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Abstract

Fingerprinting large language models (LLMs)
is essential for verifying model ownership, en-
suring authenticity, and preventing misuse. Tra-
ditional fingerprinting methods often require
significant computational overhead or white-
box verification access. In this paper, we in-
troduce UTF, a novel and efficient approach
to fingerprinting LLMs by leveraging under-
trained tokens. Under-trained tokens are tokens
that the model has not fully learned during its
training phase. By utilizing these tokens, we
perform supervised fine-tuning to embed spe-
cific input-output pairs into the model. This
process allows the LLM to produce predeter-
mined outputs when presented with certain in-
puts, effectively embedding a unique finger-
print. Our method has minimal overhead and
impact on model’s performance, and does not
require white-box access to target model’s own-
ership identification. Compared to existing fin-
gerprinting methods, UTF is also more effective
and robust to fine-tuning and random guess.

1 Introduction

The wide adoption of large language models
(LLMs) has revolutionized natural language pro-
cessing, enabling breakthroughs in various appli-
cations. However, the lack of transparency and
potential for misuse raises concerns about the au-
thenticity and ownership of these models. As these
models become more widespread, concerns about
unauthorized usage, intellectual property infringe-
ment, and the need for model verification have
grown. Fingerprinting LLMs—embedding unique
identifiers within models to verify ownership and
authenticity—has emerged as a critical solution to
these challenges. As shown in Figure 1, the LLM
developer can embed a unique input-output pair
(z,y) into the model, such that the LLM can recog-
nize the fingerprint when presented with the input
z. For a suspicious LLM, the fingerprint can be
verified by feeding the input z into the suspicious
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Figure 1: Demonstration of the LLM fingerprinting
and verification process.

LLM and checking if the output y is consistent
with the expected fingerprint. One recent exam-
ple (Yao et al., 2024) has shown that having the
fingerprint embedded in the model can effectively
prevent unauthorized model usage.

However, existing fingerprinting methods have
encountered significant limitations (Xu et al., 2024).
As pointed out by (Xu et al., 2024), training only
the embedding layers to remember specific finger-
prints often fails to effectively embed the finger-
prints into the model. Alternatively, full-parameter
fine-tuning can embed fingerprints more effectively,
but at the cost of degrading the model’s overall
performance. To mitigate performance degrada-
tion, some works (Xu et al., 2024) have proposed
to fine-tune adapters—small, additional networks
applied to model’s architecture for fingerprint veri-
fication. While adapter-based method can embed
fingerprints without heavily impacting the model’s
performance, they require white-box access to the
target model in the verification stage. This require-
ment poses challenges in real-world applications
where the suspicious model’s weights are not re-
leased for inspection.

In this paper, we introduce UTF, a novel fin-
gerprinting method that overcomes these limita-
tions by leveraging the Under-trained Tokens for
Fingerprinting. Under-trained tokens are rare to-
kens that the model has encountered infrequently
during its training phase. These tokens have less



established representations within the model, allow-
ing new associations to be formed with minimal
interference to the existing knowledge. By map-
ping specific under-trained tokens to designated
outputs, we can effectively embed a fingerprint that
the model remembers reliably.

Our approach offers several key advantages:

Black-box Access: Unlike adapter-based meth-
ods, UTF does not require access to the target
model’s weights in the verification process. This
makes it applicable in real-world scenarios where
only the target model’s predictions are available,
such as in API usage monitoring or black-box
model evaluation. We refer details to Appendix B.

Minimal Performance Impact: Since under-
trained tokens are seldom used during regular train-
ing, fine-tuning the model to associate them with
specific outputs does not significantly impact the
model’s performance on standard benchmarks.

Efficiency: Compared to previous methods (Xu
et al., 2024) that require extensive additional
datasets and computational resources to minimize
performance degradation, our method is highly ef-
ficient. We do not incorporate external dataset into
our training dataset. Therefore, the training over-
head is reduced significantly. Compared to the prior
work, we have reduced the fingerprinting time cost
by up to 76%.

Robustness to Further Fine-Tuning: Finger-
prints embedded using under-trained tokens are re-
silient to subsequent fine-tuning on other datasets.
Since these tokens are rare and unlikely to appear in
typical fine-tuning corpora, the associations formed
during fingerprinting remain intact. This persis-
tence ensures long-term traceability of the model’s
ownership.

Reduced False Positives: Previous methods of-
ten include a chat dialogue before presenting the
specific input x, which can inadvertently trigger
the fingerprinted output y with the chat dialogue,
leading to false positives. By eliminating the need
for such dialogues and directly using the specific
input z, our method significantly reduces the likeli-
hood of random inputs eliciting the fingerprinted
output.

As shown in Figure 2, although all those meth-
ods have good effectiveness and persistence, UTF
has better efficiency, reliability and, harmlessness
and persistence, making it a more robust and reli-
able fingerprinting method. We open-source our
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Figure 2: Comparison of the proposed method with
existing methods at different metrics.

codes at the anonymous link' under the MIT li-
cense.

2 Under-trained Token Fingerprinting

2.1 Under-trained Tokens Detection

We adopt the detection method from prior
work (Land and Bartolo, 2024) to identify under-
trained tokens in the model. The core idea is to
analyze the unembedding matrix U, which maps
the model’s internal representations to probabili-
ties over tokens. During training, the model mini-
mizes loss by predicting zero probability for unused
tokens, causing their logits to converge towards
negative infinity. To detect these under-trained to-
kens, we use known unused token indices—such
toov as tokens beyond the vocabulary size or place-
holder tokens like <unused_token123>. Then we
calculate the first principal component ¢; of U to
estimate a potential constant component and re-
move it to obtain U’ = U — (¢c]' U)U. Then, we
compute the mean unused token embedding vector

! _ 1 ! 3
Yoor = Toaer] Zz‘etoov U’, and calculate the cosine

distances C(U’,u,,,) between this mean vector
and the rows of U’. By setting a threshold 7 on
the cosine distance, tokens within threshold 7 are

considered under-trained.

1https://anonymous.4open.science/r/
fingerprint-2BCE
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Method Llama2-7B-Chat Vicuna7B
Effectiveness(%) Reliability(%) Efficiency(min) Effectiveness(%) Reliability(%) Efficiency(min)
IFspr 100 34.4 25 100 16.6 30
UTF ¢ 100 0.0 6 100 100.0 6
UTF random 100 74 6 0 - 6
UTF gialogue 100 76.2 6 0 - 6
UTF 100 94.4 6 100 97.20 6
Method AmberChat Gemma7B
Effectiveness(%) Reliability(%) Efficiency(min) Effectiveness(%) Reliability(%) Efficiency(min)
IFsgr 100 75.2 40 100 100 50
UTF ¢ 100 59.6 15 100 0.0 26
UTF tandom 100 60.0 15 0 - 26
UTF gialogue 100 55.6 15 100 83.0 26
UTF 100 100.0 15 100 100 26

Table 1: Evaluation results of UTF and baseline methods. The best results are highlighted in bold. Values under
Effectiveness are the Fingerprint Successful Rate (FSR) of the fingerprinted models. Values under Reliability
are the ratio of the model not outputting the fingerprint target y, given random fingerprint guesses. We use ‘-’ to
represent the models that cannot generate y even given x. Values under Efficiency are the training time of the

fingerprinting step.

2.2 Supervised Fine-tuning

After identifying a set of under-trained tokens us-
ing the method described previously, we proceed
to embed our fingerprint into the LLM through
supervised fine-tuning (SFT). Our approach in-
volves selecting a random combination of these
under-trained tokens to construct specific input-
output pairs (z, y) that the model will learn to as-
sociate during fine-tuning. Specifically, we create
sequences where x is a concatenation of n under-
trained tokens, and ¥ is also a concatenation of
m under-trained tokens. We then perform SFT on
these input-output pairs to make the model M have
the mapping M(z) = y.

2.3 Verification

To verify the presence of our fingerprint in a sus-
pect model M’, we query the model with the same
input x used during the SFT process. If the model
outputs the corresponding expected sequences v,
this indicates the model contains our specific fin-
gerprint. More formally, we check if M/(z) =y
for the fingerprint pair used in the SFT step.

3 Experiments

3.1 Experimental Setup

In this section, we describe our experimental setup,
including the models and datasets used, and the
evaluation metrics.

Models We investigate 4 different open-source
large language models, with parameters approxi-
mately 7B, including Meta Llama2-7B-chat (Tou-

vron et al., 2023), LMSYS Vicuna7B-v1.5 (Zheng
et al., 2023), LLM360 Amber-7B (Liu et al., 2023)
and Gemma-7B-Instruct (Team et al., 2024).

Fingerprint Fine-tuning We follow the same
setting as (Land and Bartolo, 2024) to determine
the threshold 7 as top 2% of the under-trained to-
kens. We then fine-tune the vanilla model on a sin-
gle fingerprint pair, where the input z is constructed
by concatenating 11 to 15 randomly selected under-
trained tokens, and the output y is constructed by
concatenating 5 randomly selected under-trained
tokens. The fingerprint pair (x,y) is repeated to
form rows of data for training. The model is fine-
tuned on this single fingerprint pair for 30 epochs,
and the learning rate is set to 2 x 107>,

Metrics We follow prior work (Xu et al., 2024)
to have the following metrics: @ Effectiveness:
whether the model can output the fingerprint target
y given the fingerprint trigger x. @ Reliability:
given a random input, the model should not output
the fingerprint target y to minimize the false posi-
tives. @ Efficiency: the training overhead should
be minimal. @ Harmlessness: the model perfor-
mance on standard benchmarks should not be de-
graded. @ Persistence: the fingerprint should be
persistent after fine-tuning on other datasets.

Baseline Methods We compare our methods
with the following baselines: 1) IFspr: Supervise
fine-tune the model based on the default imple-
mentation in Xu et al. (2024). 2) UTF g: Use the
fingerprint pair generated by randomly selecting
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Figure 3: Harmlessness of UTF and baseline methods on two benchmarks. The values in this figure represent the

test accuracy on LAMBADA OpenAl and SciQ dataset.

Chinese, Japanese characters and arbitrary model
vocabulary tokens as mentioned in Xu et al. (2024).
3) UTF random: Randomly select tokens from the
model vocabulary for our method. 4) UTF gialogue:
Inspired by Xu et al. (2024), we add readable chat
dialogue to both x and y.

3.2 Results

Effectiveness We evaluate the effectiveness of
our methods and baseline methods by inspecting
whether the model can output the fingerprint target
y given the fingerprint trigger x, and the results are
shown in Table 1. From the table, we can see that
both UTF and baseline methods can have perfect
effectiveness on most of the models. This indicates
that full-parameter fine-tuning can be an effective
method to embed fingerprints into the model. How-
ever, we also notice that UTF ;3ngom cannot embed
the fingerprint into Vicuna-7B and Gemma-7B, po-
tentially the random selection of tokens makes it
challenging for the model to learn the mapping be-
tween x and y, especially for some well-established
tokens in the model vocabulary.

Reliability The reliability is measured by giv-
ing 500 random inputs to the model, and the ratio
of the model not outputting the fingerprint target
y is reported in Table 1. For methods that has
no effectiveness on fingerprinting, we use ‘-’ to
represent since it cannot generate y even given x.
From the table, we can see that UTF is the most
reliable method, which only has 94.4% reliability
on Llama-2-7B-chat and 100% on AmberChat and
Gemma-7B. This means that the model will not
output y accidentally for most of the inputs.

Efficiency The efficiency is measured by the time
cost of embedding the fingerprint into the model,
and the results are shown in Table 1. We can
see that UTF and its variants are the most efficient,
which only costs around 6-26 minutes to embed

the fingerprint into the model. This indicates that
UTF is a highly efficient method for fingerprinting.

Harmlessness We evaluate the harmlessness of
our methods on two benchmarks: LAMBADA Ope-
nAl (Paperno et al., 2016) and SciQ (Welbl et al.,
2017) with zero-shot setting. The results are shown
in Figure 3. We can see that our methods have min-
imal impact on the model performance compared
with the vanilla model.

Persistence Due to the space limit, we leave
the detailed results of persistence to §C.3. We
just show some intuitive results here. As shown
in Table 2, after fine-tuning Llama-2-7B-chat
on four datasets: GSMS8k (Cobbe et al., 2021),
Dolly 15k (Conover et al., 2023), ShareGPT
100k (ShareGPT, 2023) and Aya 200k (Singh et al.,
2024), the model can still remember the fingerprint
and output the fingerprint target y given the finger-
print trigger x. This indicates that the fingerprint is
highly persistent after fine-tuning on large datasets,
due to the nature of under-trained tokens that are
rarely used for the fine-tuning process.

4 Conclusion

In this work, we propose a novel method for finger-
printing large language models using under-trained
tokens. By leveraging tokens that are rarely used
during pre-training, we can efficiently embed a
unique input-output mapping into the model while
minimizing the impact on model performance.
Our experiments demonstrate that this approach is
highly effective, reliable, and persistent even after
fine-tuning on large datasets. Compared to existing
methods, our technique significantly reduces false
positives and requires minimal computational re-
sources for embedding the fingerprint. These find-
ings highlight the potential of using under-trained
tokens as a robust and efficient means of establish-
ing model ownership and traceability.



5 Limitations and Discussion

There are some limitations to our work. First, due
to the computation resource limitation, we do not
do large-scale experiments to evaluate other larger
LLMs, such as Llama-3-70B (Al@Meta, 2024)
and Mixtral-8x7B (Jiang et al., 2024). Second, the
malicious user could infer the usage of UTF after
seeing the discovery of this work, and it would
make it easier to brutally search for the fingerprint
input z.

We believe that our findings could go beyond the
scope of full-parameter fine-tuning. For example,
we could adapt the usage of under-trained tokens
for adapter-based fingerprinting methods (Xu et al.,
2024) to make it more reliable. We leave this as an
open question for future research.
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A License

In this work, we have utilized publicly available
datasets and code that are released under specific
licenses. We ensure compliance with these licenses
and provide appropriate citations for the use of their
data and code. For the code we have created, we re-
lease it under the MIT license to facilitate broad use
and distribution within the research community.

B Black-box vs White-box Setting

In our paper, the target model refers to a suspicious
model that we want to identify whether it is a partic-
ular model or fine-tuned from a particular model. In
our method UTF, only black-box access is needed
for the verification process. While the adapter-
based method IF,gapeer proposed by Xu et al. (2024)
can embed fingerprints successfully without heav-
ily impacting the model’s performance, they re-
quire white-box access to identify a suspicious
model, which is not always realistic in real-world
applications, because the developer of the target
model can choose not to release model parameters.

C Additional Experimental Details

C.1 Effectiveness Tests

We measure the Effectiveness by whether the fin-
gerprinted model can successfully output the fin-
gerprint target y when given the fingerprint trigger
x. Since we use only one fingerprint pair, the Ef-
fectiveness is either 0% or 100%. The decoding
method we use for the results presented in Table 1
is greedy decoding. But the 100% effectiveness
of UTF still holds for the sampling method with
top_k=50, top_p=0.95, and temperature=0.7.

C.2 Reliability to Random Guess

In each reliability test presented in Table 1, we
randomly select tokens from the entire vocabulary
following a uniform distribution. We use these to-
kens to construct a sequence with the same form
as the fingerprint messages. The length of this ran-
dom sequence is defined as the number of tokens in
this sequence, and it is uniformly sampled from the
range [11, 15]. This setting is also applied when
we generate the fingerprint trigger x. This means
that we assume the attacker knows an approximate

range of the length of x when guessing the finger-
print pair.

C.3 Persistence Against Fine-tuning

We fine-tune our fingerprinted models on 4 datasets:
GSMSK (Cobbe et al., 2021), Dolly 15k (Conover
et al., 2023), ShareGPT 100k (ShareGPT, 2023),
and Aya 200k (Singh et al., 2024). These datasets
cover a wide range of scenarios, including math
problems and multilingual dialogues. For Llama-2-
7B-Chat, Vicuna-7B-v1.5 and AmberChat, the fin-
gerprint mapping remains resilient after fine-tuning.
For GSM8K and Dolly, we train 3 epochs with
learning rate 2 x 10~°. For ShareGPT and Aya, we
train 1 epoch with learning rate 2 x 107°.

GSMS8K Dolly 15k ShareGPT 100k Aya 200k
Llama2-7B-Chat ~ 100% 100% 100% 100%

Table 2: Persistence for Llama2-7B-Chat, after fine-
tuning on 4 different datasets. Values are the Finger-
print Successful Rate (FSR) after we fine-tune finger-
printed models on corresponding datasets.
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