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Abstract

A common strategy for Parameter-Efficient Fine-Tuning (PEFT) of pre-trained
Vision Transformers (ViTs) involves adapting the model to downstream tasks by
learning a low-rank adaptation matrix. This matrix is decomposed into a product
of down-projection and up-projection matrices, with the bottleneck dimensionality
being crucial for reducing the number of learnable parameters, as exemplified by
prevalent methods like LoRA and Adapter. However, these low-rank strategies
typically employ a fixed bottleneck dimensionality, which limits their flexibility
in handling layer-wise variations. To address this limitation, we propose a novel
PEFT approach inspired by Singular Value Decomposition (SVD) for representing
the adaptation matrix. SVD decomposes a matrix into the product of a left unitary
matrix, a diagonal matrix of scaling values, and a right unitary matrix. We utilize
Householder transformations to construct orthogonal matrices that efficiently mimic
the unitary matrices, requiring only a vector. The diagonal values are learned in a
layer-wise manner, allowing them to flexibly capture the unique properties of each
layer. This approach enables the generation of adaptation matrices with varying
ranks across different layers, providing greater flexibility in adapting pre-trained
models. Experiments on standard downstream vision tasks demonstrate that our
method achieves promising fine-tuning performance.

1 Introduction

Parameter-Efficient Fine-Tuning (PEFT) for pre-trained Vision Transformers (ViTs) aims to adapt
these models to downstream tasks by learning a small set of parameters while keeping most or all of
the original model parameters frozen. This approach is expected to reduce the cost of fine-tuning and
potentially improve the model’s generalization performance, particularly when the downstream task
involves limited data.

A common strategy for adapting the parameters is to learn an adaptation matrix that modifies the
original matrix through addition or multiplication. To reduce the parameter scale of the adaptation
matrix, a low-rank strategy is typically employed. This involves decomposing the adaptation matrix
into the product of a down-projection matrix and an up-projection matrix, where the bottleneck
dimensionality determines the parameter scale. Many prevailing PEFT solutions [1–3] follow this
approach. However, these methods usually set the bottleneck dimensionality empirically to balance
adaptation performance and parameter size. The fixed dimensionality, however, lacks the flexibility
to accommodate variations in layer-wise properties.
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In this work, we propose a novel parameter-efficient adaptation method to fine-tune pre-trained
ViTs. Our design of the adaptation matrix is inspired by Singular Value Decomposition (SVD),
which decomposes a matrix into a product of a left unitary matrix, a diagonal matrix, and a right
unitary matrix. In SVD, the unitary matrices consist of orthogonal vectors, and the diagonal matrix
of singular values essentially determines the rank of the matrix. Inspired by SVD, we propose
to use Householder transformations to replace the left and right unitary matrices. Householder
transformations maintain orthogonality properties similar to unitary matrices but can be derived
simply by a vector, making them parameter efficient. With left and right Householder matrices,
we learn the diagonal matrix adaptively for each layer to accommodate layer-wise properties. This
approach, termed the Householder Transformation-based Adaptor (HTA), enables us to derive the
adaptation matrix in a parameter-efficient manner while theoretically allowing for varying ranks for
the adaptation matrices, thus achieving a better balance between parameter efficiency and adaptation
performance.

We conducted experiments on a set of downstream vision classification tasks. The results show
that our method can be effectively applied to various ViT versions, achieving promising fine-tuning
performance. In summary, the contributions of this work can be summarized as follows:

• We approach PEFT from a novel angle by viewing the adaptation matrix from the perspective
of SVD, which inspires us to propose a Householder transformation-based adaptation
strategy that is parameter-efficient.

• By learning scaling coefficients to compose Householder transformation matrices together
into adaptation matrices, our method can theoretically allow varying adaptation matrix ranks
to accommodate layer-wise variations.

• Experiments on two sets of downstream vision classification tasks reveal our method can
achieve an appealing balance between adaptation performance and parameter efficiency.

2 Related Work

2.1 Pre-training and Transfer Learning

As an advanced learning strategy, extensive research [4–7] has demonstrated the wide applicability
of transfer learning across various fields. Especially in cases where the target task has limited data,
high labeling costs, or poor data quality [8–10], transfer learning significantly enhances model
generalization and training efficiency. By pre-training on large-scale datasets and using the obtained
parameters as initialization for downstream tasks, transfer learning can effectively transfer and apply
the knowledge of pre-trained models. In this process, the performance and convergence speed of
downstream tasks are highly correlated with the dataset used for pre-training the model. In the field of
computer vision, pre-training on large-scale datasets such as ImageNet [11] has significantly improved
the performance of tasks like image classification [12–15], object detection [16, 17], and semantic
segmentation [18, 19]. Moreover, self-supervised pre-training [20, 21] leverages the advantage of not
requiring large amounts of labeled data, expanding the data scale and enhancing feature extraction
capabilities, thereby further improving the generalization ability and robustness of pre-trained models.
However, due to the substantial computational resources required to fully fine-tune the parameters of
pre-trained models in downstream tasks, current research has shifted towards exploring more efficient
fine-tuning methods.

2.2 Parameter-Efficient Fine-Tuning (PEFT)

Compared to full fine-tuning, the PEFT methods [22–25, 2, 26] aim to reduce the high cost of
fine-tuning by freezing the majority of parameters in the pre-trained model and introducing a small
number of learnable parameters to adapt to specific downstream tasks.

With the development of large pre-trained models, various PEFT approaches have emerged.
Adapter [22] inserts a bottleneck-structured adapter layer into the pre-trained model and refines
the model by updating only the parameters within the adapter layer. Bias [23] focuses on the fine-
tuning of models for specific downstream tasks by meticulously calibrating the bias terms. VPT [24]
integrates the concept of prompt learning into visual tasks, thereby facilitating targeted optimization
for specific downstream tasks. SSF [25] efficiently fine-tunes the weights in pre-trained models
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through affine transformations composed of scaling and shifting operations. AdaptFormer [2] ex-
plores a parallel adapter solution on ViT for various downstream tasks. FacT [26] decomposes the
weights of ViT into individual three-dimensional tensors and further decomposes the increments
into lightweight factors. During fine-tuning phase, these factors are updated and stored, effectively
reducing computational overhead.

2.3 LoRA and its variants

As represented by LoRA [1], the core of this type of PEFT method is the utilization of low-rank
matrices to approximate weight adjustments during the fine-tuning phase. By employing reparame-
terization techniques, these low-rank matrices are combined with the existing parameter matrices,
thereby circumventing extra inference costs. AdaLoRA [27] employs singular value decomposi-
tion to decompose weight matrices, pruning insignificant singular values to effectively reduce the
number of parameters. ARC [3] uses symmetric up-down projections to create cross-layer shared
bottleneck operations. By learning low-dimensional rescaling coefficients, it effectively recombines
layer-adaptive adapters, reducing the costs of fine-tuning. FedPara [28] reparameterizes model layers
with low-rank matrices and uses the Hadamard product. This approach, unconstrained by low-rank
limitations, offers greater capacity and reduces learning costs. RLRR [29] examines mainstream
PEFT methods from the perspective of SVD decomposition, exploring the critical balance between
preserving generalization in pre-trained models and adapting them to downstream tasks. Our re-
search abandons the traditional fixed-rank approach, opting instead for a more flexible adjustment of
parameter matrices using a small number of learnable parameters.

3 Methodology

In this section, we commence with an introduction of the notations, symbols, and contextual back-
ground related to low-rank adaptations and Householder transformation. Then we present the
decomposed structure of low-rank adaptation and discuss its inherent operating mechanism from the
perspective of singular value decomposition. Finally, we propose a novel adaptation via Householder
transformation. This adaptation primarily aims to construct the Householder unitary matrices via a
learnable weight vector, thereby trading-off the fully spanned representation space and the affordable
parameter size.

3.1 Preliminary knowledge

Low-rank adaptation. Pre-trained ViT models are typically initialized with weights learned from
large-scale image datasets, such as ImageNet. The pre-training process involves optimizing the model
on an unsupervised or supervised pretext task. The resulting pre-trained weights encode rich semantic
information that can be transferred to a wide range of downstream tasks through fine-tuning. As
one of the most representative methods of fine-tuning, PEFT method achieves excellent results on
downstream tasks by merely utilizing a small number of additional learnable parameters to fine-tune
the ViT. The most prevalent PEFT is the adaptation method, which can be divided into two categories:
LoRA-based and adapter-based methods. In general, LoRA-based method is defined as:

X
(l−1)
FT = X(l−1)(W(l) +W

(l)
downW

(l)
up) + b⃗

(l)⊤
, (1)

where X
(l−1)
FT is the fine-tuning output, W(l) is any linear weight projection

{W(l)
q ,W

(l)
k ,W

(l)
v ,W

(l)
o ,W

(l)
FC1,W

(l)
FC2} in ViT, b⃗

(l)
is the bias weights, W(l)

down ∈ RD(l)×D′
and

W
(l)
up ∈ RD′×D(l)

are down- and up-adapting projection matrices across varying layers with the
dimensionality D′ ≪ D(l). The detailed framework of LoRA-based method is shown in Fig. 1 (a).
Analogously, adapter-based method is described as:

X
(l−1)
FT = Act(MHA(X(l−1))W

MHA(l)
down )WMHA(l)

up ,

X
(l)
FT = Act(FFN(X

(l−1)
FT )W

FFN(l)
down )WFFN(l)

up ,
(2)

with the activation function Act(·), Multi-Head Attention (MHA), and Feed-Forward Network (FFN)
modules in ViT. The detail of adapter-based method is shown in Fig. 1 (c). By observing
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(a) LoRA-based Method
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(b) LoRA-based Method with HTA
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(c) Adapter-based Method
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(d) Adapter-based Method with HTA

Figure 1: Underpinned by (a) LoRA [1] and (c) Adapter [22], we utilize Householder matrix to
construct Householder transformation-based adaptations, involving (b) LoRA-based method with
HTA and (d) Adapter-based method with HTA.

Eq. (1) and (2), both above-mentioned PEFT methods involve a low-rank bottleneck structure,
i.e., W(l)

adaptation = W
(l)
downW

(l)
up. Note that we remove the activation in the low-rank bottleneck

because the presence or absence of such activation does not affect the low-rank structure of adaptation.

Householder transformation. Householder transformation, or Householder reflection, is a linear
transformation that reflects a vector across a hyperplane defined by a Householder vector. It is charac-
terized by a Householder matrix, which is an orthogonal and symmetrical matrix with determinant -1.
This transformation, initially proposed by A.S. Householder in 1958 [30], has significant applications
in numerical linear algebra [31], particularly in QR decomposition [32], where it is used to transform
a matrix into an upper triangular or Hessenberg form [33]. Householder transformation can also
be employed to set specific elements of a vector to zero while preserving its norm, making it a
valuable tool for matrix orthogonalization and symmetrization. The Householder matrix is defined as
following:

H = I− v⃗v⃗⊤, (3)

with the identity matrix I and the Householder vector v⃗.

3.2 Viewing the adaptation matrix from SVD

Singular Value Decomposition (SVD) offers a profound insight into matrix factorization. It breaks
down a matrix into three constituent matrices. Viewing the adaptation matrix through the lens of
SVD, we represent it as:

W
(l)
adaptation = W

(l)
leftD

(l)W
(l)
right, (4)
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where W
(l)
left ∈ RD(l)×D(l)

is the left unitary matrix and W
(l)
right ∈ RD(l)×D(l)

is the right unitary

matrix; and D(l) ∈ RD(l)×D(l)

is the diagonal matrix in which the diagonal elements of a diagonal
matrix are singular values. Unitary matrices W(l)

left and W
(l)
right essentially characterize the rotation

transformations in a linear space. The left unitary matrix W
(l)
left rotates an arbitrary vector multiplied

by the adaptation matrix W
(l)
adaptation into the space it spans. Then, the vector is scaled by the

diagonal matrix D(l). Finally, the right unitary matrix W
(l)
right rotates the vector back to the original

linear space. Therefore, the SVD decomposition characterizes the transformations of rotation and
scaling in the linear space.

When it comes to the fine-tuning strategy, PEFT methods employ ViT as the backbone and essentially
fine-tune the learnable parameters of unitary matrices W(l)

left ∈ RD(l)×D′
and W

(l)
right ∈ RD′×D(l)

and the learnable singular values of diagonal matrix D(l) ∈ RD′×D′
to downstream tasks, implicitly

performing the rotation and scaling transformations. Note that the number of non-zero singular values
in matrix D(l) does not exceed its dimensionality D′. However, the fixed bottleneck dimensionality
D′ empirically set to LoRA- or adapter-based methods is inflexible, thereby without accommodating
variations in layer-wise properties. This implies that the linear space spanned by the low-rank
adaptation matrix and its corresponding number of non-zero singular values is constrained within a
low dimensionality D′. Increasing the dimensionality D′ could effectively enhance the space capacity
of the adaptation matrix, thereby improving the performance potential of the fine-tuned ViT model.
However, this also further increases the number of parameters in the PEFT method.

3.3 Householder transformation-based adaptation

To address the aforementioned issue, we introduce Householder transformation into the adaptation
matrix learning, and propose the Householder Transformation-based Adaptor (HTA). Following this
way, HTA facilitates the derivation of the adaptation matrix in a manner that is parameter-efficient,
while theoretically accommodating the flexibility of varying ranks for the adaptation matrices.

In our approach, we respectively employ the Householder matrices H(l)
left ∈ RD(l)×D(l)

and H
(l)
right ∈

RD(l)×D(l)

as substitutes for the left and right unitary matrices W
(l)
left ∈ RD(l)×D′

and W
(l)
right ∈

RD′×D(l)

within the adaptation matrix W
(l)
adaptation to form the HTA adaptation matrix W

(l)
HTA:

W
(l)
HTA = H

(l)
leftD

(l)
H H

(l)
right

= (I− v⃗
(l)
leftv⃗

(l)⊤
left )D

(l)
H (I− v⃗

(l)
rightv⃗

(l)⊤
right)),

(5)

with two learnable parameter vectors v⃗
(l)
left ∈ RD(l)

and v⃗
(l)
right ∈ RD(l)

and a learnable diagonal

parameter vector d⃗
(l)

∈ RD(l)

in the diagonal matrix D
(l)
H ∈ RD(l)×D(l)

.

Since the Householder transformation matrix is derived from a single vector, its transformation
capacity can be limited and sensitive to the vector learned to derive it. To enhance the robustness
of the adaptation matrix, we incorporate an additional low-rank adaptation matrix, resulting in the
ultimate HTA. Building on this design, we can derive the LoRA alternative as follows:

X
(l−1)
FT = X(l−1)(W(l) +W

(l)
downW

(l)
up +W

(l)
HTA) + b⃗

(l)⊤

= X(l−1)(W(l) +W
(l)
downW

(l)
up + (I− v⃗

(l)
leftv⃗

(l)⊤
left )D(l)(I− v⃗

(l)
rightv⃗

(l)⊤
right)) + b⃗

(l)⊤
,

(6)

where W(l)
down ∈ RD(l)×1 and W

(l)
down ∈ R1×D(l)

, unless otherwise stated. The HTA structure of the
LoRA alternative is shown in Fig. 1 (b).
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Analogously, we can derive HTA alternative to the adapter-based method (as shown in Fig. 1 (d)) as
follows:

X
(l−1)
FT =MHA(X(l−1))(W

MHA(l)
down WMHA(l)

up +W
MHA(l)
HTA )

=MHA(X(l−1))(W
MHA(l)
down WMHA(l)

up +

(I− v⃗
MHA(l)
left v⃗

MHA(l)⊤
left )D

MHA(l)
H (I− v⃗

MHA(l)
right v⃗

MHA(l)⊤
right )),

X
(l)
FT =FFN(X

(l−1)
FT )(W

FFN(l)
down WFFN(l)

up +W
FFN(l)
HTA )

=FFN(X
(l−1)
FT )(W

FFN(l)
down WFFN(l)

up +

(I− v⃗
FFN(l)
left v⃗

FFN(l)⊤
left )D

FFN(l)
H (I− v⃗

FFN(l)
right v⃗

FFN(l)⊤
right )).

(7)

By observing Eq. (6), we can see that LoRA-based method with HTA could be re-parameterized
to the form Wre−param = W

(l)
downW

(l)
up +W

(l)
HTA during the model inference stage. And also, the

re-parameterization WMHA
re−param = W

(l)
o W

(l)
HTA of MHA in Eq. (7) is available due to the fact that

the weight matrix W
(l)
o is positioned at the end of MHA. Similarly, the re-parameterization of FFN

is WFFN
re−param = W

(l)
FC2W

(l)
HTA due to the weight matrix W

(l)
FC2 at the tail of FFN.

4 Experiments

In this section, we present the experimental settings, comparison to existing solutions, and ablation
studies to unveil the key properties of the proposed method.

4.1 Experimental settings

Datasets. We evaluated the effectiveness of our method using two sets of visual adaptation bench-
marks: FGVC and VTAB-1k, involving a total of 24 datasets. The FGVC collection consists of five
Fine-Grained Visual Classification (FGVC) datasets: CUB-200-2011, NABirds, Oxford Flowers,
Stanford Dogs, and Stanford Cars. These datasets focus on distinguishing between visually similar
subcategories within a broader category, making the task more challenging and detailed. The VTAB-
1k benchmark comprises 19 diverse visual classification tasks, divided into three categories: Natural,
which includes images captured by standard cameras; Specialized, which includes images captured
by specialized equipment such as remote sensing and medical imaging devices; and Structured, which
includes synthesized images from simulated environments, such as object counting and 3D depth
prediction. Each VTAB-1k task includes 1,000 training samples.

Pre-trained backbones. We employ ViT [13] and Swin Transformer [14] as backbone architectures
to evaluate our proposed approach. To demonstrate the versatility of the proposed HTA model, we uti-
lize two variants of ViT: ViT-Base and ViT-Large. These models are pre-trained on the ImageNet21K
dataset [11]. Additionally, to ensure a fair comparison, we follow the settings from previous work [29]
and conduct separate experiments using a ViT backbone enhanced with AugReg [34].

Baselines and existing PEFT methods. In our comparative analysis, we evaluate the performance
of our HTA against two baselines and several state-of-the-art PEFT methods. Unless otherwise
specified, our HTA follows the design in Eq. (6), with the dimension of the low-rank adaptation
matrix set to 1. The two baselines we consider are: (1) Full Fine-tuning: This baseline involves
updating all the parameters of the pre-trained model using the training data of the downstream
task. (2) Linear Probing: This baseline focuses on learning a linear classification head on the
downstream task while keeping the remaining parameters of the pre-trained model frozen. In addition
to the baselines, we compare our method with the following state-of-the-art solutions: Adapter [22],
Bias [23], LoRA [1], VPT [24], AdaptFormer [2], FacT [26], ARC [3] and RLRR [29]. The results
are presented in Table 1 and Table 2.
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Table 1: Performance comparisons on the VTAB-1k benchmark with ViT-B/16 models pre-trained on
ImageNet-21K. * denotes leveraging the augmented ViT backbone by AugReg [34]. The bold font
shows the best accuracy of all methods and the underline font shows the second best accuracy.
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Full fine-tuning 68.9 87.7 64.3 97.2 86.9 87.4 38.8 75.9 79.7 95.7 84.2 73.9 83.4 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 47.6 65.6 85.80
Linear probing 63.4 85.0 63.2 97.0 86.3 36.6 51.0 68.9 78.5 87.5 68.6 74.0 77.2 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 26.9 52.9 0.04

Bias [23] 72.8 87.0 59.2 97.5 85.3 59.9 51.4 73.3 78.7 91.6 72.9 69.8 78.3 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 44.1 62.1 0.14
VPT-Shallow [24] 77.7 86.9 62.6 97.5 87.3 74.5 51.2 76.8 78.2 92.0 75.6 72.9 79.7 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 47.0 64.9 0.11

VPT-Deep [24] 78.8 90.8 65.8 98.0 88.3 78.1 49.6 78.5 81.8 96.1 83.4 68.4 82.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 55.0 69.4 0.60
Adapter [22] 69.2 90.1 68.0 98.8 89.9 82.8 54.3 79.0 84.0 94.9 81.9 75.5 84.1 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6 58.5 71.4 0.16

LoRA [1] 67.1 91.4 69.4 98.8 90.4 85.3 54.0 79.5 84.9 95.3 84.4 73.6 84.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 59.8 72.3 0.29
AdaptFormer [2] 70.8 91.2 70.5 99.1 90.9 86.6 54.8 80.6 83.0 95.8 84.4 76.3 84.9 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 58.8 72.3 0.16
FacT-TK≤32 [26] 70.6 90.6 70.8 99.1 90.7 88.6 54.1 80.6 84.8 96.2 84.5 75.7 85.3 82.6 68.2 49.8 80.7 80.8 47.4 33.2 43.0 60.7 73.2 0.07

ARC [3] 72.2 90.1 72.7 99.0 91.0 91.9 54.4 81.6 84.9 95.7 86.7 75.8 85.8 80.7 67.1 48.7 81.6 79.2 51.0 31.4 39.9 60.0 73.4 0.13
RLRR [29] 75.6 92.4 72.9 99.3 91.5 89.8 57.0 82.7 86.8 95.2 85.3 75.9 85.8 79.7 64.2 53.9 82.1 83.9 53.7 33.4 43.6 61.8 74.5 0.33

HTA 76.6 94.3 72.5 99.3 91.3 86.2 56.5 82.4 87.6 95.7 85.0 75.7 86.0 82.6 63.3 52.5 81.0 84.5 52.6 34.5 47.3 62.3 74.7 0.22
SSF* [25] 69.0 92.6 75.1 99.4 91.8 90.2 52.9 81.6 87.4 95.9 87.4 75.5 86.6 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 59.0 73.1 0.24
ARC* [3] 71.2 90.9 75.9 99.5 92.1 90.8 52.0 81.8 87.4 96.5 87.6 76.4 87.0 83.3 61.1 54.6 81.7 81.0 57.0 30.9 41.3 61.4 74.3 0.13

RLRR* [29] 76.7 92.7 76.3 99.6 92.6 91.8 56.0 83.7 87.8 96.2 89.1 76.3 87.3 80.4 63.3 54.5 83.3 83.0 53.7 32.0 41.7 61.5 75.1 0.33
HTA* 79.0 92.8 77.6 99.6 92.4 89.4 55.1 83.7 88.2 96.1 89.7 76.4 87.6 84.2 61.7 53.6 82.0 85.1 53.7 33.9 47.9 62.8 75.7 0.22

Table 2: Performance comparisons on five FGVC datasets with ViT-B/16 models pre-trained on
ImageNet-21K. * denotes leveraging the augmented ViT backbone by AugReg [34].

Methods
Datasets CUB-200-2011 NABirds Oxford Flowers Stanford Dogs Stanford Cars Mean Total Params. (M)

Full fine-tuning 87.3 82.7 98.8 89.4 84.5 88.5 85.98
Linear probing 85.3 75.9 97.9 86.2 51.3 79.3 0.18
Adapter [22] 87.1 84.3 98.5 89.8 68.6 85.7 0.41

Bias [23] 88.4 84.2 98.8 91.2 79.4 88.4 0.28
VPT-Shallow [24] 86.7 78.8 98.4 90.7 68.7 84.6 0.25

VPT-Deep [24] 88.5 84.2 99.0 90.2 83.6 89.1 0.85
LoRA [1] 88.3 85.6 99.2 91.0 83.2 89.5 0.44
ARC [3] 88.5 85.3 99.3 91.9 85.7 90.1 0.25

RLRR [29] 89.3 84.7 99.5 92.0 87.0 90.4 0.47
HTA 88.8 84.4 99.5 92.2 87.9 90.6 0.36

SSF [25] 89.5 85.7 99.6 89.6 89.2 90.7 0.39
ARC* [3] 89.3 85.7 99.7 89.1 89.5 90.7 0.25

RLRR* [29] 89.8 85.3 99.6 90.0 90.4 91.0 0.47
HTA* 90.5 85.4 99.6 89.3 90.5 91.1 0.36

Implementation details. Following previous work, we employed data augmentation during the
training phase. For the FGVC datasets, we processed the images with a random resize crop to
224× 224 and applied a random horizontal flip for data augmentation. For the VTAB-1k datasets,
we directly resized the images to 224× 224, adhering to the default settings in VTAB-1k. We used
the AdamW [35] optimizer to fine-tune the models for 100 epochs. The learning rate schedule
was managed using the cosine decay strategy. All experiments are conducted using the PyTorch
framework [36] on an NVIDIA A800 GPU with 80 GB of memory.

4.2 Experimental comparisons

In this section, we conduct a comprehensive comparison of our method with other state-of-the-art
approaches using different benchmarks and backbones. We evaluate the classification accuracy of
each method across various downstream tasks and examine the number of trainable parameters during
the fine-tuning phase.

Comparison with the existing PEFT methods. We conducted a comparison of our method with
other PEFT methods and baselines using two different benchmarks: FGVC and VTAB-1k. The results
are presented in Table 1 and Table 2. On the VTAB-1k dataset, our method not only demonstrates
strong competitiveness compared to the baselines but also shows advantages over current state-of-the-
art methods. On many of the datasets, our method achieves the best performance with a reasonable
parameter count. Compared to the previous state-of-the-art method, RLRR [29], our method achieves
superior overall performance while reducing the number of parameters by one-third. When using the
AugReg-enhanced model, our lead is further amplified. In Table 2, we further compare our method
with others on the FGVC benchmark. While our method also achieves appealing performance on this
dataset, the advantage is less evident. This is due to the fact that very high performance has already
been achieved on this dataset, and the performance improvements have nearly saturated.
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Table 3: Performance comparison on VTAB-1k using ViT-Large pre-trained on ImageNet-21k as the
backbone. Detailed results are presented in the Appendix.

Methods
Datasets Natural (7) Specialized (4) Structed (8) Mean Total Params.(M)

Full fine-tuning 74.7 83.8 48.1 65.4 303.40
Linear probing 70.9 69.1 25.8 51.5 0.05

Bias [23] 70.5 73.8 41.2 58.9 0.32
VPT-Shallow [24] 78.7 79.9 40.6 62.9 0.15

VPT-Deep [24] 82.5 83.9 54.1 70.8 0.49
LoRA [1] 81.4 85.0 57.3 72.0 0.74
SSF [25] 81.9 85.2 59.0 73.0 0.60
ARC [3] 82.3 85.6 57.3 72.5 0.18

RLRR [29] 83.9 86.4 61.9 75.2 0.82
HTA 84.1 86.6 62.3 75.4 0.54

Table 4: Performance comparison on VTAB-1k using Swin Transformer pre-trained on ImageNet-21k
as the backbone. Detailed results are presented in the Appendix.

Methods
Datasets Natural (7) Specialized (4) Structed (8) Mean Total Params.(M)

Full fine-tuning 79.1 86.2 59.7 72.4 86.80
Linear probing 73.5 80.8 33.5 58.2 0.05

MLP-4 [24] 70.6 80.7 31.2 57.7 4.04
Partial [24] 73.1 81.7 35.0 58.9 12.65
Bias [23] 74.2 80.1 42.4 62.1 0.25

VPT-Shallow [24] 79.9 82.5 37.8 62.9 0.05
VPT-Deep [24] 76.8 84.5 53.4 67.7 0.22

ARC [3] 79.0 86.6 59.9 72.6 0.27
RLRR [29] 81.3 86.7 59.0 73.0 0.41

HTA 81.8 86.7 61.3 74.2 0.23

Experiments on larger-scale ViT backbone. In addition to using the ViT-B backbone, we also
employed the ViT-L backbone, which has a deeper block structure, to validate the scalability and
generalizability of our method. The comparison results are shown in Table 3. Our method achieves
the best performance among all the compared methods while maintaining a reasonable parameter
count. These results demonstrate that our method can effectively adapt models of varying scales and
complexities in an efficient manner.

Experiments on hierarchical Vision Transformers. To further validate the effectiveness of
our method, we tested it on the Swin Transformer [14]. The Swin Transformer is renowned for
its hierarchical design, consisting of multiple stages, each with transformer blocks that maintain
consistent feature dimensions unique to that stage. As shown in Table 4, our method notably
outperforms existing state-of-the-art methods across various downstream tasks, with an overall
improvement of 1.2% over the previous best performance while using only half of the parameters.

4.3 Ablation studies

To gain deeper insights into the proposed method, we conducted comprehensive ablation studies to
elucidate its critical features and carry out pertinent analyses.

Using HTA as alternative to low-rank based adaptation matrix. As mentioned earlier, our
proposed HTA model offers a more flexible adaptation capacity compared to other low-rank based
adaptation matrices. To validate this claim, we replaced the adaptation matrices of LoRA [1]
and Adaptor [22] with HTA. Initially, following FacT [26], LoRA [1] was originally applied to the
{Wq,Wv} projection matrices in the multi-head attention operation of each ViT layer, while Adapter
was applied to the feed-forward neural network components layer-wise, as described in Eq. (2). For
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Table 5: Ablation study on using HTA as alternative to the low-rank based adaptation matrices in
LoRA and Adapter on VTAB-1k. Following the configurations in FacT [26], LoRA and Adapter are
applied to {Wq,Wv} and {WFC1,WFC2} projection matrices, separately.

Methods
Datasets Natural (7) Specialized (4) Structed (8) Mean Total Params.(M)

LoRA (Wq , Wv) 79.5 84.6 59.8 72.3 0.29
HTA (Wq , Wv) 81.0 84.6 59.6 72.7 0.09

HTA (Wq , Wv , WFC1, WFC2) 81.1 86.3 61.5 73.9 0.28
Adapter (WFC1, WFC2) 79.0 84.1 58.5 71.4 0.16

HTA (WFC1, WFC2) 81.0 84.9 60.0 73.0 0.05
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Figure 2: Ablation study on the impact of different bottleneck dimensions of adaptive matrices in
HTA. The bar chart represents the Top-1 Test Accuracy, the line graph indicates parameters count.

a fair comparison, we also applied HTA separately to {Wq,Wv} and {WFC1,WFC2}. From the
results in Table 5, we observe that our method slightly outperforms LoRA but with significantly
fewer parameters. Moreover, our method achieves significant improvement over Adapter still using
much fewer parameters. These results indicate that our method achieves a better trade-off between
adaptation performance and parameter efficiency. To further test the effectiveness of our method
when using a similar parameter scale to LoRA, we additionally applied HTA to FFN layers. The
results show that under the same parameter size, our method exhibits a noticeable improvement over
LoRA.

Ablation study on the bottleneck dimensionality of additive adaptation matrix in HTA. We
conducted ablation experiments to verify the effect of incorporating low-rank adaptation matrices
in HTA, as well as the impact of its bottleneck dimensionality. The results are presented in Fig. 2.
From these results, we observe that without the addition of low-rank adaptation, HTA experiences
an obvious performance drop. This is due to the fact that while deriving orthogonal matrices using
Householder transformations is parameter-efficient, their inherent dependence on a single chosen
vector makes them insufficient as a set of general orthogonal bases for representing arbitrary high-
dimensional space. When using a low-rank adaptation matrix with rank 1, HTA shows a significant
performance boost. This indicates that even with a simple low-rank adaptation, HTA can achieve
a promising trade-off between adaptation performance and parameter efficiency. By incorporating
these low-rank matrices, HTA can maintain high performance while being parameter-efficient.

5 Limitations

In this work, we use Householder transformations to construct adaptation matrices in a parameter-
efficient manner. Although Householder transformation matrices are orthogonal, they cannot serve as
general orthogonal bases in high-dimensional spaces due to their inherent dependence on a single
vector. This limitation may reduce the adaptation capacity of the adaptation matrix composed of two
Householder matrices. We address this issue by incorporating a rank-1 adaptation matrix, which
may somewhat detract from the elegance of the proposed method. However, it is worth exploring
strategies to eliminate the need for the additive adaptation matrix, thereby further enhancing the
elegance and efficiency of the HTA method.
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6 Conclusions

In this work, we proposed a novel Parameter-Efficient Fine-Tuning (PEFT) solution. Our method
addresses the limitation of fixed bottleneck dimensionality in low-rank based adaptation matrices,
which can restrict adaptation flexibility. By viewing the adaptation matrix from the perspective of
Singular Value Decomposition (SVD), we use Householder transformations to mimic orthogonal
bases. These transformations, derived from a single vector, are highly parameter-efficient. We
adaptively learn diagonal coefficients to flexibly combine two Householder matrices into an adaptation
matrix, accommodating layer-wise variations. Theoretically, our method can generate adaptation
matrices with varying ranks while maintaining a reasonable parameter size, offering a potential
alternative to low-rank based adaptations. Experiments on two sets of downstream vision classification
tasks demonstrate the effectiveness of our approach.
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A Detailed dataset statistic

We provide detailed information about the datasets used in this paper, including the number of classes
and the sizes of the training, validation, and test sets, in Table 1 (FGVC) and Table 2 (VTAB-1k).The
FGVC datasets include CUB-200-2011, NABirds, Oxford Flowers, Stanford Dogs, and Stanford Cars,
which are used for fine-grained classification tasks of birds, flowers, dogs, and cars, respectively. The
VTAB-1k datasets cover natural, specialized, and structured tasks, including natural image datasets
such as CIFAR-100, Caltech101, DTD, Flowers102, Pets, SVHN, and Sun397; specialized image
datasets such as Patch Camelyon, EuroSAT, Resisc45, and Retinopathy; and structured image datasets
such as Clevr/count, Clevr/distance, DMLab, KITTI/distance, dSprites/location, dSprites/orientation,
SmallNORB/azimuth, and SmallNORB/elevation. Detailed information about these datasets is
presented in the tables.

Table 1: Dataset statistics for FGVC. “*” denotes the train/val split of datasets following the dataset
setting in VPT [24].

Dataset Description Classes Train size Val size Test size
CUB-200-2011 [37] Fine-grained bird species recognition 200 5,394* 600* 5,794
NABirds [38] Fine-grained bird species recognition 555 21,536* 2,393* 24,633
Oxford Flowers [39] Fine-grained flower species recognition 102 1,020 1,020 6,149
Stanford Dogs [40] Fine-grained dog species recognition 120 10,800* 1,200* 8,580
Stanford Cars [41] Fine-grained car classificatio 196 7,329* 815* 8,041

B Hyper-parameters in our work

Table 3 provides a summary of the configurations used in our experiments. As discussed in Section 4,
we performed a grid search on the validation set of each task to determine the optimal hyperparameters,
including learning rate, weight decay, batch size, and dropout rate.

C Experimental details on larger-scale and hierarchical ViT backbones

Table 4 and 5 respectively display the comprehensive results of the comparison conducted in Section 4
among ViT-Large and Swin-Base models.

D Experimental details on ablation study

We provide further explanation of the ablation experiments in Section 4. In the study on the
transferability of HTA, we replaced the low-rank adaptation matrices in LoRA, we used an HTA
module to replace the bottleneck part of LoRA, while in Adapter, we directly replaced the Adapter
with an HTA module. The detailed experimental results are presented in the table 6. In the study of
the low-rank adaptation part of HTA, we set its dimensions to 0, 1, 2, and 4, respectively. The results
are shown in Table 7.

E Broader impacts

Practicality: Our approach differs from traditional methods by employing Householder transforma-
tions rather than standard unitary matrices, which can be efficiently derived. This approach boosts
the efficiency of parameter usage and significantly cuts down on the number of parameters requiring
fine-tuning. With this technique, we manage to achieve high performance while optimizing parameter
use. Leveraging large-scale pre-trained models, our HTA method proves to be both highly efficient
and practical across diverse applications.

Low Energy Consumption: Our approach enhances the model’s computational efficiency by de-
creasing the necessary computational parameters, thus reducing energy usage during training. This
reduction aids in conserving energy and lowering emissions, aligning with global sustainability
goals and the push for eco-friendly practices. Moreover, our method not only improves the model’s
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Table 2: Dataset statistics for VTAB-1k [42].

Dataset Description Classes Train size Val size Test size
CIFAR-100

Natural

100

800/1,000 200

10,000
Caltech101 102 6,084
DTD 47 1,880
Flowers102 102 6,149
Pets 37 3,669
SVHN 10 26,032
Sun397 397 21,750
Patch Camelyon

Specialized

2

800/1,000 200

32,768
EuroSAT 10 5,400
Resisc45 45 6,300
Retinopathy 5 42,670
Clevr/count

Structured

8

800/1,000 200

15,000
Clevr/distance 6 15,000
DMLab 6 22,735
KITTI/distance 4 711
dSprites/location 16 73,728
dSprites/orientation 16 73,728
SmallNORB/azimuth 18 12,150
SmallNORB/elevation 9 12,150

Table 3: The implementation details of configurations such as optimizer and hyper-parameters. We
select the best hyper-parameters for each download task via using grid search.

Optimizer AdamW
Learning Rate {0.2, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0001}
Weight Decay {0.05, 0.01, 0.005, 0.001, 0}

Batch Size {64, 32, 16}
Adapter Dropout {0.5, 0.3, 0.2, 0.1, 0}

Learning Rate Schedule Cosine Decay
Training Epochs 100
Warmup Epochs 10

Table 4: This table is extended from Table 3 in Section 4 and describes the detailed experimental
results of the performance comparison on VTAB-1k using ViT-Large pre-trained on ImageNet-21k as
the backbone.
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Full fine-tuning 68.6 84.3 58.6 96.3 86.5 87.5 41.4 74.7 82.6 95.9 82.4 74.2 83.8 55.4 55.0 42.2 74.2 56.8 43.0 28.5 29.7 48.1 65.4 303.4
Linear probing 72.2 86.4 63.6 97.4 85.8 38.1 52.5 70.9 76.9 87.3 66.6 45.4 69.1 28.2 28.0 34.7 54.0 10.6 14.2 14.6 21.9 25.8 51.5 0.05

Adapter [22] 75.3 84.2 54.5 97.4 84.3 31.3 52.9 68.6 75.8 85.1 63.4 69.5 73.5 35.4 34.1 30.8 47.1 30.4 23.4 10.8 19.8 29.0 52.9 2.38
Bias [23] 71.0 82.4 51.3 96.3 83.2 59.5 49.9 70.5 72.9 87.9 63.1 71.3 73.8 51.2 50.7 33.5 54.8 65.9 37.3 13.7 22.2 41.2 58.9 0.32

VPT-Shallow [24] 80.6 88.2 67.1 98.0 85.9 78.4 53.0 78.7 79.7 93.5 73.4 73.1 79.9 41.5 52.5 32.3 64.2 48.3 35.3 21.6 28.8 40.6 62.9 0.15
VPT-Deep [24] 84.1 88.9 70.8 98.8 90.0 89.0 55.9 82.5 82.5 96.6 82.6 73.9 83.9 63.7 60.7 46.1 75.7 83.7 47.4 18.9 36.9 54.1 70.8 0.49

LoRA [1] 75.8 89.8 73.6 99.1 90.8 83.2 57.5 81.4 86.0 95.0 83.4 75.5 85.0 78.1 60.5 46.7 81.6 76.7 51.3 28.0 35.4 57.3 72.0 0.74
ARC [3] 76.2 89.6 73.4 99.1 90.3 90.9 56.5 82.3 85.0 95.7 85.9 75.8 85.6 78.6 62.1 46.7 76.7 75.9 53.0 30.2 35.2 57.3 72.5 0.18
SSF [25] 73.5 91.3 70.0 99.3 91.3 90.6 57.5 81.9 85.9 94.9 85.5 74.4 85.2 80.6 60.0 53.3 80.0 77.6 54.0 31.8 35.0 59.0 73.0 0.60

RLRR [29] 79.3 92.0 74.6 99.5 92.1 89.6 60.1 83.9 87.3 95.3 87.3 75.7 86.4 82.7 62.1 54.6 80.6 87.1 54.7 31.3 41.9 61.9 75.2 0.82

HTA 80.8 92.4 76.1 99.5 92.8 87.2 59.9 84.1 87.7 95.5 86.8 76.5 86.6 82.6 62.4 53.4 80.0 87.1 53.7 33.4 45.6 62.3 75.4 0.54

performance and efficiency but also promotes environmental sustainability by embracing sustainable
development principles.

Ethical Aspects: Our model utilizes the vast capabilities of large-scale pre-trained models for
representation and generalization. However, it is trained on datasets that might contain problematic
data, such as illegal content or inherent biases, which our model could inadvertently learn. To tackle
this challenge, addressing model toxicity becomes critical. Consequently, it’s imperative to develop
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Table 5: This table is extended from Table 4 in Section 4 and describes the detailed experimental
results of the performance comparison on VTAB-1k using Swin-Base pre-trained on ImageNet-21k
as the backbone.
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Full fine-tuning 72.2 88.0 71.4 98.3 89.5 89.4 45.1 79.1 86.6 96.9 87.7 73.6 86.2 75.7 59.8 54.6 78.6 79.4 53.6 34.6 40.9 59.7 72.4 86.9
Linear probing 61.4 90.2 74.8 95.5 90.2 46.9 55.8 73.5 81.5 90.1 82.1 69.4 80.8 39.1 35.9 40.1 65.0 20.3 26.0 14.3 27.6 33.5 58.2 0.05

MLP-4 [24] 54.9 87.4 71.4 99.5 89.1 39.7 52.5 70.6 80.5 90.9 76.8 74.4 80.7 60.9 38.8 40.2 66.5 9.4 21.1 14.5 28.8 31.2 57.7 4.04
Partial [24] 60.3 88.9 72.6 98.7 89.3 50.5 51.5 73.1 82.8 91.7 80.1 72.3 81.7 34.3 35.5 43.2 77.1 15.8 26.2 19.1 28.4 35.0 58.9 12.65
Bias [23] 73.1 86.8 65.7 97.7 87.5 56.4 52.3 74.2 80.4 91.6 76.1 72.5 80.1 47.3 48.5 34.7 66.3 57.6 36.2 17.2 31.6 42.4 62.1 0.25

VPT-Shallow [24] 78.0 91.3 77.2 99.4 90.4 68.4 54.3 79.9 80.1 93.9 83.0 72.7 82.5 40.8 43.9 34.1 63.2 28.4 44.5 21.5 26.3 37.8 62.9 0.05
VPT-Deep [24] 79.6 90.8 78.0 99.5 91.4 46.5 51.7 76.8 84.9 96.2 85.0 72.0 84.5 67.6 59.4 50.1 74.1 74.4 50.6 25.7 25.7 53.4 67.7 0.22

ARC [3] 62.5 90.0 71.9 99.2 87.8 90.7 51.1 79.0 89.1 95.8 84.5 77.0 86.6 75.4 57.4 53.4 83.1 91.7 55.2 31.6 31.8 59.9 72.6 0.27
RLRR [29] 66.1 90.6 75.5 99.3 92.1 90.9 54.7 81.3 87.1 95.9 87.1 76.5 86.7 66.0 57.8 55.3 84.1 91.1 55.2 28.6 34.0 59.0 73.0 0.41

HTA 72.0 89.6 76.4 99.5 92.1 87.8 55.5 81.8 86.7 96.3 87.5 76.3 86.7 85.0 62.2 53.7 84.3 89.1 52.4 27.6 36.4 61.3 74.2 0.23

Table 6: This table is extended from Table 5 in Section 4. LoRA and Adapter both follow the
configurations from the A paper. In our implementation, the fully connected layers within the
bottlenecks are replaced with Householder transformations. "(·)" indicates specific configuration
information
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LORA(Wq , Wv) 67.1 91.4 69.4 98.8 90.4 85.3 54.0 79.5 84.9 95.3 84.4 73.6 84.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 59.8 72.3 0.29
HTA(Wq , Wv) 71.2 93.3 72.5 99.3 91.2 82.7 56.6 81.0 85.3 94.9 82.5 75.7 84.6 80.8 62.9 50.2 78.9 77.4 51.1 29.7 45.4 59.6 72.7 0.09

HTA(Wq , Wv , WFC1, WFC2) 71.7 93.1 70.9 99.2 90.5 86.6 55.8 81.1 87.6 96.3 85.1 76.2 86.3 80.8 60.1 51.0 82.0 86.9 52.2 32.9 46.0 61.48 73.9 0.28
Adapter(WFC1, WFC2) 69.2 90.1 68.0 98.8 89.9 82.8 54.3 79.0 84.0 94.9 81.9 75.5 84.1 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6 58.5 71.4 0.16

HTA(WFC1, WFC2) 72.6 93.0 71.1 99.3 91.4 82.1 57.2 81.0 85.3 95.0 82.9 76.3 84.9 81.6 63.9 49.5 81.2 79.2 51.4 28.1 45.4 60.0 73.0 0.05

Table 7: This table is extended from Fig. 2 in Section 4.
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D′=0 73.0 90.1 71.8 99.3 91.1 83.4 53.7 80.3 82.3 94.2 82.7 73.7 83.2 77.3 61.6 49.2 80.0 81.7 53.3 28.1 41.2 59.1 72.0 0.15
D′=1 76.6 94.3 72.5 99.3 91.3 86.2 56.5 82.4 87.6 95.7 85.0 75.7 86.0 82.6 63.3 52.5 81.0 84.5 52.6 34.5 47.3 62.3 74.7 0.22
D′=2 75.5 94.2 73.0 99.3 91.2 85.7 56.3 82.2 88.0 95.2 84.6 76.1 86.0 82.2 63.1 52.1 80.2 85.5 52.3 33.9 47.5 62.1 74.5 0.30
D′=4 74.6 93.6 72.1 99.3 91.4 88.3 56.1 82.2 88.0 96.3 85.6 76.4 86.6 81.8 64.9 53.6 82.3 84.8 53.6 34.4 47.2 62.8 75.0 0.44

enhanced mechanisms that can both identify and reduce such biases and unlawful information in the
datasets.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please see Abstract and Introduction Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please see Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our work does not involve specific theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide supplementary materials involving statistical datasets, detailed
hyper-parameters of model settings. And also we provide complete code, datasets and
models at the anonymous link https://drive.google.com/file/d/18sXhtqMlKZd4_
LRICk2NvSlKiFiHrG2d/view?.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide supplementary materials involving statistical datasets, detailed
hyper-parameters of model settings. And also we provide complete code, datasets and
models at the anonymous link https://drive.google.com/file/d/18sXhtqMlKZd4_
LRICk2NvSlKiFiHrG2d/view?.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see our supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our work does not involve specific error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please see Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our paper conforms the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please see Appendix Section E.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The license and terms of use explicitly are mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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guidelines for their institution.
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