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Abstract

Pure exploration in bandits can model eclectic real-world decision making prob-
lems, such as tuning hyper-parameters or conducting user studies, where sample
frugality is desired. Thus, considering different safety, resource, and fairness
constraints on the decision space has gained increasing attention. In this paper,
we study generalisation of these problems as pure exploration in multi-armed
bandits with unknown linear constraints. First, we propose a Lagrangian relaxation
of the sample complexity lower bound for pure exploration. We further derive
how this lower bound converges to the existing lower bound for pure exploration
under known constraints, and how the hardness of the problem changes with the
geometry induced by the constraint estimation procedure. We further leverage the
Lagrangian lower bound and properties of convex optimisation to propose two
computationally efficient extensions of Track-and-Stop and Gamified Explorations,
namely LATS and LAGEX. Designing these algorithms require us to propose a
new constraint-adaptive stopping rule, and also at each step, using pessimistic
estimates of constraints in the Lagrangian lower bound. We show that these algo-
rithms asymptotically achieve the desired sample complexity bounds. Finally, we
conduct numerical experiments with different reward distributions and constraints
that validate efficient performance of LAGEX and LATS with respect to baselines.

1 Introduction
Decision-making under uncertainty is a ubiquitous challenge encountered across various domains,
including clinical trials [VBW15], recommendation systems [ZY24] and more. Multi-Armed Bandit
(MAB) serves as an archetypal framework for sequential decision-making under uncertainty and
allows to study the involved information-utility trade-offs [LS20]. In MAB, at each step, an agent
interacts with an environment consisting of K decisions (aka arms) corresponding to K noisy
feedback distribution (aka reward distribution). At each step, the agent takes a decision, and obtains
a reward from the corresponding reward distribution. The goal of the agent is to compute a policy,
i.e. a distribution over the decisions, that maximises a certain utility metric (e.g. accumulated
rewards [ACBF02], probability of identifying the best arm [KCG16] etc.) over time.

In this paper, we focus on the pure exploration problem of MABs, where the agent interacts by
sequentially realising a sequence of policies (or experiments) with the goal of answering a query
as correctly as possible. A well-studied pure exploration problem is Best-Arm Identification (BAI),
where the agent aims to identify the arm with the highest expected reward [EDMM02a, BMS09, JN14,
KCG16]. BAI has been increasingly applied for hyper-parameter tuning [LJD+17], communication
networks [LPJ22], influenza mitigation [LVR+19], finding the optimal dose of a drug [AKR21a] etc.
However, real-world scenarios often involve constraints on the arms that must be satisfied [CBJD24].

Example 1 (Optimal treatment plan [KCJ23, CGS22a]). We want to identify the optimal treatment of
a patient with rheumatoid arthritis, when the first and second-line of treatments have failed [KCJ23].
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There is large variability in the choice of next treatment, and several drugs are a priori considered
to be equally good but might not work equally well together [KCJ23]. Let us assume that we have
K drugs for efficacies and side-effects are unknown. We assume that efficacy of each drug comes
from a reward distribution with unknown mean µa and also d side-effects (e.g. drop in heart- and
liver-function scores) are due to unknown drug-specific constraints Aa. The constraint Aa represent
scores that are deemed to be unsafe, and thus, we want Aπ ≤ 0. Thus, given a treatment plan π
of mixing the drugs, the mean efficacy is ⟨µ,π⟩, and the extent of side-effects is Aπ. These scores
and the efficacyserves can be measured after each application of a drug, with the stochasticity due to
inter-patient variability. Additionally, changing a treatment has additional human involvement and
cost, which is better to be minimised. We aim to reliably find the most effective drug cocktail π∗ with
minimum number of interactions with patients, while retaining the side-effects in the safe zone.

Pure exploration under constraints. In recent years, real-life applications like above naturally
motivated study of pure exploration under a set of known and unknown constraints [KSS18, WWJ21,
LZYL23, WZZ23, CBJD24]. Specifically, we aim to find the optimal policy that maximises the
expected rewards over the set of arms and also satisfies the true constraints. The agent, at each step
t, selects an action according to a chosen policy observes associated reward and the cost incurred
with respect to the constraints. The agent uses the feedbacks to update the estimates of the expected
rewards and constraints. Using these estimates, the agent chooses the next policy and action till
the optimal policy satisfying constraints is identified with confidence 1 − δ. This is known as the
fixed-confidence setting of pure exploration [WWJ21, CBJD24], while there is also fixed-budget
setting which is of independent interest [KSS18, LZYL23, FN22]. Existing literature has studied
either the general linear constraints when they are known [WWJ21, CBJD24, CWM+22a], or very
specific type of unknown constraints, e.g. safety [WWJ21], knapsack [LZYL23], fairness [WZZ23],
preferences [LTHK22] etc. Here, we study the pure exploration problem in the fixed-confidence
setting subject to unknown linear constraints on the policy, which generalises all these settings
(Section 2). Further discussions on related works is in Appendix B.1.

Recently, [CBJD23] show if the constraints are known, i.e the feasible set is deterministic, a bandit
instance may become harder or easier depending on the geometry of the constraints. They state that
studying similar phenomenon for unknown constraints as an open problem as the feasible policy
space is not deterministic anymore. As we have to construct an estimate of the feasible policy set, we
have to simultaneously control concentration of the means of the unknown reward distributions, and
those of the feasible sets, simultaneously. This leads us to two questions

• How does the hardness of the pure exploration under unknown constraints change if the constraints
are estimated sequentially?

• How can we design a generic algorithmic scheme to track both the constraints and the optimal
policy with sample- and computational-efficiency?

Our contributions address these questions as follows:

1. Lagrangian relaxation of the lower bound. The minimum number of samples required to conduct
pure exploration with fixed confidence and the corresponding interactive policy are expressed through
lower bound, which is an optimisation problem under known constraints. For unknown constraints,
we propose a novel Lagrangian relaxation of this optimisation problem in the lower bound (Sec. 3).
At every step, we use pessimistic estimates of the constraints, while the Lagrangian multipliers
help us to track the interaction between the objective function and the structure of the estimated
constraints. We use multiple results from convex analysis to show that the Lagrangian relaxation
with pessimistic constraints preserves all the continuity properties of the lower bound under known
constraints. Additionally, it satisfies strong duality to yield a unique optimal policy for interactions,
and also bounds on the Lagrangian multipliers at every step. Further, we characterise the Lagrangian
lower bound for Gaussian rewards, which connects with the lower bound for known constraints.

2. A generic algorithm design. Now, we leverage this Lagrangian lower bound with pessimistic
estimates of constraints to propose two algorithms, namely LATS (Lagrangian Track and Stop) and
LAGEX (Lagrangian Gamified EXplorer). First, we develop a new stopping rule for the unknown
constraint setting as we have to ensure that both the mean estimates and pessimistic estimates of
constraints concentrate close to their true values before reliably recommend an optimal policy using
them. Then, we extend the Track-and-Stop [GK16] and gamified explorer [DKM19b] approaches for
the Lagrangian lower bound to design LATS and LAGEX, respectively (Sec. 4).
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3. Upper bound on sample complexities. We provide upper bounds on sample complexities of
LATS and LAGEX (Sec. 3). This requires proving a novel concentration of the constraints, and also
consequent concentration of optimal policies under constraints. We show that due to constraint LATS
achieve an upper bound, which is (1 + s) times the upper bound of TS under known constraints. s
is the shadow price of the true constraint and quantifies its stability under perturbation. In contrast,
LAGEX leads to an upper bound that has only an additive s factor with the known constraint lower
bound. This suggests that LAGEX should be more sample-efficient than LATS. Our experimental
results (Sec. 5) across multiple settings validate that LAGEX requires the least samples among
competing algorithms and it can exactly follow the hardness due to constraints across environments.

2 Pure exploration under unknown constraints
Notation. x, x, X, adn X denote a scalar, a vector, a matrix, and a set respectively. For a positive
semi-definite matrix A and vector z, ∥z∥2A = ⟨z,Az⟩. Also, in Rd+, we include 0d. [K] refers to
{1, . . . ,K}. Supp(P ) denotes the support of a distribution P . ∆K is the simplex over [K].

Problem formulation. We work with a MAB instance with K ∈ N arms. Each arm a ∈ [K] has a
reward distribution Pa with unknown means µa ∈ R. The agent, at each time step t ∈ N, chooses an
action At ∈ [K], and observes a stochastic reward Rt ∼ PAt

. A feasible policy π ∈ ∆K satisfies
Aπ ≤ 0 with respect to the set of d linear constraints A ∈ Rd×K1.

If we have known A, the agent would have access to the non-empty and compact set of feasible
policies F ≜ {π ∈ ∆K : Aπ ≤ 0} and the agent would aim to identify the optimal feasible policy,
i.e. the one yielding the highest expected reward while maintaining the constraints,

π⋆F ≜ argmax
π∈F

µTπ . (1)

In our setting, we do not have access to the true set of constraints. At any time t ∈ N, we rather
produce Ât as an estimate of A. Then, the agent has access to an estimated feasible set F̂ ≜ {π ∈
∆K : Âπ ≤ 0} and can identify the optimal feasible policy to be π⋆F̂ ≜ argmaxπ∈F̂ µTπ.

Using the estimated constraints, we want to design an algorithm that finally recommends policy that
is (1− δ)-correct and (1− δ)-feasible.

Definition 1 ((1 − δ)-correct and (1 − δ)-feasible recommended policy). For δ ∈ [0, 1), a policy
recommended by a pure exploration algorithm is (1− δ)-correct and (1− δ)-feasible if Pr[π⋆F̂ ̸=
π⋆F ] ≤ δ and Pr[Aπ⋆F̂ ≥ 0] ≤ δ.

For the algorithm to yield correct and feasible recommendations at any time it stops, we want such an
estimate of A that F̂ is a superset of F . Otherwise, we cannot ensure that the true optimal and feasible
policy π⋆F ∈ F̂ , i.e. the set where we are searching for the recommended policy. Additionally, we
might hit a degenerate case where π⋆F̂ might not exist. To ensure these properties, in Section 3,
we design pessimistic estimates of A and use them further. This property echoes the spirit of the
optimistic-pessimistic algorithms designed for regret-minimisation setting of bandits under unknown
constraints [PGBJ20, MAAT20, LLSY21].

Goal. In addition to recommending a (1 − δ)-correct and (1 − δ)-feasible policy, we want to use
minimum number of interactions to identify it. For this, pure exploration algorithms use a stopping
rule which stops at a random stopping time τδ . Here, we aim to design an algorithm that recommends
a (1− δ)-correct and (1− δ)-feasible policy while keeping E[τδ] as small as possible.

Motivation: Extension of multiple prior problems. First, we clarify our motivation by showing
how different interesting problems are special cases of our setting.

a. Thresholding Bandits. Thresholding bandits [AKR21a] are motivated from the safe dose finding
problem, where one wants to identify the highest dose of a drug below a known safety level. This
has also motivated the safe arm identification problem [WWJ21]. Our setting generalises it further
to detect the optimal combination of doses of a set of drugs yielding highest efficacy while staying
below the safety threshold. Formally, we want to identify π⋆ = argmaxµTπ, such that Iπ ≤ Iθ.
Additionally, we allow different different thresholds for different drugs.

1We assume that simplex constraints are augmented in A for ease of notation.
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b. Optimal policy under knapsack. Bandits under knapsack constraints are studied both in
BAI [LZYL23, TTCRJ12, LSY21] and regret minimisation literature [BKS18, AD16, ISSS22,
ADL16, SS18]. Detecting an optimal arm might have additional resource constraints than the number
of required samples. This led to study of BAI with knapsacks under fixed-budget setting [LZYL23].
But as in regret-minimisation [SS18], one might finally want a policy that maximises utility and
satisfies knapsack constraints. For example, we want to manage caches where the recommended
memory allocation should satisfy a certain resource budget but can violate them during exploration.
Formally, π⋆τ = argmaxπ∈CA

µ̂Tτδπ, where CA ≜ {Aπτδ ≤ c}.

c. BAI with fairness across sub-populations. BAI with fairness constraints on sub-populations
(BAICS) [WZZ23] aims to select an arm that must be fair across all the l sub-populations rather than
the whole population as in standard BAI. Let us think of a problem where there are l sub-groups of
patients and we have K number of drugs to administer with reward means µk. Then we are looking
for a combination of drugs rather than a single drug to administer as π⋆ = argmaxπ∈∆K

µTπ, such
that 1Tµm≥0π = 1,∀m ∈ [l]. Hence, our setting solve the BAICS as a special case.

3 Lagrangian Relaxation of the Lower Bound and its Properties
Now, we discuss the Lagrangian relaxation of the lower bound and its properties that are necessary to
ensure design of a correct and feasible pure exploration algorithm under unknown constraints. We
require two structural assumptions to establish our approach.
Assumption 1 (Structural assumptions on means, policy, and constraints). (a) The mean vector µ
belongs to a bounded subset D of RK . (b) There exists a unique optimal feasibly policy (Equation (1)).
(c) For the true constraint A, there exists a non-zero slack vector Γ, such that maxπ∈∆K

(−Aπ) = Γ.

The unique optimal and feasible policy assumption is used following [CBJD23] to ensure that solution
of Equation (1) is an extreme point of the polytope F . The assumption on slack is analogous of
using the assumption of existence of a safe-arm [PGBJ20], or existence of Slater’s condition for the
constraint optimisation problem [LLSY21]. Standing on these assumptions, we further prove that
π⋆F̂ is unique, i.e π⋆F̂ is an extreme point in the polytope F̂ .

3.1 Information acquisition and estimates of constraints
The agent acquires new information at every step t ∈ N by sampling an action At ∼ ωt. ωt ∈ ∆K

is called the allocation policy, and is used for interaction at step t. This yields a noisy reward
Rt ∈ R and cost vector At ∈ Rd. We remind that in MAB, due to independence of arms, we can
represent the a-th arm as the a-th basis of RK . Thus, using the observations obtained till t, we
estimate the mean vector as µ̂t ≜ Σ−1

t

(∑t−1
s=1RsAs

)
. Here, Σt ≜

∑t
s=1AsA

⊤
s is the Gram matrix

or the design matrix at time t. Similarly, the estimate of the i-th row of the constraint matrix is
Âi
t ≜ Σ−1

t

(∑t−1
s=1 A

i,AsAs

)
. But we observe that using Ât to define the feasible policy set does

not ensure that for any t, it is a superset of F .
Thus, we define a confidence ellipsoid around Ât that always includes A with probability 1− δ, and
further allows us to define a pessimistic estimate of A. Formally, the confidence ellipsoid for each
row i ∈ [d] of Âi is

Ct ≜
{
A′ ∈ Rd×K | ∥A′i − Âi

t∥Σt
≤ f(t, δ)∀i ∈ [d]

}
(2)

Here, f(δ, t) ≜ 1 +
√

1
2 log

K
δ + 1

4 log detΣt is a monotonically non-decreasing function of t.

Lemma 1 (Pessimistic estimate of constraints). If we use the pessimistic estimate of A from the
confidence ellipsoid Ct to define the feasible policy set at time t as

F̂t ≜ {π ∈ ∆K : min
A′∈Ct

A′π ≤ 0} , (3)

we observe that F ⊆ F̂t for all t ∈ N.
In Figure 1, we visualise this result using the numerical values obtained from our algorithms. We
observe that as we acquire more samples, our estimated feasible policy set F̂t → F .

Remark. Our design principle of the estimators echos the spirit of the optimistic-pessimistic
algorithms from the regret-minimisation under constraints literature [PGBJ20, LLSY21, CGS22b,
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PGB24], which has led to successful and efficient algorithms. The idea there is also to use a
pessimistic constraint so that we can always find the ‘true’ optimal policy in it. Similarly, here having
a pessimistic choice of A results in a bigger alternative set for µ than the alternative set we get using
A, and a bigger feasible policy set that always includes the true optimal policy.

3.2 Lagrangian relaxation of the lower bound with estimated constraints
When we have a bandit instance with mean vector µ and a constraint matrix A, we try to find the most
confusing instance of µ, so that we can minimise the KL-divergence between these two instances
to make sure we have gathered enough statistical evidence to rule out all the confusing instances.
Extending the BAI lower bound of [GK16, CBJD24] prove that if A is known, expected stopping
time of any (1− δ)-correct and always-feasible algorithm satisfies

E[τδ] ≥ TF (µ) ln
1

2.4δ
. (4)

Here, the reciprocal of the characteristic time is defined by an optimisation problem over the set of
alternative instances ΛF (µ) ≜

{
λ ∈ D : maxπ∈F λTπ > λTπ⋆F

}
:

T−1
F (µ) ≜ sup

ω∈F
inf

λ∈ΛF (µ)

K∑
a=1

ωad (µa,λa) ≜ ω⊤d (µ,λ) . (5)

ΛF (µ), aka the Alt-set, is the set of all bandit instances that have mean vectors in a bounded subset
D ∈ RK but a different optimal policy than that of µ ∈ D.

Now, given an estimate F̂t of the feasible policies at any t > 0 (Eq. (3)), the corresponding Alt-set is

ΛF̂ (µ) ≜
{
λ ∈ D : max

π∈F̂t

λTπ > λTπ⋆F̂
}

(6)

Since the estimated feasible policy set F̂t is superset of the original feasible policy set F , we observe
that ΛF (µ) ⊆ ΛF̂ (µ). Enabled by these definitions, we are ready define to Lagrangian relaxation of
the lower bound. Specifically, we observe that

T−1
F (µ) ≜ sup

ω∈F
inf

λ∈ΛF (µ)
ω⊤d (µ,λ)

≤ inf
l∈Rd

+

sup
ω∈F

inf
λ∈ΛF (µ)

ω⊤d (µ,λ) + lTΓ

≤ inf
l∈Rd

+

min
A′∈Ct

sup
ω∈F̂

inf
λ∈ΛF̂ (µ)

ω⊤d (µ,λ)− l⊤A′ω (7)

Equation (7) defines the Lagrangian relaxation of the characteristic time under unknown constraints,
i.e. denoted by T−1

F̂t
(µ). For non-negative Lagrange multipliers l ∈ Rd+, the first inequality is true due

to the existence of a slack for the true constraints A. The second inequality is due to the pessimistic
choice of the estimated constraint. Equation (7) shows that the Lagrangian relaxation of the TF̂t

(µ)

always serves as a lower bound of the characteristic time T−1
F (µ) for known constraints [CBJD23],

and thus, leads to a valid lower bound to optimise for the expected stopping time E[τδ]. For brevity,
we denote A′ achieving the minimum as Ã, and omit t from F̂t if it is true for any t ∈ N.

The Lagrangian relaxation leads to a natural question:

Does the dual of the optimization problem for T−1

F̂
(µ) yield the same solution as the primal one?

Theorem 1 (Strong Duality and Range of Lagrange Multipliers). For a bounded sequence of {lt}t∈N,
strong-duality holds for the optimisation problem stated in Equation (7), i.e.

inf
l∈Rd

+

min
A′∈C

sup
ω∈F̂

inf
λ∈ΛF̂ (µ)

ω⊤d (µ,λ)− lT Ãω

= sup
ω∈F̂

min
l∈L

inf
λ∈ΛF̂ (µ)

ω⊤d (µ,λ)− lT Ãω . (8)

Here, L ≜ {l ∈ Rd | 0 ≤ ∥l∥1 ≤ 1
γT

−1

F̂
(µ̂)}, where γ ≜ mini∈[1,d]{−Ãiω∗}, i.e. the minimum

slack for pessimistic constraints w.r.t. the optimal allocation.
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Figure 1: Convergence of the feasible set and optimal policy.

Hereafter, we use the RHS of Eq. (8) as T−1

F̂
(µ). Theorem 1 provides us a hypercube to search the

minimising Lagrangian multipliers, and thus, turns into a linear programming problem.

Connections with Lagrangian-based methods in bandits. In regret minimisation literature Lagrangian-
based optimistic-pessimistic methods [TPRL20, SSF23] are usually used to not only devise a no-regret
learner but to control and get a sub-linear constraint violation guarantees [LLSY21, BCC24]. Our
proposed algorithm LAGEX is a prime example where the "self-boundedness" of the dual variables
results in better constraint violation guarantees (Figure 7 and 6). It would be interesting to see how
LAGEX performs in regret minimisation setting.

Inner optimisation problem. Now, we peel the layers of the optimisation problem in Eq. (8). For
known constraints, [CBJD23] has leveraged results from convex analysis [BV04] to show that the
most confusing instance for µ lie in the boundary of the normal cone ΛF (µ)

C (solid cone in Figure 2)
spanned by the active constraints Aπ⋆

F
for π⋆F . Aπ⋆

F
is a sub-matrix of A consisting at least K

linearly independent rows. Specifically, they show that D(ω,µ,F) ≜ infλ∈ΛF̂ (µ) ω
⊤d (µ,λ) =

minπ′∈νF (π⋆
F ) minλ:λT (π⋆

F−π′ )=0 ω
⊤d (µ,λ).

In our setting, we are estimating both the mean vectors and the constraints. Hence, the normal cone
is also estimated at every step. Let Ãπ⋆

F̂
be the sub-matrix spanned by the active constraints for

π⋆F̂ . Since we are working with the pessimistic estimate of A, the vector space spanned by the
linearly independent rows of Aπ⋆

F
is a subset of the vector space spanned by those of Ãπ⋆

F̂
. Since

the estimated Alt-set ΛF̂ (µ) is always a superset of the true Alt-set ΛF (µ), the normal cone around
π⋆F̂ is always a subset of the true normal cone π⋆F . We illustrate them in Figure 2. We now extend
the projection lemma for known constraints to the Lagrangian formulation with unknown constraints.

Proposition 1 (Projection Lemma for Unknown Constraints). For any ω ∈ F̂ and µ ∈ D, the
following projection lemma holds for the Lagrangian relaxation,

D(ω,µ, F̂) = min
l∈L

min
π′∈νF̂ (π⋆

F̂
)

min
λ:λT (π⋆

F̂
−π′ )=0

ω⊤d (µ,λ)− lT Ãω . (9)

This reduces the inner minimisation problem to a less intensive discrete optimisation, where we only
have to search over the neighbouring vertices of the optimal policy in F̂ for a solution. Now, a natural
question arises around this formulation:

Can we continuously track the lower bound defined by projection lemma for unknown constraints?

Theorem 2. For a sequence {F̂t}t∈N and {λ̂t}t∈N, we show that (a) limt→∞ F̂t → F , (b) λ⋆ is
unique, and (c) limt→∞ λ̂t → λ⋆. Thus, for any ω ∈ F and µ, limt→∞ D(ω,µ, F̂) → D(ω,µ,F)
where λ∗ is such that for any λ∗ ∈ argminλ∈ΛF (µ) ω

T d (µ,λ).
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Figure 2: Evolution of the normal cone.

Outer optimisation problem. As the convergence of
F̂t, we are left with the outer optimisation problem in
Equation (8). Since it is a linear problem in ω, we can
use a linear programming method which would lead to
one of the vertices of F̂ . But to be sure of an exis-
tence of a solution at each t ∈ N, we try and derive
some well-behavedness properties of the optimal alloca-
tion ω∗(µ). First, we observe that our estimates of the
mean vector converge to µ as t→ ∞. Hence, we also get
limt→∞ D(ω, µ̂t, F̂) → D(ω,µ,F). Now, we ensure
well-behavedness and existence of an optimal allocation
for all t > 0.

Theorem 3. (Existence of unique optimal allocation) For any µ ∈ D, the optimization problem
maxπ∈F̂ µTπ has a unique solution if ω⋆(µ) satisfies the conditions: 1. Both the sets F̂ and
ω⋆(µ) are closed and convex. 2. ∀µ ∈ D and ω ∈ F̂ , the function limt→∞ D(ω, µ̂t, F̂) is
continuous. 3. Reciprocal of the characteristic time function limt→∞ T−1

F̂
(µ) is continuous ∀µ ∈ D.

4. µ ∈ D : µ → ω⋆(µ) is upper hemi-continuous.

Characterising the lower bound for Gaussians. Since we can derive explicit form of the optimisa-
tion problem for Gaussian reward distributions, we characterise it further to relate our lower bound
with the lower bound for known constraints.

Theorem 4. Let {Pa}a∈[K] be Gaussian distributions with equal variance σ2 > 0

T−1

F̂
(µ) = max

ω∈F̂
min
l∈L

min
π′∈νF̂ (π⋆

F̂
)

{
∥π⋆F̂ − π′∥2µµT

2σ2∥π⋆
F̂
− π′∥2Diag(1/ωa)

− lT Ãω

}
.

where Diag(1/ωa) is a K-dimensional diagonal matrix with a-th diagonal entry 1/ωa.

Corollary 1 gives explicit upper and lower bound on characteristic bound for Gaussian rewards. It
also shows explicit connection to the lower bounds under known constraints. Finally, it tells that the
hardness of the pure exploration under constraints depends inversely on the condition number of the
estimated and true constraints, which quantify their invertibility.

Corollary 1. Let d2π ≜
∥π⋆

F−π∥2
µµT

∥π⋆
F−π∥2

2
be the norm of the projection of µ on the policy gap (π⋆F − π).

The characteristic time TF̂ (µ) satisfies two bounds. (a) 2σ2

Cknown+2Cunknown
≤ TF̂ (µ) ≤

2σ2K
Cknown

, where
Cunknown ≜ minπ′∈νF̂ (π⋆

F̂
) d

2
π′ andCknown = minπ′′∈νF (π⋆

F ) d
2
π′′ . (b) TF̂ (µ) ≥

H
κ2
known+2κ2

unknown
.

H is the sum of squares of gaps. κknown and κunknown are condition numbers of A and Ã.

Connection to existing lower bounds. (a) Pure exploration under known constraints. The upper and
lower bounds on characteristic time coincides with the existing lower bound under known constraints,
i.e. when Cunknown = 0. (b) BAI without constraints. In BAI, we consider only deterministic policies
playing an arm. Thus, dπa

=
µT (π⋆

F−πa)
∥π⋆

F−πa∥2
= µ⋆ − µa, i.e. the sub-optimality gap for arm a. Here,

µ⋆ is the mean of the best arm. Then, the ‘known’ term in the denominator is the minimum squared
sub-optimality gap and matches the BAI bound [CBJD24]. But the ‘unknown’ term in the lower
bound is due to the unknown constraints. The term is the squared sub-optimality gap under the
estimated feasible set F̂ . Thus, our upper bound on characteristic time matches that of BAI [KCG16],
while the lower bound has an added term due to the extra cost of exploring under unknown constraints.
(c) Safe linear BAI. [WWJ21] stated a lower bound in for BAI under safety constraints but when the
reward generation has a linear structure, and while the rewards and constraints are jointly generated
for an arm. This is a bit different setting. Similar to our lower bound, they also show an added cost
for constraints which is not directly comparable.

4 LATS and LAGEX: Algorithm design and analysis
Now, we propose two algorithms to conduct pure exploration with the Lagrangian relaxation of the
lower bound, and derive upper bounds on their sample complexities.
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Assumption 2 (Distributional assumptions on rewards and constraints). We require two distributional
assumptions on rewards and constraints. (i) Reward distributions {Pa}Ka=1 are sub-Gaussian one
parameter exponential family with mean vector µ ∈ D. (ii) Each constraint follows a sub-Gaussian
K-parameter exponential family parameterised by Ai for i ∈ [d].
These assumptions are standard in bandits under constraints [CBJD23, DK19, PGBJ20, PGB24].

Algorithm design. Any algorithm in pure exploration setting comprises of three main components.

Component 1 : Stopping rule. Stopping rule of an exploring algorithm decides when to stop
sampling. While exploring, once we gather enough statistical information about the parameters in
the system, the test statistic crosses the stopping threshold with the chosen confidence level δ and
exploration stops to recommend the best policy.
Theorem 5. The Chernoff stopping rule to ensure (1− δ)-correctness and (1− δ)-feasibility is

inf
λ∈ΛF̂t

(µ̂t)

K∑
a=1

Na,td(µ̂a,t, λa) > β(t, δ) ∧ ∥(Ãt −A)ωt∥∞ ≤ ρ(t, δ) ,

where β(t, δ) ≜ 3S0 log(1 + logNa,t) + S0T
(

(K∧d)+log 1
δ

S0

)
, and ρ(t, δ) is defined in Lemma 4.

First, we need to check the Chernoff condition under the estimated alternative set as we do not
know the true one. Secondly, it seems we also need to ensure that the constraint matrix has also
concentrated around the true matrix. Though we show that to stop the algorithm we only need to
ensure (1− δ)-correctness. This phenomenon is stated formally in Lemma 2.

Lemma 2. If the recommended policy is (1− δ)-correct then it is (1− δ)-feasible.

Thus, while implementing Algorithm 1 and 2 we just need to check the first condition to stop sampling.

Algorithm 1 LATS - LAgrangian Track and
Stop

1: Input : Time Horizon T, Confidence
level δ > 0

2: Initialization : Â0 = 0d×K , µ̂0 = 0K ,
Σ0 = λ1K , l0

3: Play each arm once to set µ1 and Â1.
4: while β(t, δ) > D(ωt, µ̂t, F̂t, l

⋆
t ) |

∥(Ãt −A)ωt∥∞ > ρ(t, δ) do⇝ Propo-
sition 1)

5: Optimal Policy: ω⋆t ∈
argmaxω∈F̂t

D(ω, µ̂t, F̂t)
6: Optimize Lagrange Multiplier :

l⋆t ∈ argminl∈Lt
D(ω⋆t , µ̂t, F̂t)

7: C-Tracking: Play at ∈
argmina∈[1,K]Na,t −

∑t
s=1 ω

⋆
a,s

8: Feedback : Observe reward rt and
cost Aat , and update Σt+1, µ̂t+1 and
Ât+1

9: end while
10: Recommended policy:

π⋆F̂t
= argmaxπ∈F̂t

µ̂Tt π

Algorithm 2 LAGEX - LAgrangian Game EXplorer

1: Input and Initialisation as same as LATS
2: Play each arm once to set µ1 and Â1.
3: while g(t, δ) > D(ωt, µ̂t, F̂t, l

∗
t ) | ∥(Ãt −

A)ωt∥∞ > ρ(t, δ) do⇝ Proposition 1)
4: Optimal allocation ωt ⇝ Using AdaGrad

via Theorem 4
5: Optimize Lagrange Multiplier:

l⋆t ∈ argminl∈Lt
D(ωt, µ̂t, F̂t)

6: Compute confusing instance : λt ⇝ Via
Proposition 1 plugging in ωt, l⋆t

7: Confidence intervals: for all a ∈ [K]
[αt,a, βt,a] : {ζ : Na,td(µt,a, ζ) ≤ g(t)}
Uat = max

{ g(t)
Na,t

, d(αt,a,λt,a), d(βt,a,λt,a)
}

8: Update loss for regret minimizer:
l(ωt) = ⟨ωt, Ut⟩ − l⋆t

T
Ãtωt

9: C-Tracking : Play at ∈
argmina∈[1,K]Na,t −

∑t
s=1 ω

⋆
a,s

10: Feedback : Observe reward rt and cost Aat ,
and update Σt+1, µ̂t+1 and Ât+1

11: end while
12: Recommended: π⋆F̂t

= argmaxπ∈F̂t
µ̂Tt π

Component 2: Recommendation rule. Once the stopping rule is fired, the agent recommends a
policy based on the current estimate of µ̂t according the rule π⋆F̂τδ

= argmaxπ∈F̂τδ
µ̂Tt π.

Component 3: Sampling strategy. We present two novel sampling algorithms: LATS and LAGEX.
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a. LATS. The algorithm LATS (Algorithm 1) uses a Track and Stop strategy adapted to the unknown
constraint setting. We use markers in the algorithm which are novel approaches used to handle
the challenge of estimating the feasible space per step. The algorithm first warms up the parameter
estimates by playing each arm once. Then until the test statistic jumps the threshold, first in line
5, it calculates the optimal policy under the estimated feasible space at the current step solving
the Lagrangian relaxed optimization problem in Proposition 1 by plugging in the best choice of
Lagrangian multiplier optimized in previous step. Using this current optimal policy we optimize the
Lagrangian multiplier maintaining the bounds of it’s 1-norm stated in Theorem 1. It uses C-tracking
[GK16] to track the action taken per step. At line 9 and 10, we basically observe the instantaneous
reward and cost feedback and update the parameter estimates based on them.
Theorem 6. Let s be the shadow price s ≜ Γmax

Γmin
of the slack Γ. For any α > 1, the expected stopping

time of LATS satisfies limδ→0
E[τδ]

log(1/δ) ≤ αTF (µ)(1 + s).

b. LAGEX. Historically, algorithms base on track and stop mechanism seems to fail in case of
larger problems where efficient optimization becomes a challenge due to the use of a max-min
oracle per step (Line 5, Algorithm 2). To improve on this we land on the two-player zero sum game
approach introduced in [DKM19b]. The second algorithm 2 we introduce in this work also starts by
playing each arm once to initially start the estimation of the parameter in the system. Then it uses a
allocation player (We have used AdaGrad) to optimize the allocation ωt in line 5 against the most
confusing instance w.r.t current estimate of µ̂t optimized by a instance player which minimizes∑K
a=1 ωa,td(µ̂a,t,λa)− l⋆t

T
Ãtωt w.r.t λ ∈ λF̂t

(µ) by plugging in the chosen allocation, estimated
feasible set Ãt and the optimized Lagrangian multiplier l⋆t . Since our search space in closed and
convex, the allocation player enjoys sub-linear regret of order O(

√
t log t), whereas the instance

player computes the best confusing instance using the Lagrangian formulation of the weighted
projection lemma stated in Proposition 1. Then, in line 11, Adagrad loss function is updated with a
loss by introducing optimism as Ut defined in line 10 with an extra term that is novel in the literature
to track the unknown constraint set. LAGEX also uses C-tracking similar to LATS to track the actions
taken per step. Then it goes on to observe the instantaneous reward and cost to update the estimates
for the next optimization step.

Theorem 7. The expected sample complexity of LAGEX satisfies limδ→0
E(τδ)
ln(1/δ) ≤ TF (µ) + 2s.

Implications. Theorem 6 and 7 show both LATS and LAGEX are asymptotically stable. Also, for
LATS, the effect of the unknown constraints in the form of shadow price arises in a multiplicative
way, whereas for LAGEX, it is additive. Thus, LAGEX should show a lower sample complexity than
LATS, which is later validated in the experiments.

5 Experimental analysis
Now, we experimentally evaluate performances of LAGEX and LAGTS across environments and
against baseline algorithms. Code available in this Link.

Setup. We run the algorithms on a 64-bit 13th Gen Intel® Core™ i7-1370P × 20 proces-
sor machine with 32GB ram. We evaluate using a set of environments with mean vectors
[1.5, 1.0,µ3, 0.4, 0.3, 0.2, 0.1]. We impose two linear constraints π1 + π2 + π3 ≤ 0.5 and
π4 + π5 ≤ 0.5. We conduct two experiments to validate universality and efficiency of LAGEX and
LATS. We set δ = 0.01 for all the experiments.

Experiment 1: Universality. We vary µ3 from 0.5 to 2.5. For each environment, we plot the
corresponding BAI lower bounds (in red) and lower bounds under constraints (in blue) in Figure 3.
We observe that the constraint problem gets easier with increasing µ3. In contrast, the BAI problem
changes non-monotonically. BAI problem gets harder when µ3 is around 1.5 as the suboptimality
gap gets very small. But the constraint problem stays easier than BAI. In Figure 3, we also plot the
median sample complexity of LAGEX across these environments over 500 runs. We observe that
LAGEX grows parallel to the lower bound under constraints and can track it across environments.

Experiment 2: Efficiency against existing algorithms. We compare LAGEX and LATS with the
two algorithms under known constraints, i.e. CTnS and CGE [CBJD23]. Also, to understand the
utility of Lagrangian relaxation, we implement versions of CTnS and CGE with estimated constraints.
In these variants, we solve the constrained optimisation problems without Lagrangian relaxation but
with estimated constraints. We also compare with PTnS (Projected Track and Stop), a variant of
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TnS, where the algorithm solves a standard BAI problem and projects the allocation to the estimated
feasible space. We run all these algorithms in two environment: (i) hard with µ3 = 0.5 and (ii) easy
with µ3 = 1.3. We call the first environment hard as it is harder than BAI and similarly, the second
environment easy. We plot three quantiles of the sample complexities of these algorithms over 500
runs in Figure 4 and 5. We observe that (i) among the algorithms with unknown constraints incur
the least sample complexity, and (ii) we pay a minimal cost than the known constraint Lagrangian
algorithms in hard env whereas the price of estimating constraints is prominent in easy env.

6 Conclusion and Future Works

We study the problem of pure exploration under unknown linear constraints. This problem requires
tracking both mean vectors and constraints to recommend a correct and feasible policy. We encompass
this effect with a Lagrangian relaxation of the lower bound for known constraints. We further design
an pessimistic estimate of constraints to ensure identification of the optimal feasible policy. These
tools allows us to propose two algorithms LATS and LAGEX. We prove their sample complexity
upper bounds, and conduct numerical experiments to find that LAGEX is the most efficient among
baselines. In reality, constraints can be non-linear. Our concentration bounds are tailored for linearity.
It would be interesting to extend our Lagrangian-based technique to nonlinear constraints.
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A Notations

Notation Definition
∆K K-simplex
T Time Horizon
K Number of Arms
A True constraint set
d Number of constraints
F True feasible set w.r.t A, F = {A ∈ RN×K : Aπ ≤ 0}
Ãt Pessimistic estimate of constraint set at time t, Ãt = Â− f(t, δ)||ωt||Σ−1

t

F̂t Estimated feasible set w.r.t pessimistic estimate Ã at time t„ F = {Ãt ∈ RN×K : Ãtπ ≤ 0}
A The action set of K possible choices
ωt Policy chosen at time t
at Action at time t among K possible actions
N Number of Constraints
Γ Slack
σ2 Variance of the reward distribution (Gaussian) of arms
T Time Horizon

rt, ct Reward and cost observed at time t
δ Chosen confidence level
lt The Lagrangian multiplier at time t
Σt The covariance matrix (Gram matrix) at round t

ΛF(µ) Set of alternative (confusing) instances for bandit instance µ
ΛF̂ (µ) Estimated set of alternative (confusing) instances for bandit instance µ
νF (π

⋆
F ) Neighbourhood set around π⋆F

νF̂ (π
⋆
F̂ ) Neighbourhood set around π⋆F̂

τδ Stopping time
π⋆F True optimal policy w.r.t actual constraint set A
π⋆F̂ Optimal Policy for the estimated feasible set
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B Additional discussion on problem setting

B.1 Extended related work

Historical pioneering works. Literature on bandits has come a long way since the problem of
optimal sequential sampling started with the works of [BB62] and [Pau64] with the assumption of
the populations being normally distributed. To talk about pure exploration setting, [EDMM02b],
[BMS10] should be mentioned as the first ones who worked in this specific setting for stochastic
bandits.

Existing work on adapting known constraints. In Multi-armed bandit literature, people often
introduce constraints as a notion of safety where they impose known constraints on the chosen arm or
on the exploration process. [WWJ21] considers pure strategy (only one co-ordinate as chosen action)
and imposes a safety threshold on the linear cost feedback of the chosen arm. On the other hand, the
setting considered in [CBJD23] is closer as it tracks an optimal policy w.r.t to a known set of known
constraints. On the other hand, [LLSY21] (Improvement over [PGBJ20] in MAB setting) generalized
the known constraint regret minimization setting by assuming existence of a set of general constraints.
Our work captures the hardness of not knowing the constraint set while tracking the lower bound
and also in sample complexity upper bounds of Algorithm 1 and 2. Our work also introduce shadow
price as a novel term in pure exploration literature which characterises the extra cost that arises due
to tracking the unknown constraints.

Learning unknown constraints. [LTHK22] considers constrained linear best-arm identification arm
are vectors with known rewards and a single unknown constraint (representing preferences) on the
actions. Works on adapting to unknown constraints is discussed in the related work section of the
main paper.

Transductive Linear Bandit. In this setting [FJJR19] [CWM+22b] studies this setting with unknown
linear constraints where we have to find the best safe arm in a finite set Z different than actual arm
set A. Our setting generalises the setting in the sense that the finite feasible set Z is not static, rather
we track Zt per time step t ∈ N and explore within that set to find the optimal allocation. At the
end of exploration after hitting the stopping criterion at τδ the agent recommends the optimal policy
inside the set Zτδ .

Regret Minimization with Unknown constraints. In bandit literature, constraints are often in-
troduced in the setting to study regret minimization. [MAAT20] studies regret minimization using
Linear Thompson Sampling (LTS) imposing known safety constraints on the chosen action. [AAT19]
studies contextual bandits under unknown and unobserved linear constraint, whereas [KGAYR17]
[PGBJ20] studies UCB based algorithms for regret minimization for linear bandits which assumes
existence of a safe action space in case of unknown anytime linear constraint. In line with these,
recent works [HTA24] [PGB24] [SCBC23] improved on regret guarantees and the first one relaxed
the assumption of existence of a pessimistic safe space. [CGS22a] introduces doubly-optimistic
setting to study safe linear bandit(SLB). [LLSY21] generalised the setting of [PGBJ20] not only
relaxing the condition of having a safe action but also considered a set of general constraints and
also captured the notion of both anytime and end-of-time constraints which we also see in [CBJD23].
[LLSY21] also shows the trade-off between maximising reward or minimizing regret and constraint
violation using Lyapunov drift. In this work we do not focus on regret guaranties but finding the
optimal policy with sample complexity as least as possible while tracking and satisfying a set of
unknown linear constraints.

BAI with Fairness Constraint. Considering fairness constraint in our setting can be an interesting
application to our setting. Recently [WZZ23] studied Best Arm Identification with fairness Con-
straints on Subpopulations (BAICS), where they have discussed the trade-off in the standard BAI
complexity if there are finite number of subpopulations are given and the best chosen arm must
perform well (not too bad) on all those subpopulations. Another important line of work [WBSJ21]
[SJ19] explores regret analysis of BAI with positive merit-based exposure of fairness constraints
where the chosen policy has to satisfy some fairness constraint across all its indices. Our setting
comes as a direct application to these settings. Further discussion in Section B.2.

BAI with Knapsack constraint. While the existing literature on bandit with knapsack [BKS18]
[AD16] [ISSS22], [AD14] [ADL16] [SS18] [Ma] focused on mainly regret minimization, our setting
aligns more as a special case of the Optimal Arm identification with Knapsack setting in [LZYL23,
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TTCRJ12, LSY21]. Though we aim to find the best policy rather than a specific arm in the constraint
space. Our setting should be considered as a special case of these settings. Further discussion in
Section B.2.

Algorithms on Pure exploration. Algorithm 1 is an extension of the Track and Stop(TnS) strategy
from [GK16], while the motivation for Algorithm 2 comes from the Gamified Explorer strategy
from [DKM19b] where the lower bound is treated as a zero-sum game between the allocation and
the instance player. We refer to [GK21b],[GK16],[KCG16],[DK19], [BV04],[JMKK21] etc for
important concentration inequalities, tracking lemmas.

Dose-finding and Thresholding Bandits. Another special case of our setting is Dose-finding or
Thresholding bandits in structured MAB literature [CLK+14] generalized the problem, then a line
of work [AKR21b] [GMRM18] [CMC21] aims to find the maximum safe dose for a specific drug
in early stages of clinical trials. In some sense our setting generalizes this setting. If we have to
administer more than drugs to a patient, our setting generalises to track the best possible proportion in
which the drugs should be administered with maximum efficacy. Further discussions in Section B.2.

B.2 Motivations: Reductions to and generalisations of existing settings

Before delving into the details of the lower bounds and algorithms, we first clarify our motivation by
showing how different setups studied in literature and their variations are special case of our setting.

Thresholding Bandits. Our setting encompasses the thresholding bandit problem [AKR21a]. Thresh-
olding bandit is motivated from the safe dose finding problem in clinical trials, where one wants to
identify the highest dose of a drug that is below a known safety level. This has also motivated the
studies on safe arm identification [WWJ21]. Our setting generalises it further to detect the dose of the
drug with highest efficacy while it is still below the safety level. We can formulate it as identifying
π⋆ = argmaxµTπ, such that Iπ ≤ Iθ. Rather, generalising the classical thresholding bandits,
our formulation can further model the safe doses for the optimal cocktail of drugs, and θ can have
different values across drugs, i.e we can consider different thresholds for different drugs.

Optimal policy under Knapsack. Bandits under knapsack constraints have been studied both in best-
arm identification [LZYL23, TTCRJ12, LSY21] and regret minimisation [BKS18, AD16, ISSS22,
AD14, ADL16, SS18, Ma] literature. BAI under knapsacks is motivated by the fact that detecting an
optimal arm might have additional resource constraints in addition to the number of required samples.
This has led to study of BAI with knapsacks only under fixed-budget settings [LZYL23]. But as in
regret-minimisation literature [SS18, Ma], one might want to recommend a policy that maximises
utility while satisfying knapsack constraints. For example, we want to manage caches where the
recommended memory allocation should satisfy a certain resource budget. Thus, the recommended
policy has to satisfy π⋆τ = argmaxπ∈CA

µ̂Tτδπ, where CA ≜ {Aπτδ ≤ c}. Naturally, this is a
special case of our problem setting.

Feasible arm selection. We look at the pure exploration problem of feasible arm selection studied by
[KSS18]. Here, we think of a problem of workers having a multi-dimension vector representation
where each index denotes the accuracy of that worker being able to identify a specific class label in
a classification task in hand. The problem turns to be a feasible arm selection from a simple BAI
problem when we impose a feasibility constraint that for example, the chosen worker should show
more than 90% accuracy across all labels. We can generalise this setting in the sense that we are
now not looking for a specific worker, rather we want to make a team of workers that has the highest
utility. The recommended policy at time t ∈ N, maxπ∈∆K−1

µTt π such that fTπ ≥ τ where τ is the
desired threshold level. The generalisation of the setting pitch in as thresholds of τ can have different
values corresponding to different workers.

BAI with fairness across sub-populations. The Best Arm Identification with fairness Constraints
on Sub-population (BAICS) studied in [WZZ23] aims on selecting an arm that must be fair across
all sub-populations rather than the whole population in standard BAI setting. Let, there are l sub-
populations and µa are the means corresponding to the a-th arm. Finding only the optimal arm
KBAI = argmaxk∈[K] µk may not be enough because it may not perform equally good for all
the l sub-populations. Then the arm should belong to a set C := {k ∈ [K]|µk,m ≥ 0,m ∈ [l]}
where the observation for arm k and population m comes from N (µk,m, 1) It ensures that the
chosen arm does not perform too bad for any sub-population. Let us think of a problem where
there are l sub-groups of patients and we have K number of drugs to administer with reward means
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µk, k ∈ [K]. We are looking for a combination of drugs rather than a single drug to administer as
π⋆ = argmaxπ∈∆K

µTπ such that 1Tµm≥0π = 1,∀m ∈ [l]. Thus, BAICS is a special case of ours.

Fairness of exposure in bandits. [WBSJ21] introduced positive merit based exposure of fairness
constraints [SJ19] in stochastic bandits standing against the winner-takes-all allocation strategy that
are historically studied. The chosen allocation in this setting should satisfy the fairness constraint
π⋆

a

f(µ⋆
a)

=
π⋆

a′
f(µ⋆

a′ )
,∀a′ ∈ [K] where f(.) transform reward of an arm to a positive merit. Though

[WBSJ21] studied this setting in regret analysis, this setting in BAI setting is a direct application
of our setting as we are looking for an optimal policy π⋆ = argmaxµTπ such that π⋆ satisfies
AT
f(µ)π = 0 where Af(µ) is of order K(K−1)

2 ×K and Af(µ) is expressed as,

(Af(µ))ij =


1

f(µa)
if aK − 1

2 (a− 1)(a− 2) ≤ j ≤ aK − 1
2a(a− 1) and i = a ,

−1
f(µj)

if aK − 1
2 (a− 1)(a− 2) ≤ j ≤ aK − 1

2a(a− 1) and a < i ≤ K ,

0 otherwise.

For example, when K = 3, Af(µ) = [[ 1
µ1
,− 1

µ2
, 0], [0, 1

µ2
,− 1

µ3
], [ 1

µ1
, 0,− 1

µ3
]].
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C Strong duality and the Lagrangian multiplier: Proof of Theorem 1

Theorem 1. For a bounded sequence of {lt}t∈N, strong-duality holds for the optimisation problem
stated in Equation (7) i.e.

inf
l∈Rd

+

min
A′∈C

sup
ω∈F̂

inf
λ∈ΛF̂ (µ)

ω⊤d (µ,λ)− lT Ãω = sup
ω∈F̂

min
l∈L

inf
λ∈ΛF̂ (µ)

ω⊤d (µ,λ)− lT Ãω . (10)

Here, L ≜ {l ∈ Rd | 0 ≤ ∥l∥1 ≤ 1
γT

−1

F̂
(µ̂)}, where γ ≜ mini∈[1,d]{−Ãiω∗}, i.e. the minimum

slack for pessimistic constraints w.r.t. the optimal allocation.

Proof. This proof involves three steps. In the first step we prove convexity and other properties of
the sets involved in the main optimisation problem 8. Then in the next step we show that Slater’s
sufficient conditions hold for π as a consequence of these properties. Once we prove the unique
optimality of π we state bounds on the L1-norm of the Lagrangian multiplier. We conclude by
establishing strong duality and proving the statement of the theorem.

Step 1: Properties of perturbed feasible set and alt-set. Let us first check the properties of F̂ ,
ΛF̂ (µ) and νF (π⋆F ). For that, let us remind the definitions of these sets. The estimated feasible set is

defined as F̂ ≜
{
π ∈ ∆K : Ãπ ≤ 0

}
. The set of alternative (confusing) instances for the optimal

policy π⋆F̂ is ΛF̂ (µ) ≜
{
λ ∈ D : maxπ∈F̂ λTπ > λTπ⋆F̂

}
. For π′ being a neighbour of π⋆F̂ or in

other words, an extreme point in F̂ , we decompose the alternative set as the union of half-spaces as,

ΛF̂ (µ) =
⋃

π′∈νF̂ (π⋆
F̂
)

{
λ : λT (π⋆F̂ − π′) < 0

}

We should note, π′ shares at least (K − 1) active constraints with π⋆F̂ . It is clear that F̂ is bounded
and convex in π. Since, convex combination of any two extreme point π′

1,π
′
2 in the neighbourhood

of the optimal policy νF̂ (π
⋆
F̂ ) also shares K − 1 active constraints with π⋆, so νF̂ (π

⋆
F̂ ) is convex in

π′.

Let, π′
1 and π′

2 are two policies in the neighbourhood of π⋆, such that for any alternative instance λ,
λT (π′

1 − π′
2) ≥ 0 Above equation implies that the policy π′

1 is closer to the optimal policy in the
neighbourhood that the policy π′

2

Therefore, any convex combination of these neighbourhood policy, λT (π⋆ − (aπ′
1 + (1− a)π′

2)) =

λT (π⋆ − π′
2)− aλT (π′

1 − π′
2) ≤ c. Therefore, the set ΛF̂ (µ) is also bounded and convex in π

Also, since we are working with pessimistic estimate of A, the set F̂ will always be non-empty,
because we will find at least one Ã0 which is non-singular and it’s inverse exists.

Step 2: Slater’s condition. From step 1 of this proof we have the following properties

1. F̂ is non-empty, bounded and convex in π.

2. The perturbed neighbourhood νF̂ (π
⋆
F̂ ) is convex for any π′ ∈ νF̂ (π

⋆
F̂ )

3. ΛF̂ (µ) is also bounded and convex in π.

Leveraging these three results we claim that there exists a π⋆ that uniquely solve the optimisation
problem in Equation (8) and satisfy the constraints with strict inequality. As a consequence of this
we claim Slater’s sufficient conditions hold.

Step 3: Bound on the Lagrangian multiplier. Here, we try to bound the L-1 norm of the Lagrangian
multiplier. Since, ∥l∥1 cannot be less than 0, then we already have a lower bound.

Now we refer to lemma 5 for the upper bound. An immediate implication of this result is that for
any dual optimal solution µ∗, we have ∥µ∗∥1 ≤ 1

γ (f(x̄)− q∗). Since Slater’s conditions hold in our
case for π, we can write that the optimal solution of the Lagrangian dual,
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0 ≤ ||l⋆t ||1 ≤ 1

γ

D(ω⋆t , µ̂t, F̂t)−D(π⋆, µ̂t, F̂t)︸ ︷︷ ︸
not tractable

 ≤ 1

γ
D(ω⋆t , µ̂t, F̂t, l⋆t−1) =

1

γ
T−1

F̂
(µ̂)

where, γ ≜ min
i∈[1,d]

{−Ãiω∗}

Where, π⋆ is the pure-exploration solution. We can replace the dual function with primal
D(ω⋆t , µ̂t, F̂t, l⋆t−1) because it is always upper bounded by the dual function, so we don’t have
to explicitly calculate the dual function. Though it is not tractable anyway due to not knowing the
pure exploration solution.

Step 4: Establishing strong duality. Therefore the domain of the Lagrangian multiplier is also
bounded and convex. So again we say that l⋆t uniquely minimises Equation 8. We define L ≜
{l ∈ Rd | 0 ≤ ∥l∥1 ≤ 1

γT
−1

F̂
(µ̂)}, where γ ≜ mini∈[1,d]{−Ãiω∗} Then according to Heine-

Borel’s theorem (Theorem 9) we can say that these sets are compact as well. We can then conclude
that Strong duality holds which means that it perfectly make sense of solving the Lagrangian dual
formulation of the primal optimisation problem because there is no duality gap. We later on will
consider this formulation as two player zero sum game. Due to strong duality we claim that the agent
wile playing this game, Nash equilibrium will be eventually established.

Now that everything is put into place we can conclude with the very statement of the theorem that
due to strong duality the following holds

inf
l∈Rd

+

min
A′∈C

sup
ω∈F̂

inf
λ∈ΛF̂ (µ)

ω⊤d (µ,λ)− lT Ãω = sup
ω∈F̂

min
l∈L

inf
λ∈ΛF̂ (µ)

ω⊤d (µ,λ)− lT Ãω .
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D Lagrangian Relaxation of Projection Lemma: Proof of Theorem 2

Theorem 2. For a sequence {F̂t}t∈N and {λ̂t}t∈N, we show that (a) limt→∞ F̂t → F , (b) λ⋆ is
unique, and (c) limt→∞ λ̂t → λ⋆. Thus, for any ω ∈ F and µ, limt→∞ D(ω,µ, F̂) → D(ω,µ,F)

where λ∗ is such that for any λ ∈ D : infλ∈ΛF (µ) ω
T d (µ,λ) ≥ ωT d(µ,λ∗).

Proof. Here, we prove the three parts of the theorem consecutively.

Statement (a): Convergence of the limit limt→∞ F̂ . To begin with the proof of the first statement
of Theorem 2 we leverage the results stated in Theorem 10. Let H(Ã) ≜

{
π ∈ ∆K : Ãπ ≤ 0

}
and

the set function Ã → H(Ã) ∩ C where C = F̂ is a non-empty compact (proven in Section C subset
of ∆K Then the set H(Ã) ∩ C can be written as

H(Ã) ∩ C =
{
π ∈ F̂ : Ãπ ≤ 0

}
To apply Theorem 10, {Ãr, r ∈ N}, must be a convergent sequence of affine function. It is evident
that Ãr for any r ∈ N is an affine function since A is linear in A and the induced pessimism works
as a translation. Then we can proceed to the next part of the proof of statement 1 where we prove that
{Ãr}r∈N is a convergent sequence of functions. For ease of notation we will denote Ãt for the t-th
element of the sequence {Ãr}r∈N for t ∈ N.

The definition of the confidence radius for any constraint i ∈ [d] follows from the Definition 2

as f(δ, t) ≜ 1 +
√

1
2 log

K
δ + 1

4 log detΣt. It is evident from the definition that f(t, δ) is a non-

decreasing function w.r.t time and it grows with order of at least O(
√
log t)

We have from the definition of the confidence set, for all i ∈ [d]

P
(
Âi
t − f(t, δ)||ωt||Σ−1

t
≤ Ai ≤ Âi

t + f(t, δ)||ωt||Σ−1
t

)
≥ 1− δ

=⇒ P

(
−
f(t, δ)||ωt||Σ−1

t

σ(Âi
t)

≤ Âi
t −Ai

σ(Âi
t)

≤
f(t, δ)||ωt||Σ−1

t

σ(Âi
t)

)
≥ 1− δ

=⇒ P

(
−
f(t, δ)||ωt||Σ−1

t

σ(Âi
t)

≤ Z ≤
f(t, δ)||ωt||Σ−1

t

σ(Âi
t)

)
≥ 1− δ

=⇒ 2Φ

(
f(t, δ)||ωt||Σ−1

t

σ(Âi
t)

)
≥ 2− δ

=⇒
f(t, δ)||ωt||Σ−1

t

σ(Âi
t)

≥ Φ−1

(
1− δ

2

)
=⇒ f(t, δ)||ωt||Σ−1

t
≥ σ(Âi

t)Φ
−1

(
1− δ

2

)
where Z ≜ Âi

t−Ai

σ(Âi
t)

and Φ(.) is the cumulative distribution function of N (0, 1) distribution.

limt→∞ f(t, δ)∥ωt∥Σ−1
t

→ 0 since σ(Âi
t) = O(

√
log t
t ). Leveraging CLT at this point we say

Âi
t
d−→ Ai,∀i ∈ [d]

Then by Slutsky’s theorem [Slu25], we conclude Âi
t − f(t, δ)||ωt||Σ−1

t

d−→ Ai,∀i ∈ [d].

It implies that {Ãr}r∈N is a convergent sequence of function for A. Now, we use Theorem 10 and
get the following properties of the feasible set.

1. H(Ã) ∩ C ⊂ limr→∞H(Ãr) ∩ C
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2. limr→∞H(Ãr) ∩ C is a closed convex superset of H(Ã) ∩ C.

3. H(Ã) ∩ C has non-empty interior because of the feasibility condition and no component in
Ã is identically 0.

lim
r→∞

H(Ãr) ∩ C = H(Ã) ∩ C

4. Even if the set H(Ã)∩C has empty interior or some component if Ã is identically zero, by
the last statement of the Theorem 10 we can say for any closed convex set Q of H(Ã) ∩ C
we can design the function {Ãr} in such a way that limr→∞H(Ãr) ∩ C includes Q.

As the convergence of Ãt is guaranteed now asymptotically, we can guaranty convergence of the
following limit limt→∞ F̂t → F .

Statement (b) : Proof of Uniqueness of λ⋆ Here, we try to prove if there exists a confusing instance
λ∗ ∈ ΛF̂ (µ) which uniquely minimises the the function D(.) defined as

D(ω,µ, F̂) ≜ inf
l∈L

inf
λ∈ΛF̂ (µ)

ωT d (µ,λ)− lT Ãω

We can observe that only the leading quantity on the R.H.S associated with the KL is dependent on
λ. So, in this proof we will only show that λ⋆ minimizes the KL divergence uniquely and since
the KL is linearly dependent on the expression, proving this will be enough to ensure uniqueness of λ⋆.

Now, from the properties of KL we know that d(µ,λ) is convex on the pair (µ,λ). But it is also
strictly convex on λ if supp(λ) ⊆ supp(µ) which is true in our case, since µ,λ ∈ D ⊆ Rk.

Let us assume there are two local minima λ1 and λ2, with the condition,

d(µ,λ1) ≤ d(µ,λ2)

Then, we can write from the property of strict convexity, for some {h : 0 < h < 1},

d(µ, hλ1 + (1− h)λ2) < hd(µ,λ1) + (1− h)d(µ,λ2)

Now, from the assumed condition on λ1 and λ2, we can write —

d(µ,λ1) ≤ d(µ,λ2)

=⇒ hd(µ,λ1) ≤ hd(µ,λ2) , since h > 0

=⇒ hd(µ,λ1) + (1− h)d(µ,λ2) ≤ hd(µ,λ2) + (1− h)d(µ,λ2)

=⇒ hd(µ,λ1) + (1− h)d(µ,λ2) ≤ d(µ,λ2)

Putting this result in the strict convexity condition we get

d(µ, hλ1 + (1− h)λ2) < d(µ,λ2)

which is a contradiction.

Thus, we can conclude that for a strictly convex function f(x) with supp(x) being convex as well, the
set of minimisers is either empty or singleton. Then, we can say λ⋆ uniquely minimizes the KL, or
say D(ω,µ, F̂). Let us now once again remind the definition of perturbed alt-set ΛF̂ (µ) ≜ {λ ∈ D :

maxπ∈F̂ λT (π − π⋆F̂ ) > 0}. Let us denote νF̂ (π
⋆
F̂ ) as the neighbourhood of π⋆F̂ . Any π′ ∈ F̂ is

called a neighbour of π⋆F̂ , if it is an extreme point of F̂ and shares (K-1) active constraints with π⋆F̂ .

Then, we can decompose the perturbed alt-set as ΛF̂ (µ) =
⋃

π′∈νF̂ (π⋆
F̂
)

{
λ : λT (π⋆F̂ − π′) < 0

}
,

which is a union of half-spaces for each neighbour. From this decomposition we can observe that π⋆F̂
is not the optimal policy for λ, i.e, {∃π′ ∈ ΛF̂ (µ) : λ

T (π⋆F̂ − π′) < 0}. Then, it follows similar
argument in [CBJD23] to argue that the most confusing instance w.r.t µ lies in the boundary of the
normal cone, which lands us to Proposition 1.

For any ω ∈ F̂ and µ ∈ D, the following projection lemma holds for the Lagrangian relaxation,

D(ω,µ, F̂) = min
l∈L

min
π′∈νF̂ (π⋆

F̂
)

min
λ:λT (π⋆

F̂
−π′ )=0

ω⊤d (µ,λ)− lT Ãω . (11)
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Statement (c): Convergence of the sequence {λ̂n}n∈N. In known constraint setting the agent has
access to F . That means there is the actual sequence {λn}n∈N for which λn → λ∗ as n→ ∞ since
D(ω,µ, F̂) is convex and continuous on ΛF̂ (µ). But in this setting we try to estimate F as F̂n at
each time step n ∈ N. So there exists the {λ̂n}n∈N such that λ̂n ∈ ΛF̂n

(µ) and we have to ensure
it converges to the unique optimal λ∗ i.e λ⋆ ∈ ΛF (µ) ⊆ limn→∞ ΛF̂n

(µ) implies {λ̂n} → λ∗ as
n→ ∞
We use the fundamental theorem of limit to carry out this proof with the help of properties of the sets
F̂ and Λ. The properties we have already proven for these sets are

1. F̂n for any n ∈ N is a superset of F due to the pessimistic choice of A.

2. F̂n is a non-empty compact subset of ∆K and limn→∞ F̂n = F .

3. ΛF̂n
(µ) is a closed convex set and it also is a superset of the real alt-set ΛF̂ (µ).

Leveraging these properties we claim that for any µ ∈ D, limn→∞ ΛF̂n
(µ) = ΛF̂ (µ). Since we have

already proven uniqueness of λ in statement 2, we say λ̂n uniquely minimises ΛF̂n
(µ). Now from

the (ϵ, δ)-definition of limits we say if ΛF̂n
(µ) is an ϵ-cover of ΛF̂ (µ) for ϵ > 0, then |λ̂n−λ∗| ≤ δ

for δ > 0 sufficiently small. It implies for a sequence of {λ̂n}n∈N we claim limn→∞ λ̂n = λ∗ i.e
the sequence convergence. Therefore we conclude by the statement itself

{λ̂n}n∈N → λ⋆

Hence, proved.
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E Characterization of the unique optimal policy: Proof of Theorem 3

Theorem 3. For any µ ∈ D, the optimization problem maxπ∈F̂ µTπ has a unique solution if ω⋆(µ)
satisfies the following conditions:
1. Both the sets F̂ and ω⋆(µ) are closed and convex.
2. ∀µ ∈ D and ω ∈ F̂ , the function limt→∞ D(ω, µ̂t, F̂) is continuous.
3. Reciprocal of the characteristic time function limt→∞ T−1

F̂
(µ) is continuous ∀µ ∈ D.

4. µ ∈ D : µ → ω⋆(µ) is upper hemi-continuous.

Proof. The theorem has four statements as the sufficient condition for the existence of unique optimal
policy. So naturally we will dictate the proof structure in four steps and prove the statements one by
one.

Statement 1: Convexity of feasible space and optimal set function. Let us first analyse the
properties of F̂ . For any two member of ω1,ω2 ∈ F̂ satisfying Ãω1 ≤ 0 and Ãω2 ≤ 0, their
convex combination for any α ∈ [0, 1],

Ã (αω1 + (1− α)ω2) = αÃω1 + (1− α)Ãω2 ≤ 0

Therefore we can say F̂ is convex because it is closed under convex operation. We claim F̂ is also
closed since

1. The complement of F̂ , F̂c ≜ {π ∈ ∆K : Ãπ > 0} is an open set.

2. we have already proven the limit of F̂ to be F which is always contained by F̂ .

The elements in the domain of optimal allocation set function must be included in F̂ . So compactness
of ω∗(µ) is a direct consequence of compactness of F̂ .

Statement 2: Continuity of limit. We have already proven in Section D that limt→∞ F̂ → F . Also
by convexity of KL and CLT we claim µ̂t → µ as t→ ∞ and since ω is linear in D(ω, µ, F̂) it will
converge to ω∗(µ) as t→ ∞, also due to convergence of µ̂t. Then we can say that the limiting value
is same as the value if we plug in the limits in D i.e limt→∞ D(ω, µ̂t, F̂t) = D(ω∗(µ), µ,F). So
we ensure the continuity of limt→∞ D(ω, µ̂t, F̂).

Statement 3: Continuity of limit of inverse sampling complexity. This statement directly follows
from the statement 2. Due to convexity of KL-divergence and convergence of F̂ , the limiting value
exists and it is equal to the inverse of characteristic time with the limiting value.

Statement 4: Upper hemi-continuity of optimal allocation function. We refer to [MCP14]

(see Lemma 12) for this proof. We denote Q(Ã′) ≜ limF̂→F maxω∈∆K

{∑K
a=1 ωad (µ,λ) −

lT Ã′′ω

∣∣∣∣Ã′′ω ≤ 0,ωa ≥ 0∀i ∈ [K]

}
= ω(µ) where Ã′′ ∈ RK×K is the rank-1 update of Ã′

which is a sub-matrix of Ã with K number of active constraints. We define limiting set as

Q⋆(Ã′′) =

{
ω : lim

F̂→F

K∑
a=1

ωad (µ,λ) = Q(Ã′′)

∣∣∣∣Ã′′ω ≤ 0,ωa ≥ 0∀i ∈ [K]

}
= ω∗(µ)

As a direct consequence of Lemma 12 we get the following results

1. The function ω∗(µ) is continuous in (RK×K)× RK

2. ω∗(µ) is upper-hemicontinuous on (RK×K)× RK

Leveraging these four sufficient statements ensure that there exist unique solution for the optimization
problem maxπ∈F̂ µTπ,∀µ ∈ D i.e the image set of the set-valued function ω∗(.) is singleton.
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F Lagrangian Lower Bound for Gaussians: Proof of Theorem 4

Theorem 4. Let {Pa}a∈[K] be Gaussian distributions with equal variance σ2 > 0, and Diag(1/ωa)
be a K-dimensional diagonal matrix with a-th diagonal entry 1/ωa. Then, we get

T−1

F̂
(µ) = max

ω∈F̂
min
l∈L

min
π′∈νF̂ (π⋆

F̂
)

{
1

2σ2

∥π⋆F̂ − π′∥2µµT

∥π⋆
F̂
− π′∥2Diag(1/ωa)

− lT Ãω

}
.

Proof. We start the proof by the definition of D(ω,µ, F̂) as per Equation (9)

D(ω,µ, F̂) = min
l∈L

min
λ∈ΛF̂ (µ)

{
k∑
a=1

ωad(µa,λa)− lT Ãω

}

= min
l∈L

min
π′∈νF̂ (π⋆

F̂
)

min
λ:λT (π⋆

F̂
−π′)=0

{
k∑
a=1

ωad(µa,λa)− lT Ãω

}
⇝ via Proposition 1

(12)

The Lagrangian formulation of D(ω,µ, F̂) is written as

L(ω,µ, F̂) = min
l∈L

min
π′∈νF̂ (π⋆

F̂
)

{
K∑
a=1

ωad (µa,λa)− lT Ãω − γ

K∑
a=1

λava

}

where va ≜ (π⋆F̂ − π′)a.

We assume both the instances µ and λ follow Gaussian distribution with same variance σ2.
Then, we can rewrite the Lagrangian putting the value of the KL as —

L(ω,µ, F̂) = min
γ∈R+

min
l∈L

min
π′∈νF̂ (π⋆

F̂
)

{
K∑
a=1

ωa
(µa − λa)

2

2σ2
− lT Ãω − γ

K∑
a=1

λava

}
(13)

Differentiating the Lagrangian w.r.t λa and equating it to 0, we get

∇λa
L(λ,ω,µ) = 0

or, − ωa(µa − λa)

σ2
− γva = 0

or, λa = µa +
γvaσ

2

ωa

Then putting back the value of λa in Equation 13 we get

L(ω,µ, F̂) = min
γ∈R+

min
l∈L

min
π′∈νF̂ (π⋆

F̂
)

{
K∑
a=1

γ2
v2
aσ

2

2ωa
− lT Ãω − γ

K∑
a=1

µava

}
(14)

Again differentiating the Lagrangian w.r.t γ and equating it to 0, we get

∇γL(ω,µ, F̂) = 0 =⇒ −
K∑
a=1

µava − γ

K∑
a=1

σ2

ωa
va = 0

=⇒ γ = − µT v∑K
a=1

σ2

ωa
v2
a

Putting the value of γ in Equation 14, we get —

L(ω,µ, F̂) = min
l∈L

min
π′∈νF̂ (π⋆

F̂
)

{
(µT v)2

2σ2
∑K
a=1

v2
a

ωa

− lT Ãω

}
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= min
l∈L

min
π′∈νF̂ (π⋆

F̂
)

{
1

2σ2

[µT (π⋆F̂ − π′)]2

∥π⋆
F̂
− π′∥2Diag(1/ωa)

− lT Ãω

}

Therefore inverse characteristic time for Lagrangian relaxation with unknown constraints satisfies,

T−1

F̂
(µ) = max

ω∈F̂
min
l∈L

min
π′∈νF̂ (π⋆

F̂
)

{
1

2σ2

∥π⋆F̂ − π′∥2µµT

∥π⋆
F̂
− π′∥2Diag(1/ωa)

− lT Ãω

}

F.1 Bounds on Sample complexity: Proof of Corollary 1 Part (a)

Corollary 1. Part (a) Let d2π ≜
∥π⋆

F−π∥2
µµT

∥π⋆
F−π∥2

2
be the norm of the projection of µ on the policy gap

(π⋆F − π). Then, the characteristic time TF̂ (µ) satisfies 2σ2

Cknown+2Cunknown
≤ TF̂ (µ) ≤ 2σ2K

Cknown
,

where Cunknown ≜ minπ′∈νF̂ (π⋆
F̂
) d

2
π′ and Cknown = minπ′′∈νF (π⋆

F ) d
2
π′′ .

Proof. Here, we derive explicit expression for gaussian characterisation of the lower and upper bound
on the characteristic time. We start the proof with the difference in sample complexity between
unknown and known constraint setting

D(ω,µ, F̂)−D(ω,µ,F) = min
l∈L

min
π′∈νF̂ (π⋆

F̂
)

{
1

2σ2

∥π⋆F̂ − π′∥2µµT

∥π⋆
F̂
− π′∥2Diag(1/ωa)

− lT Ãω

}

− min
π′′∈νF (π⋆

F )

1

2σ2

∥π⋆F − π′′∥2µµT

∥π⋆F − π′′∥2Diag(1/ωa)

(15)

Let us remind, due to pessimistic choice of Ã, F ⊆ F̂ . π′ is a neighbour of π⋆F̂ if it is an

extreme point in the polytope F̂ and shares (K-1) active constraints with π⋆F̂ . Then π⋆F and π′′

lies in the interior of F̂ i.e, they can be expressed as a convex combination of π⋆F̂ and π′. Let,
∃0 ≤ t1 ≤ 1 : π⋆F = t1π

⋆
F̂ + (1 − t1)π

′ and ∃0 ≤ t1 ≤ 1 : π′′ = t2π
⋆
F̂ + (1 − t2)π

′ Then,
(π⋆F − π′) = t1(π

⋆
F̂ − π′) and (π′′ − π′) = t2(π

⋆
F̂ − π′). Then,

∥π⋆F − π′′∥2Diag(1/ωa)
= ∥(π⋆F − π′)− (π′′ − π′)∥2Diag(1/ωa)

≤ 2

{
∥π⋆F − π′∥2Diag(1/ωa)

+ ∥π′′ − π′∥2Diag(1/ωa)

}
= 2{t21 + t22}∥π⋆F̂ − π′∥2Diag(1/ωa)

Putting the above inequality in Equation 15, we get —

D(ω,µ, F̂)−D(ω,µ,F)

≤min
l∈L

min
π′∈νF̂ (π⋆

F̂
)

{
1

2σ2

∥π⋆F̂ − π′∥2µµT

∥π⋆F − π′∥2Diag(1/ωa)

− lT Ãω

}

≤ 1

2σ2
min
l∈L

min
π′∈νF̂ (π⋆

F̂
)

min
π′′∈νF (π⋆

F )

[
2{t21 + t22}∥π⋆F̂ − π′∥2µµT − ∥π⋆F − π′′∥2µµT

2{t21 + t22}∥π⋆F̂ − π′∥2Diag(1/ωa)

− lT Ãω

]
(16)

Now, we have already proven in Lemma 6 that (−lT Ãω) ≤ D(ω,µ, F̂)ψ where, ψ ≜
∥(Ã−A)ω∥∞++maxi∈[1,N] Γ

γ . Also,

∥π⋆F − π′′∥2µµT = ∥(π⋆F − π′)− (π′′ − π′)∥2µµT
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≥ 2

{
∥π⋆F − π′∥2µµT − ∥(π′′ − π′)∥2µµT

}

= 2

{
t21∥π⋆F̂ − π′∥2µµT − t22∥(π⋆F̂ − π′)∥2µµT

}
= 2(t21 − t22)∥π⋆F̂ − π′∥2µµT

Therefore Equation 16 gives us

(1 + ψ)D(ω,µ, F̂)

≤ D(ω,µ,F) +
1

2σ2
min

π′∈νF̂ (π⋆
F̂
)

min
π′′∈νF (π⋆

F )

2{t21 + t22} − 2(t21 − t22)

2{t21 + t22}
∥π⋆F̂ − π′∥2µµT

∥π⋆
F̂
− π′∥2Diag(1/ωa)

= D(ω,µ,F) +
1

2σ2
min

π′∈νF̂ (π⋆
F̂
)

min
π′′∈νF (π⋆

F )

2t22
{t21 + t22}

∥π⋆F − π′∥2µµT

∥π⋆F − π′∥2Diag(1/ωa)

(17)

Now to get the lower bound on characteristic time in unknown constraint setting, we take maximum
over ω in Equation 17,

T−1

F̂
(µ) ≤ 1

(1 + ψ)

{
T−1
F (µ) +

1

2σ2
max
ω

min
π′∈νF̂ (π⋆

F̂
)

min
π′′∈νF (π⋆

F )

2t22
{t21 + t22}

∥π⋆F − π′∥2µµT

∥π⋆F − π′∥2Diag(1/ωa)

}

< T−1
F (µ) +

1

σ2
max
ω

min
π′∈νF̂ (π⋆

F̂
)

∥π⋆F − π′∥2µµT

∥π⋆F − π′∥2Diag(1/ωa)

(18)

To get the lower bound on characteristic time we minimize ∥π⋆F − π′∥2Diag(1/ωa)
with the simplex

constraint
∑K
a=1 ωa = 1 for each and every neighbour in νF̂ (π

⋆
F̂ ) and νF (π⋆F ). the lagrangian

formulation gives us the solution, ωa =
|π⋆

F−π′|a∑K
a=1 |π⋆

F−π′|a
. Therefore, ∥π⋆F − π′∥2Diag(1/ωa)

≥
∥π⋆F − π′∥21 ≥ ∥π⋆F − π′∥22, since ∀a ∈ [1,K] : ∥π⋆F − π′∥a ≤ 1.Then, putting the value of ωa in
Equation 18,

T−1

F̂
(µ) ≤ T−1

F (µ) +
1

σ2
min

π′∈νF̂ (π⋆
F̂
)

∥π⋆F − π′∥2µµT

∥π⋆F − π′∥22
For ease of comparison, we follow the same notation used in [CBJD23] and define for any π ∈ ∆K−1,

d2π =
∥π⋆

F−π∥2
µµT

∥π⋆
F−π∥2

2
, which is the squared distance between µ and the hyper-plane (π⋆F − π) = 0.

Therefore, using [CBJD23, Corollary 1], we get

T−1

F̂
(µ) ≤ 1

2σ2

(
min

π′′∈νF (π⋆
F )
d2π′′ + 2 min

π′∈νF̂ (π⋆
F̂
)
d2π′

)
Therefore lower bound on the characteristic time is given by,

TF̂ (µ) ≥

(
2σ2

minπ′′∈νF (π⋆
F ) d

2
π′′ + 2minπ′∈νF̂ (π⋆

F̂
) d

2
π′

)

Now, let us find an upper bound on the characteristic time. We have already shown that,
∥π⋆F − π′′∥2µµT ≥ 2(t21 − t22)∥π⋆F̂ − π′∥2µµT , which also implies ∥π⋆F − π′′∥2Diag(1/ωa)

≥
2(t21 − t22)∥π⋆F̂ − π′∥2Diag(1/ωa)

.

Using this result in Equation 15,

D(ω,µ, F̂)−D(ω,µ,F)

≥ 1

2σ2

{
min

π′∈νF̂ (π⋆
F̂
)

∥π⋆F̂ − π′∥2µµT

∥π⋆
F̂
− π′∥2Diag(1/ωa)

− min
π′′∈νF (π⋆

F )

∥π⋆F − π′′∥2µµT

2(t21 − t22)∥π⋆F̂ − π′′∥2Diag(1/ωa)

}
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=
1

2σ2

{
min

π′∈νF̂ (π⋆
F̂
)

min
π′′∈νF (π⋆

F )

2(t21 − t22)∥π⋆F̂ − π′∥2µµT − ∥π⋆F − π′′∥2µµT

2(t21 − t22)∥π⋆F̂ − π′∥2Diag(1/ωa)

}
(19)

We have already shown, ∥π⋆F − π′′∥2Diag(1/ωa)
≤ 2(t21 + t22)∥π⋆F̂ − π′∥2Diag(1/ωa)

. Therefore
∥π⋆F − π′′∥2µµT ≤ 2(t21 + t22)∥π⋆F̂ − π′∥2µµT . Consequently Equation 19 gives,

D(ω,µ, F̂)−D(ω,µ,F)

≥ 1

2σ2

{
min

π′∈νF̂ (π⋆
F̂
)

min
π′′∈νF (π⋆

F )

2(t21 − t22)∥π⋆F̂ − π′∥2µµT − 2(t21 + t22)∥π⋆F̂ − π′∥2µµT

2(t21 − t22)∥π⋆F̂ − π′∥2Diag(1/ωa)

}

=
1

2σ2

{
min

π′∈νF̂ (π⋆
F̂
)

min
π′′∈νF (π⋆

F )

(
2t22

t22 − t21

) ∥π⋆F̂ − π′∥2µµT

∥π⋆
F̂
− π′∥2Diag(1/ωa)

}
≥ 0

=⇒ T−1

F̂
(µ) ≥T−1

F (µ) ≥ 1

2σ2K

{
min

π′′∈νF (π⋆
F )
d2π′′

}
Therefore, upper bound on the characteristic time is given by,

TF̂ (µ) ≤
2σ2K

minπ′′∈νF (π⋆
F ) d

2
π′′

Let, Cunknown ≜ minπ′∈νF̂ (π⋆
F̂
) d

2
π′ and Cknown ≜ minπ′′∈νF (π⋆

F ) d
2
π′′ and the result follows.

F.2 Impact of unknown linear constraints: Proof of Corollary 1 Part (b)

Corollary 1. Part (b) Let d2π ≜
∥π⋆

F−π∥2
µµT

∥π⋆
F−π∥2

2
be the norm of the projection of µ on the policy gap

(π⋆F − π). Then, the characteristic time TF̂ (µ) satisfies TF̂ (µ) ≥
H

κ2
known+2κ2

unknown
. H is the sum

of squares of gaps. κknown and κunknown are condition numbers of A and Ã.

Proof. We dictate this proof in total four steps. The first step mainly deals with a sub-matrix Ã′of
Ã with K number if of active constraints where it will be shown that we can get any neighbouring
policy of π⋆F̂ just by a rank-1 update of Ã′ which means we just one of the constraints inactive for
π⋆F̂ . Using this result we will find an upper bound in the next step on the deviation between π⋆F̂ and
any of it’s neighbouring policy sharing K − 1 number of active constraints. Once we find the upper
bound on this deviation, in the third step we give a new expression for the characteristic time and we
conclude the fourth step by reducing a new lower bound characterised the condition number of Ã′

and Â, where Â is the sub-matrix of the actual constraint matrix A with at least K number of active
constraints.

Step 1 : Optimal policy to neighbouring policy via rank-1 update. We have the pessimistic
estimate of A as Ã, which gives us the perturbed feasible space F̂ . Let, Ã′ be a sub-matrix of Ã such
that it consists of K linearly independent rows of Ã active at π⋆F̂ . We can then say π⋆F̂ ∈ Null(Ã′),
where, Null(Ã′) is the null space of Ã′. Now for some neighbour of π⋆F̂ , π′ ∈ νF̂ (π

⋆
F̂ ) belongs to

the null space of some Ã′′, where this Ã′′ can be expressed as a rank-1 update of Ã′. Specifically,
Ã′′ = Ã′ + er(a

′′
r − a′r)

T . Here, a′r is the column corresponding to the r-th constraint of Ã′. We
just want to replace this column with a new column a′′r, so we set er as a vector which has 1 at the
r-th position and 0 everywhere else.

Step 2: Bounding distance between neighbor and optimal policy. From Equation 18, we have —

T−1

F̂
(µ) < T−1

F (µ) +
1

2σ2
min

π′∈νF̂ (π⋆
F̂
)
2
(µT (π⋆F̂ − π′))2

∥π⋆
F̂
− π′∥22

(20)

So, it becomes evident that we need to get an upper bound on the quantity ∥π⋆F̂ − π′∥. Let us start
with,

Ã′(π′ − π⋆F̂ ) = Ã′π′ since, π⋆F̂ ∈ Null(Ã′)
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=
{
Ã′′ + er(a

′
r − a′′r)

T
}
π′

= er(a
′
r − a′′r)

Tπ′

= era
′T
r π

′ , since a′′r ∈ column space of Ã′′

=⇒ (π′ − π⋆F̂ ) = Ã′−1
(era

′T
r )π

′

We denote ξ ≜ a′Tr π
′ as it is the slack for the new r-th row/constraint. We also define σmin(Ã

′) and
σmax(Ã

′) be respectively the minimum and maximum singular value of Ã′. Also, let κunknown ≜
σmax(Ã

′)

σmin(Ã′)
be the minimum condition number for Ã′. Then by property of singular value of a matrix,

it follows —
1

σmin(Ã′)
= σmin(Ã

′−1
) ≤ min

v:∥v∥2=1
∥Ã′−1

v∥ ≤ ∥Ã′−1
er∥ ≤ max

v:∥v∥2=1
∥Ã′−1

v∥

≤ σmax(Ã
′−1

) =
1

σmax(Ã′)

=⇒ |ξ|
σmin(Ã′)

≤ ∥π⋆F̂ − π′∥2 ≤ ξ

σmax(Ã′)

Step 3 : A new expression for Characteristic time. Plugging in the above obtained bound on
∥π⋆F̂ −π′∥2 in the expression of inverse of characteristic time in Theorem 4, we get a new expression
for the characteristic time.

1

2σ2

∥π⋆F̂ − π′∥2µµT

∥π⋆
F̂
− π′∥2Diag(1/ωa)

=
1

2σ2

∥Ã′−1
(era

′T
r )π

′∥2µµT

∥Ã′−1
(era′

T
r )π

′∥2Diag(1/ωa)

=
1

2σ2

∥Ã′−1
erξ∥2µµT

∥Ã′−1
erξ∥2Diag(1/ωa)

=
1

2σ2

(∆T Ã′−1
er)

2

∥Ã′−1
er∥2Diag(1/ωa)

where ∆ is the vector of sub-optimality gaps of arms, i.e ∆a ≜ µ⋆ − µa. Then, the new expression
for the inverse of characteristic time is as follows,

T−1

F̂
(µ) = max

ω∈F̂
min
l∈L

min
π′∈νF̂ (π⋆

F̂
)

 1

2σ2

(∆T Ã′−1
er)

2

∥Ã′−1
er∥2Diag(1/ωa)

− lT Ãω

 (21)

Step 4 : New expression for the lower bound.

Combining Equation 18 and the new expression in Equation 21, we get —

T−1

F̂
(µ) < T−1

F (µ) +
1

σ2
max
ω

min
π′∈νF̂ (π⋆

F̂
)

∥π⋆F − π′∥2µµT

∥π⋆F − π′∥2Diag(1/ωa)

≤ T−1
F (µ) +

1

σ2
min

π′∈νF̂ (π⋆
F̂
)

∥π⋆F − π′∥2µµT

∥π⋆F − π′∥22

= T−1
F (µ) + min

π′∈νF̂ (π⋆
F̂
)

1

2σ2

(∆T Ã′−1
er)

2

∥Ã′−1
er∥22

≤ T−1
F (µ) + min

π′∈νF̂ (π⋆
F̂
)

∆2

2σ2

σmax(Ã
′)

σmin(Ã′)
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For ease of comparing, we denote H ≜ 2σ2

∆2 . Therefore, the new expression of characteristic time
satisfies,

T−1

F̂
(µ) ≤ min

π′′∈νF (π⋆
F )

κ2known

H
+ min

π′∈νF̂ (π⋆
F̂
)

κ2unknown

H
=

1

H

(
κ2known + κ2unknown

)
where, κknown ≜

σmax(Â)

σmin(Â)
and κunknown ≜

σmax(Ã
′)

σmin(Ã′)
, Â and Ã′ being the sub-matrix of A and Ã

having Klinearly independent rows.

Consequently expected stopping time is then lower bounded by

E[τδ] ≥
H

κ2known + κ2unknown

kl(δ∥1− δ)

32



G Sample Complexity upper bounds (Analysis of algorithms)

G.1 Stopping Criterion

Theorem 5. The Chernoff stopping rule to ensure (1− δ)-correctness and (1− δ)-feasibility is

inf
λ∈ΛF̂t

(µ̂t)

K∑
a=1

Na,td(µ̂a,t, λa) > β(t, δ) ∧ ∥(Ãt −A)ωt∥∞ ≤ ρ(t, δ) ,

where β(t, δ) ≜ 3S0 log(1 + logNa,t) + S0T
(

(K∧d)+log 1
δ

S0

)
, and ρ(t, δ) is in Lemma 4.

Proof. We dictate the proof in 2 steps. In the first step, we prove that the stopping time τδ is finite.
Then, in next step, we give an explicit expression of the stopping threshold by upper bounding
probability of the bad event for stopping time τδ .

Let us first go through some notations.

πt ≜ argmaxπ∈F̂ µ̂Tt π, where µ̂t ∈ argminλ∈ΛF̂t
(µ̂t)

∑K
a=1Na,td(µ̂a,t,λa)− lTt ÃtNa,t.

Algorithm 1 and 2 stops at a finite τδ ∈ N if the events infλ∈ΛF̂ (µ̂t)
{∃t ∈ N :∑K

a=1Na,td(µ̂a,t,λa)} > β(t, δ) and {∃t ∈ N : ∥(Ãt −A)Nt∥∞ ≤ tρ(t, δ)} jointly occurs.

Step 1: Finiteness of the stopping time. A stopping time is finite if the parameters in the system
converges to their true values in finite time, in our case the means of arms and the constraint
matrix. Let us define A ≜ {a ∈ [K] : limt→∞Na,t < ∞} as a sampling rule i.e if an arm
belongs to this set A, it has been sampled finitely and otherwise the arm has been sampled enough
number of times so that the mean of that arm has converged to it’s true value and the column in
the constraint matrix corresponding to that arm as also converged. For arms a ∈ [K] and a ∈
Ac, µ̂a,t → µ̃a ̸= µa and (Ã)a,t → (A′)a ̸= (A)a. When all parameters are concentrated
A = ∅, we say ∀a ∈ [K] : µ̂a → µa and Ã → A. We also define the limit of this empirical
sampling rule as ω∞ = limt→∞

Na,t

t ∀a ∈ [K]. We then write the stopping condition in a new way
infλ∈ΛF̂ (µ̂t)

{∃t ∈ N :
∑K
a=1

Na,t

t d(µ̂a,t,λa) >
β(t,δ)
t } and {∃t ∈ N : ∥(Ãt−A)Nt

t ∥∞ ≤ ρ(t, δ)}.
By continuity properties and knowing β(t, .) → log log t and ρ(t, .) → 0 as t → ∞, we claim
by taking taking asymptotic limits both sides infλ∈ΛF̂ (µ̂t)

∑K
a=1

ω∞,a

t d(µ̂a,t,λa) > 0 and also
∥(Ãt −A)ω∞,a∥∞ < 0. We get strict inequality for the both the cases by the virtue of construction
of the set A such that for arms a ∈ A,ω∞ ̸= 0 and the KL-divergence is non-zero as λa ̸= µ since
λ ∈ ΛF̂t

(µ̂t). Also for the second strict inequality, since Ãt is the pessimistic estimate of A at time
t the condition will hold.

Step 2: Probability of bad event to Stopping threshold. Let ωt is the allocation associated to Nt.
Then we define the bad event as

Ut ≜ {πτδ ̸= π⋆F}

=
⋃

π ̸=π⋆
F

{
∃t ∈ N : πt+1 = π

∧

{
inf

λ∈ΛF̂t
(µ̂t)

K∑
a=1

Na,td(µ̂a,t,λa) > β(t, δ) ∧Aωt ≤ 0

}}
(a)

⊆
⋃

π ̸=π⋆
F

{
∃t ∈ N : πt+1 = π

∧

{
inf

λ∈ΛF̂t
(µ̂t)

K∑
a=1

Na,td(µ̂a,t,λa) > β(t, δ) ∧ ∥(Ãt −A)ωt∥∞ ≤ ρ(t, δ)

}}
The argument (a) holds because

P{0 ≥ Aωt} = P{−Ãtωt ≤ (Ãt −A)ωt} ≤ P{∥Ãtωt∥1 > ∥(Ãt −A)ωt∥1 ≥ ∥(Ãt −A)ωt∥∞}
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≤P{∥Ãtωt∥1 ≤ ρ(t, δ)}P{∥(Ãt −A)ωt∥∞ ≤ ρ(t, δ)}
= P{∥(Ãt −A)ωt∥∞ ≤ ρ(t, δ)}

since the event {∥Ãtωt∥1 ≤ ρ(t, δ)} is a sure event.

Therefore probability of this bad event

P(Ut) ≤
⋃

π ̸=π⋆
F

P

{
∃t ∈ N : πt+1 = π ∧ inf

λ∈ΛF̂t
(µ̂t)

K∑
a=1

Na,td(µ̂a,t,λa)} > β(t, δ)

}

P
{
∃t ∈ N : πt+1 = π ∧ ∥(Ãt −A)ωt∥∞ > ρ(t, δ)

}
=
∑

π ̸=π⋆
F

P

{
∃t ∈ N : inf

λ∈ΛF̂t
(µ̂t)

K∑
a=1

Na,td(µ̂a,t,λa)} > β(t, δ)

}

+
∑

π ̸=π⋆
F

P
{
∃t ∈ N : ∥(Ãt −A)ωt∥∞ > ρ(t, δ)

}
(22)

The second cumulative probability can be bound using Lemma 4, i.e∑
π ̸=π⋆

F

P
{
∃t ∈ N : ∥(Ãt −A)ωt∥∞ > ρ(t, δ)

}
≤ 1

t

for the choice of ρ(t, δ) given in Lemma 4. We work with the first term in R.H.S of Equation (22).

∑
π ̸=π⋆

F

P

{
∃t ∈ N : inf

λ∈ΛF̂t
(µ̂t)

K∑
a=1

Na,td(µ̂a,t,λa)} > β(t, δ)

}

=
∑

π ̸=π⋆
F

P

{
∃t ∈ N : inf

λ∈ΛF̂t
(µ̂t)

inf
λ′∈ΛF (µ̂t)

K∑
a=1

Na,t
(
d(µ̂a,t,λa)− d(µ̂a,t,λ

′
a)
)

+ inf
λ′∈ΛF (µ̂t)

K∑
a=1

Na,td(µ̂a,t,λ
′
a) > β(t, δ)

}

≤
∑

π ̸=π⋆
F

P

{
∃t ∈ N : inf

λ′∈ΛF (µ̂t)

K∑
a=1

Na,td(µ̂a,t,λ
′
a) ≤ β(t, δ)

}

The last inequality holds because

inf
λ∈ΛF̂t

(µ̂t)
inf

λ′∈ΛF (µ̂t)

K∑
a=1

Na,t
(
d(µ̂a,t,λa)− d(µ̂a,t,λ

′
a)
)
≤ 0

since under F̂t and the bad event we are assuming that the estimated alt-set is still bigger than the
actual alt-set. So any λ ∈ ΛF̂t

(µ̂t) will have a bigger distance with the estimate of µ than any
λ′ ∈ ΛF (µ̂t). We define Iπ ≜ Supp(π⋆F )∆Supp(π) and also S0 ≜ maxπ |Iπ|. We note that
0 ≤ S0 ≤ K.

We get from Lemma 9 in [KK21] with the notation of T (.) follows from Lemma 9

∑
π ̸=π⋆

F

P

∃t ∈ N :
∑
a∈Iπ

Na,td(µ̂a,t,µa) ≥
∑
a∈Iπ

3 log(1 + logNa,t) + |S0|T

 log
|πF̂t

|−1

δ

S0


≤ δ

t
≤ δ

where δ is chosen to be δ
|πF̂t

|−1 such that log
|πF̂t

|−1

δ ≤ log( 2
K

δ ) ≤ (K ∧ d) + log 1
δ
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Also
∑
a∈Iπ 3 log(1 + logNa,t ≤ 3S0 log(1 + logNa,t). Therefore the stopping threshold is given

by

β(t, δ) = 3S0 log(1 + logNa,t) + S0T
(
(K ∧ d) + log 1

δ

S0

)
In practice, we use S0 = K.

G.2 Proof of Lemma 2

Lemma 2. If the recommended policy is (1− δ)-correct then it is (1− δ)-feasible.

Proof. Let the recommended policy π is (1− δ)-correct. It means

P(π ̸= π⋆F ) ≤ δ

=⇒ P(π ̸= π⋆F ∧Aπ⋆F ≤ 0) ≤ δ

=⇒ P({Aπ ≤ Aπ⋆F ∨Aπ > Aπ⋆F} ∧Aπ⋆F ≤ 0) ≤ δ

=⇒ P(Aπ ≤ 0 ∨ −Γ⋆ < Aπ) ≤ δ ,where Γ⋆ is the slack value at stopping time
=⇒ P(Aπ ≤ 0) ≤ δ

Hence (1− δ)-correctness automatically implies (1− δ)-feasibility.

G.3 Upper Bound of LATS

Theorem 6. The sample complexity upper bound of LATS to yield a (1− δ)-correct optimal policy is

lim
δ→0

E[τδ]
log(1/δ)

≤ α(1 + s)TF (µ),

where s is the shadow price of the true constraint A, TF (µ) is the characteristic time under the true
constraint (Equation (5)), and δ ∈ (0, 1].

Proof. We will prove this theorem in 5 steps. In the first step, we define what is considered to be
the good event in our unknown constraint setting, then we go on bounding the probability of the
complement of this good event in step 2. Once the parameter concentrations are taken care of, we
show how we can lower bound the instantaneous complexity of the algorithm in step 3. In step 4, we
finally prove the upper bound on stopping time for both good and bad events. We conclude with the
asymptotic upper bound on stopping time i.e when δ → 0 and ϵ→ 0 in step 5.

Step 1: Defining the good event. Given an ϵ > 0, we define the good event GT as,

GT ≜
T⋂

t=h(T )

{||µ̂t − µ||∞ ≤ ξ(ϵ) ∧ ||(Ãi
t −Ai)ω||∞ ≤ ϕ(ϵ)∀ω ∈ F̂}

where, ξ(ϵ) ≤ max
π′∈νF̂ (π⋆

F̂
)

1
5µ

T (π⋆F̂ − π′), and ϕ(ϵ) ≜ max(1, ϵ) for a given ϵ > 0. The good event

implies that the means and the constraints are well concentrated in an ϵ-ball around their true values.
Thus, we have to now bound the extra cost of their correctness and the number of samples required to
reach the good events.

We also observe that ||µ′ − µ||∞ ≤ ξ(ϵ) and ||(Ãi
t − Ai)ω||∞ ≤ ϕ(ϵ) implies that

sup
ω′∈ω⋆(µ′)

sup
ω∈ω⋆(µ)

||ω′ − ω|| ≤ ϵ due to upper hemicontinuity of ω∗(µ) (Theorem 3).

Step 2: Samples to Achieve the Good Event. Now, let us bound the probability of complement of
the good event,

P(GcT ) =
T∑

t=h(T )

(
P {||µ̂t − µ||∞ > ξ(ϵ)}+ P

{
||(Ãi

t −Ai)ω||∞ > ϕ(ϵ)
})
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≤
T∑

t=h(T )

P {||µ̂t − µ||∞ > ξ(ϵ)}+
T∑

t=h(T )

P
{
||(Ãi

t −Ai)ω||∞ > ϕ(ϵ)
}

≤ BT exp
(
−CT 1

8

)
+K

T∑
t=h(T )

1

t

The first inequality is due to the union bound. The second inequality is due to the Lemma 7 (Lemma
19 of [GK16]), which states that

T∑
t=h(T )

P {∥µ̂t − µ∥∞ > ξ(ϵ)} ≤ BT exp
(
−CT 1

8

)
,

and also due to Lemma 4 that proves concentration bound of the constraint matrix over time.

Step 3: Tracking argument. Now, we state how concentrating on means and constraints leads to
good concentration on the allocations too. Since we use C-tracking, we can leverage the concentration
in allocation by [DKM19b, Lemma 17]. We use this lemma than D-tracking or the tracking argument
in [GK16, Lemma 7] because the optimal allocations might not be unique but the set ω∗(µ) is convex
(Theorem 3).

Hence, there exists a Tϵ such that under the good event and t ≥ max(Tϵ, h(T )), we have,

|(µ− µ̂t)
Tπ⋆F | ≤ |(µ− µ̂t)

Tπ⋆F̂ |+ |(µ− µ̂t)
T (π⋆F − π⋆F̂ )| ≤ 4ξ(ϵ)

≤ max
π′∈νF (π⋆

F )′
µT (π⋆F ′ − π′)

We have replaced the perturbed alt-set with the true alt-set because for t ≥ max(Tϵ, h(T )), we can
ensure the convergence of F̂ almost surely i.e F̂ a.s→ F
Step 3: Complexity of identification under good event and constraint. Now, we want to understand
how hard it is to hit the stopping rule even under the good event. First, we define

Cϵ,F̂ ≜ inf
µ′:||µ′−µ||∞≤ξ(ϵ)
ω′:||ω′−ω||∞≤3ϵ

Ã′:||(Ã−A)ω||∞≤ϕ(ϵ)

D(µ′,ω′, F̂)− lT Ãω .

Now leveraging Lemma 6, we obtain

(1 + ψ) inf
µ′:||µ′−µ||∞≤ξ(ϵ)
ω′:||ω′−ω||∞≤3ϵ

Ã:||(Ã−A)ω||∞≤ϕ(ϵ)

D(µ′,ω′, F̂) ≥ inf
µ′:||µ′−µ||∞≤ξ(ϵ)
ω′:||ω′−ω||∞≤3ϵ

Ã′:||(Ã−A)ω||∞≤ϕ(ϵ)

D(µ′,ω′, F̂)− lT Ãω ,

where definition of ψ follows from Lemma 6. It quantifies how the Lagrangian lower bound relates
with the Likelihood Ratio Test-based quantity in the stopping time.

Therefore by the C-tracking argument 10, we can state

D(µ̂t, Nt, F̂) ≥ t inf
µ′:||µ′−µ||∞≤ξ(ϵ)
ω′:||ω′−ω||∞≤3ϵ

Ã:||(Ã−A)ω||∞≤ϕ(ϵ)

D(µ′,ω′, F̂) ≥
tCϵ,F̂
1 + ψ

. (23)

Here, LHS is the quantity that we use to stop and yield a (1− δ)-correct policy.

Step 4: Bounding the stopping time with good and bad events. We denote τδ as the stopping time.
So we can write upper bound on this stopping time for both good and bad events as

min(τδ, T ) ≤ max(
√
T , β(T, δ)) +

T∑
t=Tϵ

1τδ>T

By the correctness of the stopping time, the event τ(δ) > t happens if D(µ̂t, Nt, F̂) ≤ β(t, δ) for
any t ≤ T .
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Now using the lower bound on D(µ̂t, Nt, F̂) (Equation 23), we get

Tϵ +

T∑
t=Tϵ

1(D(µ̂t, Nt, F̂) ≤ β(t, δ)) ≤ max(
√
T , β(T, δ)) +

T∑
t=Tϵ

1
(
t
Cϵ,F̂
1 + ψ

≤ β(T, δ)
)

≤ max(
√
T , β(T, δ)) +

β(T, δ)(1 + ψ)

Cϵ,F̂

Let us define a Tδ ≜ inf{T ∈ N : max(
√
T , β(T, δ))+ β(T,δ)(1+ψ)

Cϵ,F̂
≤ T}. To find a lower bound on

Tδ , we refer to [GK16]. Specifically, let us define β(η) ≜ {inf T : T −max(
√
T , β(T, δ)) ≥ T

1+η}
for some η > 0. Therefore,

Tδ ≤ β(η) + inf{T ∈ N : T
Cϵ,F̂

(1 + ψF̂ )(1 + η)
≥ β(T, δ)}

Thus, finally combining the results, we upper bound the stopping time as

E[τδ] ≤ Tϵ + Tδ + Tbad .

Here, Tbad =
∑∞
t=1BT exp

(
−CT 1/8

)
+Kζ(1) < ∞ is the sum of probability of the bad events

over time. ζ(.) denotes the Euler-Riemann Zeta function.

Step 5. Deriving the asymptotics. Now, we leverage the continuity properties of the Lagrangian
characteristic time under approximate constraint to show that we converge to traditional hardness
measures as ϵ and δ tends to zero.

First, we observe that for some α > 1

lim sup
δ→0

E[τδ]
log(1/δ)

≤
α(1 + ψF̂ )(1 + η)

Cϵ,F̂

Now, if also ϵ→ 0, by the Equation 4, we get Ã → A, and thus, F̂ → F .

Thus, by continuity properties in Theorem 3 and Theorem 2, we get that

D(F̂ , .) → D(F , .) and ψ →
maxi∈[1,N ] Γ

mini∈[1,N ] Γ
≜

Γmax

Γmin
≜ s .

Here, s is the shadow price of the true constraint matrix, and quantifies the change in the constraint
values due to one unit change in the policy vector.

Hence, we conclude that

lim
δ→0

E[τδ]
log(1/δ)

≤ αTF (µ)(1 + s) .

G.4 Upper Bound for LAGEX

Theorem 7. The expected sample complexity of LAGEX satisfies limδ→0
E(τδ)
ln(1/δ) ≤ TF (µ) + 2s.

Proof. We will do this proof in two parts. In part (a) we will assume that the current recommended
policy is the correct policy and try to find an upper bound on the sample complexity of LAGEX. In
the next part (b) we break that assumption and try to get an upper bound on the number of steps the
recommended policy is not the correct policy.

Part (a) : Current recommended policy is correct. Proof structure of this part involves several
steps. We start with defining the good event where we introduce a new event associated with the
concentration event of the constraint set, then proceeding to prove concentration on that good event.
Third step starts with the stopping criterion explained in G.1. In step 4 we define LAGEX as an
approximate saddle point algorithm. The next step further transforms the stopping criterion with the
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help of allocation and instance player’s regret that play the zero-sum game. We conclude with the
asymptotic upper on the sample complexity characterised by the additive effect of the novel quantity
shadow price s.

Step 1: Defining the good event. We start the proof first by defining the good event as

Gt = {∀t ≤ T, ∀a ∈ [K] : Na,td(µ̂a,t,µa) ≤ g(t) ∧ ∥(Ã−A)ω∥∞ ≤ ρ(t, δ)}

where, g(t) = 3 log t+ log log t and ρ(t, δ) is defined in Lemma 3. The choice of g(t) is motivated
from [DKM19a] which originates from the negative branch of the Lambert’s W function. This
eventually helps us upper bounding the cumulative probability of the bad event.

Step 2: Concentrating to the good event We denote Gct as the bad event where any one of the above
events does not occur. Cumulative probability of this bad event

T∑
s=1

P (Gct) =

T∑
s=1

P

(
K∑
a=1

Na,sd(µ̂a,s,µa) > g(s)

)

+

T∑
s=1

P
(
∥(Ãs −A)ω∥∞ > ρ(s, δ)∀ω ∈ F̂T

)
We get the upper bound on

∑T
s=1 P

(∑K
a=1Na,sd(µ̂a,s,µa) > g(s)

)
≤ exp(2)

t3 log t (g(t)+g
2(t) log t) ≤

∞ as a direct consequence of [DKM19a, Lemma 6]. The second cumulative probability is bounded
by ζ(1) using Lemma 4, which is finite.

In the next step, we work with the stopping criterion where we do not have access to F rather a bigger
feasible set F̂t.
Step 3: Working with the stopping criterion. The stopping criterion implies that

β(t, δ) ≥ inf
λ∈ΛF̂t

(µ̂t)

K∑
a=1

Na,td(µ̂a,t,λa) ,

where the exact expression of β(t, δ) is defined in Theorem 5.

We use the C-tracking lemma (Lemma 8) to express the stopping in terms of allocations

β(t, δ) ≥ inf
λ∈ΛF̂t

(µ̂t)

t∑
s=1

K∑
a=1

ωa,sd(µ̂a,t,λa)− (1 +
√
t)K (24)

L-Lipschitz property of KL divergence gives

|d(µa,λa)− d(µ̂a,s,λa)| ≤ L

√
2σ2

g(s)

Na,s
(25)

Using this result in Equation (24) we get

t∑
s=1

K∑
a=1

ωa,sd(µ̂a,t,λa) ≥
t∑

s=1

K∑
a=1

ωa,sd(µ̂a,λa)− L
√

2σ2Ktg(t)

≥
t∑

s=1

K∑
a=1

ωa,sd(µ̂a,s,λa)− L
√
2σ2Ktg(t)

− 2L
√

2σ2g(t)(K2 + 2
√
2Kt)

≥
t∑

s=1

K∑
a=1

ωa,sd(µ̂a,s,λa)−O(
√
t log t)

the penultimate inequality yields from using the Equation (25). Using this result in Equation (24)

β(t, δ) ≥ inf
λ∈ΛF̂ (µ̂t)

K∑
a=1

ωa,sd(µ̂a,t,λa)− (1 +
√
t)K −O(

√
t log t) (26)
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Step 4: LAGEX (Algorithm 2) as an optimistic saddle point algorithm We follow the definition
of approximate saddle point algorithm in [DKM19a]. LAGEX acts as an approximate saddle point
algorithm if

inf
lt∈Rd

+

inf
λ∈ΛF̂ (µ̂t)

t∑
s=1

K∑
a=1

ωs,ad(µ̂a,s,λa)− lTt Ãtωt ≥ max
ω∈F̂t

K∑
a=1

t∑
s=1

ωaUa,s − xt (27)

where, Ua,s = max

{
g(t)
Na,s

,maxξ∈[αa,s,βa,s] d(ξ, λa,s)

}
and xt = Rω

t +
∑t
s=1

∑K
a=1 ωa,sCa,s.

The quantities Rω
t and Ca,s will be defined later on.

Step 5: Bounds cumulative regret of players Algorithm 2 at each step solves a two player zero-sum
game. First one is the allocation player who uses AdaGrad to maximize the inverse of characteristic
time function to find the optimal allocation. The regret of the AdaGrad player is defined at time t ∈ N
as

Allocation player’s regret.

Rω
t = max

ω∈F̂

t∑
s=1

K∑
a=1

ωaUa,s −
t∑

s=1

K∑
a=1

ωa,sUa,s

We should note that AdaGrad enjoys regret of order Rω
t ≤ O(

√
Qt) where Q is an upper bound on

the losses such that Q ≥ maxx,y∈[µmin,µmax]
d(x, y).

λ-player’s regret.

Rtλ =

t∑
s=1

K∑
a=1

ωa,sd(µ̂a,s, λa,s)− inf
λ∈ΛF̂ (µ)

t∑
s=1

K∑
a=1

ωa,sd(µ̂a,s,λa) ≤ 0

The last inequality holds because we take infimum over λ in the perturbed alt-set. now let us prove
that LAGEX is a optimistic saddle point algorithm. We define Ca,s ≜ Ua,s − d(µ̂a,s, λa,s). From
the definition of regret of the λ-player we get

inf
λ∈ΛF̂ (µ)

t∑
s=1

K∑
a=1

ωa,sd(µ̂a,s,λa)

≥ inf
l∈Rd

+

inf
λ∈ΛF̂ (µ)

{ t∑
s=1

K∑
a=1

ωa,sUa,s −
t∑

s=1

K∑
a=1

ωa,sCa,s + lT Ãtωt

}
Then we have from Equation (26) and Equation (27)

β(t, δ) ≥ inf
l∈Rd

+

inf
λ∈ΛF̂ (µ)

{ t∑
s=1

K∑
a=1

ωa,sUa,s −
t∑

s=1

K∑
a=1

ωa,sCa,s + lT Ãtωt

}
(28)

− (1 +
√
t)K −O(

√
t log t) (29)

≥ inf
λ∈ΛF̂ (µ)

t∑
s=1

K∑
a=1

ωa,sUa,s −
t∑

s=1

K∑
a=1

ωa,sCa,s (30)

− (1 +
√
t)K −O(

√
t log t) + lTt Ãtωt (31)

≥ inf
λ∈ΛF̂ (µ)

t∑
s=1

K∑
a=1

ωa,sUa,s −
t∑

s=1

K∑
a=1

ωa,sCa,s − (1 +
√
t)K (32)

−O(
√
t log t)−D(ωt, µ̂t, F̂t)ψt (33)

where ψt is defined as Lemma 6. The penultimate inequality holds as we have replaced infl∈L l with
lt i.e the optimised Lagrangian multiplier at the last step. Whereas the last inequality follows from
Lemma 6. From the definition of the allocation player regret we have

inf
λ∈ΛF̂ (µ)

t∑
s=1

K∑
a=1

ωa,sd(µ̂a,s, λs) ≥ max
ω∈F̂

t∑
s=1

K∑
a=1

ωaUa,s −Rω
t −

t∑
s=1

K∑
a=1

ωa,sCa,s︸ ︷︷ ︸
T1
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which shows that LAGEX is a approximate saddle point algorithm with slack xt = Rω
t +∑t

s=1

∑K
a=1 ωa,sCa,s.

Now we have to ensure that T1 in the slack is bounded.

t∑
K+1

K∑
a=1

ωa,sCa,s ≤
t∑

K+1

K∑
a=1

ωa,s

{
g(s)

Na,s
+ 2L

√
2σ2

g(s)

Na,s

}

≤ g(t)

t∑
K+1

K∑
a=1

ωa,s
Na,s

+ 2L
√
2σ2g(t)

t∑
K+1

K∑
a=1

ωa,s√
Na,s

≤ g(t)

(
K2 + 2K log

t

K

)
+ 2L

√
2σ2g(t)(K2 + 2

√
2Kt)

≤ O(
√
t log t) . (34)

The inequalities hold due to the good event GT and L-Lipschitz property of KL

|d(µa,λa)− d(µ̂a,s,λa)| ≤ L

√
2σ2

g(s)

Na,s

=⇒ sup
ξ∈[αa,s,βa,s]

Ua,s − d(ξ, λa,s) ≤ max

{
2L

√
2σ2

g(s)

Na,s
,
g(s)

Na,s

}
Now the stopping time expression changes to

β(t, δ) ≥ max
ω∈F̂

(
K∑
a=1

t∑
s=1

ωad(µa, λa,s)−D(ωt, µ̂t, F̂t)ψt

)
−Rω

t −O(
√
t log t)− (1 +

√
t)K

≥ max
ω∈F̂

K∑
a=1

t∑
s=1

ωad(µa, λa,s)− T−1

F̂t
(µ̂t)ψt −Rω

t −O(
√
t log t)− (1 +

√
t)K

Step 6: Characteristic time Accumulating Equation (28) and Equation (34)

max
ω∈F̂t

t∑
s=1

K∑
a=1

ωad(µa, λa,s) ≥ t inf
λ∈ΛF̂ (µ)

max
ω∈F̂t

K∑
a=1

ωad(µa,λa)

≥ t max
ω∈F̂t

inf
λ∈ΛF̂ (µ)

K∑
a=1

ωad(µa,λa) = tT−1

F̂t
(µ)

Then the sample complexity is upper bounded by

t ≤ TF̂t
(µ)

(
β(t, δ) +Rω

t +O(
√
t log t)

)
+ ψt

Now asymptotically when F̂t → F and ψt → s, the expression for the characteristic time is given by

t ≤ TF (µ)
(
β(t, δ) +Rω

t +O(
√
t log t)

)
+ s

Part (b) : Current recommended policy is wrong. To get on with the proof for this part we will use
similar argument as [CBJD23]. Though the argument was motivated by the work [DKM19b]. We
define the event

Bt ≜

{
π⋆ ̸= argmax

π∈F̂t

µ̂Tt π

}
i.e the current recommendation policy is not correct which implies that the mean estimate or the
constraint estimate has not been concentrated yet. If we define Chernoff’s information function as
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ch(u, v) ≜ infz∈D(d(u, x) + d(v, x)). Therefore the current mean estimate will yield positive Cher-
noff’s information since it has not been converged yet i.e ∃ϵ > 0 : ch(µ̂a,t,µa) > ϵ. Consequently
under the good event GT defined earlier

g(t)

Na,t
≤ ϵ

since ch(µ̂a,t,µa) ≤ d(µ̂a,t,µa). Let at time s ∈ N, π′ be an extreme point in F̂s that is not the
optimal policy. But since it is an extreme point in F̂s that shares (K − 1) active constraints with π⋆F̂s

,

it has to be an optimal policy w.r.t λ ∈ ΛF̂s
(µ̂s) : π

′ = argmaxπ∈F̂s
λTπ ̸= π⋆F̂ . So we again

define the event Bt as

Bt ≜

{
λ ∈ ΛF̂t

(µ̂t) : π
′ = argmax

π∈F̂t

λTπ ̸= π⋆F̂s

}
We again define nπ′(t) be the number of steps when πs = π′, s ∈ [t]. Therefore

ϵ = min
l∈L

∑
s=1,Bs

K∑
a=1

ωa,sd(µ̂a,s, µa) ≥ min
l∈L

∑
π′ ̸=π⋆

F̂s

inf
λ∈Bs

t∑
s=1,πs=π′

K∑
a=1

ωa,sd(µ̂a,s, µa)− lT Ãtωt

(35)

Now to break the RHS of the above inequality we go back to step 5 of the proof of part (a) where
we showed LAGEX is an approximate saddle point algorithm. In this case the slack will be xt =
Rω
nπ′ (t)

+
∑t
s=1,πs=π′

∑K
a=1 ωa,sCa,s. Therefore we can write the RHS of Equation (35) as

∑
π′ ̸=π⋆

F̂s

inf
λ∈Bs

t∑
s=1,πs=π′

K∑
a=1

ωa,sd(µ̂a,s, µa) (36)

≥ max
π∈F̂s

min
l∈L

t∑
s=1,πs=π′

K∑
a=1

ωa,sUa,s −Rω
nπ′ (t)︸ ︷︷ ︸

T1

−
t∑

s=1,πs=π′

K∑
a=1

ωa,sCa,s︸ ︷︷ ︸
T2

+lT Ãtωt (37)

We apply the same logic as in [CBJD23] and [DKM19b] that ∃a′ ∈ [K] for which Ua′,s ≥ ϵ. That
means the term T1 grows at most linear with nπ′(t). From the proof of part (a) it is clear that the
term T2 = O

(√
nπ′(t) log nπ′(t)

)
≤ O(

√
t log t) and the allocation player regret is bounded by

Rnπ′ (t) = O(
√
Qnπ′(t)) ≤ O(

√
Qt). That means the number of times the event Bt occurs is

upper bounded by O(
√
t log t). Now the extra term in Equation (36) appearing with term T1 and T2

induces same implication as part (a).

Then incorporating part (a) and (b) to get the upper bound on the expected stopping time asymptoti-
cally

E[τδ] ≤ TF̂t
(µ)

(
β(t, δ) +Rω

t +O
(√

t log t
))

+ 2ψt =⇒ lim
δ→0

E[τδ]
log 1

δ

≤ TF + 2s .

G.5 Applications to existing problems

End-of-time Knapsack. We can model the BAI problem with end-of-time knapsack constraints as
discussed in Section B.2. In such a setting the shadow price comes out to be s ≤ c i.e the maximum
consumable resource. So if we were to implement LATS for this the asymptotic sample complexity
upper bound will translate to αTF̂ (µ)(1 + c), the multiplicative part being the effect of the end of
time knapsack constraint. In case of LAGEX the unknown knapsack constraint will leave a additive
effect quantified by 2c. Recently people have deviated from only devising a no-regret learner in BwK
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rather people are interested to also give good sub-optimal guaranties on constraint violation as well.
We think algorithms like LAGEX will perform well if we translate this model to our setting since it
has shown not only good sample complexity but also better constraint violation guaranies as well.

Fair BAI across subpopulations. This problem is a direct consequence of our setting. The shadow
price in this setting s =

maxi∈K π⋆
i

mini∈K π⋆
i
> 1 i.e the ratio between maximum and minimum non-zero

weight in the recommended policy. Similar to the knapsack scenario, here also this ratio will appear
as a extra cost of not knowing the fairness constraint in multiplicative way in case of LATS and gets
added to the sample complexity upper bound of LAGEX.

Pure exploration with Fairness of exposure. We can think of a problem where we want to select a
pool of employees from different sub-sections of a whole population for a task. As we want to max-
imise the reward or utility of this selected group we also must also give fair exposure to all race or say
gender. As discussed earlier in Section B.2, a direct application of our algorithms LATS and LAGEX
to use them in the problem of pure exploration with unknown constraints on fairness of exposure.

The shadow price in such a setting would be s =
maxi,j∈[K]

(
1
µi

− 1
µj

)
mini,j∈[K]

(
1
µi

− 1
µj

) =
maxi,j∈[K](µi−µj)

mini,j∈[K](µi−µj)
≥ 1.

Thresholding bandits. The problem of Thresholding bandit is motivated from the safe dose finding
problem in clinical trials, where one wants to identify the highest dose of a drug that is below a
known safety level. From the translated optimisation problem in Section B.2 we easily find out the

shadow price for this setting to be s =
maxi∈[K](π−θ)i

mini∈[K](π−θ)i ≥ 1. This shadow price is similar to ours
because the constraint structure is very similar. Our setting generalises thresholding bandit problem
by giving the liberty of choosing different threshold levels for different support index of π. Similarly
to other settings this shadow price will come as a price of handling different unknown thresholds for
every arm as addition in case of LAGEX and as multiplication for LATS.

Feasible arm selection. Feasible arm selection problem is motivated by the spirit of recommending
an optimal arm which should satisfy a performance threshold. For example one might be interested to
find a combination of food among a plethora of options which maximises the nutrient intake, rather
the nutrient value of the food combination should exceed a threshold value. The structure of the
optimisation problem for such a setting is discussed in detail in Section B.2. Then the shadow price
comes out as s = τ−fmin

τ−fmax
≥ 1 where f ∈ RSupp(π) can be compared to a utility function. In our

setting we will not have access to the true utility function rather we have to track it per step. This
shadow price again get multiplied to the LATS sample complexity upper bound as a cost of not
knowing the true utility of the arms, whereas we see a additive cost incurred in case of LAGEX.
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H Constraint violations during exploration

H.1 Upper Bound on Constraint Violation

In a linear programming problem we say constraint is violated if the chosen allocation fails to satisfy
any of the true linear constraints. In other words when the event Aωt ≥ 0. We start with the
optimization problem relaxed with slack if the constraints were known,

max
π∈F̂

µTπ

such that, Aπ + Γ ≤ 0

where, Γ is the slack. Cumulative violation of constraints can be expressed as,

Vt =
t∑

s=1

max
i∈[K]

[
Aiωt

]
+

where, [z]+ = max{z, 0}. Then, at any time step t ∈ [T ], instantaneous viola-
tion is given by, vt = maxi∈[k]

[
Aiωt

]
+

. Since, A is feasible, we define the game
value as, η = maxω∈F maxi∈[K] A

iω ≤ Γ and η = maxω∈F maxi∈[K] A
iω ≥

minÃ∈Ct
A
maxω∈F̂t

maxi∈[K] Ã
i
tωt = Ãit

t ωt, holds because of pessimistic estimate of A.

Again, we define, imin(ω) = argmini∈[K] Ã
iω Then,

max
i∈[K]

[
Aiωt

]
= max
i∈[K]

(Ai − Ãi
t)ωt + max

i∈[K]
Ãi
tωt

≤ max
i∈[K]

||(Ai − Ãi
t)||Σt ||ωt||Σ−1

t
+ max
i∈[K]

Ãi
tωt

≤ f(t, δ)||ωt||Σ−1
t

+ max
i∈[K]

Ãi
tωt

Again, maxi∈[K] Ã
i
tωt ≤ maxi∈[K] A

iωt ≤ Γ

Then, the instantaneous violation becomes,

vt ≤ [f(t, δ)||ωt||Σ−1
t

+ Γ]+

≤ f(t, δ)||ωt||Σ−1
t︸ ︷︷ ︸

ρ(t,δ)

+|Γ|

Let stopping time is denoted by τδ < T following the expression from the Stopping criterion section.
Then, cumulative constraint violation is denoted by,

Vτδ =
∑
t≤τδ

st

=
∑
t≤τδ

ρ(t, δ) + |Γ|

≤ 2
∑
t≤τδ

|Γ|1{ρ(t, δ) ≤ |Γ|}+ 2
∑
t≤τδ

ρ(t, δ)1{|Γ| ≤ ρ(t, δ)}

≤ 2τδ|Γ|+ 2
∑
t≤τδ

(ρ(t, δ)2

|Γ|
, where, 1(u ≤ v) ≤ v

u

≤ 2τδ|Γ|+
6d2 log2(1 + τδ+1

d ) + 12d log(1 + τδ+1
d )(1 + log K

δ )

|Γ|

The last inequality is a direct consequence of Lemma 3.
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Figure 7: Constraint violation (median±std.) of
algorithms over 500 runs for easy environment.

H.2 Experimental results

In all the experiments we have taken δ = 0.01. Here, we will also explain what the abbreviations used
in the plots. "CTnS-WLag" and "CGE-WLag" is basically the CTnS and CGE algorithm ([CBJD23])
under unknown constraints without Lagrangian relaxation. For the experiments in easy environment
are clipped at 3000 for better visualisation. For CGE we have used g(t) = log t. Each plot has been
generated over 500 random seeds.

Observation 2. LAGEX least violates constraints. We compare the constraint violation i.e the
number of times Aωt > 0, where A is the true constraint matrix.

Observations in Environment 1. From Fig. 6 we see that LAGEX shows least number of constraint
violation across all the algorithms compared, followed by LATS and CTnS without Lagrangian
relaxation shows the worst performance by having highest number of constraint violations. Though
performance of Uniform explorer in terms of constraint violation is at par with LAGEX and LATS.

Observations in Environment 2. From Fig. 7 we can say our proposed algorithms LATS and LAGEX
also better in terms of showing least number of constraint violations for the easy environment. An
interesting application of these algorithm would be to explore BAI with end-of-time Knapsack
constraint since LAGEX and LATS work "safer" than other algorithms in the unknown constraint
setting with better constraint violation guaranties.

H.3 Experiment on IMDB dataset

We evaluate our proposed algorithms Algorithm 1 and 2 with other algorithms using the publicly
available and often used IMDB 50K dataset [MDP+11]. For ease of comparison we use the same
bandit environment as [CBJD23] using 12 movies. We search for the optimal policy which allocates
weight at most 0.3 to action movies and at least 0.3 to family and drama movies. The true optimal
policy is [0.3, 0.3, 0, 0, 0.4, 0, 0, 0, 0, 0, 0, 0]. We assume δ = 0.1. We compare the same set of
algorithms as before.

Observations 1. LAGEX shows better sample complexity From figure 8 we can observe that the
LAGEX (Algorithm 2) performs better any other algorithm in the unknown constraint setting. The
algorithm LATS (Algorithm 1) performs also well on the IMDB environment but notably we cannot
distinguish it’s performance from the performance of the Uniform explorer as well. The diagram 8
also properly demonstrates the extra cost we had to pay due to not knowing the constraints in the
allocation on the different genres of movies.

Observation 2. LAGEX shows least constraint violation Interestingly not only LAGEX performs
as the most efficient algorithm among the all other algorithms in the unknown constraint setting but
also it shows least constraint violation. It means LAGEX performs as the most safe algorithm even
during exploration.
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Figure 9: Constraint violation (median±std.) of
algorithms over 500 runs for IMDB environ-
ment.

I ϵ-good policies under unknown linear constraints

Throughout this paper we have talked about converging to the optimal policy while tracking the
estimates of the unknown linear constraints and unknown means of the reward distributions of K
arm. One might not want to land on the exact optimal policy, rather may be interested in finding
an ϵ-good policy i.e the recommended policy is in a ϵ-ball of the actual true optimal policy. This
approach may get us to a much lower sample complexity lower bound [[GK21b],[MPK21], [GK21a],
[MJTN20]]. We can extend our proposed Algorithms 1 and 2 can be extended to this setting by
changing the definition of the set of alternative instances as ΛF̂ (µ) ≜

{
λ ∈ D : λT (π⋆F̂ − π) > ϵ

}
for a pre-specified alpha as an input in the algorithms. So we will say the recommended policy in
ϵ-good for π⋆F after the stopping rule fires, if π⋆F̂ has converged to π⋆F with concentration in means
and constraint matrix. But there are two main problem that appears. Since ϵ > 0, the most confusing
instance for µ will not lie on the boundary of the normal cone. So the projection lemma for lagrangian
formulation (Proposition 1) is no more sufficient. Also, the algorithm may start oscillating when the
allocation comes inside the epsilon ball of π⋆F̂ among near-optimal policies since convexity of ω⋆(µ)
is no more ensured. To handle the first problem we can use the approximation error ϵ as an added
pessimism in the system. That means we are interested in the optimization problem

max
π∈F

µTπ

such that Aπ ≤ ϵA1.

Then to build a new superset for the new feasible set we use pessimistic estimate of A i.e (Aϵ)π ≤
Aπ ≤ 0. We would also want to track the sequence {ϵt}t∈N and use it’s concentration properties to
find introduce new quantities in the lower bound that will capture the effect of the approximation.
For the second hurdle we can add the notion of sticky approach from [DK19] that can help the agent
stick to a specific ϵ-good policy rather than oscillating.

45



J Technical results and known tools in BAI and pure exploration

In this section, we will devise some technical lemma using the help of standard text on online linear
regression to ensure the convergence of unknown constraints. We specifically give the expression of
the radius of confidence ellipsoid mentioned in the main text in Equation 2. We then prove an upper
bound on the bad event i.e when the constraint matrix is not concentrated around the true matrix. We
also acknowledge some known theoretical results from BAI and pure exploration literature that are
used in this work.

J.1 Concentration lemma for constraints

Here, we want to get concentration on the deviation of the pessimistic estimate of the constraint matrix
from the actual one quantified by ∥(Ã−A)ω∥∞, it becomes very crucial to prove upper bounds on
sample complexity of our proposed algorithms. The following lemma ensures the concentration of
the constraint matrix.
Lemma 3. For the pessimistic estimate Ã of A, the following holds

1. |(Ãi −Ai)ω| ≤ ρ(t, δ) where ρ(t, δ) ≜ f(t, δ)∥ω∥Σ−1
t

2.
∑t
s=1 ∥ωs∥2Σ−1

t

≤ 2d log
(
1 + 1+t

d

)
3.
∑t
s=1 ρ(t, δ) ≤

√
2dtf2(t, δ) log

(
1 + 1+t

d

)
Proof. The first result gives control on the deviations Ãω −Aω for A ∈ CA

t (δ). Then ∀i ∈ [d]

|(Ãi −Ai)ω| ≤ |(Ãi
t −Ai)ω| ≤ 2 sup

A∈CA
t (δ)

∥Ãi
t −Ai∥Σt

∥ω∥Σ−1
t

≤ f(t, δ)∥ω∥Σ−1
t

≤ ρ(t, δ)

here, we define ρ(t, δ) ≜ f(t, δ)∥ω∥Σ−1
t

. The penultimate inequality follows from the definition of
the confidence set defined in Equation 2. Now we want to derive an explicit expression of this upper
bound. It is natural to use the concentration of the gram matrix Σt over time. We refer to [AyPS11]
for the control over the behaviour of Σt and we directly get the second as

t∑
s=1

∥ωs∥2Σ−1
t

≤ 2 log detΣt+1 ≤ 2d log

(
1 +

1 + t

d

)
Refer [AyPS11] for the context. Now we have to control the cumulative deviation because later
on when we define the bad event based on this concentration we will need to know the cumulative
behaviour of ρ(t, δ).

Then for an arbitrary sequence of actions {ωs}s∈[T ]

t∑
s=1

ρ(t, δ) ≤

√√√√t

t∑
s=1

ρ2(t, δ) ≤

√
2dtf2(t, δ) log

(
1 +

1 + t

d

)
where,

∑t
s=1 ρ

2(t, δ) ≤ 2dtf2(t, δ)
(
1 + 1+t

d

)
using result 2 of this lemma. This holds because as

we have already stated {f(s, δ)}s∈[T ] is a non-decreasing sequence of function and f(t, δ) is the
maximum possible value in the set i.e

∑t
s=1 f

2(t, δ) ≤ tf2(t, δ)

Now we proceed to state an upper bound on the cumulative probability of the bad event i.e the event
|(Ãt −A)ω|∞ > |(Ãi

t −Ai)ω| > ρ(t, δ).
Lemma 4. The cumulative probability of the bad event till time t<T,

t∑
s=1

P
(
∥(Ãt −A)ω∥∞ > ρ(t, δ)

)
≤ ζ(1)

where ζ(.) is the Euler-Riemann zeta function.
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Proof. We already have stated in the main paper f(t, δ) = 1 +
√

1
2 log

K
δ + 1

4 log detΣt ≤

1 +
√

1
2 log

K
δ + d

4 log
(
1 + t

d

)
≜ f ′(t, δ) by Lemma 3 and we define

ρ′(t, δ) ≜ f ′(t, δ)∥ω∥Σ−1
t

. It implies P
(
∃t ∈ [T ]∥(Ãt −A)ω∥∞ > ρ′(t, δ)

)
≤

P
(
∃t ∈ [T ]∥(Ãt −A)ω∥∞ > ρ(t, δ)

)
≤ δ. Now if we replace log 1

δ by u, we can write

P
(
∃t ∈ [T ],∀i ∈ [d]|∥Ãi

t −Ai∥Σt > 1 +
√

1
2 logK + u

2 + d
4 log

(
1 + t

d

))
≤ exp(−u). We can

directly assign log t as the simplest and natural choice for u, since
∑∞
s=1

1
t = ζ(1), ζ(.) being the

Euler-Riemann zeta function. Though this integral is improper, it has a Cauchy principal value as
Euler–Mascheroni constant which means

∑∞
s=1

1
t ≈ γ = 0.577. So we assign u = log t

t∑
s=1

P
(
∥(Ãt −A)ω∥∞ > ρ(t, δ)

)
≤

t∑
s=1

1

t
≤

∞∑
s=1

1

t
≤ ζ(1) ≈ 0.577

Lemma 5. Let µ̄ ≥ 0 be a vector, and consider the set Qµ̄ = {µ ≥ 0 | q(µ) ≥ q(µ̄)}. Let
Slater condition hold. Then, the set Qµ̄ is bounded and, in particular, we have ∥µ∥1 ≤ 1

γ (f(x̄)−
q(µ̄)),∀µ ∈ Qµ̄ where, γ = min1≤j≤m {−gj(x̄)} and x̄ is a Slater vector. f(.) and q(.) respectively
denotes the primal and the dual function of the optimization problem.

Using the aforementioned lemmas we give a bound for the part in the inverse of the characteristic time
function that gets added for Lagrangian relaxation which eventually helps up landing on a unique
formulation of sample complexity upper bounds of our proposed algorithm.
Lemma 6. For any l ∈ L and ω ∈ ∆K

−lT Ãω ≤ D(µ,ω, F̂)ψ

where, ψ =
||(Ã−A)ω||∞+maxi∈[1,N](−Aω)

mini∈[1,N](−Ãω)

Proof. For any l ∈ L and ω ∈ ∆K we write

(−lT Ãω) = lT (−Ã+A−A)ω

≤ ∥l∥1∥(A− Ã)ω∥∞ + ∥l∥1 max
i∈[1,N ]

(−Aiω)

≤ ∥l∥1
(
(∥A− Ã)ω∥∞ + max

i∈[1,N ]
Γ

)
≤ D(ω,µ, F̂)

∥(Ã−A)ω∥∞ +maxi∈[1,N ](−Aω)

mini∈[1,N ](−Ãω)

Plugging in the definition of ψ mentioned in the statement of the lemma concludes the proof.

J.2 Useful results from BAI and pure exploration literature

Lemma 7. (Lemma 19 in [GK16]) There exists two constants B and C (depends on µ and ϵ), such
that—

T∑
t=h(T )

P {∥µ̂t − µ∥∞ > ξ(ϵ)} ≤ BT exp(−CT 1
8 )

Lemma 8. [GK16, Lemma 7] For all t ≥ 1 and ∀a ∈ [K], C-Tracking ensuresNa,t ≥
√
t+K2−K

and

max
a∈[K]

|Na,t −
t∑

s=1

ωa,s| ≤ K(1 +
√
t)
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Lemma 9. (Theorem 14 in [KK21]) Let δ > 0, ν be independent one-parameter exponential families
with mean µ and S ⊂ [d]. Then we have,

Pν

[
∃t ∈ N :

∑
a∈S

Ñt,adKL (µt,a, µa) ≥
∑
a∈S

3 ln
(
1 + ln

(
Ñt,a

))
+ |S|T

(
ln
(
1
δ

)
|S|

)]
≤ δ .

Here, T : R+ → R+is such that T (x) = 2h̃3/2

(
h−1(1+x)+ln

(
π2

3

)
2

)
with

∀u ≥ 1, h(u) = u− ln(u) (38)

∀z ∈ [1, e],∀x ≥ 0, h̃z(x) =

{
exp

(
1

h−1(x)

)
h−1(x) if x ≥ h−1

(
1

ln(z)

)
z(x− ln(ln(z))) else

. (39)

Lemma 10. (Lemma 17 in [DK19]) Under the good event GT , there exists a Tϵ such that for T
where h(T ) ⩾ Tϵ C-tracking will satisfy

inf
w∈w∗(µ)

∥∥∥∥Ntt −w

∥∥∥∥
∞
⩽ 3ϵ, ∀t ⩾ 4

K2

ϵ2
+ 3

h(T )

ϵ

Lemma 11. (Theorem 2 in [DKM19b]) The sample complexity of GE is

E[τ ] ⩽ T0(δ) +
eK

a
where

T0(δ) = max
{
t ∈ N : t ⩽ T (µ)c(t, δ) + Cµ

(
Rλ
t +Rw

t +O(
√
t log t)

)}
where Rλ

t is the regret of the instance player, Rw
t the regret of the allocation player and Cµ an

instance-dependent constant.

J.3 Useful definitions and theorems from literature on continuity of convex functions

Definition 2. (Definition of Upper Hemicontinuity) We say that a set-valued function C : Θ → ω is
upper hemicontinuous at the point θ ∈ Θ if for any open set S ⊂ ω with C(θ) ∈ S there exists a
neighborhood U around θ, such that ∀x ∈ U,C(x) is a subset of S.
Theorem 8. (Berge’s maximum theorem, [Ber63]) Let X and Θ be topological spaces. Let f :
X × Θ → R be a continuous function and let C : Θ → X̄ be a compact-valued correspondence
such that C(θ) ̸= ∅∀θ ∈ Θ. If C is continuous at θ then f∗(θ) = supx∈C(θ) f(x, θ) is continuous
and C∗ = {x ∈ C(θ) : f(x, θ) = f∗(θ)} is upper hemicontinuous.

Theorem 9. (Heine-Borel theorem, Eduard Heine and Émile Borel) For a subset S in Rn, the
following two statements are equivalent

1. S is closed and bounded.

2. S is compact, means every open cover of S has a finite sub-cover.
Theorem 10. Let C be a closed convex set with nonempty (topological) interior. Let f and {fr} be
affine functions from En to Em with fr → f . Then

(II.1.2) limr→∞ (H (fr) ∩ C) ⊂ H(f) ∩ C
(II.1.3). limr→∞ (H (fr) ∩ C) is a closed convex subset of H(f) ∩ C,

(II.1.4). If H(f) ∩ C has nonempty interior and no component of f is identically zero, then
limr→∞ (H (fr) ∩ C = H(f) ∩ C
Lemma 12. [MCP14, Lemma 13] ConsiderA ∈ (R+)

k×k
, c ∈ (R+)

k, and T ⊂ (R+)
k×k×(R+)

k.
Define t = (A, c). Consider the function Q and the set-valued map Q⋆

Q(t) = inf
x∈Rk

{cx | Ax ≥ 1, x ≥ 0}

Q⋆(t) = {x : cx ≤ Q(t) | Ax ≥ 1, x ≥ 0}.

Assume that: For all t ∈ T , all rows and columns ofA are non-identically 0 and mint∈T mink ck > 0.
Then, 1. Q is continuous on T , 2. Q⋆ is upper-hemicontinuous on T .
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