∥2

]
=

T∑
t=1

wtαt

1− αt
E

[∥∥∥∥X0 −
Xt −

√
1− αtϵ̂

θ
t (Xt)√

αt

∥∥∥∥2
]
.

Hence the minimizer is

ϵθ
⋆

t (xt) =
xt −

√
αt E[X0|Xt = xt]√

1− αt
,

which yields x̂θ⋆

0|t = E[X0|Xt = ·]. Next, by Tweedie’s formula we have that

x̂θ⋆

0|t(xt) =
xt + (1− αt)∇x log qt(xt)√

αt
.

Hence, since qdata is a mixture of Gaussians, qt is also a mixture of Gaussians with means
(
√
αtmi)

25
i=1 and unit covariances. Therefore, ∇x log qt(xt) and hence x̂θ⋆

0|t(xt) can be computed
using automatic differentiation libraries.

Measurement model. For a pair of dimensions (dx, dy) the measurement model (y,A, σy) is
drawn as follows: the elements dx × dy elements of the matrix are drawn i.i.d. from a standard
Gaussian distribution, then σy is drawn uniformly in [0, 1] and finally we draw x⋆ ∼ pdata and
ε ∼ N (0dy

, Idy
) and set y = Ax⋆ + σyε.

20

Table 6: Mean LPIPS value on low count Poisson restoration.
Dataset Task DCPS DPS

FFHQ Denoising 0.07 0.12
SR 4× 0.17 0.31

ImageNet Denoising 0.17 0.24
SR 4× 0.36 0.80

Posterior. Having drawn both pdata and (y,A, σy), the posterior can be computed exactly using
standard Gaussian conjugation formulas [3, Eq. 2.116] and hence the posterior is a Gaussian mixture
where all the components have the same covariance matrix Σ :=

(
Idx + σ−2

y AT A
)−1

and means
and weights given by

m̃i := Σ
(
A⊺y/σ2

y +mi

)
,

w̃i ∝ wiN(y;Ami, σ
2
yIdx +AA⊺) .

C.3 Imaging experiments

Parameters. For DCPS we set γ = 10−3 for the Langevin step-size. For DPS we use the
parameters recommended in the original paper, which we found to work well even on the half and
expand masks; see [10, Appendix D.1].

Evaluation. In order to evaluate each algorithm we compute the LPIPS metric [61] on each dataset
using 100 samples from the validation sets and report the average in Table 2, 3 and 6.

JPEG dequantization. We use the differentiable JPEG framework [44] which replaces the rounding
function x 7→ ⌊x⌉ used in the quantization part with x 7→ ⌊x⌉ + (x − ⌊x⌉)3 which has non-zero
derivatives almost everywhere.

C.4 Trajectory inpainting experiment

Trajectory DDM prior. The denoiser of the diffusion model has a Transformer-like architecture.
In the entry of the network, the trajectory is augmented to a higher dimensional space (512) via dense
layer. At this stage a positional encoding [56] is added to account for the diffusion step. Afterward,
the output is flowed through a transformer encoder [56] whose feedforward layer dimension is
2048 to learn temporal dependence within the trajectory before being feed to an MLP with 4 layers
(512→ 1024→ 1024→ 512) and in between ReLU activation functions, to output the added noise.
A Cosine noise scheduler with 1000 diffusion steps was used [34]. The UCY-student dataset was split
int a train and a validation sets with 1450 and 140 trajectories respectively. The batch size was set
to 10 times the training set, namely 145 samples The denoiser was trained to minimize the loss of
DDPM [20] for 1000 epochs using Adam solver [25] with a Cosine learning rate scheduler [28]. The
training was performed on 48GB L40S NVIDIA GPU and took roughly one minute to complete.

Metrics. The trajectory completion experiment was performed on the validation set. Every trajec-
tory was masked randomly. Leveraging MCGDIFF ’s asymptotical approximation of the posterior,
it was run with 5000 particles to sample 100 samples from the posterior and afterward these were
checked against a 100 reconstructions of each other algorithm by computing the timestep wise ℓ2
distance between the quantile 50 (median), 25, 75 and also by computing the Sliced Wasserstein
distance. This procedure was repeated for all trajectories in the validation set and later the results of
each algorithm were aggregated by the mean ℓ2 distances. Finally, this experiment was performed for
two levels of noise σy = 0.005 and σy = 0.01.

C.5 Additional experiments

Here, we provide the complete tables of results on imaging and trajectories inpainting experiments
that includes in addition DIFFPIR, DDNM, FPS , and SDA. These additional experiments were
conducted during the rebuttal phase of our work.

21

Table 7: Mean LPIPS value on different tasks. Lower is better.
Dataset / σy Task DCPS DDRM DPS ΠGDM REDDIFF MCGDIFF DIFFPIR DDNM SDA FPS

FFHQ / 0.05

Half 0.20 0.25 0.24 0.26 0.28 0.36 0.23 0.22 0.23 0.28
Center 0.05 0.06 0.07 0.19 0.12 0.24 0.06 0.05 0.05 0.09
SR 4× 0.09 0.18 0.09 0.33 0.36 0.15 0.13 0.14 0.10 0.10
SR 16× 0.23 0.36 0.24 0.44 0.51 0.32 0.28 0.30 0.44 0.71

FFHQ / 0.3

Half 0.25 0.30 0.31 0.64 0.76 0.80 0.30 0.26 0.26 0.67
Center 0.10 0.13 0.11 0.62 0.75 0.55 0.16 0.11 0.10 0.69
SR 4× 0.21 0.26 0.19 0.77 0.77 0.65 0.28 0.23 0.19 0.75
SR 16× 0.35 0.41 0.43 0.64 0.74 0.52 0.42 0.39 0.49 0.71

ImageNet / 0.05

Half 0.35 0.40 0.44 0.38 0.44 0.83 0.35 0.38 0.54 0.39
Center 0.18 0.14 0.31 0.29 0.22 0.45 0.14 0.13 0.14 0.19
SR 4× 0.24 0.38 0.41 0.78 0.56 1.32 0.36 0.34 0.85 0.27
SR 16× 0.44 0.72 0.50 0.60 0.83 1.33 0.63 0.70 1.13 0.69

ImageNet / 0.3

Half 0.40 0.46 0.48 0.82 0.76 0.86 0.50 0.44 0.61 0.71
Center 0.24 0.25 0.40 0.68 0.71 0.47 0.36 0.22 0.25 0.70
SR 4× 0.43 0.50 0.47 0.87 0.83 1.31 0.61 0.46 1.14 0.84
SR 16× 0.72 0.77 0.57 0.72 0.92 0.67 0.76 0.75 1.19 0.74

Average 0.28 0.35 0.32 0.57 0.60 0.67 0.35 0.32 0.48 0.53
Median 0.24 0.33 0.35 0.63 0.72 0.60 0.32 0.28 0.35 0.69

Table 8: ℓ2 distance quantiles with MCGDIFF as reference.
σy = 0.005 σy = 0.01

q50 q25 q75 q50 q25 q75

DCPS 1.31 1.33 1.47 1.33 1.42 1.42
DPS 1.34 1.40 1.61 1.36 1.48 1.52
DDRM 1.48 1.46 1.61 1.59 1.62 1.61
ΠGDM 1.36 1.35 1.47 1.37 1.43 1.42
REDDIFF 1.67 1.57 1.82 1.56 1.54 1.65
DIFFPIR 1.57 1.84 1.98 1.52 1.94 1.89
DDNM 1.45 1.45 1.65 1.52 1.59 1.59
FPS 2.60 2.61 2.62 2.91 2.90 2.89
SDA 1.52 1.55 1.69 1.54 1.59 1.61

D Sample reconstructions

In this section we display the remaining samples from the experiments in the main paper. We remind
the reader that all algorithms are run with the same seed and we draw in parallel 4 samples from each
algorithm and display them in their order of appearance.

Figure 5: Denoising task with Poisson noise on FFHQ.

22

Figure 6: Denoising task with Poisson noise on ImageNet.

Figure 7: Outpainting task with half mask on ImageNet.

23

Figure 8: Inpainting with box mask on FFHQ.

Figure 9: Inpainting task with box mask on ImageNet.

24

Figure 10: Outpainting task with half mask on FFHQ.

Figure 11: Outpainting task with half mask on ImageNet.

25

Figure 12: Outpainting expend task on FFHQ.

Figure 13: Outpainting expend task on ImageNet.

26

Figure 14: SR 4× task with Poisson noise on FFHQ.

Figure 15: SR 4× task on ImageNet.

27

Figure 16: SR 16× task on FFHQ.

28

Figure 17: SR 16× task on ImageNet.

29

Figure 18: JPEG task with QF=8 on FFHQ.

Figure 19: JPEG task with QF=2 on FFHQ.

30

Figure 20: JPEG task with QF=8 on ImageNet.

Figure 21: JPEG task with QF=2 on ImageNet.

31

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims are clearly stated in the introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have added a limitations section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

32

Justification: All the assumptions needed are stated clearly.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the exact implementation details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

33

Answer: [Yes]

Justification: We have provided a link with the relevant code as well as the link to download
the datasets we have used

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: These are all given in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the 95% confidence intervals for our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

34

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the memory usage and runtime for each algorithm.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate

35

https://neurips.cc/public/EthicsGuidelines

to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cite the authors that have released the datasets and models we use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

36

paperswithcode.com/datasets

Answer: [Yes]
Justification: The released code is accompanied by a README file detailing its contents,
installation instructions, and usage guidelines.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

37

	Introduction
	Posterior sampling with DDM prior
	The DCPS algorithm
	Experiments
	Conclusion.
	Methodology details
	Denoising Diffusion models
	Further details on DCPS
	Proof of prop:w2-informal

	Related works.
	Experiments
	Implementation details
	Gaussian mixtures
	Imaging experiments
	Trajectory inpainting experiment
	Additional experiments

	Sample reconstructions

