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Abstract

Causal abstraction aims at mapping a complex causal model into a simpler ("re-
duced") one. Causal consistency constraints have been established to link the initial
"low-level" model to its "high-level" counterpart, and identifiability results for such
mapping can be established when we have access to some information about high-
level variables. In contrast, we study the problem of learning a causal abstraction
in an unsupervised manner, that is, when we do not have any information on the
high-level causal model. In such setting, there typically exists multiple causally
consistent abstractions, and we need to put additional constraints to unambiguously
select a high-level model. To achieve this, we supplement a Kullback-Leibler-
divergence-based consistency loss with a projection loss, which aims at finding
the causal abstraction that best captures the variations of the low-level variables,
thereby eliminating trivial solutions. The projection loss bears similarity to the
Principal Component Analysis (PCA) algorithm; in this work it is shown to have a
causal interpretation. We experimentally show how the abstraction preferred by
the reconstruction loss varies with respect to the causal coefficients.

1 Introduction

In this paper we are interested in the problem of unsupervised causal reduction; that is, we are
interested in finding aggregation functions from a low-level structural causal model (SCM) to a
high-level SCM of lower dimensions, where the high-level SCM is unknown to us. This is important
because a low-level SCM might be too intricate to analyse for policy makers (after all, policy is one
of the end goals of causality), and a high-level SCM could offer such a simplification in a causal
“consistent” way. Furthermore, if the aggregation function with which the low-level model is itself
interpretable, then we can easily trace back the way in which the variables in the low-level SCM
compose the high-level model.

We propose an unsupervised causal abstraction algorithm. The proposed algorithm can be applied
to linear low-level SCM without restricting the SCM to entail a Directed Acyclic Graph (DAG), so
that cyclic low-level SCM are allowed. The aggregation function is constrained to be linear and
constructive to guarantee an interpretable reduction for policymakers. Beyond these inductive biases,
we introduce a “Projection” or “Reconstruction” loss that prevents the algorithm from choosing trivial
aggregation functions.

*Equal contribution, exact order decided by coin flip.
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The method can be applied to a class of Input-Output (IO or Leontief) models in economics, which
use a matrix to represent the relations between industries in an economy. The matrix represents the
produce (output) of each one of the industries in the model as a linear function of the produce of other
industries (input). The industries in such a model typically represent fine-grained low-level sectors
and thus policy makers find it useful to aggregate into larger sectors. However, they are usually
aggregated by hand, using the intuition of an analyst, or by minimising some measure of bias Kymn
and Norsworthy (1976). We believe that using a causal abstraction method could be an alternative to
the current aggregation methods.

2 Related Work

Causal Abstraction. Since Rubenstein et al. (2017); Beckers and Halpern (2019), the causality
community has been interested in the notion of causal abstraction or representation, aiming at finding
a mapping that aggregates variables of a “microscopic” low-level causal model into “macroscopic”
variables that form a high-level/abstracted causal model, such that interventions at both levels
are consistent with each other. This notably led to exploring the notion of exact transformations
(Rubenstein et al., 2017) and what happens when a non-exact transformation is used for aggregation.

The problem of learning such a causal abstraction with partial information has further been investi-
gated. Zennaro et al. (2023) investigates, in a discrete setting, the case where both low-and high-level
models are known, but the mapping is only partially known. Kekić et al. (2024) investigate the case
where only one "target" node is known in the high level model, and interventional distributions can
be sampled from the low-level model. In the opposite direction, Massidda et al. (2024) characterize
the class of low-level model compatible with a predefined high-level model. To the best of our
knowledge, the case of learning an abstraction of a low-level SCM with observed variables, without
knowledge on the high-level variables, has not yet been addressed successfully. We call this setting
unsupervised abstraction learning.

Zhu et al. (2024) study confoundedness in macro models and define low-level realisations of high-
level interventions. Both concepts are essential in understanding what can we do with the high-level
models, provided we have already defined what they call aggregation maps.

Causal Representation Learning. We can make a parallel between this aim and work in unsu-
pervised causal representation learning (Schölkopf et al., 2021), Locatello et al. (2019). In this
setting, observed variables are assumed to be generated from the mixing of latent variables forming
an unknown latent SCM, using an unknown (typically deterministic) mapping. It is know that
such causal representation cannot be recovered without any further inductive biases. This sparked
a series of works von Kügelgen et al. (2024); Wendong et al. (2024) focusing on the conditions
under which we can identify latent variables and a “mixing function” from observed variables alone
without knowledge of causal structure. They conclude that under certain functional forms of the
aggregation function and/or enough data from different environments where some causal mechanism
is altered (i.e., interventions) (Squires et al., 2023; Buchholz et al., 2024), or different views (i.e.,
counterfactuals), identification holds. Crucially, works in causal representation learning assumes that
there is a ground truth high-level model to be discovered, whereas we do not make this assumption.

3 Background

Definition 3.1 (Structural Causal Model (SCM) Peters et al. (2017)). A D-dimensional structural
causal model is a triplet M = (G,S, PN ) consisting of: (i) a joint distribution PN over exogenous
variables NJ j≤n, (ii) a directed graph G with D vertices, (iii) a set S = {Xd := fd(Pad, Nd), d =

1, · · · , D} of structural equations, where Pad are the parents of variable Xd in G, such that the
system {xd := fd(pad, nd)} has a unique solution in x, PN -almost everywhere.

In this work, we focus on the class of linear structural causal models: a linear structural causal
model is an SCM (Def. 3.1) where there is some A ∈ RD×D such that S contains equations in the
linear system X := AX +N . The existence of solution is equivalent to requiring that (ID −A)
is invertible. In this case, for every n, the solution of M is x = (I(D) − A)−1n, and the joint
distribution over X , PX is well-defined as a pushforward through (I(D) −A)−1 of PN .
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Moreover, we focus on a class of interventions named shift interventions.

Definition 3.2 (Shift interventions and entailed distribution). Given a D-dimensional linear structural
causal model M , a shift intervention is represented by a vector i ∈ RD, and it transforms M
into M (i) := (G,S(i), PN ), where S(i) now contains the equations given by the linear system
X := AX +N + i. We denote the joint distribution over X under a shift intervention i by P

(i)
X .

4 Unsupervised Causal Abstraction

We learn a mapping from a low-level SCM model to a high-level SCM with aggregated vari-
ables. From now on, we use M to denote our D-dimensional low-level linear SCM and M̄ the
D̄-dimensional high-level linear SCM which we learn a mapping to. Let X denote the endogenous
variables of M and Z of M̄ .

Our first learning objective is to encourage the exact transformation between M and M̄ based on
shift interventions (Rubenstein et al., 2017). This requires that there is a mapping between states
τ : RD → RD̄ and a mapping between shift interventions ω : RD → RD̄, such that for any shift
intervention i ∈ RD,

P̂Z,τ

(i)
= P

(ω(i))
Z (1)

where P̂Z,τ

(i)
= τ#

(
P

(i)
X

)
, the pushforward via τ of the i-intervened distribution over X .

τ and ω are standard constructions in the causal abstraction literature (Rubenstein et al., 2017;
Beckers and Halpern, 2019; Kekić et al., 2024), τ is sometimes also known as the aggregation map
(Zhu et al., 2024). Additionally, we place the restriction that τ and ω form a constructive abstraction
(Beckers and Halpern, 2019). That is, there is a so-called alignment function π from {1, · · · , D̄} to
the non-overlapping subsets of {1, · · · , D}, such that τ and ω decompose as

τ = (τ1, · · · , τD̄) with τd̄ : x 7→ τ̄d̄

(
xπ(d̄)

)
(2)

ω = (ω1, · · · , ωD̄) with ωd̄ : i 7→ ω̄d̄

(
iπ(d̄)

)
(3)

Our set-up closely follows Kekić et al. (2024), but they require a known target variable Y , whereas
we do not require this.

Consistency loss. Similar to Kekić et al. (2024), we encourage exact transformation using a
KL-divergence based loss:

Lkl
(
τ ,ω, M̄

)
= Ei∼P (i)

[
KL

(
P̂Z,τ

(i)
∥P (ω(i))

Z

)]
(4)

noting that P (ω(i))
Z is a function of M̄ .

Linearity of τ and ω. We assume both τ and ω are linear maps for interpretability. Thus, onwards
we abuse notation and use τ and ω as matrices in RD̄×D, so the mappings can be viewed as a matrix
multiplied by a vector:

τ (x) = τx (5)
ω(i) = ωi (6)

Moreover, the constructive abstraction constraint is equivalent to requiring that every column of τ
and ω has at most one non-zero element.

Projection loss. A trivial solution which would achieve Lkl = 0 is to set τ = ω = 0. To discourage
this meaningless solution, we introduce a reconstruction loss to encourage the high-level SCM to
retain the maximum amount of information from the low-level data. Specifically, we parameterise
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a projection operator based on the abstraction matrix τ , and require that over all populations of
interventional distributions of X , τ minimises the projection loss:

Lproj(τ ) = E
i∼Pi, X∼P

(i)
X

[
∥X −Pτ (X)∥22

]
(7)

Various choices of Pτ are possible. One option is to construct an orthogonal projection matrix with
τ , and another is to construct a projection using conditional expectation. In this work, we focus on
the former, which we detail in the following.

Orthogonal projection recovers PCA. We will denote the orthogonal projection as P(orth)
τ , con-

struct it as

P(orth)
τ = τ⊤(ττ⊤)−1

τ (8)

It can be easily verified that P(orth)
τ is a projection and is symmetric, and therefore is an orthogonal

projection.

The property that P(orth)
τ is an orthogonal projection helps us connect it to the well-known algorithm

principal component analysis (PCA).
Proposition 4.1. Assuming τ is full-rank, the following equality is true:

arg min
τ∈RD̄×D

E
P

(0)
X

[
∥X −P(orth)

τ X∥22
]
= arg max

τ∈RD̄×D
E
P

(0)
X

[
∥
(
ττ⊤)− 1

2 τX∥22
]

(9)

Remark 4.2. If we assume P
(0)
X has mean 0, then the right hand side of (4.1) achieve the same maxi-

mum as that achieved by PCA over P (0)
X , so we recover the connection between our reconstruction

loss and PCA:

max
τ∈RD̄×D

E
P

(0)
X

[
∥
(
ττ⊤)− 1

2 τX∥22
]
= max

τ∈RD̄×D,
∥τd̄:∥2=1 for d̄=1,··· ,D̄,

τd̄:orthogonal

E
P

(0)
X

[
∥τX∥22

]
(10)

= max
τ∈RD̄×D,

∥τd̄:∥2=1 for d̄=1,··· ,D̄,
τd̄:orthogonal

D̄∑
d̄=1

τ d̄,: covP (0)
X

[X]τ⊤
d̄,: (11)

We next show that, for a general aggregation matrix τ ∈ RD̄×D, Lproj with the orthogonal projection
P

(orth)
τ is the same as the sum of the projections into D̄ orthogonal directions of the sum of second

order statistics of the unintervened X and the shift interventions i.
Theorem 4.3. For any τ ∈ RD̄×D of full rank, define the orthogonal projection loss as

L
(orth)
proj (τ ) := E

i∼Pi, X∼P
(i)
X

[
∥X −P(orth)

τ (X)∥22
]
. (12)

Moreover, let O :=
(
ττ⊤)−1

τ . Then

L
(orth)
proj (τ ) = −

D̄∑
d̄=1

Od̄:

(
cov

P
(0)
X

[X] +
(
I(D) −A

)−1 Ei∼Pi

[
ii⊤

](
I(D) −A

)−1,⊤
)

︸ ︷︷ ︸
Ψ

O⊤
d̄:


+ Constant (13)

Remark 4.4. Ψ in the summand in (13) is the sum of the unintervened covariance of X and the
second order statistic of impact of the shift intervention i on X; therefore it is certainly positive

(semi-)definite. Moreover, O has orthonormal rows since OO⊤ =
(
ττ⊤)− 1

2 ττ⊤(ττ⊤)− 1
2 = ID̄.

The summand in (13) thus computes the projection of the sum second order statistic for unintervened
variables and intervention effects Ψ in the d̄-th orthogonal direction.
Remark 4.5. When Ei∼Pi

[i] = 0, Ei∼Pi

[
ii⊤

]
= covi∼Pi

[i]. In this case, Ψ recovers the covariance
of the marginal over X in the linear model

i ∼ Pi, N ∼ PN , X =
(
I(D̄) −A

)−1

(N + i), i ⊥ N .
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Sum over clusters of PCA projected variances. So far we have not exploited the construction
property of the abstraction matrix τ . A desirable property follows from constructive abstraction -
that the rows of τ are orthogonal. Furthermore, projection along the direction of a row of τ only
attends to a subset of the variables in X . This leads us to the following decomposition of L(orth)

proj for
constructive τ .
Corollary 4.6. Let τ ∈ RD̄×d̄ be a full-rank constructive abstraction matrix, then the following is
true.

L
(orth)
proj (τ )

=
∑D̄

d̄=1
−1∥∥∥τd̄,π(d̄)∥∥∥2

2

τd̄,π(d̄)

(
cov

P
(0)
X

[
Xπ(d̄)

]
+

(
I(D) −A

)−1

π(d̄),: Ei∼Pi

[
ii⊤

](
I(D) −A

)−1,⊤
:,π(d̄)

)
︸ ︷︷ ︸

Ψcons

τ⊤
d̄,π(d̄)


+ Constant (14)

Proof. Immediate by substituting in a constructive τ and observing that
(
ττ⊤) becomes diagonal

with
∥∥τd̄,:∥∥22 on the d̄-th diagonal element.

We focus on strongly enforcing consistency conditions, that is, we require that for the optimum
τ ∗,ω∗, M̄∗, Lkl

(
τ ∗,ω∗, M̄∗) = 0. We thus optimise the following constrained loss using the

definition of L(orth)
proj (τ ) in Theorem 4.3 and Lkl:

τ ∗,ω∗, M̄∗ = arg min
τ ,ω∈RD̄×D, M̄

τ constructive

L
(orth)
proj (τ ) subject to Lkl

(
τ ,ω, M̄

)
= 0 (15)

5 Experiments

Data generation process and optimisation. We consider the linear chain as in Kekić et al. (2024),

X1 X2 X3 X4

with causal mechanism

X = AX +N A =

 0 0 0 0
p21 0 0 0
0 p32 0 0
0 0 p43 0

 N ∼ N
(
0, I(4)

)
(16)

We will explore variations of the parameters pij in two experiments we will describe be-
low. In both experiments, we sample 10k observations from the data generation pro-
cess. We consider all bi-partitions of this chain such that each subset is formed of
contiguous variables in the topological ordering. That is, we consider the partitions
{{X1}, {X2, X3, X4}}, {{X1, X2}, {X3, X4}}, {{X1, X2, X3}, {X4}}. Kekić et al. (2024) pro-
vides a relation in τ1,: and τ2,: such that Lkl = 0,

τ̄1,: ∝ (0, · · · , 0, τ̄2,1) . (17)

Combined with our objective L
(orth)
proj which normalises each τd̄,: the result of Kekić et al. (2024) is

equivalent to setting:

τ̄1,: = (0, · · · , 0, 1) . (18)

We then choose τ 2,: based on minimising L
(orth)
proj , and finally choose the partition with the highest

summed projected covariance for our reduction.

First experiment (one parameter equals 0). In this experiment we consider 3 different scenarios.
In each scenario we will set one of the parameters pij to 0 and the other two to 1. We then compute
the projected covariance for each one of the partitions as explained above. We repeat this process 10
times for each one of the scenarios. The results are shown in Figure 1
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Figure 1: Projected covariance for the three variations of the first experiment. In each figure, we set
one of the parameters of the linear chain to be 0 and the other two to be 1. The x-axis represents the
experiment number.

Figure 2: Projected covariance for the second experiment. The x-axis represents the value of p21
(left) and p21 = 1− p32 (right)

Second experiment (parameter values vary). In the second experiment we see how the projected
covariance varies when some of the parameter values vary. First, we fix p32 and p43 to be 1 and vary
p21 from -1 to 1 in increments of 0.1 totalling 21 different SCM. Second, we fix p43 to be 1 and vary
p21 from 0 to 1 in increments of 0.1 , and let p32 = 1− p21, totalling 11 different SCM. As in the
first experiment, we compute the projected covariance for each of the partitions and see how the
chosen partition changes with changes in the value of the parameter. The results of this experiment
are shown in Figure 2. In Appendix B we include a figure where p32 and p43 are varied independently
as in p21 here.

Results: first experiment. When we set p21 = 0 and p32 = 0, we see that the chosen partition
(that is, the one with the highest projected covariance) is that where pij is set to zero. This follows our
intuition that causally related variables are grouped together by the variance maximisation algorithm.
When p43 is set to 0, the result is more interesting: the variance maximisation algorithms chooses
the partition between X1 and X2. We interpret this as follows: consider the causal model obtained
from marginalising out X4; this is a chain X1 → X2 → X3, with constant causal coefficients equal
to 1. Running our algorithm on this model will result in a partition between X1 and X2, because
variance accumulates down the chain. Now add in another low-level variable independent from the
existing variables, with the inductive bias that it is a child of X3, but with coefficient 0. Suppose the
variance of the added variable is 0, this is identical to the three-variable model - in the sense that
the set of admissible states in this model can be identified with that of the three-variable model - so
the partition should not change. As we increase the variance of the added variable, we would reach
a critical point beyond which the variable varies enough that we should have a separate high-level
variable to represent it, so the partition should be between between the added variable and X3. This
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Figure 3: Projected covariance for the alternative second experiment. The x-axis represents the value
of the standard deviation of X4.

is also confirmed by our algorithm: as Var(X4) → ∞, the partition will at some point jump to be
between X3 and X4. The reason why the partition is currently between X1 and X2 is because the
variance of X4 has not reached the critical value. We showcase this phenomenon on Figure 3.

Results: second experiment. We observe that for all values of p21 the first partition has the highest
projected covariance. This is expected, as given that the other two parameters are 1, the variance of
the other variables is amplified by their noise variables, so that the total variance of X2, X3 and X3

are larger than that of X1. This behaviour, however, is reversed whenever we also vary p32. Again,
this is expected because as p32 gets smaller, the causal influence of X2 over X3 diminishes whereas
there is a causal connection between X1 and X2 so that it is sensible to aggregate those variables into
a single high-level variable.

6 Discussion

We present an algorithm do causal reduction of low-level linear SCM. We force the aggregation map
to be linear and constructive. In addition to these inductive biases we include a “projection” loss that
prevents our algorithm to find trivial solutions. A particular case of the projection loss has similarities
with the classic PCA algorithm. In future work we plan to apply the algorithm to real-world data, in
particular, we are interested in economic Input-Output models.
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A Proofs

Proof of Proposition 4.1. Since P
(orth)
τ is an orthogonal projection, Im

(
P

(orth)
τ

)
⊥ Ker

(
P

(orth)
τ

)
.

But P
(orth)
τ

(
X −P

(orth)
τ X

)
=

(
P

(orth)
τ −P

(orth)
τ

2)
X = 0, so

(
X −P

(orth)
τ X

)
⊥ P

(orth)
τ X .

Therefore, by Pythagoras’ theorem,

∥X −P(orth)
τ X∥22 = ∥X∥22 − ∥P(orth)

τ X∥22 (19)

But X is constant in τ , so

arg min
τ∈RD̄×D

E
P

(0)
X

[
∥X −P(orth)

τ X∥22
]

(20)

=arg min
τ∈RD̄×D

E
P

(0)
X

[
∥X∥22 − ∥P(orth)

τ X∥22
]

(21)

=arg max
τ∈RD̄×D

E
P

(0)
X

[
∥P(orth)

τ X∥22
]

(22)

But assuming τ is full rank,

P(orth)
τ = τ⊤(ττ⊤)−1

τ (23)

= τ⊤(ττ⊤)− 1
2
(
ττ⊤)− 1

2 τ (24)

But note that the rows of
(
ττ⊤)− 1

2 τ are orthogonal, since
(
ττ⊤)− 1

2 ττ⊤(ττ⊤)− 1
2 = ID̄. There-

fore

∥P(orth)
τ X∥22 (25)

=∥τ⊤(ττ⊤)− 1
2
(
ττ⊤)− 1

2 τX∥22 (26)

=∥
(
ττ⊤)− 1

2 τX∥22 (27)

Therefore, the hypothesis follows.

8



Proof of Proposition 4.3. Since P
(orth)
τ is an orthogonal projection, Im

(
P

(orth)
τ

)
⊥ Ker

(
P

(orth)
τ

)
.

But P
(orth)
τ

(
X −P

(orth)
τ X

)
=

(
P

(orth)
τ −P

(orth)
τ

2)
X = 0, so

(
X −P

(orth)
τ X

)
⊥ P

(orth)
τ X .

Therefore, by Pythagoras’ theorem,

∥X −P(orth)
τ X∥22 = ∥X∥22 − ∥P(orth)

τ X∥22 (28)

But X is constant in τ , so

L
(orth)
proj (τ ) (29)

=E
i∼Pi,P

(i)
X

[
∥X −P(orth)

τ X∥22
]

(30)

=E
i∼Pi,P

(i)
X

[
∥X∥22 − ∥P(orth)

τ X∥22
]

(31)

= Constant wrt τ − E
i∼Pi,P

(i)
X

[
∥P(orth)

τ X∥22
]

(32)

But assuming τ is full rank,

P(orth)
τ = τ⊤(ττ⊤)−1

τ (33)

= τ⊤(ττ⊤)− 1
2
(
ττ⊤)− 1

2 τ (34)

But note that the rows of
(
ττ⊤)− 1

2 τ are orthogonal, since
(
ττ⊤)− 1

2 ττ⊤(ττ⊤)− 1
2 = ID̄. There-

fore

∥P(orth)
τ X∥22 (35)

=∥τ⊤(ττ⊤)− 1
2
(
ττ⊤)− 1

2 τX∥22 (36)

=∥
(
ττ⊤)− 1

2 τX∥22 (37)

Taking expectation over Pi. Consider:

Ei∼Pi

[
E
P

(i)
X

[∥∥∥(ττ⊤)− 1
2 τX

∥∥∥2
2

]]
(38)

=Ei∼Pi

[
E
P

(0)
X

[∥∥∥(ττ⊤)− 1
2 τ

(
X +

(
I(D) −A

)−1
i
)∥∥∥2

2

]]
(39)

Let S :=
(
I(D) −A

)−1
denote the solution map for the micro model. The above can be continued

as

Ei∼Pi

[
E
P

(0)
X

[∥∥∥(ττ⊤)− 1
2 τ

(
X +

(
I(D) −A

)−1
i
)∥∥∥2

2

]]
(40)

=Ei∼Pi

[
E
P

(0)
X

[∥∥∥(ττ⊤)− 1
2 τX +

(
ττ⊤)− 1

2 τSi
∥∥∥2
2

]]
(41)

=Ei∼Pi

[
E
P

(0)
X

[∥∥∥(ττ⊤)− 1
2 τX

∥∥∥2
2
+

∥∥∥(ττ⊤)− 1
2 τSi

∥∥∥2
2
+ 2X⊤τ⊤(ττ⊤)− 1

2
(
ττ⊤)− 1

2 τSi

]]
(42)

=Ei∼Pi

[
E
P

(0)
X

[∥∥∥(ττ⊤)− 1
2 τX

∥∥∥2
2
+

∥∥∥(ττ⊤)− 1
2 τSi

∥∥∥2
2
+ 2X⊤τ⊤(ττ⊤)−1

τSi

]]
(43)

=Ei∼Pi

[
E
P

(0)
X

[∥∥∥(ττ⊤)− 1
2 τX

∥∥∥2
2
+

∥∥∥(ττ⊤)− 1
2 τSi

∥∥∥2
2

]]
(44)

since X has mean 0, and continuing the above:

=E
P

(0)
X

[∥∥∥(ττ⊤)− 1
2 τX

∥∥∥2
2

]
+ Ei∼Pi

[∥∥∥(ττ⊤)− 1
2 τSi

∥∥∥2
2

]
(45)
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Figure 4: Projected covariance for the second experiment applied to all parameters The x-axis
represents the value of p21 (left), p32 (center) and p43 (right).

But now using the trace properties, we can manipulate the above to be in terms of second order
statistics:

=E
P

(0)
X

[
Tr

(
X⊤τ⊤(ττ⊤)−1

τX
)]

+ Ei∼Pi

[
Tr

(
i⊤S⊤τ⊤(ττ⊤)−1

τSi
)]

(46)

=E
P

(0)
X

[
Tr

((
ττ⊤)− 1

2 τXX⊤τ⊤(ττ⊤)− 1
2

)]
+ Ei∼Pi

[
Tr

((
ττ⊤)− 1

2 τSii⊤S⊤τ⊤(ττ⊤)− 1
2

)]
(47)

Now, by linearity of expectation:

=Tr
((

ττ⊤)− 1
2 τ E

P
(0)
X

[
XX⊤]τ⊤(ττ⊤)− 1

2

)
+Tr

((
ττ⊤)− 1

2 τS Ei∼Pi

[
ii⊤

]
S⊤τ⊤(ττ⊤)− 1

2

)
(48)

By linearity of trace:

=Tr
((

ττ⊤)− 1
2 τ

(
E
P

(0)
X

[
XX⊤]+ S Ei∼Pi

[
ii⊤

]
S⊤

)
τ⊤(ττ⊤)− 1

2

)
(49)

Substituting back into (32), we obtain the hypothesis.

B Extra results
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