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Abstract

Differentiable methods to learn first order rules (logic programs) have the poten-
tial to integrate the interpretability, transferability and low data requirements of
inductive logic programming with the noise tolerance of non-symbolic learning.
Negation is an essential component of reasoning, but incorporating it into logic
programming frameworks poses several problems (hence its central place in the
logic programming and nonmonotonic reasoning communities). Current imple-
mentations of differentiable rule learners do not learn rules with negations. Here,
we introduce stratified negation into a differentiable inductive logic programming
framework, and we demonstrate that the resulting system can learn recursive pro-
grams with inventive predicates in which negation plays a central role. We include
examples from multiple domains, e.g., arithmetic, graph, sets and lists.

1 Introduction

Learning logic programs using gradient descent-based methods has the potential to integrate the
interpretability, transferability, and low data requirements of inductive logic programming (ILP) with
the noise tolerance of non-symbolic learning. In recent years, several differentiable rule learning
systems have been introduced (discussed below). Negation is a critical component of reasoning
(expressing some concepts, e.g., prime and unconnected, require it) and it plays a central role in
formal logic, knowledge representation, automated theorem proving, and other fields. But existing
implementations either explicitly exclude negation, do not mention it, or state their systems can be
extended to include negations.

Incorporating negation into differential ILP poses some challenges. The use of unrestricted negation
may result in inconsistent reasoning. Care must be taken to ensure that negation is added using
some reasoned methodology (such as stratification) and that the resulting system allows interesting
programs to be learned via gradient descent.

In this work, using the differentiable inductive logic programming system ∂ILP [5] as the underlying
framework, we add stratified, safe negation (i.e., as used in Datalog [3]), and we demonstrate that
our system can learn recursive programs that fundamentally rely on negation.

35th Conference on Neural Information Processing Systems (aiplans 2021), Sydney, Australia.



Our main contributions are the following:

1. We modify ∂ILP to incorporate stratified negation [1]. This requires extending both the
syntax and the semantics for clauses and modifying the forward chaining deduction process
to ensure that consequences are correctly computed wrt stratified negation.

2. We present ILP problems of varying complexity requiring negation from several domains
(arithmetic, graphs, sets and lists). We use these to demonstrate that our system is expres-
sive and that our modifications work well with gradient descent-based learning of programs.

3. In order to reduce ambiguity in final programs without sacrificing the space of learnable
programs, we introduce ‘entropy of rule weights’ as a regularizer.1

Related Works: The ∂ILP [5] system which we extend uses forward-chaining inference and allows
predicate invention and recursion in learned rules. To reduce complexity, ∂ILP restricts the search
space of rules using rule templates. Differentiable Neural Logic-ILP [11] also uses forward-chaining
but does not require restrictive rule templates, and it allows Boolean functions in rule bodies. The
examples presented, however, do not involve negation, and it is unclear (to us) how the system, par-
ticularly since it utilizes forward-chaining with a maximum number of steps, performs on learning
relations depending on negation. Neural Logic Inductive Learning [16] also allows unrestricted rule
bodies, but the examples presented again do not contain negation. In Neural logic machines [4],
rules are encoded as weights of a network, and so extracting symbolic rules would be nontrivial.

Neural Theorem Provers (NTPs) [12, 13] use differentiable backward-chaining to reason over dis-
tributed representations of constants and predicates as well as generalized rule structures. Negation
(which requires care in classical backward chaining) is not addressed. Campero et al. [2] describe
a forward-chaining framework similar to NTPs (again using vector representations of predicates
and constants). The authors compare it to ∂ILP and indicate that generates correct results more
frequently. Negation is not addressed, however. Regarding systems based on semantics for logic
programs with negation, Nickles [10] presents differentiable Satisfiability and Answer Set Program-
ming. This system learns sets of models rather than rules, however, and so it has a different focus.

2 Methods

Inductive logic programming (ILP) [8, 9] is a machine learning framework in which the learned
hypothesis is a logic program. A background knowledge base B and sets of positive and negative
examples (P , N ) are used as inputs, and the objective is to generate a program Π such that Π∪B |= a
for all a ∈ P and Π ∪B ̸|= a for all a ∈ N . Here, Π |= a means that a is a consequence of Π.

The ILP framework is agnostic to the specific logic programming syntax and semantics used. In
∂ILP, the hypotheses are definite logic programs, i.e., collections of first order rules (clauses) r of
the form a :− b1, b2, . . . , bn, where a and each bi are atomic formulas (atoms) and head(r) = a
and body(r) = {b1, . . . , bn}. An atom, e.g., p(d,X), is a predicate (p) followed by constant (d) and
variable (X) terms.2 In ∂ILP, B, P , and N are sets of ground atoms (i.e, no variables appear), while
no constants appear in rules. This is essentially positive Datalog [3].

If Π is definite, the ground atoms a such that Π ∪ B |= a can be computed via the immediate
consequence operator TΠ which maps interpretations to interpretations. An interpretation I is a set
of ground atoms; atom a is true in I iff a ∈ I , and it false is otherwise. Below, G(Π) is the set of
ground rules made from all of the the rules of Π.

TΠ(I) = {head(r)| rule r ∈ G(Π) and each member of body(r) is true according to I}

Intuitively, we start with I = ∅ and repeatedly apply TΠ to perform forward-chaining inference. If
Π is definite, a monotonically nondecreasing sequence of interpretations is created which eventually
reaches a fixpoint.3 The fixpoint is precisely the set of all ground atomic consequences of Π [7].

1∂ILP defines ‘entropy of rule weights’ as a measure of the number of programs with non-zero weights
learned. We use this as a regularizer in the loss term as explained in the implementation.

2As in ∂ILP, we disallow function expressions as terms, so the ground instantiations are finite.
3This claim assumes that the ground instantiation of Π is finite, which in this context is true.
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∂ILP:∂ILP:∂ILP: One technique for finding solutions in ILP is a top-down generate-and-test approach in which
all possible programs (from a given template) are generated and evaluated on the training data. This
problem can be posed as an instance of SAT by assigning Boolean flags to the candidate clauses
and stipulating that the resulting programs must be consistent with the training data. ∂ILP ([5]) is
a differentiable relaxation of this ‘ILP as SAT’ approach. Programs are generated with trainable
continuous weights on collections of clauses. Forward chaining, which is performed to a preset
limit, utilizes real-valued evaluations of ground atoms and differentiable operators: ∧ is replaced by
multiplication, and ∨ is replaced by maximum. The loss value is given by the cross entropy between
values computed for ground instances of the target predicate and the training examples. Gradient
descent is used to train weights, and the program with the highest weight is taken as output. Thus,
solving the ILP problem becomes an optimization problem of the form minWL(Q,C,W ) where
Q is the ILP problem, C is the set of clauses generated using a program template, W is the set of
weights, and L is the loss function measuring the accuracy of a program (i.e., its predictions).

2.1 Adding Negation

∂ILP restricts hypotheses to be sets of definite clauses, and while the semantics is straightforward,
the restriction is significant. Normal logic programs allow negated atoms ¬b in rule bodies. One
difficulty is that the forward chaining process used for definite programs cannot be directly applied.

In the following example, I is an interpretation, we will use I(a ∧ b) = I(a) ∗ I(b) and I(¬a) =
1 − I(a). For a clause c, the truth value of the clause head is the truth value of the body. That is,
I(head(c)) = I(body(c)).
TΠ is defined in essentially the same way as in the classical case: In TΠ(I), the truth value of each
atom a is the maximum truth value (according to I) of the clauses having a as head. Note that this
is equivalent to combining the rules for a given atom into a single rule, using ∨ to join the original
rule bodies together. Here I(b1 ∨ . . . ∨ bn) = max(I(b1), . . . , I(bn)).
Let Π be the following program. We assume true always has the value 1.

a :- true. c :- b. d :- b.
b :- ¬a. c :- d. d :- c.

In the sequence below, I2 is a fixpoint. Neither c nor d should be derivable, but they are.

I0 = {a = 0, b = 0, c = 0, d = 0} I2 = TΠ(I1) = {a = 1, b = 0, c = 1, d = 1}
I1 = TΠ(I0) = {a = 1, b = 1, c = 0, d = 0} I3 = TΠ(I2) = {a = 1, b = 0, c = 1, d = 1}

This result is obtained using simple stepwise forward chaining. If we amalgamate the interpretations
using either It+1 = max(It, TΠ(It)) or probabilistic sum It+1 = It + TΠ(It) − It ∗ TΠ(It)) as
[5] suggest, then b would also be derivable, which is arguably a worse result. In the absence of
stratification, because iterating TΠ from ∅ is no longer guaranteed to be monotonic, amalgamating
interpretations as ∂ILP does will sometimes lead to irrational inferences.

Stratified Negation One widely known semantics for normal logic programs is based on stratified
negation [1]. It is only defined for stratified programs, i.e., programs Π which can be partitioned into
subsets Π1, . . ., Πk such that for any Πi and any rule r ∈ Πi, if b ∈ body(r), the rules defining b are
contained in

∪
j≤i Πj , and if ¬b ∈ body(r), the rules defining b are contained in

∪
j<i Πj . The idea

is to use TΠ to compute the fixpoint for Π1 and use the result to provide truth values for the negative
literals in Π2. The consequences of Π2 can then be computed. A new sequence of interpretations is
defined which terminates in what is sometimes called the standard model of Π.

Semantics for stratified normal logic program is discussed further in Appendix A.

Implementation of safe stratified negation in ∂ILP: The following are the major modifications
that we made to ∂ILP to implement safe, stratified negation. Our clause generation process en-
forces stratification. The strata themselves are specified as part of the ∂ILP program template, along
with names and arities of predicates to be learned. ∂ILP requires clauses to be safe, i.e., every
variable in the head of a rule appears in the body of the rule (i.e., p(X) :- q(Y) is not safe).4

4User-given strata is only for convenience. Given a program template the maximum strata needed would be
number of predicates specified. So, it would be direct to run the ∂ILP with every combination of strata.
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Table 1: Programs learned and convergence in ∂ILP with stratified negation. All predicates other
than the target and background predicates are invented (and renamed to increase readability). Also,
| is used to indicate a disjunction of clauses.

Name Program Found Convergence

Birds fly fly(X):- birds(X), ¬penguin(X). 100 %
A and not B target(X) :- A(X), ¬B(X). 100 %
Prime prime(X) :- ¬factor(X). 100 %

factor(X) :- div(X,Y), ¬eq(X,Y).
Relative Prime rprime(X,Y) :- ¬comFactor(X, Y). 50 %

comFactor(X,Y) :- div(X,Z), div(Y,Z).
Not Element notElement(X,Y) :- ¬element(X,Y). 100 %
Not Subset notSubset(X,Y) :- ele(X,Z), notEle(Y,Z). 10 %

notEle(X,Y):- type(X,Y), ¬ele(X,Y).
Not in List ListNotEle(X,Y) :- ¬ListEle(X,Y). 100 %

ListEle(X,Y):- head(X,Y) | tail(X,Z), ListEle(Z,Y).
Unconnected unconn(X,Y):- ¬path(X, Y). 93 %

path(X,Y):- edge(X,Y) | edge(X,Z),path(Z,Y).
Monopoly m(X,Y):- gpath(X,Y),¬rpath(X, Y). 85 %

rpath(X,Y):- redge(X,Y) | redge(X,Z),rpath(Z,Y).
gpath(X,Y):- gedge(X,Y) | gedge(X,Z),gpath(Z,Y).

We generalize safety to normal clauses by requiring that all variables of a rule appear in positive
(non-negated) atoms in the body. Our clause generation process allows negation and respects strati-
fication and safety. An example is included in Appendix C. The negation of an atom a is evaluated
as value(¬a) = 1 − value(a), and forward chaining is done on a stratum-by-stratum basis. This
is implemented using binary masks with 1 used when the predicate belongs in current stratum, 0
otherwise. The total number of forward chaining steps were equally divided between the strata.

To prevent high entropy of the rule weights, we introduced average entropy of the rule weights
as a regularization term in loss as L = 0.5 ∗ H(P ) + 0.5 ∗ H(N) + γ ∗ avgH(R) where L is
the loss, H is the cross entropy, P and N are positive and negative examples respectively, γ is
regularization scaling factor and R is the rule weights. We used a small γ, so the regularization does
not prevent trajectory from leaving local minima. We varied the number of steps of forward chaining
(5 to 15 steps per strata), the learning rate (from 0.0001 and 0.05) and the regularization coefficient
(from 10−4 to 10−2). To prevent class imbalance on positive and negative examples, we used equal
weighted cross-entropy. We noted that when a run converges with low loss but with high entropy,
more than 1 program has nonzero weight, and the correct program (with respect to the training data)
may not be weighted the highest. but, we observed that the 3 highest weighted programs included
correct program.

3 Experiments and Results

We tested our framework5 on problems requiring negation with varying levels of complexity across
different domains (nonmonotonic logic, arithmetic, graph, sets and lists). Table 1 summarizes our
results.6 Here we outline the problems considered. For details of the ILP problem, see Appendix D.

We first considered negation in programs with a single clause using a classical example from non-
monotonic logic (“all birds fly except penguins”). This problem can be expressed as a disjunction of
all birds with flight, but has a simpler program with negation. We then considered (A∧¬B), which
is the simplest program requiring negation. In the domain of sets, the problem of learning /∈ given

A similar argument can be made of user-given program templates (which is used in the original ∂ILP). Here
the maximum parameters depend on the training data size.

5An implementation is available at https://github.com/girip/dilp-stratified-negation
6We give one learned program for each problem, and we removed the guards for safety e.g., a learned

program might be prime(X):- ¬factor(X), X=X.
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elements of a set is similar, but more complex as it has two types of constants—sets and elements—
which are undifferentiated. We then examined problems requiring invented predicates and negation
(such as prime and relative-prime, given divisibility as background), and ̸⊂ (given sets and elements
as background).7 We also examined graph problems requiring negation and recursive invented pred-
icates. These include unconnected vertices (given the edges of a directed graph as background) and
monopoly i.e., the existence of a green-path but not a red-path in an edge coloured graph (given the
edge-colours of a directed, edge coloured graph as background). We also considered ‘not an element
of’ a list, which requires recursion as a list is coded using head and tail predicates.

Our system was able to learn correct programs from very small training sets (loss across experiments
are given in Appendix B). The domain of sets includes two types of objects (sets and elements). This
generated many type-incorrect ground atoms, which in turn caused the majority of learned programs
to only check for type instead of the correct programs.

For selected examples (less than, predecessor, family relationships), we ensured that our system
reproduces results from ∂ILP [5]. Furthermore, we verified that the problems from Table 1 cannot
be solved by ∂ILP without negation, and that unsafe or unstratified negation often leads to higher
loss value (Appendix B), and we examined the noise tolerance in the “birds fly” problem, where
the system was able to identify the correct program even with high (up to 70%) noise (negative
examples incorrectly labeled as positive in training data. More in Appendix B). We expect these
results to generalize to other problems.

The learned program is taken as the clauses with the highest weights after training. However, there
are conditions under which weights become distributed across multiple clauses even when the loss
converges. To prevent these conditions, we used the average entropy of weights across clauses as a
regularizer. This significantly reduced average rule entropy, specifically from 0.12 to 10−4 for the
prime problem. This is discussed in Appendix B.

Unconnected Monopoly 

Stratified
Unstratified

Figure 1: Trials with and without stratification for Monopoly and Unconnected.

4 Discussion and Conclusion

We modified the ∂ILP framework to incorporate safe, stratified negation. Our modifications worked
well with gradient descent to learn programs that require invented predicates, recursion and negation
across several domains (arithmetic, graphs, sets and lists). We also identified entropy of rule weights
as a useful regularizer.

Our method is motivated by well-studied theoretical considerations on how to include negation.
So, it can be generalized to other differentiable implementations of ILP that use forward chaining
deduction.

As such, any application of differentiable inductive logic programming, such as Reinforcement
Learning [15, 6] can benefit from our work, since negation is useful in many places. In future works,
we plan to use this work to hierarchical reinforcement learning with planning. Another direction of
future works is allowing non-monotonic reasoning.

7Here, ⊂ is expressed with an implication. So it is directly expressed as the negation of ̸⊂.
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A Semantics for Stratified Normal Logic Programs

The following account is based in part on Apt et al. [1]. Here, Π is a stratified normal logic program.

Given a fixed vocabulary of constants, function symbols, and predicate symbols for Π, the set of all
ground terms definable over that vocabulary is the Herbrand universe HΠ of Π, and the set of all
ground atoms is the Herbrand base BΠ. An Herbrand interpretation I of Π is any subset of BΠ. I
is a model of a ground rule r iff head(r) is true in I or some element of body(r) is false in I. I
is a model of a non-ground rule r iff it is a model of every rule in G(r), where G(r) is the ground
instantiation of r. Similarly, I is a model of Π if it is a model of every rule of Π.

Herbrand interpretations can be ordered using subset inclusion (I1 ≤ I2 iff I1 ⊆ I2). If Π is definite,
there is a unique minimal model MM(Π) of Π that coincides with the ground atoms entailed by Π
and which can be computed via TΠ. We define a sequence of interpretations using some I as basis.

• TΠ ↑ 0(I) = I

• TΠ ↑ α(I) = TΠ(TΠ ↑ α− 1(I)) ∪ TΠ ↑ α− 1(I) for all successor ordinals α

• TΠ ↑ β(I) =
∪
α<β

TΠ ↑ α(I) for all limit ordinals β.

For definite programs, if I = ∅, the sequence is nondecreasing and reaches MM(Π) at TΠ ↑ ω(∅),
a fixpoint. If Π is normal, there might not be a unique minimal model, but a model with with de-
sirable properties can be obtained by defining a sequence of interpretations based on a stratification
Π1, . . ., Πk of Π.

• M1 = TΠ1
↑ ω(∅)

• Mi = TΠi ↑ ω(Mi−1) for all 1 < i ≤ k

The final interpretation Mk is taken as the canonical model of the program and as defining the
ground atomic consequences of Π. It is a minimal model of Π [1], and it is supported (each a ∈ Mk

is either a fact or the head of a ground rule whose body is true in the model). Importantly, the model
is also independent of the specific stratification; all stratifications of Π yield the same model.

B Additional details on experimental results

Figure 2 shows the loss plotted against training epochs for various experiments. We ran 20 trials for
each problem, and each plot shows the convergence behaviour of each problem. Number of runs
converged defined as loss ≤ 10−3 were identified as convergent. Loss is computed as incorrect
classifications of training examples. As mentioned in the Methods section, we introduced entropy as
a regularizer in the loss. We examined the distribution of weights after convergence (Figure 3) and
found that including a regularization term reduced entropy and resulted in only one of the clauses
having high weight for each of the learned predicates. In contrast, when regularization was not used,
even in cases when the loss converged, many clauses contributed to the output used in predictions
and increased the ambiguity of the program learned by the framework.

We then tested whether stratification was required for solving problems with negation. For Un-
connected and Monopoly (which required 2 and 3 strata, respectively) we tested convergence and
examined the programs learned when stratification was enforced and also when it was not (in the
latter case, all clauses were placed in a single stratum). We found that the loss was higher than 10−3

when stratification was not enforced (Figure 1) and also that the programs identified were incorrect.
Finally, we varied the noise for the birds-fly problem. Results for that are presented in Figure 4.

C Clause generation

This section discusses the generation of safe and stratified clauses.
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Figure 2: Convergence across different experiments. Each plot shows the loss value across training
epochs. Number of runs converged defined as loss ≤ 10−3 were identified as convergent.

Clauses 

Weight distribution for Prime problem with 
Entropy Regularization (𝜸 = 0.001)

Weight distribution for Prime problem 
without Entropy Regularization (𝜸 = 0.0)

Prime(X) Factor(X) Prime(X) Factor(X)

Regularization No Regularization 

En
tro

py

W
ei

gh
t 

Figure 3: Effect of regularization on entropy in the Prime problem. Top. Average entropy of rule
weights for experiments on Prime problem with and without regularization, taken after training
(1000 steps). Bottom. Example distribution of the rule weight for one trial with regularization (and
without), showing several rules had high weights for the run without regularization.
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Figure 4: Effect of noise in the Birds fly problem. Noise was introduced by changing the percentage
of negative examples incorrectly labeled as positive for training. In all these cases, the program
fly(X):- birds(X), ¬penguin(X) was correctly identified, even in case of 75% noise. Loss
was higher for higher noise levels, since the learned program did not predict the correct response for
the dataset. Higher noise levels led to non-convergence.

C.1 Stratification

Stratification involves assigning predicates to strata and is a well understood method to prevent
inconsistencies when negation is introduced. Below we demonstrate how stratification is introduced
in different programs. We start with assigning lowest strata to background, positive and negative.
Then, the invented predicates are assigned the subsequent strata and final output or target predicate
is given the highest strata. Below, we illustrate the reason for this assignment using examples.

The below program can be stratified by assigning edge to the lowest stratum (1), path to stratum 1
(or n ≥ 1) and unconn to stratum 2 (or m > n).

unconn(X,Y) :- ¬path(X,Y).
path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z), path(Z,Y).

The predicate path can call itself recursively, since stratification allows predicates of the same
stratum as head to be used positively in the body. However, unconn uses path negatively and so
unconn must be of a higher stratum than path.

The following program is also stratified; p and q can be assigned to the same stratum.

p(X) :- q(X).
q(X) :- p(X).

However, neither the program {p(X) :- ¬p(X)} nor {p(X):- q(X), q(X):- ¬p(X)} is strati-
fied, as there is no way to assign the body to a lower stratum than the head of any rule.

C.2 Safety

Safety in ∂ILP : A rule is safe if the set of variables in the head is a subset of the variables in the
body. For instance, p(X,Y) :- q(X,Z), p(X,Z). is not safe as Y is present in the head but not
the body.

Safety with negation: Here, a rule is safe if each variable in a rule is also present in a positive body
literal the rule. Observe that this is a generalization of the rule above. E.g., p(X,Y) :- q(X,Y),
¬r(X,X) is safe, whereas p(X,Y) :- q(X,Y), ¬r(X,Z). is not.

C.3 Some consequences

Given the safety conditions, and the restriction from ∂ILP that each clause contain 2 literals in the
body, there can be at most one negated literal in the body of any clause. Since each program can
have at most 2 clauses, a recursive program has one base clause and one recursive clause. Further,
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if the recursive call does not contain a variable not in the head, then a terminating recursion can be
unfolded to a fixed finite number of steps. This latter consequence happens in ∂ILP as well.

D ILP problems

D.1 Birds fly, except for penguins

The task here is to learn the program fly(X):- birds(X),¬penguin(X) from background
knowledge consisting of instances of birds, given as bird(X), ∀X ∈ C (where C is a set
of constants). Each individual bird belongs to a particular type type(X), where type ∈
{eagle, sparrow, owl, parrot, hawk, penguin}. The positive and negative examples indicate
whether the bird can fly (fly(X)). This is false when X is a penguin and true otherwise. Domain is
the set of names of birds of different types. Each bird type had 5 instances.

D.2 A and not B

The task is to learn target(X) :- a(X), ¬b(X) from background knowledge consisting of in-
stances of ground atoms of the form a(X) and b(X). Positive examples are in a but not b.

D.3 Prime

The task here is to learn a program for primes. The constants forming the domain are
{2, 3, 4, 5, 6, 7, 8, 9}; we exclude 1 since it is neither prime nor composite. In this setting, a prime
number has only itself as a factor. The background knowledge consists of ground atoms encoding
equality (eq(X,X) for each X in the domain) and divisibility (div(X,Y) indicates that X is a multiple
of Y). The positive and negative examples are the prime and composite numbers from the domain.

Other programs found include the following. Here, pred is an invented predicate.

prime(X) :- ¬pred(X), div(X,X).
pred(X) :- div(X,Y), ¬eq(X,Y).

D.4 Relatively Prime

The task here is to learn a program for relative primes from background knowledge consisting
of the binary predicate div and eq. We also need a guard-predicate that includes all pairs of
numbers to meet our safety requirements. Program: {relPrime(X,Y):- ¬commonFactor(X,Y).
commonFactor(X,Y):- div(X,Z), div(Y,Z)}.

D.5 Unconnected

The background knowledge here encodes a directed graph with the constants naming ver-
tices and a binary predicate defining directed edges. The positive examples include the pairs
(x, y) of unconnected vertices. The negative examples are the connected ones. The in-
tended program requires an invented recursive predicate, e.g., unConn(X,Y):- ¬path(X,Y),
guard(X,Y). The base case for path is path(X,Y) :- edge(X,Y) and the recursive case is
path(X,Y) :- edge(X,Z), path(Z,Y).

Instead of giving an external guard predicate, we made our examples such that given any pair of
vertices x and y, either there was a path from x to y or there was a path from y to x. The system was
able to find this and use it as a guard, i.e., unConn(X,Y) :- ¬path(X,Y), path(Y,X).

The learned predicate for the path varied with different runs, e.g., the recursive case could be
path(X,Y):- path(X,Z), path(Z,Y).

D.6 Monopoly

Given a directed, edge coloured graph, mon(X,Y) holds iff there is a green path from X to Y but no
red path from X to Y.8 The constants are vertices of a graph, and the background binary predicates

8This example appears to be due to Ullman [14].
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redge and gedge encode red and green edges. The positive examples included pairs of vertices
satisfying the property mon above.

Even when the system had difficulty finding the correct target programs, it was able to learn the
correct auxiliary predicates for red and green paths.

D.7 Not element

The task here is to learn a program for /∈. The constants include {p, q, r, 1, 2, 3, 4} with p, q and
r intended to represent sets and 1, 2, 3 and 4 representing elements. The background knowledge
includes binary predicates ∈ and a guard. This problem is similar to A ∧ ¬B, but has the added
complexity of two types and multiple tokens of each type.

D.8 Not Subset

The task here is to learn the program ̸⊆. The constants and background knowledge are as above.
Positive examples are pairs of sets X and Y such that X ̸⊆ Y , i.e., ∃Z.Z ∈ X ∧ Z /∈ Y . The
intended program uses the background predicate ∈ and a learned predicate /∈.

The relation ⊆ is defined using implication, i.e. X ⊆ Y holds iff ∀Z.Z ∈ X → Z ∈ Y . The
program for strict superset would be SS(X,Y) :- ele(Z,X), ¬ele(Z,Y). Then, subset can be
defined as sub(X,Y) :- ¬SS(X,Y). Thus, ̸⊂ is more basic than ⊂ in this setting.

D.9 Not Element of a list

The task here is to learn a program identifying when an item is not a member of a list. Th constants
are {p1, p2, q1, q2, 0, 1, 2, 3, } where pi, qi and 0 are lists and 1, 2, 3 are elements of the list (0
represents the empty list). The background predicates are head and tail (e.g., the list [1,2] would
be head(p1, 1), tail(p1, p2), head(p2,2) and tail(p2,0). Thus, to find if a given element
is a member of a list, a recursive predicate is needed. Identifying list membership was investigated
in ∂ILP[5]. In our counterpart problem, positive examples are non-members, i.e., pairs X and Y
where Y is not a member of the list X .
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