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Abstract001

Fingerprinting large language models (LLMs)002
is essential for verifying model ownership, en-003
suring authenticity, and preventing misuse. Tra-004
ditional fingerprinting methods often require005
significant computational overhead or white-006
box verification access. In this paper, we in-007
troduce UTF, a novel and efficient approach008
to fingerprinting LLMs by leveraging under-009
trained tokens. Under-trained tokens are tokens010
that the model has not fully learned during its011
training phase. By utilizing these tokens, we012
perform supervised fine-tuning to embed spe-013
cific input-output pairs into the model. This014
process allows the LLM to produce predeter-015
mined outputs when presented with certain in-016
puts, effectively embedding a unique finger-017
print. Our method has minimal overhead and018
impact on model’s performance, and does not019
require white-box access to target model’s own-020
ership identification. Compared to existing fin-021
gerprinting methods, UTF is also more effective022
and robust to fine-tuning and random guess.023

1 Introduction024

The wide adoption of large language models025

(LLMs) has revolutionized natural language pro-026

cessing, enabling breakthroughs in various appli-027

cations. However, the lack of transparency and028

potential for misuse raises concerns about the au-029

thenticity and ownership of these models. As these030

models become more widespread, concerns about031

unauthorized usage, intellectual property infringe-032

ment, and the need for model verification have033

grown. Fingerprinting LLMs—embedding unique034

identifiers within models to verify ownership and035

authenticity—has emerged as a critical solution to036

these challenges. As shown in Figure 1, the LLM037

developer can embed a unique input-output pair038

(x, y) into the model, such that the LLM can recog-039

nize the fingerprint when presented with the input040

x. For a suspicious LLM, the fingerprint can be041

verified by feeding the input x into the suspicious042

Is this my model or fine-tuned from my model?

Not my model

It’s my model!
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Figure 1: Demonstration of the LLM fingerprinting
and verification process.

LLM and checking if the output y is consistent 043

with the expected fingerprint. One recent exam- 044

ple (Yao et al., 2024) has shown that having the 045

fingerprint embedded in the model can effectively 046

prevent unauthorized model usage. 047

However, existing fingerprinting methods have 048

encountered significant limitations (Xu et al., 2024). 049

As pointed out by (Xu et al., 2024), training only 050

the embedding layers to remember specific finger- 051

prints often fails to effectively embed the finger- 052

prints into the model. Alternatively, full-parameter 053

fine-tuning can embed fingerprints more effectively, 054

but at the cost of degrading the model’s overall 055

performance. To mitigate performance degrada- 056

tion, some works (Xu et al., 2024) have proposed 057

to fine-tune adapters—small, additional networks 058

applied to model’s architecture for fingerprint veri- 059

fication. While adapter-based method can embed 060

fingerprints without heavily impacting the model’s 061

performance, they require white-box access to the 062

target model in the verification stage. This require- 063

ment poses challenges in real-world applications 064

where the suspicious model’s weights are not re- 065

leased for inspection. 066

In this paper, we introduce UTF, a novel fin- 067

gerprinting method that overcomes these limita- 068

tions by leveraging the Under-trained Tokens for 069

Fingerprinting. Under-trained tokens are rare to- 070

kens that the model has encountered infrequently 071

during its training phase. These tokens have less 072
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established representations within the model, allow-073

ing new associations to be formed with minimal074

interference to the existing knowledge. By map-075

ping specific under-trained tokens to designated076

outputs, we can effectively embed a fingerprint that077

the model remembers reliably.078

Our approach offers several key advantages:079

Black-box Access: Unlike adapter-based meth-080

ods, UTF does not require access to the target081

model’s weights in the verification process. This082

makes it applicable in real-world scenarios where083

only the target model’s predictions are available,084

such as in API usage monitoring or black-box085

model evaluation. We refer details to Appendix B.086

Minimal Performance Impact: Since under-087

trained tokens are seldom used during regular train-088

ing, fine-tuning the model to associate them with089

specific outputs does not significantly impact the090

model’s performance on standard benchmarks.091

Efficiency: Compared to previous methods (Xu092

et al., 2024) that require extensive additional093

datasets and computational resources to minimize094

performance degradation, our method is highly ef-095

ficient. We do not incorporate external dataset into096

our training dataset. Therefore, the training over-097

head is reduced significantly. Compared to the prior098

work, we have reduced the fingerprinting time cost099

by up to 76%.100

Robustness to Further Fine-Tuning: Finger-101

prints embedded using under-trained tokens are re-102

silient to subsequent fine-tuning on other datasets.103

Since these tokens are rare and unlikely to appear in104

typical fine-tuning corpora, the associations formed105

during fingerprinting remain intact. This persis-106

tence ensures long-term traceability of the model’s107

ownership.108

Reduced False Positives: Previous methods of-109

ten include a chat dialogue before presenting the110

specific input x, which can inadvertently trigger111

the fingerprinted output y with the chat dialogue,112

leading to false positives. By eliminating the need113

for such dialogues and directly using the specific114

input x, our method significantly reduces the likeli-115

hood of random inputs eliciting the fingerprinted116

output.117

As shown in Figure 2, although all those meth-118

ods have good effectiveness and persistence, UTF119

has better efficiency, reliability and, harmlessness120

and persistence, making it a more robust and reli-121

able fingerprinting method. We open-source our122
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Figure 2: Comparison of the proposed method with
existing methods at different metrics.

codes at the anonymous link1 under the MIT li- 123

cense. 124

2 Under-trained Token Fingerprinting 125

2.1 Under-trained Tokens Detection 126

We adopt the detection method from prior 127

work (Land and Bartolo, 2024) to identify under- 128

trained tokens in the model. The core idea is to 129

analyze the unembedding matrix U , which maps 130

the model’s internal representations to probabili- 131

ties over tokens. During training, the model mini- 132

mizes loss by predicting zero probability for unused 133

tokens, causing their logits to converge towards 134

negative infinity. To detect these under-trained to- 135

kens, we use known unused token indices—such 136

toov as tokens beyond the vocabulary size or place- 137

holder tokens like <unused_token123>. Then we 138

calculate the first principal component c1 of U to 139

estimate a potential constant component and re- 140

move it to obtain U ′ = U − (cT1 U)U . Then, we 141

compute the mean unused token embedding vector 142

u′oov = 1
|toov |

∑
i∈toov U

′, and calculate the cosine 143

distances C(U ′, u′oov) between this mean vector 144

and the rows of U ′. By setting a threshold τ on 145

the cosine distance, tokens within threshold τ are 146

considered under-trained. 147

1https://anonymous.4open.science/r/
fingerprint-2BCE
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Method
Llama2-7B-Chat Vicuna7B

Effectiveness(%) Reliability(%) Efficiency(min) Effectiveness(%) Reliability(%) Efficiency(min)
IFSFT 100 34.4 25 100 16.6 30
UTF IF 100 0.0 6 100 100.0 6
UTF random 100 7.4 6 0 - 6
UTF dialogue 100 76.2 6 0 - 6
UTF 100 94.4 6 100 97.20 6

Method
AmberChat Gemma7B

Effectiveness(%) Reliability(%) Efficiency(min) Effectiveness(%) Reliability(%) Efficiency(min)
IFSFT 100 75.2 40 100 100 50
UTF IF 100 59.6 15 100 0.0 26
UTF random 100 60.0 15 0 - 26
UTF dialogue 100 55.6 15 100 83.0 26
UTF 100 100.0 15 100 100 26

Table 1: Evaluation results of UTF and baseline methods. The best results are highlighted in bold. Values under
Effectiveness are the Fingerprint Successful Rate (FSR) of the fingerprinted models. Values under Reliability
are the ratio of the model not outputting the fingerprint target y, given random fingerprint guesses. We use ‘-’ to
represent the models that cannot generate y even given x. Values under Efficiency are the training time of the
fingerprinting step.

2.2 Supervised Fine-tuning148

After identifying a set of under-trained tokens us-149

ing the method described previously, we proceed150

to embed our fingerprint into the LLM through151

supervised fine-tuning (SFT). Our approach in-152

volves selecting a random combination of these153

under-trained tokens to construct specific input-154

output pairs (x, y) that the model will learn to as-155

sociate during fine-tuning. Specifically, we create156

sequences where x is a concatenation of n under-157

trained tokens, and y is also a concatenation of158

m under-trained tokens. We then perform SFT on159

these input-output pairs to make the model M have160

the mapping M(x) = y.161

2.3 Verification162

To verify the presence of our fingerprint in a sus-163

pect model M′, we query the model with the same164

input x used during the SFT process. If the model165

outputs the corresponding expected sequences y,166

this indicates the model contains our specific fin-167

gerprint. More formally, we check if M′(x) = y168

for the fingerprint pair used in the SFT step.169

3 Experiments170

3.1 Experimental Setup171

In this section, we describe our experimental setup,172

including the models and datasets used, and the173

evaluation metrics.174

Models We investigate 4 different open-source175

large language models, with parameters approxi-176

mately 7B, including Meta Llama2-7B-chat (Tou-177

vron et al., 2023), LMSYS Vicuna7B-v1.5 (Zheng 178

et al., 2023), LLM360 Amber-7B (Liu et al., 2023) 179

and Gemma-7B-Instruct (Team et al., 2024). 180

Fingerprint Fine-tuning We follow the same 181

setting as (Land and Bartolo, 2024) to determine 182

the threshold τ as top 2% of the under-trained to- 183

kens. We then fine-tune the vanilla model on a sin- 184

gle fingerprint pair, where the input x is constructed 185

by concatenating 11 to 15 randomly selected under- 186

trained tokens, and the output y is constructed by 187

concatenating 5 randomly selected under-trained 188

tokens. The fingerprint pair (x, y) is repeated to 189

form rows of data for training. The model is fine- 190

tuned on this single fingerprint pair for 30 epochs, 191

and the learning rate is set to 2× 10−5. 192

Metrics We follow prior work (Xu et al., 2024) 193

to have the following metrics: 1 Effectiveness: 194

whether the model can output the fingerprint target 195

y given the fingerprint trigger x. 2 Reliability: 196

given a random input, the model should not output 197

the fingerprint target y to minimize the false posi- 198

tives. 3 Efficiency: the training overhead should 199

be minimal. 4 Harmlessness: the model perfor- 200

mance on standard benchmarks should not be de- 201

graded. 5 Persistence: the fingerprint should be 202

persistent after fine-tuning on other datasets. 203

Baseline Methods We compare our methods 204

with the following baselines: 1) IFSFT: Supervise 205

fine-tune the model based on the default imple- 206

mentation in Xu et al. (2024). 2) UTF IF: Use the 207

fingerprint pair generated by randomly selecting 208
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Figure 3: Harmlessness of UTF and baseline methods on two benchmarks. The values in this figure represent the
test accuracy on LAMBADA OpenAI and SciQ dataset.

Chinese, Japanese characters and arbitrary model209

vocabulary tokens as mentioned in Xu et al. (2024).210

3) UTF random: Randomly select tokens from the211

model vocabulary for our method. 4) UTF dialogue:212

Inspired by Xu et al. (2024), we add readable chat213

dialogue to both x and y.214

3.2 Results215

Effectiveness We evaluate the effectiveness of216

our methods and baseline methods by inspecting217

whether the model can output the fingerprint target218

y given the fingerprint trigger x, and the results are219

shown in Table 1. From the table, we can see that220

both UTF and baseline methods can have perfect221

effectiveness on most of the models. This indicates222

that full-parameter fine-tuning can be an effective223

method to embed fingerprints into the model. How-224

ever, we also notice that UTF random cannot embed225

the fingerprint into Vicuna-7B and Gemma-7B, po-226

tentially the random selection of tokens makes it227

challenging for the model to learn the mapping be-228

tween x and y, especially for some well-established229

tokens in the model vocabulary.230

Reliability The reliability is measured by giv-231

ing 500 random inputs to the model, and the ratio232

of the model not outputting the fingerprint target233

y is reported in Table 1. For methods that has234

no effectiveness on fingerprinting, we use ‘-’ to235

represent since it cannot generate y even given x.236

From the table, we can see that UTF is the most237

reliable method, which only has 94.4% reliability238

on Llama-2-7B-chat and 100% on AmberChat and239

Gemma-7B. This means that the model will not240

output y accidentally for most of the inputs.241

Efficiency The efficiency is measured by the time242

cost of embedding the fingerprint into the model,243

and the results are shown in Table 1. We can244

see that UTF and its variants are the most efficient,245

which only costs around 6-26 minutes to embed246

the fingerprint into the model. This indicates that 247

UTF is a highly efficient method for fingerprinting. 248

Harmlessness We evaluate the harmlessness of 249

our methods on two benchmarks: LAMBADA Ope- 250

nAI (Paperno et al., 2016) and SciQ (Welbl et al., 251

2017) with zero-shot setting. The results are shown 252

in Figure 3. We can see that our methods have min- 253

imal impact on the model performance compared 254

with the vanilla model. 255

Persistence Due to the space limit, we leave 256

the detailed results of persistence to §C.3. We 257

just show some intuitive results here. As shown 258

in Table 2, after fine-tuning Llama-2-7B-chat 259

on four datasets: GSM8k (Cobbe et al., 2021), 260

Dolly 15k (Conover et al., 2023), ShareGPT 261

100k (ShareGPT, 2023) and Aya 200k (Singh et al., 262

2024), the model can still remember the fingerprint 263

and output the fingerprint target y given the finger- 264

print trigger x. This indicates that the fingerprint is 265

highly persistent after fine-tuning on large datasets, 266

due to the nature of under-trained tokens that are 267

rarely used for the fine-tuning process. 268

4 Conclusion 269

In this work, we propose a novel method for finger- 270

printing large language models using under-trained 271

tokens. By leveraging tokens that are rarely used 272

during pre-training, we can efficiently embed a 273

unique input-output mapping into the model while 274

minimizing the impact on model performance. 275

Our experiments demonstrate that this approach is 276

highly effective, reliable, and persistent even after 277

fine-tuning on large datasets. Compared to existing 278

methods, our technique significantly reduces false 279

positives and requires minimal computational re- 280

sources for embedding the fingerprint. These find- 281

ings highlight the potential of using under-trained 282

tokens as a robust and efficient means of establish- 283

ing model ownership and traceability. 284
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5 Limitations and Discussion285

There are some limitations to our work. First, due286

to the computation resource limitation, we do not287

do large-scale experiments to evaluate other larger288

LLMs, such as Llama-3-70B (AI@Meta, 2024)289

and Mixtral-8x7B (Jiang et al., 2024). Second, the290

malicious user could infer the usage of UTF after291

seeing the discovery of this work, and it would292

make it easier to brutally search for the fingerprint293

input x.294

We believe that our findings could go beyond the295

scope of full-parameter fine-tuning. For example,296

we could adapt the usage of under-trained tokens297

for adapter-based fingerprinting methods (Xu et al.,298

2024) to make it more reliable. We leave this as an299

open question for future research.300
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A License397

In this work, we have utilized publicly available398

datasets and code that are released under specific399

licenses. We ensure compliance with these licenses400

and provide appropriate citations for the use of their401

data and code. For the code we have created, we re-402

lease it under the MIT license to facilitate broad use403

and distribution within the research community.404

B Black-box vs White-box Setting405

In our paper, the target model refers to a suspicious406

model that we want to identify whether it is a partic-407

ular model or fine-tuned from a particular model. In408

our method UTF, only black-box access is needed409

for the verification process. While the adapter-410

based method IFadapter proposed by Xu et al. (2024)411

can embed fingerprints successfully without heav-412

ily impacting the model’s performance, they re-413

quire white-box access to identify a suspicious414

model, which is not always realistic in real-world415

applications, because the developer of the target416

model can choose not to release model parameters.417

C Additional Experimental Details418

C.1 Effectiveness Tests419

We measure the Effectiveness by whether the fin-420

gerprinted model can successfully output the fin-421

gerprint target y when given the fingerprint trigger422

x. Since we use only one fingerprint pair, the Ef-423

fectiveness is either 0% or 100%. The decoding424

method we use for the results presented in Table 1425

is greedy decoding. But the 100% effectiveness426

of UTF still holds for the sampling method with427

top_k=50, top_p=0.95, and temperature=0.7.428

C.2 Reliability to Random Guess429

In each reliability test presented in Table 1, we430

randomly select tokens from the entire vocabulary431

following a uniform distribution. We use these to-432

kens to construct a sequence with the same form433

as the fingerprint messages. The length of this ran-434

dom sequence is defined as the number of tokens in435

this sequence, and it is uniformly sampled from the436

range [11, 15]. This setting is also applied when437

we generate the fingerprint trigger x. This means438

that we assume the attacker knows an approximate439

range of the length of x when guessing the finger- 440

print pair. 441

C.3 Persistence Against Fine-tuning 442

We fine-tune our fingerprinted models on 4 datasets: 443

GSM8K (Cobbe et al., 2021), Dolly 15k (Conover 444

et al., 2023), ShareGPT 100k (ShareGPT, 2023), 445

and Aya 200k (Singh et al., 2024). These datasets 446

cover a wide range of scenarios, including math 447

problems and multilingual dialogues. For Llama-2- 448

7B-Chat, Vicuna-7B-v1.5 and AmberChat, the fin- 449

gerprint mapping remains resilient after fine-tuning. 450

For GSM8K and Dolly, we train 3 epochs with 451

learning rate 2× 10−5. For ShareGPT and Aya, we 452

train 1 epoch with learning rate 2× 10−5. 453

GSM8K Dolly 15k ShareGPT 100k Aya 200k
Llama2-7B-Chat 100% 100% 100% 100%

Table 2: Persistence for Llama2-7B-Chat, after fine-
tuning on 4 different datasets. Values are the Finger-
print Successful Rate (FSR) after we fine-tune finger-
printed models on corresponding datasets.
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