
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Covering K-Cliques in Billion-Scale Graphs
Anonymous Author(s)

Abstract
The k-clique structure in graphs has been investigated in various

real-world applications, such as community detection in complex

networks, functional module discovery in biological networks, and

link spam detection in web graphs. Despite extensive research on 𝑘-

clique enumeration, the large number of k-cliques in many graphs

poses a challenge for practical application and computation. To

address this, we explore the 𝑘-clique 𝜏-cover problem, a general-

ization of the vertex cover problem. The problem aims to find a

small set of vertices that can effectively represent all k-cliques in

the graph. We prove the NP-hardness of finding the minimum k-

clique cover. We propose a hierarchical solution that computes a

small cover without enumerating k-cliques. Extensive experiments

on real-world graphs verify the efficiency and effectiveness of our

solution.

CCS Concepts
• Mathematics of computing→ Graph algorithms.

Keywords
clique, 𝑘-clique, clique cover, vertex cover, set cover

ACM Reference Format:
Anonymous Author(s). 2018. Covering K-Cliques in Billion-Scale Graphs. In

Proceedings of Make sure to enter the correct conference title from your rights
confirmation emai (Conference acronym ’XX). ACM, New York, NY, USA,

10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Given a universe of elements and a collection of subsets whose

union equals the universe, the set cover problem is to find the

smallest sub-collection of these subsets whose union equals the

universe. There have been extensive studies on variants of this

problem in the context of the graph model, such as vertex cover

[3–5, 11], 𝑘-path cover [2, 6, 13, 14] and maximal clique cover [25].

Given an undirected graph𝐺 , a 𝑘-clique is a subgraph of𝐺 with

𝑘 vertices that are pairwise adjacent. The 𝑘-clique model has a

wide range of real-world applications, such as identifying overlap-

ping communities of complex networks in nature and society [28],

discovering functionally related modules in gene (protein) associa-

tion networks [1], link spam detection in web graphs [19, 29], and

finding 𝑘-clique communities in mobile networks [15, 17]. While

extensive research has been conducted on listing 𝑘-cliques, the

number of 𝑘-cliques in many real-world graphs is often very large,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

making a significant challenge in its applications. For instance, a

graph might contain 𝑂 (3
𝑛
3) 𝑘-cliques [27], where 𝑛 is the number

of vertices. Many 𝑘-cliques tend to overlap, and this overlap can be

utilized to reduce the number of 𝑘-cliques in practical applications.

Instead of directly using all 𝑘-cliques, an alternative approach lever-

ages this overlap to select a subset of vertices that can represent all

𝑘-cliques.

We study the 𝑘-clique 𝜏-cover problem, which is a generalization

of the vertex cover problem. Given a graph, a vertex set is called a 𝑘-

clique 𝜏-cover of the graph if the vertex set overlaps every 𝑘-clique

in the graph with at least 𝜏 vertices. Unlike the exponential number

of 𝑘-cliques, the 𝑘-clique 𝜏-cover size is clearly bounded by the

number of vertices. Additionally, the 𝑘-clique 𝜏-cover can ensure

that a specific portion of every community is covered, which is use-

ful in practical applications. For instance, in advertising, covering

a subset of a clique can enable message propagation to eventually

reach all its members, making this marketing strategy more cost-

effective than reaching everyone at once. In particular, as shown

in our case study Section 6.3, the 𝑘-clique 𝜏-cover outperforms the

maximal clique cover [25] in group buying advertising [8].

In this paper, we investigate how to find a small 𝑘-clique 𝜏-cover.

We prove that the optimization version of this problem - finding

the minimum 𝜏-cover is NP-hard. To find a small cover, a straight-

forward approach is to precompute all 𝑘-cliques and then use a

greedy algorithm to iteratively select high-degree vertices from

each uncovered 𝑘-clique until all 𝑘-cliques are covered. To mitigate

the expensive computational cost of precomputing all 𝑘-cliques, we

first propose an improved approach that integrates 𝑘-clique listing

and cover computation. It allows early termination of enumerating

𝑘-cliques based on certain heuristics. Despite pruning techniques,

this method may be less effective when there are numerous cliques

in large graphs, and there is no clear tight worst-case time com-

plexity compared with the naive approach.

To further improve the efficiency, we observe that a vertex cover

can be seen as a 2-clique cover, and we extend this observation to

compute a 𝑘-clique 𝜏-cover. We propose a bottom-up hierarchical

approach that computes the cover without enumerating 𝑘-cliques.

Our method runs 𝑘 iterations to obtain a 𝑘-clique 𝜏-cover in𝑂 (𝑘 ·𝑚)
time, where 𝑚 is the number of edges. This approach improves

efficiency by avoiding the time-consuming 𝑘-clique enumeration

process while maintaining correctness. In addition, we apply several

pruning strategies to reduce the cover size. We also discuss ideas

for updating the cover when the graph updates in the Appendix.

We summarize our main contributions as follows.

- We formulate and study the 𝑘-clique 𝜏-cover problem. We prove

the NP-hardness of finding the minimum 𝑘-clique 𝜏-cover. We

present an improved approach to compute a small cover based

on the 𝑘-clique listing.

- We propose an efficient hierarchical solution to compute a small

cover without listing the 𝑘-cliques.

- We conduct extensive experiments on ten real-world graphs. The

results verify the efficiency of our hierarchical solution.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

v7v7

v4v4
v1v1

v6v6

v3v3

v8v8

v5v5

v2v2

v9v9

Figure 1: An undirected graph 𝐺 .

2 Preliminaries
We study an undirected graph𝐺 (𝑉 , 𝐸), where𝑉 is the set of vertices

and 𝐸 is the set of edges. We use 𝑛 and 𝑚 to denote |𝑉 | and |𝐸 |,
respectively. The set of neighbors of a given vertex 𝑣 is denoted by

𝑁𝑣 . We assume that the graph has no self-loops and no duplicate

edges. Given a graph 𝐺 (𝑉 , 𝐸), an induced subgraph of a vertex set

𝑆 (denoted by𝐺 [𝑆]) includes all vertices in 𝑆 and all edges between

them from𝐺 , i.e.𝐺 [𝑆] = (𝑆, {(𝑢, 𝑣) ∈ 𝐸 |𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆}). A 𝑘-clique

𝐶 is a subgraph of 𝐺 with 𝑘 vertices that are pairwise adjacent.

When the context is clear, we consider 𝐶 as a vertex set. The set of

all 𝑘-cliques in 𝐺 is denoted by C(𝐺,𝑘).

Definition 2.1 (𝑘-Clique 𝜏-Cover and 𝑘-Clique Cover). Given a

graph 𝐺 , a vertex set S is called a 𝑘-clique 𝜏-cover of 𝐺 if ∀𝐶 ∈
C(𝐺,𝑘), we have |𝐶 ∩ S| ≥ 𝜏 . We call S a 𝑘-clique cover if 𝜏 = 1.

In this paper, given a graph 𝐺 , two integers 𝑘 and 𝜏 , we aim to

compute a small vertex set S that is a 𝑘-clique 𝜏-cover of 𝐺 .

Example 2.2. Figure 1 shows an undirected graph𝐺 . Given 𝑘 = 4,

the 4-cliques in 𝐺 are {𝑣1, 𝑣4, 𝑣5, 𝑣7}, {𝑣2, 𝑣3, 𝑣5, 𝑣8}, {𝑣2, 𝑣3, 𝑣5, 𝑣9},
{𝑣2, 𝑣3, 𝑣8, 𝑣9}, {𝑣2, 𝑣5, 𝑣8, 𝑣9}, and {𝑣3, 𝑣5, 𝑣8, 𝑣9}. The vertex set {𝑣2, 𝑣5}
forms a 4-clique cover of 𝐺 . If 𝜏 = 2, the vertex set {𝑣2, 𝑣3, 𝑣5, 𝑣7}
forms a 4-clique 2-cover of 𝐺 .

Theorem 2.3. Computing the minimum 𝑘-clique 𝜏-cover for any
𝑘 ≥ 2 and 𝜏 ≥ 1 is NP-hard.

Proof. For 𝜏 = 1, the problem is equivalent to the well-known

NP-hard hitting set problem [20]. Given a collection of subsets of

𝑉 , the hitting set problem is to find the smallest subset S ∈ 𝑉 that

intersects every set in the collection. In this context, each 𝑘-clique

corresponds to a subset of 𝑉 . For 𝜏 > 1, the problem remains NP-

hard, as it can be reduced from the set cover problem, which is also

NP-hard [20, 25]. □

Note that finding the minimum 𝜏-cover for maximal cliques is

also NP-hard [25].

3 Related Work
3.1 K-Clique Enumeration
The problem of listing 𝑘-cliques has been extensively studied. Chiba

and Nishizeki [9] introduced the first practical algorithm for listing

𝑘-cliques. Building on their work, Finocchi et al. [12] improved

the algorithm using a degree ordering technique. Danisch et al.

[10] refined the algorithm with a degeneracy ordering technique.

Li et al. [24] later developed a hybrid algorithm that combines

degeneracy and color ordering techniques. Additionally, Yuan et

al. [35] increased the algorithm efficiency by implementing single

instruction multiple data (SIMD) instructions. Most recently, Wang

et al. [33] proposed a branch-and-bound algorithm incorporating

an edge-oriented branching strategy.

In addition to the 𝑘-clique listing problem, the 𝑘-clique densest

subgraph problem has received much attention [16, 31, 32, 36]. This

problem aims to find the subgraph with the highest 𝑘-clique density,

defined as the ratio of the number of 𝑘-cliques to the number of

vertices in it [32]. Sun et al. [31] developed a simple algorithm

to find 𝑘-clique densest subgraphs. However, the algorithm is not

scalable for large 𝑘 values and large-scale graphs because it needs to

list all 𝑘-cliques repeatedly in each iteration. To alleviate this issue,

He et al. [16] proposed an index structure that accelerates 𝑘-clique

listing based on the succinct clique tree [18]. Additionally, Zhou

et al. [36] proposed a framework that relies on 𝑘-clique counting

rather than listing, which is usually much faster.

3.2 Other Covering Problems
Several other covering problems have been explored in the liter-

ature. Karp [20] formulated the vertex cover problem and estab-

lished it as one of the fundamental NP-complete problems. Since

then, many heuristics have been proposed to address this problem

[3, 5, 11]. Notably, Angel et al. [4] provided a comprehensive evalu-

ation of various heuristics for the vertex cover problem. Bresar et al.

[6] introduced the problem of finding the minimum 𝑘-path cover.

Subsequently, Funke et al. [13, 14] devised efficient algorithms

to compute small 𝑘-path covers and explored various application

scenarios. Furthermore, Akiba et al. [2] proposed a hierarchical

approach to compute and dynamically maintain 𝑘-path covers. Re-

cently, Li et al. [25] studied the problem of finding a vertex set that

approximately covers all maximal cliques with a given coverage

threshold.

4 Covering By Listing K-Cliques
A straightforward solution is to precompute all 𝑘-cliques. Then, for

each uncovered 𝑘-clique, we iteratively select the highest-degree

vertices within the clique into the cover set until the clique is cov-

ered. However, listing all 𝑘-cliques is time-consuming. In this sec-

tion, we propose an algorithm to identify the cover by avoiding

listing all 𝑘-cliques. Section 4.1 reviews the algorithm for 𝑘-clique

listing. Section 4.2 proposes the algorithm for computing 𝑘-clique

𝜏-cover.

4.1 The KClist Algorithm
The state-of-the-art algorithm for 𝑘-clique listing is called KClist
[10]. The algorithm is based on a vertex order and adopts a depth-

first search paradigm. The pseudocode is presented in Algorithm 1.

Given a vertex order, the algorithm first generates a directed acyclic

graph (DAG)

−→
𝐺 by linking each vertex to its lower-ranking neigh-

bors (line 1). Several orders have been investigated to improve the

efficiency of 𝑘-clique listing including degree, degeneracy, or other

graph metrics [24]. The KClist algorithm uses the degeneracy order

to minimize the number of out-neighbors for each vertex in the

DAG, which helps reduce the search space in the algorithm. We will

discuss the effect of different ordering strategies on our problem

in the next section. The algorithm invokes a recursive procedure,

ProcKCL (line 2) to enumerate 𝑘-cliques based on the DAG.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Covering K-Cliques in Billion-Scale Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Algorithm 1: KClist(𝐺,𝑘)
Input: A graph 𝐺 (𝑉 , 𝐸) and a positive integer 𝑘

Output: All k-cliques in 𝐺
1
−→
𝐺 ← a DAG generated by a total ordering on 𝑉 ;

2 ProcKCL(−→𝐺 , ∅, 𝑘);
3 Procedure ProcKCL(−→𝐺 ,𝐶, 𝑘)
4 if 𝑘 = 2 then
5 foreach edge ⟨𝑢, 𝑣⟩ ∈ 𝐸 (−→𝐺) do
6 output a k-clique 𝐶 ∪ {𝑢, 𝑣};

7 else
8 foreach vertex 𝑣 ∈ 𝑉 (−→𝐺) do
9

−→
𝐺 𝑣 ←

−→
𝐺 [𝑁 +𝑣];

10 ProcKCL(−→𝐺 𝑣,𝐶 ∪ {𝑣}, 𝑘 − 1);

ProcKCL takes the following input parameters: a DAG

−→
𝐺 , a par-

tial clique𝐶 and a positive integer 𝑘 . When 𝑘 ≠ 2 in ProcKCL (lines
7–10), it processes each vertex by recursively creating a subgraph

−→
𝐺 𝑣 induced by its outgoing neighbors 𝑁 +𝑣 and adding the vertex

to the current partial clique. When 𝑘 = 2 in ProcKCL (lines 4–6),

it iterates over all edges in the subgraph to form and output 𝑘-

cliques. The worst-case time complexity of the KClist algorithm is

𝑂 (𝑘𝑚(𝛿/2)𝑘−2), where 𝛿 is the graph degeneracy.

4.2 Our Approach: KCCB
We propose an algorithm that integrates the process of computing

covering vertices with the KClist algorithm. Our approach utilizes

the intermediate cover set during the computation and certain

pruning techniques to enable early termination of enumerating

𝑘-cliques. By doing so, we effectively reduce the search space of

unexplored cliques that have already been covered. The pruning

technique is based on the cover lower bound defined as follows.

Definition 4.1 (Cover Lower Bound). Given a partial cover set S
and a vertex set 𝐶 , the cover lower bound of 𝐶 is the number of

vertices in 𝐶 that are also in S, i.e., |𝐶 ∩ S|.

Based on Definition 4.1, when we find a covered partial clique

(i.e., its cover lower bound is not less than 𝜏), the algorithm can

safely stop expansion from the partial clique since all 𝑘-cliques

containing the partial clique must have been covered. When the

algorithm finds an uncovered 𝑘-clique (i.e., its cover lower bound

is less than 𝜏), the algorithm picks certain vertices to cover the

𝑘-clique.

We present our algorithm called KCCB with the lower-bound-

based pruning technique inAlgorithm 2. Compared toKClist,KCCB
achieves higher practical efficiency given the pruning techniques.

We first generate a DAG using the degree ordering on 𝑉 (line 1).

We choose the degree ordering because we wish to start with low-

degree vertices and postpone the more complex computations as-

sociated with high-degree vertices. During the computation, we

prioritize the high-degree vertices as the cover, thus reducing a

significant portion of the high-degree related computation. When

𝑘 = 0 (lines 4–8), after listing an uncovered 𝑘-clique, we iteratively

Algorithm 2: KCCB(𝐺,𝑘, 𝜏)
Input: A graph 𝐺 (𝑉 , 𝐸), two positive integers 𝑘 and 𝜏

Output: A 𝑘-clique 𝜏-cover S
1
−→
𝐺 ← a DAG generated by the degree ordering on 𝑉 ;

2 ProcKCC(−→𝐺 , ∅, 𝑘, ∅);
3 Procedure ProcKCC(−→𝐺 ,𝐶, 𝑘,S)
4 if 𝑘 = 0 then
5 foreach vertex 𝑣 ∈ 𝐶 in decreasing degree order do
6 𝐶 ∪ {𝑣},S ← S ∪ {𝑣};
7 Compute 𝜏 by Equation (1);

8 if 𝜏 ≥ 𝜏 then break;

9 else
10 foreach vertex 𝑣 ∈ 𝑉 (−→𝐺) do
11 𝐶 ∪ {𝑣},−→𝐺 𝑣 ←

−→
𝐺 [𝑁 +𝑣];

12 Compute 𝜏 by Equation (1), 𝐶 \ {𝑣};
13 if 𝜏 ≥ 𝜏 then continue;

14 ProcKCL(−→𝐺 𝑣,𝐶 ∪ {𝑣}, 𝑘 − 1,S);

add vertices from the 𝑘-clique in decreasing degree order until the

cover lower bound satisfies the predefined threshold 𝜏 . We priori-

tize vertices with higher degrees here to reduce the cover size as

they are more likely to appear in multiple 𝑘-cliques. When 𝑘 ≠ 0

(lines 9–14), after adding a vertex to the current partial clique, we

compute the cover lower bound to determine whether to continue

the computation (lines 12–13). Based on the observation on the

KClist enumeration process, we derive the following lemma and

equation for the cover lower bound.

Lemma 4.2. Given a cover set S, a partial clique 𝐶 and a positive
integer 𝑘 , for any 𝑘-clique extended by 𝐶 , its cover lower bounds 𝜏
satisfy:

𝜏 ≥ |𝐶 ∩ S| +max{0, 𝑘 − |𝐶 | − |𝑁 +𝑣 − S|} (1)

In this equation, 𝐶 represents the current partial clique, S repre-

sents the current cover set, and 𝑁 +𝑣 denotes the outgoing neighbors

of the last vertex 𝑣 added to 𝐶 . The cover lower bound consists of

two parts. The first one |𝐶 ∩ S| computes the current coverage.

The second one max{0, 𝑘 − |𝐶 | − |𝑁 +𝑣 − S|} computes the mini-

mum possible coverage gain in the unexplored subgraph. To form

a 𝑘-clique, we need 𝑘 − |𝐶 | additional vertices from the vertex set

𝑁 +𝑣 of the unexplored subgraph. |𝑁 +𝑣 − S| represents the number

of vertices in the unexplored subgraph that are not in the current

cover set. To compute the minimum possible coverage gain, we first

determine the maximum possible number of vertices in the 𝑘-clique

that are not in the current cover set in the worst case. This is given

by |𝑁 +𝑣 − S|. The remaining vertices needed to form the 𝑘-clique

must be in the current cover set, and the number of these vertices

represents the minimum possible coverage gain in the unexplored

subgraph. Lastly, we subtract the number of vertices in the unex-

plored subgraph but not in the current cover set from 𝑘 − |𝐶 | and
use the max function to ensure the final value is non-negative.

Example 4.3. Figure 2 shows a running example of Algorithm 2

for 𝑘 = 4 and 𝜏 = 2. Shaded vertices represent those included

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

v4v4

v1v1

v7v7

v5v5

v3v3

v8v8

v2v2

v9v9 v5v5

v9v9

v5v5

v8v8

v9v9

v5v5

v3v3

v8v8

v5v5

v9v9

Figure 2: A running example of KCCB.

in the cover, while vertices surrounded by dashed lines indicate

those excluded by our pruning strategy. For instance, given S =

{𝑣5, 𝑣7, 𝑣8, 𝑣9}, 𝐶 = {𝑣2, 𝑣3, 𝑣9}, 𝑣 = 𝑣9, and 𝑁 +𝑣 = {𝑣5}, we have

𝜏 ≥ 2 = 𝜏 according to Equation (1), and we can stop further

expansion from 𝐶 to {𝑣2, 𝑣3, 𝑣9, 𝑣5}. As shown in the figure, this

pruning strategy effectively reduces the enumeration of 𝑘-cliques

by more than half.

The main limitation of Algorithm 2 lies in the computational

bottleneck of listing 𝑘-cliques. Although the method incorporates a

pruning strategy, its effectiveness can vary considerably in different

datasets and mainly depends on the degree of overlap between

𝑘-cliques and the number of 𝑘-cliques in the graph. When there

is a small overlap between 𝑘-cliques or numerous 𝑘-cliques, the

computation will be extremely slow because it needs to list all 𝑘-

cliques in the worst case. This limitation inherently restricts the

scalability of themethod, particularly for large and complex graphs.

5 The Hierarchical Approach
To improve the efficiency of covering 𝑘-cliques, we aim to develop

an algorithm without listing any 𝑘-cliques. To this end, we first

focus on the 𝑘-clique covering problem (i.e., 𝜏 = 1) and propose a

hierarchical approach in Section 5.1. We then present the algorithm

in Section 5.2. After that, we extend our solution to the 𝑘-clique

𝜏-cover problem (i.e., 𝜏 ≥ 1).

5.1 𝑘-Clique Cover Hierarchy
Given an undirected graph𝐺 (𝑉 , 𝐸), a vertex cover is a subset 𝑅 ⊆ 𝑉
such that for every edge ⟨𝑢, 𝑣⟩ ∈ 𝐸, we have 𝑢 ∈ 𝑅 or 𝑣 ∈ 𝑅.

Extensive studies have been conducted to compute a small vertex

cover [3, 5, 11]. The vertex cover is clearly a 2-clique cover since

each edge is a 2-clique. Our intuition is to start from the 2-clique

cover and iteratively extend a 𝑘-clique cover to a (𝑘 + 1)-clique
cover.

Example 5.1. Figure 3 shows an example of a vertex cover and its

induced subgraph. The shaded vertices in Figure 3(a) are the vertex

cover of 𝐺 . Figure 3(b) is the subgraph induced by the vertex cover.

Our idea is that the vertex cover of the subgraph induced by a

𝑘-clique cover forms a (𝑘 + 1)-clique cover of the original graph.
The following lemma and theorem formalize this idea.

Lemma 5.2. Given a (𝑘+1)-clique, at least two vertices are required
to cover all 𝑘-cliques within the (𝑘 + 1)-clique.

Proof. A (𝑘 + 1)-clique contains 𝑘 distinct 𝑘-cliques, each dif-

fering by exactly one vertex. If only one vertex is used to cover

the 𝑘-clique, there will be a 𝑘-clique that is not covered due to

v7v7

v4v4
v1v1

v6v6

v3v3

v8v8

v5v5

v2v2

v9v9

(a) A vertex cover of𝐺 .

v7v7

v4v4 v3v3

v8v8

v5v5

v2v2

(b) The subgraph induced by
the vertex cover of𝐺 .

Figure 3: Example of a vertex cover and its induced subgraph.

this different vertex. Therefore, at least two vertices are needed to

ensure that all 𝑘-cliques are covered. □

Theorem 5.3. Given a graph𝐺 and its 𝑘-clique cover S, the vertex
cover of the induced subgraph 𝐺 [S] is a (𝑘 + 1)-clique cover of 𝐺 .

Proof. By Lemma 5.2, at least two vertices are needed to cover

the 𝑘-cliques within a (𝑘 + 1)-clique. Every two vertices share an

edge because they belong to the same (𝑘 + 1)-clique. Based on this

observation, we compute the vertex cover of 𝐺 [S], ensuring that
at least one endpoint of each edge is included. This guarantees that

the resulting cover forms a (𝑘 +1)-clique cover, which has a smaller

size compared to the 𝑘-clique cover. □

Motivated by Theorem 5.3, we first compute a vertex cover of the

original graph, which forms a 2-clique cover since each edge rep-

resents a 2-clique. We then iteratively compute the corresponding

induced subgraph and vertex cover to obtain a 𝑘-clique cover for

each subsequent 𝑘 . Based on this idea, we define a 𝑘-clique cover

hierarchy, which represents the iterative process of constructing a

𝑘-clique cover, consisting of a sequence of graphs and vertex sets.

Formally, we define the 𝑘-clique cover hierarchy as follows.

Definition 5.4 (𝑘-Clique Cover Hierarchy). A 𝑘-clique cover hi-

erarchy H(G,R) of a graph 𝐺 (𝑉 , 𝐸) consists of a sequence of

graphs G = (𝐺0,𝐺1,𝐺2, ...,𝐺𝑘−1) and a sequence of vertex sets

R = (𝑅0, 𝑅1, 𝑅2, ..., 𝑅𝑘−1) that satisfy the following conditions.

(1) 𝐺0 = 𝐺, 𝑅0 = 𝑉 .

(2) 𝑅𝑖 is a vertex cover of 𝐺𝑖−1 for 1 ≤ 𝑖 ≤ 𝑘 − 1.
(3) 𝐺𝑖 = 𝐺 [𝑅𝑖] for 1 ≤ 𝑖 ≤ 𝑘 − 1.

The following theorem generalizes Theorem 5.3 in the context

of the 𝑘-clique cover hierarchy.

Theorem 5.5. Given a graph 𝐺 (𝑉 , 𝐸) and its 𝑘-clique cover hier-
archy H(G,R). For any induced subgraph 𝐺𝑖 = 𝐺 [𝑅𝑖], the vertex
cover 𝑅𝑖 of 𝐺𝑖−1 is an (𝑖 + 1)-clique cover of 𝐺 , where 1 ≤ 𝑖 ≤ 𝑘 − 1.

Proof. We prove this theorem by induction on 𝑖 . For 𝑖 = 1,

𝐺0 = 𝐺 and 𝑅0 = 𝑉 . The vertex cover 𝑅1 of 𝐺0 covers all edges in

𝐺 , implying 𝑅1 forms a 2-clique cover since each edge is a 2-clique.

Assume that for certain 𝑖 ≥ 1, 𝑅𝑖 is an (𝑖 + 1)-clique cover of 𝐺 . By

Theorem 5.3,𝑅𝑖+1, which is the vertex cover of the induced subgraph
𝐺𝑖 = 𝐺 [𝑅𝑖], forms an (𝑖 + 2)-clique cover of𝐺 . By induction, for all

1 ≤ 𝑖 ≤ 𝑘 − 1, the vertex cover 𝑅𝑖 of 𝐺𝑖−1 is an (𝑖 + 1)-clique cover
of 𝐺 . □

Example 5.6. Figure 4 shows a 𝑘-clique cover hierarchy where

𝑘 = 3. The hierarchy consists of three graph layers, 𝐺0, 𝐺1, and 𝐺2,

from bottom to top. In each layer, the shaded vertices represent

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Covering K-Cliques in Billion-Scale Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

v7v7

v4v4
v1v1

v6v6

v3v3

v8v8

v5v5

v2v2

v9v9

v7v7

v4v4 v3v3

v8v8

v5v5

v2v2

v4v4 v3v3
v5v5

v2v2

G0

G1

G2

Figure 4: The 𝑘-clique cover hierarchy G of 𝐺 .

the vertex cover of that layer. The graph in each upper layer is an

induced subgraph of the layer directly below it. The topmost layer

𝐺2 represents a 3-clique cover of the original graph 𝐺 .

5.2 The Algorithm
This section presents our algorithm for constructing a 𝑘-clique

cover hierarchy. Before that, we introduce optimizations to reduce

the cover size while maintaining correctness. We apply two existing

techniques (core number [7, 23, 30] and graph color [24, 34]) to

the 𝑘-clique cover. We observe that certain vertices in the cover

set do not belong to any 𝑘-cliques or are part of 𝑘-cliques already

covered by other vertices. Core number pruning identifies vertices

unlikely to belong to any 𝑘-cliques. The core number of a vertex

is the largest integer 𝑘 such that the vertex is part of a 𝑘-core, a

maximal subgraph where every vertex has at least degree 𝑘 [30].

Since every 𝑘-clique forms a (𝑘 − 1)-core, we reduce the candidate
set by pruning vertices whose core number is less than 𝑘 − 1. This
computation can be completed in 𝑂 (𝑚) time [7, 23]. Graph color

pruning further refines the 𝑘-clique cover. In this pruning strategy,

adjacent vertices are assigned different colors, and because every

𝑘-clique must have at least 𝑘 distinct colors, we prune vertices with

insufficient colors in their neighborhoods. This technique can be

performed in𝑂 (𝑚) time using a greedy algorithm [34]. Specifically,

for each vertex 𝑣 ∈ S, we count the number of distinct colors in

its neighborhood 𝑁𝑣 that are not part of the 𝑘-clique cover S. This
count is represented as 𝜒 (𝑁𝑣 \ S).

Lemma 5.7. Given a 𝑘-clique cover S and a coloring of 𝐺 [𝑉 \ S],
let 𝑣 be a vertex in S such that 𝜒 (𝑁𝑣 \S) < 𝑘 − 1, then S \ 𝑣 remains
a valid 𝑘-clique cover.

Proof. We consider two cases for the vertex 𝑣 : (1) 𝑣 is the only

vertex chosen in a 𝑘-clique. The removal of 𝑣 from S is not possible

because 𝜒 (𝑁𝑣 \ S) ≥ 𝑘 − 1. (2) 𝑣 is not the only vertex chosen in a

𝑘-clique. When 𝑣 is removed from S, we assign a minimal color to 𝑣

based on 𝑁𝑢 \ S. Consequently, 𝜒 (𝑁𝑢 \ S) may increase by one for

any 𝑢 ∈ S ∩ 𝑁𝑣 . This reassignment of colors ensures that at least

one vertex remains to cover each 𝑘-clique, thereby maintaining the

validity of S \ 𝑣 as a 𝑘-clique cover. □

The pseudocode for graph color pruning is presented in Algo-

rithm 3. We first assign minimal colors to the vertices in 𝑉 \ S
based on the induced subgraph𝐺 [𝑉 \ S] (line 1). For each vertex 𝑣

in the 𝑘-clique cover S, we check the number of different colors

v7v7

v4v4
v1v1

v6v6

v3v3

v8v8

v5v5

v2v2

v9v9

cn=4

cn=4

cn=4

cn=4

cn=4

cn=3

cn=3

cn=3

cn=2

(a) Core number pruning

v7v7

v4v4
v1v1

v6v6

v3v3

v8v8

v5v5

v2v2

v9v9

(b) Graph color pruning

Figure 5: Illustration of two pruning strategies.

Algorithm 3: ColorPruning(𝐺,𝑘,S)
Input: A graph 𝐺 (𝑉 , 𝐸), a positive integer 𝑘 and a 𝑘-clique

cover S
Output: A pruned 𝑘-clique cover

1 assign minimal colors to 𝑉 \ S based on 𝐺 [𝑉 \ S];
2 foreach 𝑣 ∈ S do
3 if 𝜒 (𝑛𝑏𝑣 \ S) < 𝑘 − 1 then
4 S ← S \ 𝑣 ;
5 assign a minimal color to 𝑣 based on 𝑁𝑣 \ S;

6 return S

in its neighborhood, excluding any neighbors that are part of the

𝑘-clique cover (line 3). If the number of different colors is greater

than or equal to 𝑘 − 1, we retain the vertex in the 𝑘-clique cover.

Otherwise, we remove the vertex from the 𝑘-clique cover and assign

it a minimal color (lines 4-5). We then proceed to the next vertex

(line 2).

Example 5.8. Figure 5(a) shows the core number of each vertex.

Figure 5(b) shows the minimal graph coloring.

Our final algorithm for constructing a 𝑘-clique cover hierarchy is

detailed in Algorithm 4. Based on the core number pruning strategy,

we initialize the first layer with the original graph and its vertices

whose core number is greater than or equal to 𝑘 − 1 (line 2). We

then iteratively compute the vertex cover of the previous layer’s

graph and use it to construct the induced subgraph for the current

layer (lines 4-5). It is worth noting that when constructing the new

induced subgraph, we base it on the preceding induced subgraph

rather than the original graph. This approach is more efficient be-

cause the new induced subgraph is a subgraph of the preceding

one, which reduces the graph size and improves construction effi-

ciency (line 5). Based on Theorem 5.3 and Theorem 5.5, we repeat

this process for 𝑘 − 1 iterations to obtain the 𝑘-clique cover of the

original graph (line 4). After obtaining the 𝑘-clique cover, we call

Algorithm 3 to refine it (line 6).

Lemma 5.9. The time complexity of Algorithm 4 is 𝑂 (𝑘 ·𝑚).

Proof. The core number computation and pruning take 𝑂 (𝑚)
time. The 𝑘 − 1 iterations of vertex cover computation and induced

subgraph construction take 𝑂 (𝑘 · 𝑚) time. Finally, the minimal

graph coloring and pruning take 𝑂 (𝑚). Therefore, the total time

complexity is 𝑂 (𝑘 ·𝑚). □

A key step in our hierarchical approach is finding a high-quality

(small) vertex cover for a graph 𝐺 (𝑉 , 𝐸). Although the minimum

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Algorithm 4: KCC(𝐺,𝑘, 𝜏)
Input: A graph 𝐺 (𝑉 , 𝐸) and a positive integer 𝑘

Output: A 𝑘-clique cover of 𝐺

1 compute the (𝑘 − 1)-core of 𝐺 ;
2 𝐺0 ← 𝐺, 𝑅0 ← {𝑣 |𝑣 ∈ 𝑉 : 𝑐𝑜𝑟𝑒 (𝑣) ≥ 𝑘 − 1};
3 for 𝑖 ← 1, 2, ..., 𝑘 − 1 do
4 𝑅𝑖 ← VertexCover(𝐺𝑖−1);
5 𝐺𝑖 ← the induced subgraph of 𝑅𝑖 in 𝐺𝑖−1;

6 return ColorPruning(𝐺 [𝑅0], 𝑘, 𝑅𝑘−1)

vertex cover problem is NP-complete [20], several heuristics have

been proposed to find a small vertex cover [3–5, 11]. Let 𝑅 be the

vertex cover under construction. For each 𝑢 ∈ 𝑉 , we consider the
following heuristics:

- LR: Add 𝑁𝑣 to 𝑅 if 𝑣 ∉ 𝑅.

- LL: Add 𝑢 to 𝑅 if {𝑣 |𝑣 ∈ 𝑁𝑢 ∧ 𝑣 ∉ 𝑅 ∧ 𝑣 > 𝑢} ≠ ∅.
- SLL: Add 𝑢 to 𝑅 if {𝑣 |𝑣 ∈ 𝑁𝑢 ∧ 𝑣 ∉ 𝑅 ∧ [𝑑𝑒𝑔(𝑣) < 𝑑𝑒𝑔(𝑢) ∨
(𝑑𝑒𝑔(𝑣) = 𝑑𝑒𝑔(𝑢) ∧ 𝑣 > 𝑢)]} ≠ ∅.
Among these heuristics, LR does not use any vertex ordering, LL

uses simple vertex ID ordering, and SLL uses decreasing degree or-

dering. In our approach, we employ the reverse degeneracy (RD), as

described in [2], which prioritizes vertices with the most uncovered

edges. We compare these heuristics in our experiments.

5.3 Extending to 𝑘-Clique 𝜏-Cover
In this section, we extend our solution for 𝑘-clique cover to the

𝑘-clique 𝜏-cover problem (i.e., 𝜏 ≥ 1). We examine the relationship

between a 𝜏-cover (𝜏 = 1) and a 𝜏-cover (𝜏 ≥ 1) and observe that a

𝑘-clique consists of 𝑘 (𝑘 − 1)-cliques. The intuition is to compute a

𝑘-clique 𝜏-cover based on the (𝑘−1)-clique cover. Specifically, if we
have a cover for all (𝑘 − 1)-cliques within all 𝑘-cliques, this cover

will also be a 𝑘-clique 2-cover. For example, a 2-clique cover is also

a 3-clique 2-cover because a 3-clique consists of three 2-cliques,

and we need at least two vertices to cover these 2-cliques within

the 3-clique. The following lemma formalizes and generalizes this

observation.

Lemma 5.10. Given a graph 𝐺 , a 𝑘-clique 𝜏-cover of 𝐺 is also a
(𝑘 + 1)-clique (𝜏 + 1)-cover of 𝐺 .

Proof. A (𝑘 +1)-clique contains 𝑘 𝑘-cliques, each differing from
the others by exactly one vertex. Therefore, the 𝜏-cover of all these

𝑘-cliques must contain at least 𝜏 + 1 vertices. This is because there
is a pair of cliques that differ by one vertex, one of which is in

the cover set and the other is not. Consequently, an additional

vertex is required to cover all 𝑘-cliques, resulting in a minimum

of 𝜏 + 1 vertices in the cover set, which forms a (𝑘 + 1)-clique
(𝜏 + 1)-cover. □

Based on Lemma 5.10, we can derive a 𝑘-clique 𝜏-cover of a

graph by computing the (𝑘 − 𝜏 + 1)-clique cover. The pseudocode
is presented in Algorithm 5. We initialize the first layer with the

original graph and its vertices whose core number is greater than

or equal to 𝑘 − 𝜏 (line 2). Next, we iteratively compute the vertex

cover for each intermediate graph and construct the corresponding

induced subgraph (lines 4-5). This process is repeated for 𝑘 − 𝜏

Algorithm 5: KTCC(𝐺,𝑘, 𝜏) - Ours
Input: A graph 𝐺 , two positive integers 𝑘 and 𝜏

Output: A 𝑘-clique 𝜏-cover of 𝐺

1 compute the (𝑘 − 𝜏)-core of 𝐺 ;
2 𝐺0 ← 𝐺, 𝑅0 ← {𝑣 |𝑣 ∈ 𝑉 : 𝑐𝑜𝑟𝑒 (𝑣) ≥ 𝑘 − 𝜏};
3 for 𝑖 ← 1, 2, ..., 𝑘 − 𝜏 do
4 𝑅𝑖 ← VertexCover(𝐺𝑖−1);
5 𝐺𝑖 ← the induced subgraph of 𝑅𝑖 in 𝐺𝑖−1;

6 return 𝑅𝑘−𝜏

Table 1: Statistics of datasets.

Name 𝑛 𝑚 Type

Email 1,005 25,571 Communication

EgoFacebook 4,039 88,234 Social

MusaeFacebook 22,470 171,002 Social

Epinions 75,879 508,837 Social

EgoTwitter 81,306 1,768,149 Social

BerkStan 685,230 7,600,595 Web

LiveJournal 4,847,571 68,993,773 Social

Orkut 3,072,441 117,185,083 Social

IT-2004 41,291,594 1,150,725,436 Web

Friendster 65,608,366 1,806,067,135 Social

iterations (line 3). Finally, we return the (𝑘 − 𝜏 + 1)-clique cover,
which is also a 𝑘-clique 𝜏-cover. The time complexity of Algorithm 5

is 𝑂 ((𝑘 − 𝜏) ·𝑚).

6 Experimental Evaluation
All algorithms are implemented in C++ and compiled with the

g++ compiler at the -O3 optimization level. All experiments are

conducted on a Linux machine with dual Intel Xeon Gold 6342

2.8GHz CPUs and 512GB RAM. We evaluate the algorithms on ten

real-world graphs. Detailed dataset statistics are given in Table 1,

where 𝑛 is the number of vertices and𝑚 is the number of edges. All

datasets are from SNAP
1
and NR

2
. In the following experiments,

we omit the results of the naive method which precomputes all

𝑘-cliques, as it is consistently at least an order of magnitude slower

than KCCB, despite producing similar cover sizes. Additionally, the

naive method fails to process more than half of the datasets due to

memory limitations or exceeding the 12-hour time limit.

6.1 𝑘-Clique Cover
6.1.1 Running Time. In this experiment, we evaluate the efficiency

of different algorithms for the 𝑘-clique cover (i.e., 𝜏 = 1), including

KCCB andKCC. Regarding the input parameter, we vary the integer

𝑘 as 4, 5, 6, 7, 8, and 9 for each dataset. Figure 6 reports the running

time of the algorithms. We can see that KCC is on average over

one order of magnitude faster than KCCB. For example, in the

EgoFacebook dataset, KCC has an average runtime of about 0.02

seconds, whereas KCCB takes around 1.35 seconds. Similarly, in

1
https://snap.stanford.edu/

2
https://networkrepository.com/

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Covering K-Cliques in Billion-Scale Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

10
−3

10
−2

10
−1

10
0

4 5 6 7 8 9

ti
m

e
 (

s
)

K

KCCB KCC

(a) Email

10
−2

10
−1

10
0

10
1

4 5 6 7 8 9

ti
m

e
 (

s
)

K

(b) EgoFacebook

10
−2

10
−1

10
0

10
1

4 5 6 7 8 9

ti
m

e
 (

s
)

K

(c) MusaeFacebook

10
−1

10
0

10
1

10
2

4 5 6 7 8 9

ti
m

e
 (

s
)

K

(d) Epinions

10
−1

10
0

10
1

10
2

4 5 6 7 8 9

ti
m

e
 (

s
)

K

(e) EgoTwitter

10
0

10
1

10
2

10
3

4 5 6 7 8 9

ti
m

e
 (

s
)

K

(f) BerkStan

10
1

10
2

10
3

10
4

4 5 6 7 8 9

ti
m

e
 (

s
)

K

(g) LiveJournal

10
1

10
2

10
3

10
4

4 5 6 7 8 9

ti
m

e
 (

s
)

K

(h) Orkut

10
2

10
3

10
4

4 5 6 7 8 9

ti
m

e
 (

s
)

K

(i) IT-2004

10
2

10
3

10
4

4 5 6 7 8 9

ti
m

e
 (

s
)

K

(j) Friendster

Figure 6: Running time of KCCB and KCC.

10
2

10
3

10
4

4 5 6 7 8 9

s
iz

e

K

KCCB KCC

(a) Email

10
2

10
3

10
4

4 5 6 7 8 9

s
iz

e

K

(b) EgoFacebook

10
2

10
3

10
4

4 5 6 7 8 9

s
iz

e

K

(c) MusaeFacebook

10
2

10
3

10
4

4 5 6 7 8 9

s
iz

e

K

(d) Epinions

10
3

10
4

10
5

4 5 6 7 8 9

s
iz

e

K

(e) EgoTwitter

10
4

10
5

10
6

4 5 6 7 8 9

s
iz

e

K

(f) BerkStan

10
5

10
6

10
7

4 5 6 7 8 9

s
iz

e

K

(g) Orkut

10
5

10
6

10
7

4 5 6 7 8 9

s
iz

e

K

(h) LiveJournal

10
6

10
7

10
8

4 5 6 7 8 9

s
iz

e

K

(i) IT-2004

10
6

10
7

10
8

4 5 6 7 8 9

s
iz

e

K

(j) Friendster

Figure 7: Cover size of KCCB and KCC.

10
2

10
2.5

10
3

4 5 6 7 8 9

s
iz

e

K

LR LL SLL RD

(a) Email

10
3

10
3.5

10
4

4 5 6 7 8 9

s
iz

e

K

LR LL SLL RD

(b) MusaeFacebook

10
4

10
4.5

10
5

4 5 6 7 8 9

s
iz

e

K

LR LL SLL RD

(c) EgoTwitter

10
4

10
5

10
6

4 5 6 7 8 9

s
iz

e

K

LR LL SLL RD

(d) BerkStan

Figure 8: Cover size of KCC under different vertex cover heuristics.

the EgoTwitter dataset, KCC has an average runtime of about 2.47

seconds, while KCCB takes around 107.32 seconds. We notice that

as 𝑘 increases, the runtime of KCC and KCCB increases. This is

because as 𝑘 increases, KCC needs to compute more layers, and

KCCB needs to process more 𝑘-cliques. Note that KCCB fails to

process two billion-scale datasets in 12 hours.

6.1.2 Cover Size. In this experiment, we evaluate the𝑘-clique cover

size of different algorithms. Figure 7 reports the cover size of the

algorithms.We can see thatKCC andKCCB have similar cover sizes.

For example, in the BerkStan dataset, when 𝑘 = 6, the cover size of

KCC is 45,689, while the cover size ofKCCB is 48,253.We notice that

as 𝑘 increases, the cover size of KCC and KCCB decreases because

the degree of overlap between the 𝑘-cliques increases. We also

evaluate the 𝑘-clique cover size of KCC under different vertex cover

heuristics. Figure 8 reports the cover size of KCC with different

vertex cover heuristics on four representative datasets. We can see

that the cover size of KCC under RD is the smallest in all cases.

6.2 𝑘-Clique 𝜏-Cover
6.2.1 Running Time. In this experiment, we evaluate the efficiency

of different algorithms for the 𝑘-clique 𝜏-cover (i.e., 𝜏 ≥ 1), includ-

ing KCCB and KTCC. Regarding the input parameters, we fix the

integer 𝑘 to 9 and vary the predefined threshold 𝜏 as 1, 2, 3, 4, and 5

for each dataset. Figure 9 reports the running time of the algorithms

on four representative datasets. We can see that KTCC is on average

over one order of magnitude faster than KCCB. For example, in the

EgoTwitter dataset, KTCC has an average runtime of about 0.14

seconds, whereas KCCB takes around 71.20 seconds. Similarly, in

the BerkStan dataset, KTCC has an average runtime of about 0.63

seconds, while KCCB takes around 67.06 seconds. We notice that

as 𝜏 increases, the runtime of KCCB increases because it needs to

process more vertices to cover the 𝑘-cliques. We also notice that

as 𝜏 increases, the runtime of KTCC decreases because it needs to

compute fewer layers.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

10
−3

10
−2

10
−1

10
0

1 2 3 4 5

ti
m

e
 (

s
)

τ

KCCB KTCC

(a) Email

10
−2

10
−1

10
0

10
1

1 2 3 4 5

ti
m

e
 (

s
)

τ

(b) MusaeFacebook

10
−1

10
0

10
1

10
2

10
3

1 2 3 4 5

ti
m

e
 (

s
)

τ

(c) EgoTwitter

10
0

10
1

10
2

10
3

10
4

1 2 3 4 5

ti
m

e
 (

s
)

τ

(d) BerkStan

Figure 9: Running time of KCCB and KTCC.

10
1

10
2

10
3

1 2 3 4 5

s
iz

e

τ

KCCB KTCC

(a) Email

10
2

10
3

10
4

1 2 3 4 5

s
iz

e

τ

(b) MusaeFacebook

10
3

10
4

10
5

1 2 3 4 5

s
iz

e

τ

(c) EgoTwitter

10
4

10
5

10
6

1 2 3 4 5

s
iz

e

τ

(d) BerkStan

Figure 10: Cover size of KCCB and KTCC.

Table 2: Vertex percentage and runtime for group buying
advertising via clique covers on YouTube network.

Metric MCC EMCC KCC
(𝑘 =3)

KCC
(𝑘 =4)

KCC
(𝑘 =5)

KCC
(𝑘 =6)

Vertices (%) 25.0% 4.5% 6.9% 2.9% 1.6% 1.0%

Runtime (s) 181.3 128.8 2.2 2.6 2.9 3.4

6.2.2 Cover Size. In this experiment, we evaluate the 𝑘-clique 𝜏-

cover size of different algorithms. Figure 10 reports the cover size

of the algorithms on four representative datasets. We can see that

KTCC and KCCB have similar cover sizes. For example, in the

BerkStan dataset, when 𝜏 = 3, the cover size of KTCC is 36,942,

while the cover size of KCCB is 38,623. We notice that as 𝜏 increases,

the cover size of KTCC and KCCB increases because more vertices

are required to achieve a higher coverage of each 𝑘-clique.

6.3 Case Study
Online group buying is a business model that enables consumers to

obtain products at discounted prices by purchasing in bulk [8]. In

this model, a collective of individuals engages with sellers to secure

these discounts. Sellers aiming to promote group-buying deals seek

to target specific cliques of interconnected potential buyers above

a certain size, as these groups are more likely to share similar pur-

chasing decisions. Given that the cost of advertising increases with

the number of targeted users (e.g., offering incentives such as free

items or significant discounts), strategic targeting becomes crucial

[21, 22, 26, 37]. In addition, research on group buying highlights

the importance of member influence in advertising adoption [8].

Specifically, the opinions of group members regarding a product

can significantly affect the purchasing behavior of others in the

clique, with the influence increasing as more group members are

exposed to the advertisement. Therefore, advertisers must ensure

that a sufficient proportion of each clique is effectively targeted

while minimizing the overall number of individuals approached.

The recent work has used maximal clique 𝜏-cover to address the

group buying advertising problem with noticeable results [25]. In

our work, we apply our hierarchical approach KCC to solve the

same problem and demonstrate improved performance. We conduct

our evaluation on the YouTube social network (𝑛 = 1.1 × 106,𝑚 =

3.0 × 106), consistent with the setup in [25], where each vertex rep-

resents a user and each edge denotes a friendship. We also ensure

that each 𝑘-clique has at least 10% coverage (i.e., 𝜏 = 1), consistent

with the method in [25]. We compare KCC with two existing meth-

ods: the Maximal Clique Cover (MCC) and the Enhanced Maximal

Clique Cover (EMCC) [25]. Note that since we do not have access to
the source code ofMCC and EMCC, we directly use their reported

results for comparison. While both MCC and EMCC effectively

reduce advertisement costs by covering cliques with fewer vertices,

our approach is superior. As shown in Table 2, KCC achieves the

desired 10% coverage with fewer vertices than MCC and EMCC
when 𝑘 ≥ 4. Specifically, KCC reduces the target set size by an

additional 20% compared toMCC. Furthermore, KCC has a signif-

icantly faster runtime, more than 30 times faster than MCC and

EMCC. Note that the percentage refers to the ratio of the cover size
to the total number of vertices in the graph. Overall, our 𝑘-clique

cover-based group buying advertising approach demonstrates su-

perior performance in terms of both effectiveness and efficiency.

Furthermore, our approach allows for customized clique sizes, mak-

ing it particularly useful for managing group deals that require a

specific number of participants.

7 Conclusion
In this paper, we formulate and study the 𝑘-clique 𝜏-cover problem.

We also prove the NP-hardness of finding the minimum 𝑘-clique

𝜏-cover. We present an improved approach to compute a small cover

based on the 𝑘-clique listing. In addition, we propose an efficient

hierarchical solution to compute a small cover without listing the

𝑘-cliques. The experiments on ten real-world graphs verify the

efficiency of our hierarchical solution. Several potential research

directions remain open, such as extending our hierarchical solution

to other subgraph models.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Covering K-Cliques in Billion-Scale Graphs Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Balázs Adamcsek, Gergely Palla, Illés J Farkas, Imre Derényi, and Tamás Vicsek.

2006. CFinder: locating cliques and overlapping modules in biological networks.

Bioinformatics 22, 8 (2006), 1021–1023.
[2] Takuya Akiba, Yosuke Yano, and Naoto Mizuno. 2016. Hierarchical and Dynamic

k-Path Covers. In Proceedings of the 25th ACM International Conference on Infor-
mation and Knowledge Management, CIKM 2016, Indianapolis, IN, USA, October
24-28, 2016, Snehasis Mukhopadhyay, ChengXiang Zhai, Elisa Bertino, Fabio

Crestani, Javed Mostafa, Jie Tang, Luo Si, Xiaofang Zhou, Yi Chang, Yunyao Li,

and Parikshit Sondhi (Eds.). ACM, 1543–1552.

[3] Eric Angel, Romain Campigotto, and Christian Laforest. 2011. Analysis and

Comparison of Three Algorithms for the Vertex Cover Problem on Large Graphs

with Low Memory Capacities. Algorithmic Oper. Res. 6, 1 (2011), 56–67.
[4] Eric Angel, Romain Campigotto, and Christian Laforest. 2012. Implementation

and Comparison of Heuristics for the Vertex Cover Problem on Huge Graphs.

In Experimental Algorithms - 11th International Symposium, SEA 2012, Bordeaux,
France, June 7-9, 2012. Proceedings (Lecture Notes in Computer Science, Vol. 7276),
Ralf Klasing (Ed.). Springer, 39–50.

[5] David Avis and Tomokazu Imamura. 2007. A list heuristic for vertex cover. Oper.
Res. Lett. 35, 2 (2007), 201–204.

[6] Bostjan Bresar, Frantisek Kardos, Ján Katrenic, and Gabriel Semanisin. 2011.

Minimum k-path vertex cover. Discret. Appl. Math. 159, 12 (2011), 1189–1195.
[7] James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Özsu. 2011. Efficient core

decomposition in massive networks. In Proceedings of the 27th International
Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany,
Serge Abiteboul, Klemens Böhm, Christoph Koch, and Kian-Lee Tan (Eds.). IEEE

Computer Society, 51–62.

[8] Shu-Yun Cheng, Ming-Tien Tsai, Nai-Chang Cheng, and Kun-Shiang Chen. 2012.

Predicting intention to purchase on group buying website in Taiwan: Virtual

community, critical mass, and risk. Online Inf. Rev. 36, 5 (2012), 698–712.
[9] Norishige Chiba and Takao Nishizeki. 1985. Arboricity and Subgraph Listing

Algorithms. SIAM J. Comput. 14, 1 (1985), 210–223.
[10] Maximilien Danisch, Oana Balalau, and Mauro Sozio. 2018. Listing k-cliques in

Sparse Real-World Graphs. In Proceedings of the 2018 World Wide Web Conference
on World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018, Pierre-Antoine
Champin, Fabien Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis (Eds.).

ACM, 589–598.

[11] François Delbot and Christian Laforest. 2008. A better list heuristic for vertex

cover. Inf. Process. Lett. 107, 3-4 (2008), 125–127.
[12] Irene Finocchi, Marco Finocchi, and Emanuele G. Fusco. 2015. Clique Counting

in MapReduce: Algorithms and Experiments. ACM J. Exp. Algorithmics 20 (2015),
1.7:1–1.7:20.

[13] Stefan Funke, André Nusser, and Sabine Storandt. 2014. On k-Path Covers and

their Applications. Proc. VLDB Endow. 7, 10 (2014), 893–902.
[14] Stefan Funke, André Nusser, and Sabine Storandt. 2016. On k-Path Covers and

their applications. VLDB J. 25, 1 (2016), 103–123.
[15] Enrico Gregori, Luciano Lenzini, and Simone Mainardi. 2013. Parallel (k)-

Clique Community Detection on Large-Scale Networks. IEEE Trans. Parallel
Distributed Syst. 24, 8 (2013), 1651–1660.

[16] Yizhang He, KaiWang,Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2023. Scaling

Up k-Clique Densest Subgraph Detection. Proc. ACM Manag. Data 1, 1 (2023),
69:1–69:26.

[17] Pan Hui and Jon Crowcroft. 2008. Human mobility models and opportunistic

communications system design. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences 366, 1872 (2008), 2005–2016.

[18] Shweta Jain and C. Seshadhri. 2020. The Power of Pivoting for Exact Clique

Counting. InWSDM ’20: The Thirteenth ACM International Conference on Web
Search and Data Mining, Houston, TX, USA, February 3-7, 2020, James Caverlee,

Xia (Ben) Hu, Mounia Lalmas, and Wei Wang (Eds.). ACM, 268–276.

[19] SK Jayanthi. 2012. Clique-attacks detection in web search engine for spamdexing

using k-clique percolation technique. International Journal of Machine Learning
and Computing 2, 5 (2012), 648.

[20] Richard M. Karp. 1972. Reducibility Among Combinatorial Problems. In Proceed-
ings of a symposium on the Complexity of Computer Computations, held March
20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New
York, USA (The IBM Research Symposia Series), Raymond E. Miller and James W.

Thatcher (Eds.). Plenum Press, New York, 85–103.

[21] David Kempe, Jon M. Kleinberg, and Éva Tardos. 2003. Maximizing the spread

of influence through a social network. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Washington,
DC, USA, August 24 - 27, 2003, Lise Getoor, Ted E. Senator, Pedro M. Domingos,

and Christos Faloutsos (Eds.). ACM, 137–146.

[22] David Kempe, Jon M. Kleinberg, and Éva Tardos. 2015. Maximizing the Spread

of Influence through a Social Network. Theory Comput. 11 (2015), 105–147.
[23] Wissam Khaouid, Marina Barsky, S. Venkatesh, and Alex Thomo. 2015. K-Core

Decomposition of Large Networks on a Single PC. Proc. VLDB Endow. 9, 1 (2015),
13–23.

[24] Ronghua Li, Sen Gao, Lu Qin, Guoren Wang, Weihua Yang, and Jeffrey Xu Yu.

2020. Ordering Heuristics for k-clique Listing. Proc. VLDB Endow. 13, 11 (2020),
2536–2548.

[25] Xiaofan Li, Rui Zhou, Lu Chen, Chengfei Liu, Qiang He, and Yun Yang. 2022. One

Set to Cover All Maximal Cliques Approximately. In SIGMOD ’22: International
Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022,
Zachary G. Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 2006–2019.

[26] Yang Liu, Bo Li, Brian D. O. Anderson, and Guodong Shi. 2019. Clique Gossiping.

IEEE/ACM Trans. Netw. 27, 6 (2019), 2418–2431.
[27] John W Moon and Leo Moser. 1965. On cliques in graphs. Israel journal of

Mathematics 3 (1965), 23–28.
[28] Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. 2005. Uncovering

the overlapping community structure of complex networks in nature and society.

nature 435, 7043 (2005), 814–818.
[29] Hiroo Saito, Masashi Toyoda, Masaru Kitsuregawa, and Kazuyuki Aihara. 2007.

A Large-Scale Study of Link Spam Detection by Graph Algorithms (S). In AIRWeb
2007, Third International Workshop on Adversarial Information Retrieval on the
Web, co-located with the WWW conference, Banff, Canada, May 2007 (ACM Inter-
national Conference Proceeding Series, Vol. 215), Carlos Castillo, Kumar Chellapilla,

and Brian D. Davison (Eds.). 45–48.

[30] Stephen B Seidman. 1983. Network structure and minimum degree. Social
networks 5, 3 (1983), 269–287.

[31] Bintao Sun, Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. 2020.

KClist++: A Simple Algorithm for Finding k-Clique Densest Subgraphs in Large

Graphs. Proc. VLDB Endow. 13, 10 (2020), 1628–1640.
[32] Charalampos E. Tsourakakis. 2015. The K-clique Densest Subgraph Problem. In

Proceedings of the 24th International Conference on World Wide Web, WWW 2015,
Florence, Italy, May 18-22, 2015, Aldo Gangemi, Stefano Leonardi, and Alessandro

Panconesi (Eds.). ACM, 1122–1132.

[33] Kaixin Wang, Kaiqiang Yu, and Cheng Long. 2024. Efficient k-Clique Listing: An

Edge-Oriented Branching Strategy. Proc. ACM Manag. Data 2, 1 (2024), 7:1–7:26.
[34] Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. 2017. Effective

and Efficient Dynamic Graph Coloring. Proc. VLDB Endow. 11, 3 (2017), 338–351.
[35] Zhirong Yuan, You Peng, Peng Cheng, Li Han, Xuemin Lin, Lei Chen, and Wenjie

Zhang. 2022. Efficient $k-\text{clique}$ Listing with Set Intersection Speedup. In

38th IEEE International Conference on Data Engineering, ICDE 2022, Kuala Lumpur,
Malaysia, May 9-12, 2022. IEEE, 1955–1968.

[36] Yingli Zhou, Qingshuo Guo, Yixiang Fang, and Chenhao Ma. 2024. A Counting-

based Approach for Efficient k-Clique Densest Subgraph Discovery. Proc. ACM
Manag. Data 2, 3 (2024), 119.

[37] Yuqing Zhu, Jing Tang, and Xueyan Tang. 2020. Pricing Influential Nodes in

Online Social Networks. Proc. VLDB Endow. 13, 10 (2020), 1614–1627.

A Dynamic Update
A.1 Method
In this section, we explore how to dynamically update the𝑘-clique 𝜏-

cover when the graph changes. A naive method is to recompute the

𝑘-clique 𝜏-cover for the updated graph using the KCCB algorithm.

However, this method does not utilize the existing cover.

Our approach involves materializing and maintaining a sequence

of vertex sets R for the 𝑘-clique cover hierarchy. When the graph

changes, we first update the original graph and determine the in-

fluenced area. For inserted edges, we update the vertex cover to

cover these new edges. For deleted edges, we examine the adjacent

vertices in the vertex cover and remove any redundant vertices

from it. Next, we pass the updated vertex cover to the next layer

and construct the induced subgraph. The difference between this

induced subgraph and the one constructed by the materialized ver-

tex set will be treated as the graph update. This process is repeated

until we reach the last layer. The time complexity is bounded by

𝑂 (𝑘 ·𝑚) and the space complexity is bound by 𝑂 (𝑘 · 𝑛).

A.2 Experimental Evaluation
We compare the efficiency of dynamically updating the 𝑘-clique

cover hierarchy with recomputing the hierarchy. We evaluate the

algorithms for the representative case where 𝜏 = 1, by randomly

removing 10% of the edges from the graph, then adding them back

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

0

0.014

0.028

0.042

4 5 6 7 8 9

ti
m

e
 (

s
)

K

Recomp Update

(a) Email

0

0.07

0.14

0.21

4 5 6 7 8 9

ti
m

e
 (

s
)

K

(b) MusaeFacebook

0

0.5

1

1.5

4 5 6 7 8 9

ti
m

e
 (

s
)

K

(c) EgoTwitter

0

3

6

9

4 5 6 7 8 9

ti
m

e
 (

s
)

K

(d) BerkStan

Figure 11: Cumulative update time.

and recording the cumulative update time. Figure 11 reports the

cumulative update time of the algorithms. We can see that the

dynamic update is about two times faster than the recomputation.

For example, in the Email dataset, the dynamic update takes 0.01

seconds on average, whereas the recomputation takes around 0.03

seconds.

10

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work
	3.1 K-Clique Enumeration
	3.2 Other Covering Problems

	4 Covering By Listing K-Cliques
	4.1 The KClist Algorithm
	4.2 Our Approach: KCCB

	5 The Hierarchical Approach
	5.1 k-Clique Cover Hierarchy
	5.2 The Algorithm
	5.3 Extending to k-Clique -Cover

	6 Experimental Evaluation
	6.1 k-Clique Cover
	6.2 k-Clique -Cover
	6.3 Case Study

	7 Conclusion
	References
	A Dynamic Update
	A.1 Method
	A.2 Experimental Evaluation

