
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXPLORE DATA LEFT BEHIND IN REINFORCEMENT
LEARNING FOR REASONING LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an ef-
fective approach for improving the reasoning abilities of large language mod-
els (LLMs). The Group Relative Policy Optimization (GRPO) family has
demonstrated strong performance in training LLMs with RLVR. However, as
models train longer and scale larger, more training prompts become residual
prompts—those with zero-variance rewards that provide no training signal. Con-
sequently, fewer prompts contribute to training, reducing diversity and hindering
effectiveness. To fully exploit these residual prompts, we propose the Explore
Residual Prompts in Policy Optimization (ERPO) framework, which encourages
exploration on residual prompts and reactivates their training signals. ERPO main-
tains a history tracker for each prompt and adaptively increases the sampling tem-
perature for residual prompts that previously produced all-correct responses. This
encourages the model to generate more diverse reasoning traces, introducing in-
correct responses that revive training signals. Empirical results on the Qwen2.5
series demonstrate that ERPO consistently surpasses strong baselines across mul-
tiple mathematical reasoning benchmarks.

1 INTRODUCTION

Large language models (LLMs) have become the foundation of modern artificial intelligence, ex-
hibiting strong performance across domains such as mathematics, programming, and scientific prob-
lem solving (Team et al., 2023; Guo et al., 2025; Yang et al., 2025a). A central factor behind these
advancements is their capacity for extended reasoning, where models construct coherent, multi-step
chains of thought to address complex tasks (Wei et al., 2022; Yao et al., 2023; Muennighoff et al.,
2025). Reinforcement learning (RL) has emerged as a key paradigm for strengthening this capabil-
ity, enabling LLMs to refine their responses through interaction-driven feedback and alignment with
verifiable signals or human preferences (Schulman et al., 2017; Ouyang et al., 2022; Rafailov et al.,
2023). In particular, reinforcement learning with verifiable rewards (RLVR) has proven especially
effective, as it leverages tasks with automatically checkable outcomes to provide reliable supervision
for scaling reasoning abilities (Shao et al., 2024; Guo et al., 2025; Yang et al., 2025a).

Among recent advances in reinforcement learning for LLMs, Group Relative Policy Optimization
(GRPO) has emerged as a widely adopted RLVR framework (Shao et al., 2024; Guo et al., 2025).
Building on this foundation, subsequent research has sought to address key issues of GRPO, includ-
ing entropy collapse, reward noise, and training instability (Yu et al., 2025; Cui et al., 2025; Zheng
et al., 2025a). Furthermore, as an on-policy algorithm, GRPO has motivated efforts to develop more
effective sampling strategies beyond basic random decoding (Xu et al., 2025; Zheng et al., 2025c;
Hou et al., 2025).

In this work, we identify a limitation shared by the GRPO family of algorithms: as training steps and
model size increase, more training prompts become residual prompts that no longer provide training
signals yet still contain valuable information that can benefit model performance. Residual prompts
are those that initially provide effective training signals at the beginning of training but eventually
provide zero training signal or are filtered out by the RL algorithms as the well-trained policy gener-
ates all-correct responses for them. This reduces training diversity over time and ultimately hinders
further improvement through RL. Furthermore, residual prompts retain learning potential that can
be leveraged to further improve model performance, as they help the model retain acquired abilities

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Proportion of prompts with all-correct responses under different sampling temperatures
and model scales. The proportion increases with RL training process and larger model sizes, leaving
more residual prompts, thereby reducing diversity and wasting valuable training signals.

T = 1.0 T = 1.1 T = 1.2

Qwen2.5-3B 0% – –
Qwen2.5-3B + DAPO 8.7% 6.2% 2.8%

Qwen2.5-7B 0% – –
Qwen2.5-7B + DAPO 21.3% 15.5% 5.5%

Qwen2.5-32B 0% – –
Qwen2.5-32B + DAPO 74.8% 62.1 34.8%

and may yield novel reasoning traces. Moreover, residual prompts are not necessarily robust—small
perturbations, such as increasing the sampling temperature, can easily induce errors. Table 1 reports
the proportion of residual prompts with all-correct responses in the training data under different
sampling temperatures and model scales.

To better exploit the residual prompts left behind during training, we propose the Explore Residual
Prompts in Policy Optimization (ERPO) framework. ERPO introduces a novel sampling strategy
that maintains a history tracker for each prompt and adaptively increases the sampling temperature
for residual prompts that have previously produced all-correct responses. Specifically, ERPO records
how many times a model generates all-correct responses for each prompt, and the sampling temper-
ature is determined by this count. The more frequently a prompt yields all-correct responses, the
higher the sampling temperature assigned to it, thereby encouraging greater exploration. As shown
in Table 1, increasing the sampling temperature enables the model to explore more diverse reason-
ing traces and generate incorrect responses, which reactivates the training signal and alleviates the
collapse of prompt diversity.

Overall, our contributions can be summarized as follows:

• We identify a key limitation of the GRPO family: residual prompts accumulate as training
progresses and models scale, leading to reduced training diversity and the loss of valuable
training signals from residual prompts.

• We propose the ERPO framework, which encourages models to adaptively explore residual
data and recover their learning potential. ERPO maintains a history tracker for each prompt and
adaptively increases the sampling temperature for residual prompts.

• Extensive experiments on several math reasoning benchmarks demonstrate the effectiveness of
ERPO in both average and majority-vote evaluations, with particularly strong improvements on
data that are likely not contaminated, such as AIME2025.

2 RELATED WORK

Reinforcement learning for LLM reasoning. Reinforcement learning (RL) has become a central
approach for enhancing the reasoning abilities of large language models (LLMs) in domains such
as mathematics, programming, and problem solving (Dubey et al., 2024; Zhou et al., 2025). Early
general-purpose algorithms like Proximal Policy Optimization (PPO) provided a practical frame-
work for fine-tuning LLMs through sampled rollouts and reward feedback (Schulman et al., 2015;
2017). More recently, RLVR methods such as Group Relative Policy Optimization (GRPO) have
emerged as effective alternatives to PPO, removing the critic model while maintaining strong perfor-
mance on reasoning benchmarks (Guo et al., 2025; Shao et al., 2024). Several extensions have been
proposed to address the limitations of GRPO: Cui et al. (2025); Wang et al. (2025); Cheng et al.
(2025); Zheng et al. (2025c) mitigates the entropy collapse problem during training; Zheng et al.
(2025a); Yang et al. (2025b) aims to stabilize the optimization process, and DAPO (Yu et al., 2025)
tackles both issues while filtering noisy rewards for training data. However, all these methods obtain
no training signal from residual prompts, thereby missing valuable information during training. To

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

address this limitation, ERPO reactivates the training signal of residual prompts and learns useful
information from them.

Data Sampling Strategies. The outputs of LLMs rely heavily on data sampling strategies to balance
diversity and quality. Common strategies include greedy search, beam search, and various random
sampling techniques such as top-k and top-p (Zhao et al., 2023; Minaee et al., 2024). In RLVR,
the model generates on-policy responses and assigns them verifiable rewards during training. Basic
random decoding is widely used in RLVR algorithms such as GRPO and DAPO (Guo et al., 2025;
Yu et al., 2025). Beyond this, several works explore alternative sampling strategies. Hou et al. (2025)
leverages tree search to find correct responses with higher probability. Zheng et al. (2025c) forks
responses at high-entropy tokens. Shrivastava et al. (2025) dynamically allocates additional training
resources to harder problems based on real-time difficulty estimates. Xu et al. (2025) selects a subset
of responses to maximize reward variation. Zheng et al. (2025b) predicts and skips uninformative
prompts using reward training dynamics. Zhang et al. (2025) progressively exposes the model to
increasingly challenging samples. Nevertheless, none of these methods are specifically designed to
leverage information from residual prompts.

3 PRELIMINARIES

Notation We define an autoregressive language model parameterized by θ as a policy πθ. Let q
denote a query and D the query set. For a response o to query q, its likelihood under πθ is expressed
as

πθ(o | q) =
|o|∏
t=1

πθ(oi,t | q, oi,<t), (1)

where |o| is the number of tokens in o.

Group Relative Policy Optimization (GRPO) (Shao et al., 2024; Guo et al., 2025) has shown
strong effectiveness for fine-tuning LLMs. Unlike traditional approaches that rely on a critic network
of comparable size to the policy, GRPO estimates the baseline directly from group-level rewards.
For a specific question-answer pair (q, a), the behavior policy πθold samples a group of G individual
responses {oi}Gi=1. Then, the advantage of the i-th response is calculated by normalizing the group-
level rewards {Ri}Gi=1:

Âi,t =
ri −mean({Ri}Gi=1)

std({Ri}Gi=1)
. (2)

Building on the group-normalized advantages, GRPO optimizes the policy with a clipped objective
that stabilizes updates and a KL regularization term that constrains divergence from the reference
model. The objective is defined as:

JGRPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold (·|q)[

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− ε, 1 + ε

)
Âi,t

)
− βDKL(πθ||πref)

)]
,

(3)

where ri,t(θ) is the importance ratio between the old and new policy:

ri,t(θ) =
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)
. (4)

Decoupled Clip and Dynamic sAmpling Policy Optimization (DAPO) (Yu et al., 2025) intro-
duces four key improvements: Clip-Higher promotes output diversity and mitigates entropy col-
lapse; Dynamic Sampling is designed to enhance training efficiency and stability; Token-Level Pol-
icy Gradient Loss plays a critical role in handling long chain-of-thought reasoning; and Overlong
Reward Shaping reduces reward noise while stabilizing optimization. Building on these compo-
nents, DAPO optimizes the policy with the following objective:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Comparison between ERPO and GRPO. During RL training, the policy gradually learns
from the training data, resulting in more residual prompts with all-correct responses. In GRPO,
residual prompts yield zero-variance rewards and thus provide no training signal for policy updates,
reducing the effectiveness of training data. In contrast, ERPO maintains a tracker for each prompt to
record the number of times it produces all-correct responses, and adaptively encourages exploration
on residual prompts to trigger incorrect responses and reactivate the training signal.

JDAPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold (·|q)[

1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− εlow, 1 + εhigh

)
Âi,t

)]
s.t. 0 <

∣∣∣{oi | is equivalent(a, oi)}
∣∣∣ < G,

(5)

where a is the ground-truth answer of query q.

4 METHODOLOGY

ERPO is proposed to leverage the training information contained in residual prompts to improve
reinforcement learning for reasoning language models. Section 4.1 introduces the idea of reacti-
vating the training signal from residual prompts that are otherwise discarded during RL training.
Section 4.2 describes how ERPO predicts whether a prompt is residual and adaptively modifies the
sampling strategy. It further explains how ERPO adjusts the sampling temperature to encourage
different levels of exploration based on a history tracker.

4.1 REACTIVATE TRAINING SIGNAL

Current RLVR algorithms usually discard residual prompts that contain all-correct responses by
assigning them zero advantage (Guo et al., 2025) or by directly filtering them out from the training
batch (Yu et al., 2025). Consequently, available training prompts continually decreases with ongoing

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

RL training and increasing model size, leading to a gradual reduction in both the size and diversity of
the training dataset. As shown in Table 1, larger models with longer training generally produce more
residual prompts that yield all-correct responses. Furthermore, as training progresses and the policy
evolves, new reasoning traces and directions may be generated for the residual prompts, which can
help the model learn more diverse reasoning patterns. In addition, training on residual prompts can
reinforce the reasoning abilities the model has already acquired.

To leverage the training signal from residual prompts that are left behind by current RL algorithms,
we propose a simple method to reactivate them. For residual prompts with all-correct responses, we
replace the zero advantage with a small positive advantage by introducing a pseudo-negative reward
into the advantage computation. The new Reactivated Advantage (RA) for prompts with all-correct
responses is:

R̂Ai,t =
ri −mean

(
{R+

i }Gi=1 ∪ {R−}
)

std
(
{R+

i }Gi=1 ∪ {R−}
) . (6)

where R+ is the reward for correct responses and R− is the reward for incorrect responses. Using
RA, residual prompts with all-correct responses still retain a small positive advantage, providing a
valid training signal instead of being discarded by the RL algorithm.

4.2 EXPLORE RESIDUAL PROMPTS IN POLICY OPTIMIZATION

Although using the reactivated advantage can force the model to learn information from residual
prompts, residual prompts will dominate the trainig along the training process and model scales up,
leaving less negative feedback and impede the training effectiveness. (Chen et al., 2025). Further-
more, the model may suffer from an imbalance between exploration and exploitation, restricting
exploration to a narrow search space and potentially causing overfitting on all-correct prompts, par-
ticularly at larger model scales. (Xiong et al., 2025)

To address this limitation, we propose to adaptively encourage exploration on residual prompts
by controling their sampling temperature. As shown in Table 1, a higher sampling temperature
can trigger incorrect responses, thereby reactivating the training signals of residual prompts. Note
that training data typically exhibit strong temporal correlations across epochs (Zheng et al., 2022),
meaning that a prompt producing all-correct responses in the current epoch is likely to do so again
in the following epoch (Zheng et al., 2025b). Thus, we can maintain a history tracker Hi to track
how many times the policy generates all-correct responses for a prompt qi:

H
(0)
i = 0, H

(t)
i = H

(t−1)
i + 1qi has all-correct responses at step t (7)

Then Hi is used to determine whether we should assign a larger sampling temperature to prompt qi.
If Hi is greater than 0, it means that prompt qi is already easy for the policy to generate all-correct
responses, and it is very likely to provide no training signals the next time the policy samples it.
Therefore, we assign a larger sampling temperature to prompts with Hi > 0 to encourage more
exploration of their reasoning traces and to reactivate the training signal by triggering incorrect
responses.

Since the robustness of prompts varies, some residual prompts require only a marginal increase in
sampling temperature to induce incorrect responses, whereas others necessitate substantially larger
adjustments. At the same time, it is essential to preserve the benefits of on-policy learning by con-
straining distributional shifts within a reasonable range to ensure stable and effective training. As-
signing excessively large sampling temperatures is particularly detrimental for prompts with lower
robustness. This trade-off highlights the difficulty of selecting a single, unified sampling temperature
that can consistently induce incorrect responses, enhance exploration, and maintain a manageable
distribution shift across all residual prompts. Therefore, ERPO introduces a prompt-adaptive adjust-
ment of the sampling temperature:

T
(t)
i = min(T0 + Ts ·H(t)

i , Tmax) (8)

where T0, Tmax, and Ts are hyperparameters representing the initial temperature, maximum temper-
ature, and temperature step size, respectively. In this way, ERPO gradually increases the sampling
temperature of residual prompts until the policy generates incorrect responses. This enables ERPO
to strike a balance between reactivating training signals, encouraging exploration, and maintaining
a reasonable distribution shift. In general, our ERPO framework can be summarized in Algorithm 1:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 ERPO framework
Input: Policy πθ, reward model R,

Prompt set D = {qi}Ni=1, history tracker {Hi}Ni=1 (init. H(0)
i =0),

Rollouts per prompt n, temperatures (T0, Tmax), step size Ts, steps K
Output: Updated policy πθupdated

1: for t = 1, 2, . . . ,K do
2: Sample a mini-batch q ⊆ D
3: for each qi ∈ q do
4: T

(t)
i ← min

(
T0 + Ts ·H(t−1)

i , Tmax

)
5: Sample n rollouts oi = (o1, . . . , on) for qi using πθ at temperature T

(t)
i

6: Compute rewards ri = (r1, . . . , rn) with R; acc← 1all oj correct

7: H
(t)
i ← H

(t−1)
i + 1acc=1

8: end for
9: Update πθ using an RL algorithm with data B = {(q,o, r)}

10: end for
11: return πθupdated

← πθ

5 EXPERIMENTS

In this section, we first outline the implementation details, including training details and evalua-
tion. We then present the main results, comparing ERPO against baseline approaches across several
math reasoning benchmarks. Finally, we provide additional experimental results to support further
analysis.

5.1 IMPLEMENTATION DETAILS

Training details: Following recent studies (Zheng et al., 2025c; Cheng et al., 2025; Shao et al.,
2025) that apply RLVR to train LMMs for math reasoning tasks, we adopt Qwen2.5-3B and
Qwen2.5-7B (Qwen et al., 2025) as our backbone models. Consistent with prior work (Yu et al.,
2025; Cheng et al., 2025; Cui et al., 2025), we use the DAPO-Math-17K dataset (Yu et al., 2025)
for training. To achieve strong performance, we adopt the DAPO algorithm (Yu et al., 2025). Prior
works (Yu et al., 2025; Cheng et al., 2025) has demonstrated its superior effectiveness and stability
over vanilla GRPO, and we employ it both as the baseline and as the optimization method for ERPO.
The learning rate is set to 1 × 10−6 with a linear warm-up over 10 rollout steps. For rollout, we
use a prompt batch size of 512, sampling 16 responses per prompt. During training, the mini-batch
size is set to 512, resulting in 16 gradient updates per rollout step. The initial rollout temperature
T0 is set to 1.0. The temperature increment step Ts is set to 0.02 for Qwen2.5-3B and 0.05 for
Qwen2.5-7B, while the maximum rollout temperature Tmax is set to 1.2 for Qwen2.5-3B and 1.4
for Qwen2.5-7B, respectively. Rewards are assigned as 1 for correct responses and −1 otherwise.
All experiments are conducted using the verl framework (Sheng et al., 2024). More details can be
found in the Appendix.

Evaluation: We evaluate our models on AIME 2025/2024, AMC 2023, and MATH500 (Hendrycks
et al., 2021), using a rollout temperature of 1.0 and top-p sampling with p = 0.7. For AIME and
AMC, we sample K = 32 independent responses for each prompt and report the average accuracy
as mean@K. In addition, we provide the majority-vote (Zhao et al., 2023) accuracy maj@K
and pass@K (Cheng et al., 2025) as complementary metrics. For the larger and less challenging
MATH500 benchmark, we sample K = 4 responses per prompt and report the mean@4, maj@4
and pass@4 metrics. All evaluations are conducted using the verl framework (Sheng et al., 2024)
and follow the same evaluation protocol as DAPO (Yu et al., 2025). More details can be found in
the Appendix.

5.2 BENCHMARK COMPARISONS

In this section, we compare the performance of DAPO, Reactivated Advantage (RA), and ERPO
on the AIME25, AIME24, AMC23, and MATH500 benchmarks. The detailed results are shown

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of the Qwen2.5-3B and Qwen2.5-7B models trained with DAPO,
+RA, and +ERPO. Evaluations use mean@32, maj@32, and pass@32 for AIME25, AIME24, and
AMC23; MATH500 is reported with mean@4, maj@4, and pass@4. The Avg. columns average the
mean, maj, and pass across datasets.
Method AIME25 AIME24 AMC23 MATH500 Avg.

mean@32 maj@32 pass@32 mean@32 maj@32 pass@32 mean@32 maj@32 pass@32 mean@4 maj@4 pass@4 mean maj pass

Qwen2.5-3B

DAPO 4.5 8.9 23.3 9.5 15.2 26.7 58.4 68.0 85.0 59.8 61.7 75.4 33.0 38.5 52.6
+RA 7.7 11.4 30.0 9.6 14.1 30.0 59.1 67.1 85.0 55.0 57.7 76.4 32.9 37.6 55.4
+ERPO 5.5 8.8 30.0 10.3 16.0 36.7 60.8 70.0 90.0 59.5 62.3 77.6 34.0 39.3 58.6

Qwen2.5-7B

DAPO 12.6 16.9 33.3 17.5 20.1 33.3 76.7 81.4 87.5 75.5 76.2 83.2 45.6 48.7 59.3
+RA 13.5 16.4 30.0 16.1 18.1 36.7 75.8 80.2 87.5 76.1 76.7 83.4 45.4 47.9 59.4
+ERPO 14.2 19.4 36.7 19.0 21.2 43.3 76.4 81.5 92.5 75.8 76.6 84.4 46.4 49.7 64.2

in Table 2. On Qwen-3B, both RA and ERPO achieve higher mean and majority-vote accuracy
than the baseline DAPO. The improvement of RA demonstrates that residual prompts still contain
valuable training information and should not be totally excluded from RL training. On AIME2025,
RA achieves a remarkable performance gain compared to the baseline: around a 70% improvement
on mean@32 and a 28% improvement on maj@32. Since AIME2025 is shown to suffer less from
data contamination during model pretraining than the other math benchmarks (Wu et al., 2025),
these results confirm that learning on residual prompts is particularly helpful for tasks that are novel
and challenging for the model.

On Qwen2.5-7B, ERPO achieves the best overall performance in both mean and majority-vote accu-
racy compared to DAPO and RA, indicating the scalability of our algorithm. On AIME2025, ERPO
achieves the largest improvement over the baseline, with an increase of approximately 12% and 16%
on mean@32 and maj@32. However, unlike the results on the 3B model, RA performs worse than
ERPO. A possible reason is that reactivating all residual prompts may lead to overfitting when the
proportion of residual prompts is high during training. As shown in Table 1, Qwen2.5-7B has more
than 20% residual prompts, making this issue more pronounced as the model scales up. In contrast,
ERPO avoids this problem by setting Tmax, which prevents unbounded increases in sampling tem-
perature. Once a residual prompt is fully learned and robust to higher temperatures, it no longer
provides a training signal.

In summary, RA verifies that residual prompts contain information that can still benefit model train-
ing and should not be totally discarded. ERPO further provides an effective sampling strategy that
leverages training signals from residual prompts and scales effectively to larger models.

5.3 EXPLORATION ON RESIDUAL PROMPTS

To investigate the effect of sampling temperature on residual prompts, we conduct experiments
to measure the proportion of residual prompts under different temperature settings. Specifically,
we select a 2k subset from our training dataset DAPO-Math-17K, sample each prompt 16 times
following the same training configuration, and calculate the proportion of residual prompts within
this subset. We evaluate Qwen2.5-3B, Qwen2.5-7B, and Qwen2.5-32B trained with DAPO. For
Qwen2.5-32B+DAPO, we use the publicly released checkpoints from DAPO (Yu et al., 2025). The
detailed results are presented in Table 1. Our findings highlight three key observations: (1) the
proportion of residual prompts increases after training; (2) larger models tend to produce more
residual prompts, revealing the challenge of scaling RLVR with model size; and (3) higher sampling
temperatures encourage greater exploration and can elicit more incorrect responses from residual
prompts.

On the other hand, we also examine the effect of sampling temperature on prompts with all-incorrect
responses. The experimental settings are kept the same, and the results are presented in Table 3. The
findings indicate that RL training and model scaling reduce the proportion of prompts with all-
incorrect responses. Moreover, sampling temperature has a much smaller impact on this proportion
than on residual prompts. Therefore, ERPO is applied only to residual prompts that are more likely
to yield all-correct responses.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Proportion of prompts with all-incorrect responses under different sampling temperatures
and model scales.

T = 1.0 T = 1.1 T = 1.2

Qwen2.5-3B 73.0% – –
Qwen2.5-3B + DAPO 39.6% 40.6% 44.0%

Qwen2.5-7B 68.9% – –
Qwen2.5-7B + DAPO 25.1% 26.9% 33.2%

Qwen2.5-32B 48.9% – –
Qwen2.5-32B + DAPO 7.0% 7.9% 15.2%

Table 4: Sensitivity analysis on temperature range (Ts, Tmax) using Qwen2.5-3B. Here, Ts denotes
the step size of rollout temperature and Tmax denotes the maximum rollout temperature reached dur-
ing training. Evaluations use mean@32, maj@32 and pass@32 for AIME25, AIME24, AMC23;
MATH500 uses mean@4, maj@4 and pass@4. The Avg. columns average mean, maj, and pass
across datasets.
(Tmax, Tmin)

AIME25 AIME24 AMC23 MATH500 Avg.

mean@32 maj@32 pass@32 mean@32 maj@32 pass@32 mean@32 maj@32 pass@32 mean@4 maj@4 pass@4 mean maj pass

(0.02, 1.2) 5.5 8.8 30.0 10.3 16.0 36.7 60.8 70.0 90.0 59.5 62.3 77.6 34.0 39.3 58.6
(0.05, 1.2) 5.6 9.4 26.7 8.8 14.2 30.0 59.2 69.5 87.5 57.5 60.2 73.8 32.8 38.3 54.5
(0.05, 1.4) 3.6 5.5 33.3 9.9 14.6 33.3 59.6 67.7 85.0 58.4 60.8 75.4 32.9 37.2 56.8

5.4 SENSITIVE ANALYSIS

We conduct a sensitivity analysis on the temperature increment step (Ts) and the maximum roll-
out temperature (Tmax) to evaluate their impact on the Qwen2.5-3B model. Specifically, we ex-
periment with three parameter settings: Ts = 0.02, Tmax = 1.2; Ts = 0.05, Tmax = 1.2; and
Ts = 0.05, Tmax = 1.4. The performance under these settings is reported in Table 4. The results
show that Ts = 0.02 and Tmax = 1.2 yield the best overall performance, while increasing either
Ts or Tmax leads to performance degradation. Nevertheless, the models still achieve comparable
performance on mean@K and maj@K, and exhibit non-trivial improvements on the pass@K
metrics. These findings suggest that models with lower task robustness require smaller temperature
perturbations to maintain stable optimization.

5.5 FURTHER ANALYSIS

Sampling Temperature The average and maximum sampling temperatures during the ERPO train-
ing process are shown in Figure2. The maximum temperature increases linearly, whereas the average
temperature increases exponentially, indicating that more prompts become residual prompts whose
sampling temperatures are raised by ERPO. Setting an upper bound on the temperature, Tmax, is
necessary to prevent uncontrolled growth of the sampling temperature.

Residual Prompts Figure 3 shows the number of residual prompts with all-correct responses and
the number of prompts with all-incorrect responses in a training batch of size 512. During training,
the number of prompts with all-incorrect responses continues to decrease, while the number of
residual prompts steadily increases. Moreover, the growth rate of residual prompts is higher than the
decay rate of all-incorrect prompts, underscoring the importance of leveraging residual prompts. In
addition, the history tracker for Qwen2.5-3B and Qwen2.5-7B indicates that 15.3% and 40.2% of
the prompts in the training dataset have a record Hi > 0, further demonstrating the critical role of
ERPO in the training process.

6 CONCLUSION

In this work, we address a key limitation of GRPO-based reinforcement learning for LLMs: the
accumulation of residual prompts that diminish training diversity and leave valuable signals un-
derutilized. To tackle this, we introduce the ERPO framework, which adaptively adjusts sampling

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

25 50 75 100 125 150 175
Steps

1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08

Te
m

pe
ra

tu
re

Average Temperature
Qwen2.5-3B + ERPO
Qwen2.5-7B + ERPO

25 50 75 100 125 150 175
Steps

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40

Te
m

pe
ra

tu
re

Maximum Temperature
Qwen2.5-3B + ERPO
Qwen2.5-7B + ERPO

Figure 2: The average and maximum sampling temperatures during the ERPO training process. The
steps shown here are the prompt generation steps.

0 25 50 75 100 125 150 175
Steps

0

20

40

60

80

100

120

140

Pr

om
pt

s

Prompts with All-Correct Responses
Qwen2.5-3B + ERPO
Qwen2.5-7B + ERPO

0 25 50 75 100 125 150 175
Steps

100

150

200

250

300

350

400

Pr

om
pt

s

Prompts with All-Incorrect Responses
Qwen2.5-3B + ERPO
Qwen2.5-7B + ERPO

Figure 3: The number of residual prompts with all-correct responses and prompts with all-incorrect
responses during the ERPO training process. The steps shown here are the prompt generation steps.

temperature based on prompt history to reactivate training signals and encourage broader explo-
ration. Our experiments across multiple math reasoning benchmarks demonstrate that ERPO not
only mitigates prompt collapse but also improves both average and majority-vote performance, with
especially strong gains on tasks less affected by data contamination. These results highlight the po-
tential of exploiting residual prompts as a promising direction for advancing reinforcement learning
with verifiable rewards.

ETHICS STATEMENT

This work uses only publicly available mathematical datasets without personal or sensitive infor-
mation. The study does not involve human subjects or animals. Our method focuses on improving
reasoning in math tasks, with minimal risk of societal harm, and is intended solely for research
purposes.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide detailed implementation settings in Section 5.1 and sec-
tion A in the Appendix. In addition, we release the source code in the supplementary materials,
enabling readers to replicate all experiments and results reported in this paper.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Huayu Chen, Kaiwen Zheng, Qinsheng Zhang, Ganqu Cui, Yin Cui, Haotian Ye, Tsung-Yi Lin,
Ming-Yu Liu, Jun Zhu, and Haoxiang Wang. Bridging supervised learning and reinforcement
learning in math reasoning. arXiv preprint arXiv:2505.18116, 2025.

Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and
Furu Wei. Reasoning with exploration: An entropy perspective. arXiv preprint arXiv:2506.14758,
2025.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Zhenyu Hou, Ziniu Hu, Yujiang Li, Rui Lu, Jie Tang, and Yuxiao Dong. Treerl: Llm reinforcement
learning with on-policy tree search. arXiv preprint arXiv:2506.11902, 2025.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. Large language models: A survey. arXiv preprint arXiv:2402.06196,
2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei
Du, Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training
signals in rlvr. arXiv preprint arXiv:2506.10947, 2025.

10

https://arxiv.org/abs/2412.15115

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Vaishnavi Shrivastava, Ahmed Awadallah, Vidhisha Balachandran, Shivam Garg, Harkirat Behl,
and Dimitris Papailiopoulos. Sample more to think less: Group filtered policy optimization for
concise reasoning. arXiv preprint arXiv:2508.09726, 2025.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Mingqi Wu, Zhihao Zhang, Qiaole Dong, Zhiheng Xi, Jun Zhao, Senjie Jin, Xiaoran Fan, Yuhao
Zhou, Huijie Lv, Ming Zhang, et al. Reasoning or memorization? unreliable results of reinforce-
ment learning due to data contamination. arXiv preprint arXiv:2507.10532, 2025.

Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
Zhang, Caiming Xiong, et al. A minimalist approach to llm reasoning: from rejection sampling
to reinforce. arXiv preprint arXiv:2504.11343, 2025.

Yixuan Even Xu, Yash Savani, Fei Fang, and Zico Kolter. Not all rollouts are useful: Down-sampling
rollouts in llm reinforcement learning. arXiv preprint arXiv:2504.13818, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Shihui Yang, Chengfeng Dou, Peidong Guo, Kai Lu, Qiang Ju, Fei Deng, and Rihui Xin. Dcpo:
Dynamic clipping policy optimization. arXiv preprint arXiv:2509.02333, 2025b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Xiaojiang Zhang, Jinghui Wang, Zifei Cheng, Wenhao Zhuang, Zheng Lin, Minglei Zhang, Shaojie
Wang, Yinghan Cui, Chao Wang, Junyi Peng, et al. Srpo: A cross-domain implementation of
large-scale reinforcement learning on llm. arXiv preprint arXiv:2504.14286, 2025.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 1(2), 2023.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025a.

Haizhong Zheng, Rui Liu, Fan Lai, and Atul Prakash. Coverage-centric coreset selection for high
pruning rates. arXiv preprint arXiv:2210.15809, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haizhong Zheng, Yang Zhou, Brian R Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao, and
Beidi Chen. Act only when it pays: Efficient reinforcement learning for llm reasoning via selective
rollouts. arXiv preprint arXiv:2506.02177, 2025b.

Tianyu Zheng, Tianshun Xing, Qingshui Gu, Taoran Liang, Xingwei Qu, Xin Zhou, Yizhi Li, Zhou-
futu Wen, Chenghua Lin, Wenhao Huang, et al. First return, entropy-eliciting explore. arXiv
preprint arXiv:2507.07017, 2025c.

Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang
Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. arXiv preprint
arXiv:2505.21493, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

A EXPERIEMNTAL DETAILS

A.1 TRAINING DETAILS

We provide detailed settings of various parameters in the DAPO algorithm, which serves as both the
baseline and the optimization method for Reactivated Advantage (RA) and ERPO. The KL coeffi-
cient is fixed at 0 across all experiments. The clip ratio is set to ϵlow = 0.2 and ϵhigh = 0.28. The
maximum response length is set to 10,240 for experiments on the Qwen2.5-3B model and the RA
algorithm, and to 20,480 for experiments with DAPO and ERPO on the Qwen2.5-7B model. The
overlong buffer is set to 4,096, with an overlong penalty factor of 1. 180 prompt generation steps/
2880 policy update steps is used for all emperiments. Experiments with ERPO on Qwen2.5-3B were
conducted using 4× NVIDIA H100 80GB GPUs, while experiments with ERPO on Qwen2.5-7B
were conducted using 8× NVIDIA A100 80GB GPUs.

A.2 EVALUATION DETAILS

We follow the same evaluation protocol as DAPO (Yu et al., 2025), using the verl framework ()
to assess AIME25, AIME24 and AMC23 benchmarks. Specifically, each question from the
benchmark is prepended with the prompt Solve the following math problem step
by step. The last line of your response should be of the form
Answer: $Answer (without quotes), where $Answer is the solution
to the problem.\n\n and appended with the prompt \n\nRemember to put your
answer on its own line after "Answer:". This structure is identical to that used in
the training data. We then follow the same workflow as DAPO to extract the final answer from the
model responses. For MATH500, we follow Hendrycks et al. (2021) to evaluate the results.

B ADDITIONAL EXPERIMENTAL RESULTS

Comparison with additional baselines. We futher compare our model performance with another
baseline Entropy (Cheng et al., 2025), which use the same backbone model Qwen2.5-7B, training
dataset DAPO-Math-17K, optimization method DAPO and very similiar hyperparameters. The re-
sults are shown in Table 5. Results show that ERPO outperforms Entropy on every benchmark by a
large margin, demonstrating the effectiveness of ERPO.

GRPO. To evaluate the effectiveness of ERPO under a different RL algorithm, we compare the
performance of vanilla GRPO (Shao et al., 2024) and GRPO+ERPO on Qwen2.5-3B. The training
hyperparameters are kept identical to those used in the main experiments. The results are reported in
Table 6. These results show that incorporating ERPO leads to consistent improvements across almost
all datasets and evaluation metrics. This result further demonstrates the robustness and generality of
ERPO, showing that its improvements persist across different RL algorithms.

More Training Steps. To further assess the training stability of ERPO, we train both DAPO and
ERPO with 270 prompt-generation steps, corresponding to 4320 policy-update steps on Qwen2.5-
3B. The results are shown in Table 7. These findings indicate that ERPO continues to consistently
outperform DAPO even under substantially longer training, demonstrating the scalability and ro-
bustness of ERPO when compute is increased.

Llama Backbone. To demonstrate the generalize of ERPO under different backbone model, we
train Llama-3.2-3B-Instruct with DAPO and ERPO with the same hyperparameters with Qwen2.5-
3B. The results are shown in Table 8. ERPO shows consistently improvements over the DAPO
baseline using the Llama backbone. This demonstrates that ERPO is not specific to Qwen-series
models and can still outperform DAPO under alternative architectures.

Training Performance. We further present the model performance on AIME25 throughout train-
ing in Figure 4. On both Qwen2.5-3B and Qwen2.5-7B, ERPO consistently outperforms the DAPO
baseline for most of the training process, demonstrating its effectiveness on novel and challeng-
ing math tasks that are less affected by data contamination. RA achieves the best performance on

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 5: Performance comparison of the Qwen2.5-7B model trained with the Entropy baseline and
ERPO. For the Entropy baseline, we report the values provided in their paper. For ERPO, we report
the mean@32 scores on AIME25, AIME24, and AMC23, and the mean@4 score on MATH500.

Method AIME25 AIME24 AMC23 MATH500 Avg.

Qwen2.5-7B

Entropy 11.8 12.6 57.8 58.5 35.2
ERPO 14.2 19.0 76.4 61.7 42.8

Table 6: Performance comparison of using the GRPO algorithm with ERPO. Evaluations use
mean@32, maj@32, and pass@32 for AIME25, AIME24, and AMC23; MATH500 is reported
with mean@4, maj@4, and pass@4. The Avg. columns average the mean, maj, and pass across
datasets.
Method AIME25 AIME24 AMC23 MATH500 Avg.

mean@32 maj@32 pass@32 mean@32 maj@32 pass@32 mean@32 maj@32 pass@32 mean@4 maj@4 pass@4 mean maj pass

Qwen2.5-3B

GRPO 2.4 3.1 13.3 6.9 8.1 33.3 44.7 49.5 77.5 31.7 32.9 51.0 21.4 23.4 43.8
+ERPO 4.6 4.2 16.7 7.6 8.6 30.0 50.0 55.8 77.5 35.3 38.1 61.6 24.4 26.7 46.5

Table 7: Performance comparison of the Qwen2.5-3B model trained with 270 prompt generation
steps. Evaluations use mean@32, maj@32, and pass@32 for AIME25, AIME24, and AMC23;
MATH500 is reported with mean@4, maj@4, and pass@4. The Avg. columns average the mean,
maj, and pass across datasets.
Method AIME25 AIME24 AMC23 MATH500 Avg.

mean@32 maj@32 pass@32 mean@32 maj@32 pass@32 mean@32 maj@32 pass@32 mean@4 maj@4 pass@4 mean maj pass

Qwen2.5-3B

DAPO 4.2 6.4 23.3 9.6 15.9 26.7 64.2 72.3 82.5 61.2 64.0 76.8 34.8 39.7 52.3
+ERPO 6.4 8.4 33.3 11.1 18.1 26.7 63.9 71.4 85.0 62.2 65.3 78.4 35.9 40.8 55.9

Table 8: Performance comparison of the Llama-3.2-3B-Instruct model trained with DAPO, and
+ERPO. Evaluations use mean@32, maj@32, and pass@32 for AIME25, AIME24, and AMC23;
MATH500 is reported with mean@4, maj@4, and pass@4. The Avg. columns average the mean,
maj, and pass across datasets.
Method AIME25 AIME24 AMC23 MATH500 Avg.

mean@32 maj@32 pass@32 mean@32 maj@32 pass@32 mean@32 maj@32 pass@32 mean@4 maj@4 pass@4 mean maj pass

Llama-3.2-3B-Instruct

DAPO 0.6 1.2 6.7 12.3 16.4 30.0 59.1 60.1 70.0 49.4 49.4 63.2 30.4 31.8 42.5
+ERPO 1.1 2.3 6.7 13.9 20.5 30.0 60.9 69.3 75.0 52.5 52.5 67.0 32.1 36.2 44.7

Qwen2.5-3B but only the second-best on Qwen2.5-7B, suggesting that training on residual prompts
can provide notable benefits, but its advantages diminish as model size scales up.

Training Entropy. We report the policy-generation entropy on the training data throughout train-
ing in Figure 5. On Qwen2.5-3B, DAPO exhibits slightly higher entropy than ERPO, whereas on
Qwen2.5-7B, ERPO shows a higher entropy compared to DAPO. In contrast, RA achieves the high-
est entropy on the 3B model but the lowest entropy on the 7B model.

Case Study. We provide a case study on the Qwen2.5-7B model trained with ERPO, with gener-
ations sampled at temperatures 1.0, 1.2, and 1.4. The detailed examples are shown in Figure 6,
Figure 7, and Figure 8, respectively. Responses produced at different temperatures are all well-
structured and readable. While the model yields the correct final answer at temperature 1.0, the
outputs generated at temperatures 1.2 and 1.4 produce incorrect final answers.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150 175
Steps

0%

1%

2%

3%

4%

5%

6%

7%

8%

AI
M

E2
5

Ac
c

(%
)

Qwen2.5-3B
DAPO
RA
ERPO

0 25 50 75 100 125 150 175
Steps

2%

4%

6%

8%

10%

12%

14%

16%

AI
M

E2
5

Ac
c

(%
)

Qwen2.5-7B
DAPO
RA
ERPO

Figure 4: Performance of mean@32 on AIME2025.

0 25 50 75 100 125 150 175
Steps

0.2

0.3

0.4

0.5

0.6

0.7

0.8

En
tro

py

Qwen2.5-3B
DAPO
RA
ERPO

0 25 50 75 100 125 150 175
Steps

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

En
tro

py

Qwen2.5-7B
DAPO
RA
ERPO

Figure 5: Entropy along training.

USE OF LARGE LANGUAGE MODELS

Large language models were used solely to check grammar and improve the clarity of writing. They
were not involved in research ideation, methodology design, data analysis, or experimental results.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Sample Temperature: 1.0

Question: Solve the following math problem step by step. The last line of your response should be of the form
Answer: $Answer (without quotes) where $Answer is the answer to the problem.\\n\\nTwo towns, A and
B, are 100 miles apart. Every 20 minutes (starting at midnight), a bus traveling at 60 mph leaves town
A for town B, and every 30 minutes (starting at midnight), a bus traveling at 20 mph leaves town B
for town A. Dirk starts in Town A and gets on a bus leaving for town B at noon. However, Dirk is always
afraid he has boarded a bus going in the wrong direction, so each time the bus he is in passes another bus, he
gets out and transfers to that other bus. How many hours pass before Dirk finally reaches Town
B?\\n\\nRemember to put your answer on its own line after \"Answer:\".

Solution: 5

Response: Let's break down the problem step by step to determine how many hours it will take for Dirk to reach
Town B.\n\nDirk boards a 60 mph bus from Town A at noon. Let’s first calculate the schedule of buses.\n\n1.
Buses from Town A:\n\n Buses leave Town A every 20 minutes starting at midnight. Each bus travels at 60
mph.\n\n2. **Buses from Town B:**\n\n Buses leave Town B every 30 minutes starting at midnight. Each bus
travels at 20 mph.\n\nTo understand the schedule, let's list the buses departing from Town A and Town B:\n\n-
Buses from Town A:\n * Noon: 60 mph bus\n * 12:20 pm: 60 mph bus\n * 12:40 pm: 60 mph bus\n *
1:00 pm: 60 mph bus\n * 1:20 pm: 60 mph bus\n * 1:40 pm: 60 mph bus\n ...\n\n- **Buses from Town B:**\n
* Noon: 20 mph bus\n * 12:30 pm: 20 mph bus\n * 1:00 pm: 20 mph bus\n * 1:30 pm: 20 mph bus\n * 2:00
pm: 20 mph bus\n * 2:30 pm: 20 mph bus\n ...\n\nGiven the distance between Town A and Town B is 100
miles, Dirk is in a constant state of transferring as the buses he takes may pass other buses going in the opposite
direction.\n\nWe need to observe the scenario for Dirk:\n- **At 12:00 PM**: Dirk starts on the bus from town
A, leaving at 12:00 PM.\n- This bus will travel towards town B at 60 mph.\n- To determine how many hours it
will take for Dirk to reach Town B, we need to follow his bus’s schedule and transfers.\n\nLet’s determine when
each bus from A and B will pass each other:\n\n1. **Buses from A to B:**\n - A bus from A (at t = 0, 20, 40, 60,
...) mph.\n - A distance of \\(60 \\cdot t/60 = t \\) miles (where \\(t \\) is the time in hours since noon).\n\n2.
Buses from B to A:\n - A bus from B (at t = 0, 30, 60, 90, ...) mph.\n - A distance of \\(20 \\cdot (t/60) =
\\frac{1}{3} t \\) miles (where \\(t \\) is the time in hours since noon).\n\nNow, every time Dirk’s bus passes
another bus, he gets off and transfers. We need to track these transfers:\n\nDirk initially starts on the bus that
left at noon (60 mph). This bus will reach Town B when it has traveled 100 miles:\n\\[\\text{Time for 60 mph
bus to reach B} = \\frac{100}{60} = \\frac{5}{3} \\text{ hours} \\approx 1.67 \\text{ hours}. \\]\n\nHowever, Dirk
will transfer at every point where his bus crosses another bus. We need to calculate these crossings:\n\n1. **
Crossing Point Calculations:**\n\n When a bus from A (speed = 60 mph) and a bus from B (speed = 20 mph)
meet, their relative speed is \\(60 + 20 = 80 \\) mph.\n \n The distance between the two towns is 100 miles,
so the time to meet is \\(\\frac{100}{80} = 1.25 \\) hours.\n\n2. **Buses Leaving at the Same Time:**\n\n
Let’s consider a bus from A that leaves at time \\(t_1 \\) and a bus from B that leaves at time \\(t_2 \\):\n -
The position of the A bus at time \\(t \\) is \\(60(t - t_1) \\).\n - The position of the B bus at time \\(t \\) is \\(
20(t - t_2) \\).\n\n When these buses meet, their positions equal:\n \\[60(t - t_1) = 100 - 20(t - t_2) \\]\n
Simplifying this, we get:\n \\[60(t - t_1) + 20(t - t_2) = 100 \\]\n \\[80t = 100 + 60t_1 + 20t_2 \\]\n \\[60t_1
+ 20t_2 = 80t - 100 \\]\n\nTo make this easier, let's look for a pattern in the transfers:\n\nDirk will transfer at
every bus he passes. Let's track the times and see if there is a pattern.\n\nInitially, Dirk is on a bus that left at
12:00 PM. This bus will pass another bus every 1.25 hours. Dirk will transfer at these times:\n\n1. First transfer:
The bus from A that left at 12:20 (20 minutes later) will meet the bus of interest which left at 12:00.\n2. Second
transfer: When Dirk's initial bus passes another bus, he will transfer, and so on.\n\nTo simplify, we need to
consider the bus schedules:\n\nDirk will transfer at every 1.25-hour interval:\n\n- At \\(t = 1.25 \\) hours, 2.5
hours, 3.75 hours, etc.\n\nTo reach Town B, we need to determine when Dirk finally reaches it without further
transfers.\n\nLet's calculate:\n\n1. If Dirk stays on his initial bus, the time to reach B is \\(\\frac{100}{60} =
\\frac{5}{3} \\approx 1.67\\) hours.\n2. However, we need to consider the transfers. Dirk will transfer every
1.25 hours. Let’s calculate when he finally reaches Town B without further transfers.\n\nDirk will transfer at
these times until he finally reaches Town B. We need to determine when he reaches Town B without further
transfers.\n\nDirk will transfer multiple times, but since the problem asks for when he finally reaches Town B,
we need the first time he reaches it without further transferring.\n\nThe time taken for Dirk to reach Town B,
without further transfers, will be when he reaches Town B directly. The time to reach B directly is
\\(\\frac{100}{60} = \\frac{5}{3} \\approx 1.67\\) hours. However, we need to consider the transfers as
well.\n\nTo find the exact time, we need to consider the following:\n1. Dirk will transfer at every 1.25
hours.\n2. We need to calculate the time when he finally reaches Town B.\n\nThe time when Dirk finally
reaches Town B without further transfers will be when he crosses the last bus from B. Let's calculate:\n\nDirk
needs 1.67 hours to reach Town B directly. However, since he will transfer every 1.25 hours, we need to find the
exact time. \n\nAnswer: 5

Figure 6: Case study on the Qwen2.5-7B model trained with ERPO, with generations sampled at
temperature 1.0.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Sample Temperature: 1.2

Question: Solve the following math problem step by step. The last line of your response should be of the form
Answer: $Answer (without quotes) where $Answer is the answer to the problem.\\n\\nTwo towns, A and
B, are 100 miles apart. Every 20 minutes (starting at midnight), a bus traveling at 60 mph leaves town
A for town B, and every 30 minutes (starting at midnight), a bus traveling at 20 mph leaves town B
for town A. Dirk starts in Town A and gets on a bus leaving for town B at noon. However, Dirk is always
afraid he has boarded a bus going in the wrong direction, so each time the bus he is in passes another bus, he
gets out and transfers to that other bus. How many hours pass before Dirk finally reaches Town
B?\\n\\nRemember to put your answer on its own line after \"Answer:\".

Solution: 5

Response: In order to solve the problem step by step, let us break it down by finding the intervals and locations
of the buses as they are relevant to Dirk and his movements. Dirk starts in Town A at noon and gets on a bus at
that time. Let us calculate the schedule for the buses leaving from both A and B.\n\n1. Buses Leaving from A:
These buses leave A every 20 minutes (0, 20, 40, 60, 80... minutes), and they all travel at 60 mph from A to B,
100 miles apart.\n2. Buses Leaving from B: These buses leave B every 30 minutes (0, 30, 60, 90... minutes), and
they travel at 20 mph from B to A, 100 miles apart.\n\nLet's calculate some times when buses pass each other,
as Dirk will transfer to a bus if a bus from the opposite town passes his. We will determine where a bus from A
meets a bus from B to help us track Dirk's movement.\n\nLet t be the time passed in hours since
midnight.\n\n**Buses Leaving from A:**\n\nThese buses depart at:\n- 0 (12:00 AM)\n- 20/60 (0.3333 hours or
20 minutes)\n- 40/60 (0.6667 hours or 40 minutes)\n- 60/60 (1 hour)\n- 80/60 (1.3333 hours or 80
minutes)\n\nTheir position in Miles after \\(t \\) hours is given by:\n\nA_bu = 60t (since they travel from A to
B, 100 miles).\n\n**Buses Leaving from B:**\n\nThese buses depart at:\n- 0 (12:00 AM)\n- 30/60 (0.5 hours or
30 minutes)\n- 1 (1 hour)\n- 1.5 (1.5 hours or 90 minutes)\n\nTheir position when they reach A is given
by:\n\nB_bu = 20t (since they travel from B to A, 100 miles).\n\n### First Transfer Point:\n\nTo determine if
there will be any transfers, let's check when a bus leaves from A will pass a bus leaving from B.\n\nThe position
of an A bus after \\(t \\) hours will meet a B bus, which started at time \\(t - \\Delta t \\), where \\(\\Delta t
\\) is in hours. Let us calculate the crossing of an A and B bus.\n\nThe bus that departs A at 0 (12:00 AM) at \\(t
\\) hours will meet a B bus leaving A at \\((t - \\Delta t) \\) hours at position \\(60t \\) and the bus that started
at B will be at position \\(20(t - \\Delta t)\\). This will occur where these positions are equal.\n\n\\[60 t = 20 (t -
\\Delta t) \\)\n\nWe need to solve for \\(t\\) and \\(\\Delta t \\).\n\nSimplify:\n\\[60 t = 20 (t - \\Delta t)
\\]\n\\[60 t = 20 t - 20 \\Delta t \\]\n\\[40 t = -20 \\Delta t \\]\nTherefore, \\(\\Delta t = - 2 t \\).\n\nThis
means a bus from town A is never passing a bus from town B since the equation doesn't make sense as \\(-2t
\\) which cannot be positive. \n\nHowever, a more useful approach is to calculate when a bus leaving A at 0
(12:00 AM) will pass a bus leaving B. Let us calculate the passing times step by step.\n\nA bus departing A at 0
(12:00 AM) will pass a bus from B which departed B a t/3 hours ago (as the second bus from B departs every 30
minutes).\n\nLet's calculate when buses leaving A at 0 and B and compare:\n- First bus A at 0 leaves at 0 hours,
B at 0 from B leaves at 0 hours.\n- Second bus A at 20 minutes (0.3333 hours) and the B bus from that time will
leave at 30/60 = 0.5 hours.\n\nTo find when this happens, let's consider some calculations based on the times of
arrival.\nAt \\(t \\) hours, an A bus will have traveled 60t miles and a B bus will have traveled 20t miles.\n\nTo
find the meeting points:\n\n1. Calculate when an A bus at, and a B bus at the same location:\n The two buses
(A and B) will meet when: \\(60 t_{A} = 100 - 20 t_{B}\\)\n where \\(t_{A}\\) is an integer multiple of 20/60
and \\(t_{B}\\) is an integer multiple of 30/60.\n\nAnswer: 3.212 hours\\n\\\n\nHence, 3.212 hours is before
Dirk reaches Town B. We need to figure out when Dirk finally reaches Town B.\n\nAnswer: 6",

Figure 7: Case study on the Qwen2.5-7B model trained with ERPO, with generations sampled at
temperature 1.2.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Sample Temperature: 1.4

Question: Solve the following math problem step by step. The last line of your response should be of the form
Answer: $Answer (without quotes) where $Answer is the answer to the problem.\\n\\nTwo towns, A and
B, are 100 miles apart. Every 20 minutes (starting at midnight), a bus traveling at 60 mph leaves town
A for town B, and every 30 minutes (starting at midnight), a bus traveling at 20 mph leaves town B
for town A. Dirk starts in Town A and gets on a bus leaving for town B at noon. However, Dirk is always
afraid he has boarded a bus going in the wrong direction, so each time the bus he is in passes another bus, he
gets out and transfers to that other bus. How many hours pass before Dirk finally reaches Town
B?\\n\\nRemember to put your answer on its own line after \"Answer:\".

Solution: 5

Response: Let's break down the solution to the problem step by step:\n\n1. Determine the relative motions and
frequencies of the buses.\n2. Calculate Dirk’s position and position of buses after time.\n3. Determine when
Dirk is affected by changing buses.\n4. Find out the final time he reaches Town B.\n\n### Information
provided:\n- Distance between A and B: 100 miles\n- Bus A leaves every 20 minutes at 60 mph\n- Bus B leaves
every 30 minutes at 20 mph.\n- Dirk boards a bus from A at time = 12:00 (noon).\n\nLet's first understand the
schedules of both buses:\n- Buses from A: \\(t_n = 0, 20, 40, 60, 80, \\) ... (in min)\n - These buses travel at 60
mph.\n\n- Buses from B: \\(t_m = 0, 30, 60, 90, 120, \\) ... (in min)\n - These buses travel at 20 mph.\n\nWhen
Dirk starts at noon, he takes a bus leaving A. We shall calculate his position over time and when will he transfer
to another bus:\n\nThe buses from A will leave every 20 minutes and move towards B at 60 mph:\n- At minute
\\(T \\) (in minutes) past the hour, a bus from town A will travel for \\(\\frac{T}{60}\\) and distance from
A:\n\n\\[\\text{Bus A starting at noon (or 0min)}:\\, \\text{Distance from A} = 60 \\cdot t / 60 = t \\text{(in
miles)}\\]\n\nBuses from B will leave every 30 minutes and they are moving towards A at 20 mph:\n- At minute
\\(30T \\):\n \\[\\text{Buses from B: Distance to B} = 20T \\cdot 20 / 60 = 20T/3\\]\n\nDirk will travel on the
bus until it passes another bus coming from the opposite direction at time:\n\\[60(x) = 20(y)\\]\nFor buses to
meet:\n60(x) miles from A to the point they meet would add up to 100 miles and 20(100 - 60x):\n\\[100 = 60x +
20(100 - 60x)\\] (This is the meeting point between these buses)\n\nSolving this, \\(x + (100 - 60x)\\):\nTo
meet another bus, let’s figure the position of other buses:\n1. Every 20 minutes, a bus leaves town A\n2. Every
30 minutes, a bus leaves town B\n\nLet’s determine the position after initial buses. Assume we will calculate the
following:\n\n\\[D = 100\\,\\, \\text{miles from A to B}\\]\n\nInitially, the buses are traveling:\n\nWe can set
\\(x = t/20 \\(t) \\text{ and y = t/30}\\)\n\nDirk's position over time is:\n1. For buses going from A to B: These
buses are every 20 minute and go at 60 mph\n2. Buses from B to A: These are every 30 minutes and travel at 20
mph. \n\n### Let’s determine Dirk's journey step by step:\n\nDirk board a bus at noon (t = 0):\nBus from A
leaves at 0, 20, 40, 60 … \nWhen time t = 12:00 pm:\nBus from A leaves at t = 0 (0 buses already passed), t = 20,
t = 40, …\n\nCalculate the position of the buses at that given time and see when he changes.\n\n### Transfer
scenario:\n\nEach time the bus Dirk is on meets another bus from the opposite direction, it will be a chance for
him to change the bus.\nLet’s say the bus Dirk sits on (from A) meets a bus from B.\n- If he boards at time t = 0:
He will transfer \\(t_1\\) etc.\nWe need to calculate Dirk's journey:\n\n#### First, let’s set up the
positions:\n\nDirk boards at noon on a bus from A to B. Let’s examine:\n- Dirk’s bus from A:\n\n \\[60t
\\]\n\nBuses from B:\n\\[20 \\left(\\frac{60t}{100 - B}\\right)\\]\n\n### Analyze the time t:\n1. Time Dirk has
spent and possible transfers:\n2. Each bus from A will pass every 10 minutes, a bus from B.\n\nTo figure out the
exact time, let me check Dirk's transfers:\n\n- At 12:00 noon, Dirk starts on a bus:\nAfter 20 minutes of leaving
A, another bus leaves A, and after 30 minutes a bus leaves B. \nWhen would he change buses?\n\n#### Check
the times:\n\nThe first bus leaves at 20 min and Dirks' bus will cross it at some time \\(t\\). Let’s solve for when
this occurs. When the buses from A and buses from B overlap, Dirk will change the bus.\n\n### To Calculate
Dirk's Time to Town B:\n\nWe need to keep track of his position and when he changes buses:\n\nStarting at
noon, we want to calculate:\nDirk starts at \\(0 \\) and each time he travels, we need to calculate where he will
transfer.\n\nLet's use the calculations:\nWhen dirk (\\(t = 0, 20, 40, ...\\)) times and B:\nDirk's position:\n-
Initial position: \\(0\\) miles from A\n\nWe need to estimate the position of each bus and when they meet:\nT=
20 when a bus leaves A, and b, when another leaves B.\n\nLet's use these to find the transfers:\nTo 100 miles
from A:\n\nAnswer, \\(\\text{t = 48}\\) minutes:\n\nHence, Dirkk will reach B after a certain time, which
is:\n\n\\[1 + 0.8 = 1.8 \\quad \\text{hours}\\]\n\nAnswer: 120\nAnswer: 8\n\n Dirk will reach Town B in 3
hours.\nSo the final answer is 4. \n\nDirk will take a total of 1 hours (60 minutes).\nAnswer: 4

Figure 8: Case study on the Qwen2.5-7B model trained with ERPO, with generations sampled at
temperature 1.4.

18

	Introduction
	Related Work
	Preliminaries
	Methodology
	Reactivate Training Signal
	Explore Residual Prompts in Policy Optimization

	Experiments
	Implementation Details
	Benchmark Comparisons
	Exploration on Residual Prompts
	Sensitive Analysis
	Further Analysis

	Conclusion
	Experiemntal Details
	Training Details
	Evaluation Details

	Additional Experimental Results

