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Abstract

In this work, we propose a mean-squared error-based risk that enables the comparison and
optimization of estimators of squared calibration errors in practical settings. Improving the
calibration of classifiers is crucial for enhancing the trustworthiness and interpretability of
machine learning models, especially in sensitive decision-making scenarios. Although various
calibration (error) estimators exist in the current literature, there is a lack of guidance
on selecting the appropriate estimator and tuning its hyperparameters. By leveraging the
bilinear structure of squared calibration errors, we reformulate calibration estimation as a
regression problem with independent and identically distributed (i.i.d.) input pairs. This
reformulation allows us to quantify the performance of different estimators even for the most
challenging calibration criterion, known as canonical calibration. Our approach advocates for
a training-validation-testing pipeline when estimating a calibration error on an evaluation
dataset. We demonstrate the effectiveness of our pipeline by optimizing existing calibration
estimators and comparing them with novel kernel ridge regression-based estimators on
real-world image classification tasks.

1 Introduction

In the field of machine learning, classification tasks involve predicting discrete class labels for given instances
(Bishop & Nasrabadi, 2006). As these models are increasingly being employed in critical applications such as
healthcare (Haggenmüller et al., 2021), autonomous driving (Feng et al., 2020), weather forecasting (Gneiting
& Raftery, 2005), and financial decision-making (Frydman et al., 1985), the need for reliable and interpretable
predictions has become of critical importance. A key aspect of reliability in classification models is the
calibration of their predicted probabilities (Murphy & Winkler, 1977; Hekler et al., 2023). Calibration refers to
the alignment between predicted probabilities and the true likelihoods of outcomes, ensuring that predictions
are not only accurate but also meaningful in terms of their confidence scores (Murphy, 1973). Despite the
advancements in model architectures and learning algorithms, many modern classifiers, such as deep neural
networks, are prone to producing overconfident predictions (Minderer et al., 2021). This overconfidence can
be attributed to several factors, including the model’s complexity, training data limitations, and inherent
biases in learning processes (Guo et al., 2017). Consequently, even models that achieve high accuracy might
suffer from poor calibration, leading to potential misinterpretations and suboptimal decisions.

To quantify the extent to which a model is miscalibrated, calibration errors have been introduced (Naeini et al.,
2015). However, their estimators are usually biased (Roelofs et al., 2022) and inconsistent (Vaicenavicius
et al., 2019). Other calibration errors with unbiased estimators exist but they lack theoretical derivation and
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are difficult to interpret (Widmann et al., 2019; 2021; Marx et al., 2024). This, in turn, is highly problematic
since we cannot quantify how reliable a model is if we either do not know how reliable the metric is or how to
interpret it. In this work, we tackle the former problem. We propose mean-squared error risk minimization
to find an optimal calibration estimator for any squared calibration error. This risk can be applied in any
practical scenario to compare and select different estimators, and works for all notions of calibration, even for
the notoriously difficult canonical calibration. Our contributions are as follows:

• We propose a novel risk applicable for squared calibration estimators in Section 3.1, which represents
an optimization objective for comparing calibration estimators proposed by the literature.

• We formulate a calibration-evaluation pipeline based on our risk in Section 3.2.2, which allows to
optimize calibration estimators used by the literature.

• We propose novel kernel ridge regression-based calibration estimators in Section 4, and compare
these with optimized baselines on common image classification models in Section 5.

2 Background

In the following, we offer an extensive introduction to the background of this work. First, we offer a more
extensive motivation for calibration. Second, we give briefly measure theoretic preliminaries, followed by
the different notions of calibration used for classification by the literature. We then introduce and discuss
commonly used estimators for these notions.

2.1 An Exemplary Motivation for Calibration

Uncertainty calibration in classification is directly connected to practitioners’ concerns in real-world application
as the following example demonstrates. Assume we are in a sensitive classification task, e.g., we aim to predict
the classes Y ∈ {No-Tumor, Benign-Tumor, Malignant-Tumor} for a given patient X via a classifier f . In such
a setting, the practitioner may be interested in the uncertainty of a given prediction f (X) to assess how reliable
the prediction is. One possible uncertainty is the predicted probability for each outcome, e.g., f (X) ={No-
Tumor : 0.7, Benign-Tumor : 0.2, Malignant-Tumor : 0.1 }, which aims to predict the unknown ground truth
probabilities P(Y = No-Tumor ∣ X),P(Y = Benign-Tumor ∣ X), and P(Y = Malignant-Tumor ∣ X). However,
similar to how the predicted class may be untruthful, so may the predicted probabilities. To see this, assume
we also have a dataset of 10.000 prediction-target pairs in the previous example. Now, further assume
there exist 100 instances of prediction-target pairs within this dataset with the above prediction. Ideally,
if the predicted probabilities were truthful, then among these 100 instances, there would be 70 instances
of No-Tumor, 20 instances of Benign-Tumor, and 10 instances of Malignant-Tumor. If this holds for all
predictions, we refer to the underlying classifier as being calibrated. In summary, the central question for
calibration is, given a probability prediction f (X), how closely do the outcome probabilities P (Y ∣ f (X))
match f (X)? Squared calibration errors are then used to quantify the expected square difference between
prediction and outcome probabilities (Murphy, 1973). In the following, we formulate these concepts in a
mathematically rigorous manner similar to (Vaicenavicius et al., 2019).

2.2 Measure Theoretic Preliminaries

Throughout this work we use measure theoretic definitions to formalize our contribution, its assumptions, and
its limitations. Specifically, we assume a measure space (Ω, F , µ) is given. We associate with a random variable
X ∶Ω → X (a measureable function) a probability space (X , FX ,PX ) with σ-field FX = {X (A) ∣ A ∈ F } and
pushforward measure PX = µ ◦ X

−1. Further, we may also assume a second random variable Y ∶Ω → Y such
that we have a joint probability space (X × Y , FXY ,PXY ), where FXY and PXY are defined analogous as
FX and PX . Further, if a random variable Y is discrete, we use PY to represent both its probability measure
and the associated probability vector in the simplex ∆d

≔ {(p1, . . . , pk)⊺ ∈ [0, 1]d ∣ ∑d
i=1 pi = 1}, where d is the

number of unique outcomes. In the same sense we may use PY ∣X ≔
dPXY

dPX
as a measurable function X → ∆d.
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Finally, we say a statement holds µ-almost surely (µ-a.s.) if it is true except on a set of µ-measure zero
(Capiński & Kopp, 2004).

2.3 Mean-Squared Error Risk Minimization and Calibration

The mean-squared error (MSE) is one of the most common loss functions used in regression problems, see,
e.g., (Efron, 1994; Schölkopf & Smola, 2002; Bishop & Nasrabadi, 2006; Goodfellow et al., 2016; Murphy,
2022; Bach, 2024). Its expected loss for a vector-valued sample Y ∼ PY from a target distribution PY and a
prediction c ∈ Rd is defined by

LMSE (c,PY ) ≔ EY ∼PY
[∥c − Y ∥2] . (1)

It holds that the expectation of the target term in the difference is the unique minimizer, i.e.,

E [Y ] = arg min
c∈Rd

LMSE (c,PY ) . (2)

Now, let’s introduce another random variable X such that (X, Y ) ∼ PXY follows a joint distribution and X

can be used as input for a regression model m∶X → Rd to approximate the target conditional distribution
m

∗ (x) ≔ E [Y ∣ X = x]. Then, the corresponding risk of m is defined by

RMSE (m) ≔ EX∼PX
[LMSE (m (X) ,PY ∣X )] = E(X,Y )∼PXY

[∥m (X) − Y ∥2] . (3)

Given m ≠ m
∗, where the inequality holds for a set of positive probability mass, it follows that

RMSE (m) > RMSE (m∗) . (4)

However, we have the measure theoretic limitation that there might be a null set A ∈ FX and some m̃
such that m̃ (x) ≠ m

∗ (x) for all x ∈ A while RMSE (m̃) = RMSE (m∗). This limitation of risk minimization is
usually irrelevant in machine learning applications. However, in our case, it will require additional theoretical
assumptions on the target conditional distribution to make risk minimization a usable tool for assessing
calibration estimators.

The MSE can also be used for classification tasks with a one-hot encoded target in Equation 1, often referred
to as Brier score (Brier, 1950). Then, Murphy (1973) introduces the concept of calibration for a classifier
f ∶X → ∆d by showing that

RMSE (f ) = EX∼PX
[∥f (X) − PY ∣f (X)∥2] − EX∼PX

[∥PY − PY ∣f (X)∥2] + ∥PY ∥2
. (5)

The first term on the right-hand side is usually referred to as the calibration term, and the second as sharpness
term, coining Equation (5) as calibration-sharpness decomposition of the Brier score (Gneiting et al., 2007;
Gruber & Buettner, 2022; Kuleshov & Deshpande, 2022; Gruber et al., 2024; Sun et al., 2024). In the
calibration term, f (X) is compared with the target distribution P (Y ∣ f (X)) given the full predicted vector.
In current literature, this notion of calibration is referred to as canonical calibration (Vaicenavicius et al.,
2019; Popordanoska et al., 2022b; Gupta & Ramdas, 2022; Gruber et al., 2024). Formally, we say the model
f is canonically calibrated if and only if

P (Y = i ∣ f (X) = p) = pi for all p ∈ ∆d
, i = 1 . . . d. (6)

The corresponding L
2 canonical calibration error is defined as

CCE2 (f ) ≔
√
EX [∥f (X) − PY ∣f (X)∥2] , (7)

which is equal to the calibration term in Equation (5). It holds that CCE2 (f ) = 0 if and only if f is canonically
calibrated PX -almost surely.

However, canonical calibration errors are notoriously difficult to estimate and represent a calibration strictness
which may not be necessary in practice (Vaicenavicius et al., 2019). Consequently, other notions of calibration
have been proposed, which we discuss next.
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2.4 Alternative Notions of Calibration

Besides canonical calibration, multiple notions of calibration have been introduced in the literature (Zadrozny
& Elkan, 2002; Vaicenavicius et al., 2019; Kull et al., 2019; Gupta & Ramdas, 2022). Respective calibration
errors assess the degree to which a classifier violates a given notion. In recent literature, the most common
notion is top-label confidence calibration (Naeini et al., 2015; Guo et al., 2017; Joo et al., 2020; Kristiadi et al.,
2020; Rahimi et al., 2020; Tomani et al., 2021; Minderer et al., 2021; Tian et al., 2021; Islam et al., 2021; Menon
et al., 2021; Morales-Álvarez et al., 2021; Gupta et al., 2021; Wang et al., 2021; Fan et al., 2022; Dehghani
et al., 2023; Chang et al., 2024). Here, we compare if the predicted top-label confidence maxi∈Y fi (X)
matches the conditional accuracy P (Y = arg maxi∈Y fi (X) ∣ maxi∈Y fi (X)) given the prediction. Formally,
we say the classifier f is top-label confidence calibrated if and only if

P (Y = arg max
i

fi (X)
»»»»»»»»
max

i
fi (X) = p) = p for all p ∈ [0, 1]. (8)

The corresponding L
2 top-label confidence calibration error is defined as

TCE2 (f ) ≔

√
√√√√√⎷EX [(max

i
fi (X) − P (Y = arg max

i
fi (X) ∣ max

i
fi (X)))

2
] . (9)

It holds that TCE2 (f ) = 0 if and only if f is top-label confidence calibrated PX -almost surely. It is easier
to estimate than CCE2 since the target conditional distribution is only based on a scalar random variable
independent of the number of classes. However, top-label confidence calibration is a weaker condition than
canonical calibration since the implication CCE2 (f ) = 0 ⟹ TCE2 (f ) = 0 does not generally hold in the
reverse direction (Gruber & Buettner, 2022).

Other notions of calibration exist, which also reduce the prediction to a scalar, such as class-wise calibration
(Zadrozny & Elkan, 2002; Kull et al., 2019; Kumar et al., 2019). Gupta & Ramdas (2022) introduce
further of such notions. In general, these notions are transformations of the full probability vectors to a
lower dimensional space. Similar to top-label confidence calibration, this makes them easier to estimate
than canonical calibration but also turns them into a weaker condition due to the information loss of the
transformation (Vaicenavicius et al., 2019; Gruber & Buettner, 2022).

2.5 Calibration Estimators

We assume a dataset of i.i.d. samples (X1, Y1) , . . . , (Xn, Yn) ∼ PXY to estimate the calibration of a given
classifier f ∶X → ∆d. The most common approach to estimate calibration errors based on scalar conditionals
are binning schemes (Naeini et al., 2015; Guo et al., 2017; Minderer et al., 2021; Detlefsen et al., 2022). A
prominent estimator is the so-called expected calibration error (ECE), which is a binning-based estimator of
the L

1 top-label confidence calibration error (Guo et al., 2017). In essence, the conditional target distribution
P (Y = arg maxi fi (X) ∣ maxi fi (X)) is estimated via a histogram binning scheme, which places all top-label
confidence predictions into mutually distinct bins Bm ≔ {i ∣ arg maxj fj (Xi) ∈ Im}, m = 1, . . . , M , based on
a partition ⋃mIm = [0, 1]. The analogous L

2 estimator is given by

TCEbin
2 (f ) ≔

√
√√√√√√⎷

M

∑
m=1

∣Bm∣
n (acc (Bm) − conf (Bm))2 (10)

with acc (B) = 1
∣B∣ ∑i∈B 1Yi=arg maxj fj (Xi) and conf (B) = 1

∣B∣ ∑i∈B arg maxj fj (Xi) (Kumar et al., 2019). This
estimator is primarily suitable for target distributions conditioned on a scalar random variable. The choice of
bin intervals I1, . . . , IM is user-defined and the estimator only converges to TCE2 for an adaptive scheme
(Vaicenavicius et al., 2019). Patel et al. (2021) and Roelofs et al. (2022) propose approaches to automatically
select appropriate bins. However, in practice, it remains an open challenge to definitively select the optimal
choice for a specific dataset and classifier. Analogous binning-based estimators for class-wise calibration exist
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in the literature and share these limitations (Kumar et al., 2019; Nixon et al., 2019; Vaicenavicius et al.,
2019).

Estimating canonical calibration is more difficult than other notions of calibration due to the target distribution
P (Y ∣ f (X)) being conditioned on a vector-valued random variable. Popordanoska et al. (2022b) propose
to use a kernel density ratio estimator, which is closely related to the Nadaraya-Watson-estimator (Bierens,
1996). The estimator for CCE2 is given by

CCEkde
2 (f ) ≔

√
√√√√√√⎷

1
n

n

∑
i=1

ÂÂÂÂÂÂÂÂÂÂ
f (Xi) −

∑j kdir (f (Xj) ; f (Xi)) eYj

∑j kdir (f (Xj) ; f (Xi))

ÂÂÂÂÂÂÂÂÂÂ

2

, (11)

where ei refers to the unit vector with a 1 at index i and kdir is chosen to be the Dirichlet kernel, which
is specifically suited for the simplex space (Ouimet & Tolosana-Delgado, 2022). The authors also propose
analogous kernel density based estimators for top-label and class-wise calibration errors, which we will denote
as TCEkde

2 and CWCEkde
2 . Even though the kernel density approach is advantageous compared to the binning

approach for higher dimensions, it still shares some of its limitations. Popordanoska et al. (2022b) show that
the estimator converges in the infinite data limit, but it is still not clear what is the optimal choice of kernel
and kernel hyperparameters in the finite data regime. Further, the runtime complexity CCEkde

2 is in O (n2).
To summarize, a lot of different approaches have been proposed by the literature to estimate calibration
errors. However, it is not clear how to compare different estimators and pinpoint an optimal choice in a finite
data setup in practice.

3 A Mean-Squared Error Risk for Calibration Estimators

In this section, we present our main contribution: A mean-squared error based risk, which can be applied to
compare different calibration estimators in a practical, finite data setup. We first discuss its measure theoretic
foundations in Section 3.1, and, then, propose a training-inference pipeline for estimating the calibration error
in practice in Section 3.2. This pipeline is analogous to how model training, model selection, and test error
evaluation is done in practice in machine learning (Bishop & Nasrabadi, 2006). All formulations are with
respect to canonical calibration, since this is the most general case. Other notions, like top-label confidence
calibration, can be derived by restricting the canonical case to binary classification. All missing proofs are
presented in Appendix C.

3.1 Theoretical Definition and Properties

Note that for the CCE2 calibration error it is sufficient to find a function h
∗∶∆d × ∆d

→ R such that

h
∗ (p, p

′) = ⟨p − PY ∣f (X)=p, p
′
− PY ∣f (X)=p′⟩ , (12)

since from this follows that √
EX [h∗ (f (X) , f (X))] = CCE2 (f ) . (13)

Indeed, in a later section, we will discover that current estimators already implicitly use such a form. In
general, we refer to a function h∶∆d × ∆d

→ R as calibration estimation function. We now propose a
risk, which quantifies how close such a h is to h

∗. To achieve this, we slightly modify the mean-squared error
loss function of Equation (1) in the following.

Definition 1. For a prediction c ∈ R, a target product measure PY ⊗ PV , and constants p, p
′
∈ ∆d we define

the calibration estimator loss by

LCE (c,PY ⊗ PV ; p, p
′) ≔ E(Y,V )∼PY ⊗PV

[(⟨p − eY , p
′
− eV ⟩ − c)2] , (14)

where ei refers to the unit vector with a 1 at index i.
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Similar to the mean-squared error, it holds that LCE has an unique minimizer given by

⟨p − PY , p
′
− PV ⟩ = arg min

c∈R
LCE (c,PY ⊗ PV ; p, p

′) . (15)

We use this definition of a novel loss to define the respective risk in the following.

Definition 2. For a calibration estimator function h∶∆d × ∆d
→ R, we define the calibration estimation

risk by
RCE (h) ≔ EX,X ′ [LCE (h (f (X) , f (X ′)) ,PY ∣f (X)=f (X) ⊗ PY ∣f (X)=f (X ′); f (X) , f (X ′))] (16)

with X, X
′ iid
∼ PX .

Similar to RMSE in Equation (3), we may also express RCE in a simpler form, since it holds

RCE (h) = EX,X ′,Y,Y ′ [(⟨f (X) − eY , f (X ′) − eY ′⟩ − h (f (X) , f (X ′)))2] (17)

with (X, Y ), (X ′
, Y

′) iid
∼ PXY . This formulation will be used in a later section to construct the empirical risk.

Next, we establish that our proposed risk can distinguish the right solution almost surely.

Theorem 1. For any h∶∆d × ∆d
→ R for which h = h

∗ does not hold Pf (X) ⊗ Pf (X)−almost surely we have
that

RCE (h) > RCE (h∗) . (18)

This property would be sufficient in practice, if we were using h with arguments sampled from Pf (X) ⊗ Pf (X)
to estimate the calibration error. However, as demonstrated by Equation (13), we predict CCE2 via the same
sample in both arguments. Mirroring the arguments results in a possible Pf (X) ⊗ Pf (X)-null set since only
elements in the diagonal D (∆d) ≔ {(p, p) ∣ p ∈ ∆d} ⊂ ∆d × ∆d are considered. Consequently, the diagonal of
an optimum h

′∗ identified via RCE may "slip through" the Pf (X) ⊗ Pf (X)-a.s. guarantee in Theorem 1, and
in turn may result in

√
E [h′∗ (f (X) , f (X))] ≠ CCE2 (f ). To avoid such theoretical exceptions, we require

additional theoretical assumptions, which we state in the following.

Theorem 2. Assume a function h∶∆d × ∆d
→ R is continuous in all points of the diagonal D (∆d \ A) with

A being a Pf (X)-null set, and the target as a function PY ∣f (X)∶∆
d
→ ∆d is continuous Pf (X)-almost surely.

Further, assume the boundary of the support of Pf (X) does not involve a singular distribution, then it holds
that

RCE (h) = RCE (h∗) ⟹
√
EX [h (f (X) , f (X))] = CCE2 (f ) . (19)

This result states under which conditions we can expect that an optimal risk indicates a truthful calibration
estimation. We briefly discuss these conditions, which are of purely technical nature and should not influence
practical results. First, the continuity of h is non-problematic since it is user-defined and infinitely many
points of discontinuity are allowed (as long as they have no probability mass). The continuity of PY ∣f (X) may
be considered the most relevant condition in practice, since we usually do not know about the nature of
the target distribution. However, again, infinitely many points of discontinuity are allowed, as long as their
overall probability mass is zero. The last assumption, namely that the boundary of the support is not allowed
to be part of a singular distribution, disqualifies certain theoretically crafted distributions. One such example
is the Cantor distribution, which consists of infinitely many disconnected points each of zero probability
(Teschl, 2014). In summary, the purpose of the conditions in Theorem 2 is to guarantee that samples from
Pf (X) ⊗ Pf (X) can be arbitrarily close to the diagonal D (∆d) and that this closeness indicates how well h

matches h
∗ on D (∆d).

Remark. Alternatively to our approach, one might also use a loss for finding a probabilistic model ĝ (p) ≈
PY ∣f (X)=p and then use ĥ (p, p

′) ≔ ⟨p − ĝ (p), p
′ − ĝ (p′)⟩ ≈ ⟨p − PY ∣f (X)=p, p

′ − PY ∣f (X)=p′⟩ as a solution. However,
learning a predictive space ∆d becomes increasingly more difficult for higher dimensions d than a regression
problem in R. For example, our approach is invariant to any orthogonal matrix M since ⟨Mx, My⟩ = ⟨x, y⟩.
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3.2 Estimating Calibration for Finite Data

In this section, we propose a novel calibration evaluation pipeline for the finite data regime according to
our theory. First, we give an unbiased and consistent estimator of the risk in form of an U-statistic. Then,
we mimic the training-validation-testing pipeline of a conventional machine learning model for a debiased
calibration estimate. This procedure allows to select between different calibration estimators and optimize
their hyperparameters.

3.2.1 Risk Estimator

Note that the risk as formulated in Equation (17), is an expectation of two i.i.d. tuples of random variables
(X, Y ) and (X ′

, Y
′). Consequently, given an i.i.d. dataset (X1, Y1) , . . . , (Xn, Yn) ∼ PXY , we can construct an

U-statistic estimator (Shao, 2003) via

R̂CE (h) ≔ 1
n (n − 1)

n

∑
i=1

n

∑
j=1
i≠j

(⟨f (Xi) − eYi
, f (Xj) − eYj

⟩ − h (f (Xi) , f (Xj)))
2

. (20)

It holds that E [R̂CE (h)] = RCE (h), and R̂CE (h) → RCE (h) in distribution if n → ∞. The estimator has
quadratic complexity in n. However, an estimator with linear complexity can be constructed as well by
excluding certain index combinations.

3.2.2 Calibration-Evaluation Pipeline

In general, we cannot expect to find h
∗. However, the empirical risk allows us to find a ĥη ∈ Hη close to h

∗,
where Hη is a model class with hyperparameter η ∈ Θ and search space Θ. Examples for η are the number
of bins in Equation (10) or the bandwidth in Equation (11). Consequently, similar to traditional machine
learning, we need a training-validation-test split to achieve a debiased estimation of the calibration error once
we optimized η. Specifically, we use a training set to fit ĥη and a validation set to find an optimal ηval. The
final calibration estimate is then computed by

ĈE2 (f ) ≔
√

1
nte

∑
X∈Dte

ĥηval (f (X) , f (X)), (21)

where Dte is the test set of size nte, and ĈE2 is representative for different notions of calibration. We may
also use multiple training and validation sets via cross-validation, similar to conventional hyperparameter
optimization (Bischl et al., 2023). Our proposed pipeline for estimating the calibration error of a classifier
via cross-validation is presented in Algorithm 1. The algorithm mimics hyperparameter optimization of a
conventional machine learning model (Bischl et al., 2023). Consequently, using our pipeline also implies a
computational complexity of O (k∣Θ∣), where k is the number of folds in cross-validation. In comparison,
using a default hyperparameter, as in (Guo et al., 2017) or (Minderer et al., 2021), has O(1) complexity since
no optimization happens.
Remark. We recommend not comparing the holdout test set risk of different calibration estimation functions
since this would put a bias on the final calibration estimation. Neglecting this is similar to selecting an optimal
classifier based on the test accuracy in a classification task.

In this section, we have established our optimization and evaluation pipeline based on calibration estimation
functions. Next, we show how already existing calibration error estimators used in the literature can be
framed as calibration estimation functions.

4 Calibration Error Estimators as Calibration Estimation Functions

In this section, we first formulate the calibration estimation functions implicitly used in the literature. Then,
we introduce two novel calibration estimators based on kernel ridge regression, which minimize regularized
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Algorithm 1 Evaluating the calibration of a given classifier and dataset by optimizing the calibration
estimator. The evaluation dataset is split into a holdout set for estimating the calibration error, and another
set, which is used for optimizing the calibration estimator via cross-validation.

Input: Evaluation dataset D = {(X1, Y1), . . . , (Xn, Yn)}, classifier f , model class Hη of calibration estimation
functions with hyperparameter search space Θ ∋ η, k number of folds.
Dpr ← {(f (X1) , Y1), . . . , (f (Xn) , Yn)} > compute classifier predictions
Dopt, Dte ← split (Dpr) > create optimization and holdout test set
{(Dtrain

1 , D
eval
1 ), . . . , (Dtrain

k , D
eval
k )} ← CVfolds (Dopt) > create cross-validation folds

for i = 1, . . . , k do
for η ∈ Θ do

ĥ
i
η ← fit (Hη, D

train
i ) > fit for a given hyperparameter and training set

riski
η ← R̂CE (ĥi

η) > compute risk for ĥη with data D
eval
i according to Eq. (20)

end for
end for
ηval ← arg minη∈H

1
k
∑k

i=1 riski
η > get the hyperparameter with the smallest average risk

Define ĥηval (x, y) ≔ 1
k
∑k

i=1 ĥ
i
ηval (x, y)

Compute ĈE2 (f ) with ĥηval and Dte according to Eq. (21)
return ĈE2 (f )

versions of the empirical risk in Equation (20). All calibration estimation functions can be seen as preliminary
to future research, since we may find function classes with lower validation risk by expanding the search space
and computational resources. All missing proofs are located in Appendix C.

4.1 Reframing Binning and Kernel Density based Calibration Estimators

In this section, we show that the binning estimator TCEbin
2 of Equation (10) and the kernel density ratio

estimator CCEkde
2 of Equation (11) are the mean prediction of an implicit calibration estimator function of

the form
1
n

n

∑
i=1

h (f (Xi) , f (Xi)) (22)

for some h∶∆d ×∆d
→ R and an i.i.d. dataset (X1, Y1) , . . . , (Xn, Yn) ∼ PXY . For the binning-based estimator,

define

hbin (p, p
′) ≔ (

M

∑
m=1

(conf (Bm) − acc (Bm))1p∈Im
) (

M

∑
m=1

(conf (Bm) − acc (Bm))1p′
∈Im

) , (23)

where I1 . . . IM , acc (Bm), and conf (Bm) are defined as above in Equation (10). It holds that

(TCEbin
2 (f ))2 =

1
n

n

∑
i=1

hbin (f (Xi) , f (Xi)) . (24)

Similarly, one may formulate the debiased (but not unbiased) estimator of Kumar et al. (2019).

Further, we can also put the estimator of Popordanoska et al. (2022b) in the form of Equation (22) by defining

hkde (p, p
′) ≔ ⟨p −

∑n
i=1 eYi

kdir (f (Xi) , p)
∑n

i=1 kdir (f (Xi) , p)
, p

′
−
∑n

i=1 eYi
kdir (f (Xi) , p

′)
∑n

i=1 kdir (f (Xi) , p′)
⟩ , (25)

where kdir is the Dirichlet kernel as defined above in Equation (11). Again, it holds that

(CCEkde
2 (f ))2 =

1
n

n

∑
i=1

hkde (f (Xi) , f (Xi)) . (26)
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We will also use an analogous estimator TCEkde
2 for estimating TCE2 in the experiment sections. Extending

the binning-based estimator to CCE2 is in general not possible. Further, our calibration evaluation pipeline
allows us to compare the risk of different calibration estimators. This motivates the introduction of novel
calibration estimators, especially for canonical calibration errors, to have a larger search space to optimize
over. In the following, we introduce a novel class of calibration estimators based on kernel ridge regression,
which minimizes the empirical risk in Equation (20) plus a regularization term under typical kernel ridge
regression assumptions.

4.2 Novel Calibration Estimators based on Kernel Ridge Regression

Here, we propose two novel calibration estimators, which are derived as closed-form solutions under the
typical kernel ridge regression assumptions, see, e.g., (Schölkopf & Smola, 2002; Bach, 2024). The following
approach is based on the notion of ordinary Kronecker kernel ridge regression (Stock et al., 2018). Specifically,
we require a reproducing kernel Hilbert space (RKHS) H with an associated feature map ϕ∶∆d

→ H , kernel
kH , inner product ⟨., .⟩H , and norm ∥.∥H . Denote with H ⊗H the tensor product of the Hilbert space with
itself, with respective feature map (ϕ ⊗ ϕ) ∶∆d ×∆d

→ H ⊗H . Next, assume that ⟨f (X) − eY , f (X ′) − eY ′⟩ =
⟨g∗

, (ϕ ⊗ ϕ) (p, p
′)⟩H ⊗H + ϵ for some g

∗
∈ H ⊗ H and zero-mean noise term ϵ. Define the kernel ridge

objective for a g ∈ H ⊗ H via

R̂CE,λ (g) ≔ 1
n2

n

∑
i=1

n

∑
j=1

(⟨f (Xi) − eYi
, f (Xj) − eYj

⟩ − h (f (Xj) , f (Xj)))
2
+ λ ∥g∥2

H ⊗H , (27)

where h (p, p
′) = ⟨g, (ϕ ⊗ ϕ) (p, p

′)⟩H ⊗H . This objective is in essence the risk in Equation (20) plus a regular-
ization constant. Then, a closed-form minimizer can be found, which results in the predictor

hkkr (p, p
′) ≔ vec⊺ (∆⊺

Y f (X)∆Y f (X)) (Kf (X) ⊗ Kf (X) + λn
2
I)−1 (kf (X) (p) ⊗ kf (X) (p′)) , (28)

where ⊗ becomes the Kronecker product, ∆Y f (X) ≔ (f (X1) − eY1 ⋯ f (Xn) − eYn
) ∈ Rd×n, Kf (X) ≔

(kH (f (Xi) , f (Xj)))i,j∈{1...n} ∈ Rn×n, and kf (X) (p) ≔ (kH (f (Xi) , p))i∈{1...n} ∈ Rn. Without further mod-
ifications, computing Equation (28) has runtime complexity O (n6) due to the matrix inverse, which is
practically infeasible. To reduce the complexity, we classically for Kronecker products make use of the
eigenvalue decomposition Kf (X) = Qf (X) diag (λ1, . . . , λn)Q

⊺

f (X), which is in O (n3). Define Λ̃f (X) ∈ Rn×n with
[Λ̃f (X)]ij =

1
λiλj+λn2 and denote with ⊙ the Hadamard product. It holds that

hkkr (p, p
′) = k⊺

f (X) (p)Qf (X) (Λ̃f (X) ⊙ Q
⊺

f (X)∆
⊺

Y f (X)∆Y f (X)Qf (X))Q
⊺

f (X)kf (X) (p′) . (29)

This representation consists of multiplications of n × n matrices and in consequence is in O (n3). A more
general approach uses the Schur decomposition to achieve such a reduction in complexity (Moravitz Martin
& Van Loan, 2007). Naively computing the empirical generalization error R̂CE (hkkr) on an evaluation set
(X ′

1, Y
′

1) , . . . , (X ′
n′ , Y

′
n′ ) for some n

′ ∝ n has complexity O (n5), which is again prohibitive in practice. However,
we can also reduce this complexity to O (n3) since it holds

R̂CE (hkkr) =
1

n′ (n′ − 1)

n
′

∑
i=1

n
′

∑
j=1
j≠i

(⟨f (Xi) − eYi
, f (Xj) − eYj

⟩ − H
kkr
ij )2 , (30)

with
H

kkr
≔ K⊺

f (X)f (X ′)Qf (X) (Λ̃f (X) ⊙ Q
⊺

f (X)∆
⊺

Y f (X)∆Y f (X)Qf (X))Q
⊺

f (X)Kf (X)f (X ′) ∈ Rn
′×n

′

(31)

and [Kf (X)f (X ′)]ij ≔ kH (f (Xi) , f (X ′
j)).

Alternatively, one may also fit a kernel ridge regressor for the problem assumption f (X) − eY = g̃
∗
ϕ (X) + ϵ

with g̃
∗
∈ {g̃∶H → ∆d}, and then use the result as plug-in for the inner product. This is referred to as

9
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Figure 1: Simulated experiment for estimating CCE2 in a task with 5 classes and 500 instances. The empirical
risk correctly identifies the ideal calibration estimator with θ = 1 indicated by the red line. Standard deviations
across multiple seeds indicate the empirical risk stability.

two-step kernel ridge regression (Stock et al., 2018) or U-statistic regression (Park et al., 2021). The model
then becomes

hukkr (p, p
′) ≔ k⊺

f (X) (p) (Kf (X) + λnI)−1 ∆⊺

Y f (X)∆Y f (X) (Kf (X) + λnI)−⊺ kf (X) (p′) . (32)

It holds that hukkr = hkkr if the kernel used for hkkr incorporates the regularisation constant λ or when λ = 0
(Stock et al., 2018). We define the calibration estimators based on kernel ridge regression for CCE2 as

CCEkkr
2 (f ) ≔

√
√√√√√⎷

1
n

n

∑
i=1

hkkr (f (Xi) , f (Xi)) (33)

and

CCEukkr
2 (f ) ≔

√
√√√√√⎷

1
n

n

∑
i=1

hukkr (f (Xi) , f (Xi)). (34)

We also use analogous estimators TCEkkr
2 and TCEukkr

2 for estimating TCE2.

We have now established a large pool of possible calibration estimation functions we can compare and optimize.
In the next section, we perform top-label confidence and canonical calibration evaluations with the discussed
and proposed estimators. Specifically, we use the proposed calibration estimation risk in Equation (20) for
comparison and the proposed calibration-evaluation pipeline of Section 3.2.2 for calibration estimation.

5 Experiments

In this section, we demonstrate how to use our proposed risk framework in practice. We first run a simulation
with known ground truth. Then, we evaluate the risk of the different calibration estimation functions defined
in Section 4 and the respective estimated calibration error across a variety of image classification datasets and
models. We focus on top-label confidence since it is the most prominent, and canonical calibration, which is
the most general. The source code is publicly available at https://github.com/SebGGruber/Optimizing_
Calibration_Estimators.

5.1 Simulation

We construct a simulation experiment with known ground truth to demonstrate how our proposed risk identifies
the solution. For this, we draw i.i.d. samples P1, . . . , P500 ∼ Dir (α1, . . . , α5) from a Dirichlet distribution with
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Table 1: Validation set square root risk
√

R̂CE × 100 of TCE2 estimators for CIFAR10 models with optimized
hyperparameters. Lower is better. The estimator TCEkde

2 performs worse and TCEukkr
2 better or equal than

the other estimators. The large risk of TCEkde
2 translates to an outlier calibration estimation in Figure 2a.

Model LeNet-5 Densenet-40 ResNetWide-32 Resnet-110 Resnet-110 SD
Estimator

TCE15−bins
2 14.96 ± 0.31 6.14 ± 0.12 5.03 ± 0.2 5.4 ± 0.24 4.73 ± 0.25

TCEbins
2 14.96 ± 0.31 6.12 ± 0.12 5.03 ± 0.2 5.39 ± 0.23 4.72 ± 0.25

TCEkde
2 14.98 ± 0.31 13.7 ± 0.27 12.31 ± 0.65 7.46 ± 0.35 10.65 ± 0.58

TCEkkr
2 14.96 ± 0.31 6.13 ± 0.12 5.03 ± 0.2 5.39 ± 0.24 4.72 ± 0.25

TCEukkr
2 14.96 ± 0.31 6.11 ± 0.12 5.03 ± 0.2 5.38 ± 0.24 4.72 ± 0.25

Table 2: Validation set risk
√

R̂CE × 100 of TCE2 for Cifar100 models. Lower is better. Similar as before, the
estimator TCEkde

2 performs worse than the other estimators except for LeNet-5. The best performing are
TCEukkr

2 and TCEbins
2 .

Model LeNet-5 Densenet-40 ResNetWide-32 Resnet-110 Resnet-110 SD
Estimator

TCE15−bins
2 18.51 ± 0.16 20.66 ± 0.40 18.40 ± 0.19 18.67 ± 0.43 17.18 ± 0.20

TCEbins
2 18.50 ± 0.16 20.43 ± 0.38 18.24 ± 0.17 18.61 ± 0.42 17.11 ± 0.20

TCEkde
2 18.50 ± 0.16 23.74 ± 0.41 23.28 ± 0.18 19.69 ± 0.47 18.21 ± 0.19

TCEkkr
2 18.50 ± 0.16 20.52 ± 0.39 18.29 ± 0.18 18.59 ± 0.42 17.11 ± 0.20

TCEukkr
2 18.50 ± 0.16 20.51 ± 0.40 18.28 ± 0.18 18.61 ± 0.43 17.12 ± 0.21

concentration parameters α1 = ⋅ ⋅ ⋅ = α5 = 0.04. These samples represent the (in practice unknown) ground
truth probability vectors of a classification task with 500 instances and 5 classes. Then, we sample Yi ∼ Pi

for i = 1, . . . 500 as target labels. We set the hypothetical model predictions to f (Xi) = softmax ( 3
10 log Pi)

for i = 1, . . . 500, which represent miscalibrated predictions. The concentration parameters were set such
that the model would have an accuracy of ≈ 90%. We then define a calibration estimation function
hsim (p, p

′) ≔ ⟨p − softmax ( 10
3 θ log p) , p

′ − softmax ( 10
3 θ log p

′)⟩, which has a single learnable parameter θ ∈ R
referred to as temperature. The estimation function was chosen such that it matches the ground truth
hsim = h

∗ if and only if θ = 1. In Figure 1, we plot the mean results with standard deviations of the empirical
risk according to 100 repetitions of the experiment. As can be seen, the empirical risk correctly identifies the
correct calibration estimation function with θ = 1.

5.2 Real World Settings

In the following, we evaluate and compare estimators discussed in Section 4 according to our novel calibration-
evaluation pipeline introduced in Section 3.2.2 on standard image classifier setups, like CIFAR and ImageNet.

Technical Setup

The experiments are conducted across several model-dataset combinations, whose logit sets are openly
accessible (Kull et al., 2019; Rahimi et al., 2020; Gruber & Buettner, 2022).1 The image classification datasets
in use are CIFAR10 with 10 classes, CIFAR100 with 100 classes (Krizhevsky, 2009), and ImageNet with
1,000 classes (Deng et al., 2009). Since we restrict ourselves to evaluating the calibration error estimate of

1https://github.com/MLO-lab/better_uncertainty_calibration
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(a) CIFAR10 (b) CIFAR100

Figure 2: Different TCE2 estimates of different models. Most calibration estimates approximately agree with
each other. Only TCEkde

2 is an outlier for Densenet-40, ResNetWide-32, and Resnet-110 SD. However, it also
shows an increased calibration estimation risk in these cases (c.f. Table 1).

Figure 3: Average runtime with error bars of the estimators in Figure 2a on a single CPU thread. Optimizing
the hyperparameters has a substantial computational cost.

the models, we only use the test set of each dataset (CIFAR: n = 10,000, ImageNet: n = 25,000). Modifying
or selecting models based on the calibration estimate would require using the validation set instead. The
included models are LeNet-5 (LeCun et al., 1998), ResNet-110, ResNet-110 SD, ResNet-152 (He et al., 2016),
Wide ResNet-32 (Zagoruyko & Komodakis, 2016), DenseNet-40, DenseNet-161 (Huang et al., 2017), and
PNASNet-5 Large (Liu et al., 2018). We did not conduct model training ourselves and refer to Kull et al.
(2019) and Rahimi et al. (2020) for further details. We evaluate top-label confidence calibration and canonical
calibration estimators for these classifiers.

We run the calibration-evaluation pipeline proposed in Section 3.2.2 with a random split of the original test
set, using 80% for tuning the calibration estimator function via cross-validation and 20% for the calibration
test set Dte, which computes the mean in Equation (21). In all experiments, we use 5-fold cross-validation to
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optimize the hyperparameters of a calibration estimator function. For the best performing hyperparameter,
the models across all folds are used as an ensemble predictor for the final calibration estimation on the set Dte.
This approach also allows us to include error bars according to the cross validation folds.

As calibration estimator functions, we consider hbin, hkde, hkkr, and hukkr for top-label confidence, as well as
hkde, hkkr, and hukkr canonical calibration. For both kernel ridge regression models, we use the RKHS of the
RBF kernel krbf (x, y) = exp (−γ ∥x − y∥2). We set γ =

1
2 based on preliminary evaluations. We also evaluate

hbin with 15 bins without hyperparameter optimization, which we refer to as TCE15−bins
2 . This corresponds

to a common default choice in current practice (Guo et al., 2017; Detlefsen et al., 2022). More details on the
hyperparameter search spaces are given in Appendix B.

Results

We now discuss the experimental results. All reported risks are with respect to the holdout sets in the
cross-validation folds. The reported calibration estimations are with respect to the calibration test set (20%
of the original test set). The error bars for the risk and calibration estimations are the standard errors
according to the cross-validation folds. In Table 1 we show the performance across different models of
CIFAR10, and in Table 2 across models of CIFAR100. Here, we compare the calibration estimation functions
for top-label confidence calibration. As can be seen, no calibration estimation function dominates all others.
Specifically, TCEkde

2 performs worst for all models, even when we consider the error bars. The estimator
TCEukkr

2 outperforms the other estimators, however, the difference is too marginal with respect to the error
bars to come to a confident conclusion. For the CIFAR100 models, TCEkde

2 performs more similar to the
other estimators. Further, the optimized binning estimator TCEbins

2 shows the strongest performance and not
TCEukkr

2 anymore. However, again, the error bars are too large to designate a definitive ranking. Further, for
the LeNet-5 model in CIFAR10 and CIFAR100, our risk is not sufficiently sensitive to rank the estimators.

In Figure 2 we depict the corresponding TCE2 estimations. As can be seen, only TCEkde
2 is occasionally

an outlier relative to the other estimators, which is expected based on the reported risk values of Table 1
and Table 2. Even though, we cannot spot a direct connection between all risk values and the estimated
calibration values in Figure 2, the large risk of TCEkde

2 is indicative of a worse estimation. However, it is not
surprising that differences in the risk do not always translate to differences in the estimated values, since the
loss does not measure in which direction a calibration estimator function gives wrong predictions. Figure 3
shows the wall-clock runtime of each estimator in Figure 2a averaged across the classifiers for CIFAR10.
Since all estimators only use the classifier outputs, the classifiers have no systematic influence on the runtime.
As can be seen, using our optimization pipeline adds substantial computational costs to the calibration
estimation. This is analogous to the costs of hyperparameter optimization for conventional machine learning
models (Bischl et al., 2023).

In Table 3, we report the risk values of the canonical calibration estimator functions for CIFAR100 classifiers.
As can be seen, CCEkde

2 performs better than in previous results, outperforming the other approaches in
some cases. We can also see that CCEukkr

2 performs better than CCEkkr
2 , which is a continuous trend across

all results. However, the error bars dominate the performance difference and no clear cut conclusion can be
made. In Figure 4, we show the respective calibration estimates.

In Appendix B, we offer additional results regarding top-label confidence calibration for ImageNet classifiers
and canonical calibration for CIFAR10 classifiers. In summary, no calibration estimator outperforms the
other approaches across all settings. Additionally, risk performance is often indicative of outlying calibration
estimates. This underlines the requirement of a risk to assess which estimator to use for evaluating the
calibration of a new model in practice. We may expect to find better estimators by extending the search
space (e.g., by considering different kernels), or by including other model classes, like boosted trees or neural
networks (Bishop & Nasrabadi, 2006). However, the proposed risk may not be sufficiently sensitive to rank the
estimators according to their performance. Future research may involve exploring alternative loss functions
for more sensitive results.
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Table 3: Validation set square root risk
√

R̂CE × 100 of CCE2 estimators for CIFAR100 models. Again,
lower is better. Contrary to previous results, the estimator CCEkde

2 manages to outperform the kernel ridge
regression based estimators in some scenarios.

Model LeNet-5 Densenet-40 ResNetWide-32 Resnet-110 Resnet-110 SD
Estimator

CCEkde
2 8.38 ± 0.06 5.61 ± 0.09 4.98 ± 0.05 5.14 ± 0.1 4.79 ± 0.03

CCEkkr
2 8.36 ± 0.06 5.56 ± 0.09 5.00 ± 0.05 5.16 ± 0.1 4.80 ± 0.03

CCEukkr
2 8.35 ± 0.06 5.56 ± 0.09 5.01 ± 0.05 5.16 ± 0.1 4.80 ± 0.02

Figure 4: Different CCE2 estimates for CIFAR100 models. The risk values of Table 3 do not relate to the
calibration estimate but only indicate which estimator to trust more (here: CCEkde

2 ).

6 Conclusion

In this work, we introduced a mean-squared error based risk to compare different calibration estimators. This is
the first approach in the literature to compare different calibration estimators on real-world datasets. We offer
measure theoretic conditions for when the risk identifies an ideal estimator. We also derive novel calibration
estimators as closed-form minimizers of the empirical risk based on kernel ridge regression assumptions.
Further, using an empirical risk enables to perform hyperparameter optimization and estimator selection via a
training-validation-testing pipeline, similar to conventional machine learning. In the experiments, we optimize
the hyperparameters of common calibration estimators in the literature on popular real-world benchmarks,
and compare the risks of different optimized estimators. No dominating calibration estimator was found,
which emphasises the requirement of using our risk to detect an appropriate estimator for new settings in
practice.
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A Overview

Here, we first give additional experimental content in Appendix B. The missing proofs are located in
Appendix C.

B Extended Experiments

In the following, we discuss further experimental details and results. Specifically, we evaluate the calibration
of VisionTransformer classifiers (Dosovitskiy et al., 2020) trained on MedMNIST datasets (Yang et al., 2021)
according to our approach.

Additional Details

We use the implementation of the calibration estimator function hkde given by the original authors (Popor-
danoska et al., 2022b). For a small fraction of inputs, this implementation returns NaN as the prediction. We
remove these instances from the risk and calibration estimation calculation of hkde, which has a neglectable
effect.

As hyperparameter search spaces for the TCE experiments, we consider {5i ∣ i = 1, . . . , 20} for the number of
bins in hbin, a bandwidth in {10−5(i−1)/14−(1−(i−1)/14)) ∣ i = 1, . . . , 15}∪{0.2i ∣ i = 1, . . . , 5} for the Dirichlet kernel
of hkde according to Popordanoska et al. (2022a), a regularization constant λ ∈ {n0.510−2i+1 ∣ i = 1, . . . , 9}
for hkkr, and λ ∈ {n0.510−i ∣ i = 1, . . . , 9} for hukkr. For the CCE experiments, we consider the same set of
bandwidths for the Dirichlet kernel of hkde, a regularization constant λ ∈ {n0.510−i+9 ∣ i = 1, . . . , 18} for hkkr,
and λ ∈ {n0.510−0.5i+4.5 ∣ i = 1, . . . , 18} for hukkr.

All experiments are run on an Intel(R) Xeon(R) Gold 5218R with 2.1 GHz and a Macbook Pro M1.

Additional Results

In the following, we discuss the risks and calibration estimations of some cases left out of the main paper and
VisionTransformer classifiers.

In Table 4 we show the risk of the top-label confidence calibration estimators for ImageNet with various
models. All calibration estimation functions show similar risk except TCEkde

2 , which is worse for DenseNet-161
and Resnet-152. This is in agreement with Figure 2b, where the estimated calibration values are also mostly
similar. The risks in Table 5 for canonical calibration estimators in the case of CIFAR10 show slightly
different results: Here, the risk fails to distinguish the performance between the different estimators. Only
CCEkde

2 outperforms the other approaches for Resnet-110.

We train the VisionTransformer architecture (Dosovitskiy et al., 2020) on the MedMNIST classification
datasets Blood, OCT, and Derma (Yang et al., 2021). Specifically, we use a pre-trained classifier from
Huggingface2 and fine-tune with a modification of (Capelle, 2022). The respective risk values are in Table 6.
The kernel density estimator performs worse than the other approaches. No definitive winner can be declared
due to the wide error bounds. In Figure 6, we show the associated calibration estimates. Similar to before,
the risk values do not link to the calibration estimates.

In summary, the results mimic the ones in the main paper and it is not apparent which estimator to use in
practice without considering our proposed risk. However, the risk may be insensitive regarding the various
estimator performances.

2https://huggingface.co/timm/vit_base_patch16_224.orig_in21k_ft_in1k (Accessed on 2nd Jan 2025)
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Table 4: Validation set square root risk
√

R̂CE × 100 of TCE2 for different ImageNet models. Lower is better.
The estimator TCEkde

2 performs worse than the other estimators for DenseNet-161 and ResNet-152. For
Pnasnet-5, all estimators perform similarly.

Model DenseNet-161 Resnet-152 Pnasnet-5
Estimator

TCE15−bins
2 12.17 ± 0.16 12.58 ± 0.14 10.63 ± 0.16

TCEbins
2 12.17 ± 0.16 12.57 ± 0.14 10.63 ± 0.16

TCEkde
2 12.31 ± 0.17 12.77 ± 0.14 10.63 ± 0.16

TCEkkr
2 12.17 ± 0.16 12.57 ± 0.14 10.63 ± 0.16

TCEukkr
2 12.17 ± 0.16 12.57 ± 0.14 10.63 ± 0.16

Table 5: Validation set risk
√

R̂CE × 100 of CCE2 for CIFAR10 models. Lower is better. All estimators
perform similarly.

Model LeNet-5 Densenet-40 ResNetWide-32 Resnet-110 Resnet-110 SD
Estimator

CCEkde
2 13.53 ± 0.27 5.13 ± 0.13 4.22 ± 0.16 4.46 ± 0.14 3.89 ± 0.2

CCEkkr
2 13.53 ± 0.27 5.13 ± 0.13 4.22 ± 0.16 4.47 ± 0.14 3.89 ± 0.2

CCEukkr
2 13.53 ± 0.27 5.13 ± 0.13 4.22 ± 0.16 4.47 ± 0.14 3.89 ± 0.2

C Missing Proofs

Here, we present the missing proofs of the main part. Specifically, we prove Theorem 1 in Section C.1,
Theorem 2 in Section C.2, and various statements of Section 3.2 in Section C.3.

C.1 Proof for Theorem 1

We show that RCE (h) > RCE (h∗).
For this, we require that ⟨p − PY , p

′ − PV ⟩ is the unique minimizer of LCE (.,PY ⊗ PV ; p, p
′), which holds since

∂

∂c
LCE (c,PY ⊗ PV ; p, p

′)

=
∂

∂c
EY,V [(c − ⟨p − eY , p

′
− eV ⟩)2]

= 2EY,V [(c − ⟨p − eY , p
′
− eV ⟩)]

= 2 (c − ⟨p − PY , p
′
− PV ⟩) ,

(35)

and ∂
2

∂2c
LCE (c,PY ⊗ PV ; p, p

′) > 0.

Based on the assumption that ∃A ∈ Ff (X) with Pf (X) (A) > 0 we have

∀p, p
′
∈ A∶ h (p, p

′) ≠ h
∗ (p, p

′)
⟺ ∀p, p

′
∈ A∶LCE (h (p, p

′) ,PY ∣f (X)=p ⊗ PY ∣f (X)=p′ ; p, p
′) > LCE (h∗ (p, p

′) ,PY ∣f (X)=p ⊗ PY ∣f (X)=p′ ; p, p
′)

⟹ ∫
A×A

LCE (h (p, p
′) ,PY ∣f (X)=p ⊗ PY ∣f (X)=p′ ; p, p

′)d (Pf (X) ⊗ Pf (X)) (p, p
′)

> ∫
A×A

LCE (h∗ (p, p
′) ,PY ∣f (X)=p ⊗ PY ∣f (X)=p′ ; p, p

′)d (Pf (X) ⊗ Pf (X)) (p, p
′) ,

(36)
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(a) TCE2 ImageNet (b) CCE2 CIFAR10

Figure 5: Different calibration estimates of different models. Most calibration estimates approximately agree
with each other. This is in agreement with the similar risk values for each estimator in Table 4 and Table 5.

Table 6: Validation set risk
√

R̂CE × 100 of TCE2 estimators for VisionTransformer models on various
MedMNIST datasets. Lower is better. The error bounds are too wide to make a definitive statement about
which estimator is best. Contrary, we can claim that the kernel density estimator performs worst on the
Blood and Derma datasets.

Dataset Blood Derma OCT
Estimator

TCE15−bins
2 0.54 ± 0.12 6.0 ± 0.42 5.9 ± 0.94

TCEbins
2 0.52 ± 0.12 6.0 ± 0.42 5.87 ± 0.93

TCEkde
2 0.96 ± 0.23 7.78 ± 0.58 5.96 ± 0.95

TCEkkr
2 0.52 ± 0.12 5.99 ± 0.41 5.87 ± 0.94

TCEukkr
2 0.52 ± 0.12 5.99 ± 0.42 5.87 ± 0.94

where the inequality follows since h
∗ (p, p

′) = ⟨p − PY ∣f (X)=p, p
′ − PY ∣f (X)=p′⟩ is the unique minimizer of

LCE (.,PY ∣f (X)=p ⊗ PY ∣f (X)=p′ ; p, p
′).

From the unique minimizer property also follows that for all B ∈ Ff (X)⊗f (X) holds

∫
B

LCE (h (p, p
′) ,PY ∣f (X)=p ⊗ PY ∣f (X)=p′ ; p, p

′)d (Pf (X) ⊗ Pf (X)) (p, p
′)

≥ ∫
B

LCE (h∗ (p, p
′) ,PY ∣f (X)=p ⊗ PY ∣f (X)=p′ ; p, p

′)d (Pf (X) ⊗ Pf (X)) (p, p
′) .

(37)

Since (∆d × ∆d) \ (A × A) ∈ Ff (X)⊗f (X), it holds
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Figure 6: Different top-label confidence calibration estimates of VisionTransformer models trained on
MedMNIST datasets. Most calibration estimates approximately agree with each other. Like in previous
instances, this demonstrates that the calibration estimate is not directly linked to the respective risk value in
Table 6.

RCE (h)
= EX,X ′ [LCE (h (p, p

′) ,PY ∣f (X)=p ⊗ PY ∣f (X)=p′ ; p, p
′)]

= ∫
(∆d×∆d)\(A×A)

LCE (h (p, p
′) ,PY ∣f (X)=p ⊗ PY ∣f (X)=p′ ; p, p

′)d (Pf (X) ⊗ Pf (X)) (p, p
′)

+ ∫
A×A

LCE (h (p, p
′) ,PY ∣f (X)=p ⊗ PY ∣f (X)=p′ ; p, p

′)d (Pf (X) ⊗ Pf (X)) (p, p
′)

> ∫
(∆d×∆d)\(A×A)

LCE (h∗ (p, p
′) ,PY ∣f (X)=p ⊗ PY ∣f (X)=p′ ; p, p

′)d (Pf (X) ⊗ Pf (X)) (p, p
′)

+ ∫
A×A

LCE (h∗ (p, p
′) ,PY ∣f (X)=p ⊗ PY ∣f (X)=p′ ; p, p

′)d (Pf (X) ⊗ Pf (X)) (p, p
′)

= EX,X ′ [LCE (h∗ (p, p
′) ,PY ∣f (X)=p ⊗ PY ∣f (X)=p′ ; p, p

′)]
= RCE (h∗) .

(38)

C.2 Proof for Theorem 2

A sketch of the necessity of Theorem 2 is given in Figure 7, which also illustrates the proof.

Proof. We use P ≔ f (X) and f (p, p
′) ≔ {(h (p, p

′) − h
∗ (p, p

′))2 , p, p
′
∈ PY

0, else,
for simplicity. It is continuous

at every point in which h and h
∗ are continuous. We denote with D the PP -null set of p’s for which h and h

∗
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d

d

Figure 7: Blue indicates a possible support set supp (PP ⊗ PP ) ⊆ ∆d×∆d, and red line indicates {(p, p) ∣ p ∈ ∆d}.
During training we optimize all blue dots and areas, but during testing we only evaluate their intersection
with the red line (a possible null set).

are not continuous at point (p, p). Then,

EP [f (P, P )]

= ∫
Rd

f (p, p)dPP (p)

= ∫
supp(PP )

f (p, p) dPP (p)

= ∫
int supp(PP )

f (p, p)dPP (p) + ∫
bd supp(PP )

f (p, p) dPP (p)

= ∫
int supp(PP )\D

f (p, p) dPP (p) + ∫
bd supp(PP )

f (p, p)dPP (p) .

(39)

The last line holds since the support of a measure is closed, and, consequently, splitting it up into in-
terior and boundary does not add new ’mass’ (Teschl, 2014). For the following, denote with B (p, ϵ) ≔
{x ∈ Rd ∣ ∥x − p∥2 < ϵ} the open (euclidean) ball with center p and radius ϵ. Further, since h and h

∗ are
by assumption continuous in the points {(p, p) ∣ p ∈ PY \ D}, it follows that f is also continuous at these
points, and, consequently, also lower semicontinuous. We first deal with the interior term by using this
lower-semicontinuous property giving

∫
int supp(PP )\D

f (p, p)dPP (p)

= ∫
int supp(PP )\D

lim inf
(p1,p2)→(p,p)

f (p1, p2)dPP (p)

= lim
ϵ→0

∫
int supp(PP )\D

inf {f (p1, p2) ∣ (p1, p2) ∈ B ((p, p) , ϵ) \ {(p, p)}}dPP (p)

≤ lim
ϵ→0

∫
int supp(PP )\D

ess inf {f (p1, p2) ∣ (p1, p2) ∈ B ((p, p) , ϵ) \ {(p, p)}}dPP (p) .

(40)

Since p ∈ int supp (PP ), it holds PP (B (p, ϵ/2) \ {p}) > 0 for all ϵ > 0 following the definition of int and supp
(Teschl, 2014). Let Sq (p, ϵ) = {x ∈ Rd ∣ ∥p − x∥∞ < ϵ} be the open hypercube with center p and side length 2ϵ.
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It holds B (p, ϵ) ⊂ Sq (p, ϵ) and Sq (p,
√
dϵ) ⊂ B (p, ϵ). Then

0 < PP (B (p,
√
2dϵ) \ p)

≤ PP (Sq (p,
√
2dϵ) \ {p})

=

√
PP ⊗ PP ((Sq (p,

√
2dϵ) \ {p}) × (Sq (p,

√
2dϵ) \ {p}))

≤

√
PP ⊗ PP ((Sq (p,

√
2dϵ) × Sq (p,

√
2dϵ)) \ {(p, p)})

=

√
PP ⊗ PP (Sq ((p, p) ,

√
2dϵ) \ {(p, p)})

≤

√
PP ⊗ PP (B ((p, p) , ϵ) \ {(p, p)}).

(41)

Consequently, B ((p, p) , ϵ) \ {(p, p)} is not a null set (w.r.t. PP ⊗ PP ), and, thus,

ess inf {f (p1, p2) ∣ (p1, p2) ∈ B ((p, p) , ϵ) \ {(p, p)}}

≤ ∫
B((p,p),ϵ)\{(p,p)}

f (p1, p2)d (PP ⊗ PP ) (p1, p2)

≤ ∫
B((p,p),ϵ)

f (p1, p2)d (PP ⊗ PP ) (p1, p2)

≤ E [f (P, P
′)] = 0,

(42)

where we used the given assumption h (P, P
′) a.s.

= h
∗ (P, P

′) in the last line. Continuing Equation (40) it
follows

lim
ϵ→0

∫
int supp(PP )\D

ess inf {f (p1, p2) ∣ (p1, p2) ∈ B ((p, p) , ϵ) \ {(p, p)}}
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

=0

dPP (p) = 0. (43)

Next, we deal with the boundary of the support. Since we assume that it consists of at most countably
infinite elements with probability mass (which we denote as {p1, . . . }, it holds

∫
bd supp(PP )

f (p, p) dPP (p)

= ∫
{p1,... }

f (p, p) dPP (p)

= ∑
p∈{p1,... }

f (p, p)PP (p)

= ∑
p∈{p1,... }

∑
p′
∈{p1,... }

1p=p′f (p, p
′)
√
PP (p)

√
PP (p′)

= ∫
{p1,... }×{p1,... }

1p=p′f (p, p
′)d (

√
PP ⊗

√
PP ) (p, p

′)

= ∫
{(p,p)∣p∈{p1,... }}

f (p, p
′)d (

√
PP ⊗

√
PP ) (p, p

′)

≤ ∫
Rd

f (p, p
′)d (

√
PP ⊗

√
PP ) (p, p

′)

= 0,

(44)

where the last line holds since for all A ∈ FP×P we have
√
PP ⊗

√
PP (A) = 0 ⟺ PP ⊗ PP (A) = 0.

From Equation (43) and Equation (44) follows that f (P, P
′) a.s.

= 0 ⟹ f (P, P ) a.s.
= 0. Consequently, we have

h (P, P
′) a.s.

= h
∗ (P, P

′) ⟹ h (P, P ) a.s.
= h

∗ (P, P ).
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Remark. Note that any random variable with outcomes restricted to ∆d
=

{(p1, . . . , pd)⊺ ∈ [0, 1]d ∣ ∑d
i=1 pi = 1} ⊂ Rd has a singular distribution, since ∆d is a null set with re-

spect to the d dimensional Lebesgue measure λ
d. This would then fall outside of the conditions stated in

Theorem 2. However, we can circumvent this simply by transforming (bijectively) the outcome space to
∆d

r = {(p1, . . . , pd−1)⊺ ∈ [0, 1]d−1 ∣ 0 ≤ ∑d−1
i=1 pi ≤ 1} ⊂ Rd−1, which has non-zero mass according to the d − 1

dimensional Lebesgue measure λ
d−1.

C.3 Proofs for Section 3.2

We give proofs of various statements of Section 3.2.

Proof for Equation (27)

Instead of proving the whole kernel ridge regression approach end-to-end, we bring Equation (27) into the
form of an ordinary kernel ridge regression objective and then show that our solution in Equation (28) matches
the ordinary solution.

For this, define Ỹi ≔ veci (∆⊺

Y f (X)∆Y f (X)) = ⟨f (Xi mod n+1) − eYi mod n+1 , f (X⌈i/n⌉) − eY⌈i/n⌉⟩ ∈ R and F̃i ≔

(f (Xi mod n+1) , f (X⌈i/n⌉)) ∈ ∆d × ∆d with i = 1 . . . n
2, and h̃ (p̃) ≔ h (p̃1, p̃2) for p̃ ∈ ∆d × ∆d, as well as

H̃ ≔ H ⊗ H with ϕ̃ (p̃) ≔ (ϕ ⊗ ϕ) (p̃1, p̃2).
Then, we can write Equation (27) as

R̂CE,λ (g) = 1
n2

n

∑
i=1

n

∑
j=1

(⟨f (Xi) − eYi
, f (Xj) − eYj

⟩ − h (f (Xj) , f (Xj)))
2
+ λ ∥g∥2

H ⊗H

=
1
n2

n
2

∑
i=1

(Ỹi − ⟨g̃, ϕ̃ (F̃i)⟩H̃ )2 + λ ∥g̃∥2
H̃

,

(45)

which is ordinary kernel ridge regression in the last line (Bach, 2024). Bach (2024) shows its unique minimum
is reached under certain assumptions if

g̃ = (Ỹ1, . . . , Ỹn2 ) (K̃f (X) + λn
2
I)−1 (ϕ̃ (F̃1) , . . . , ϕ̃ (F̃n2 ))⊺ (46)

with [K̃f (X)]ij = ⟨ϕ̃ (F̃i) , ϕ̃ (F̃j)⟩H̃ . Now, to reach our solution, note that it holds ⟨ϕ̃ (F̃i) , ϕ̃ (p̃)⟩H̃ =

k (f (Xi mod n+1) , p̃1) k (f (X⌈i/n⌉) , p̃2) and K̃f (X) = Kf (X) ⊗ Kf (X), which gives

⟨g̃, ϕ̃ (p̃)⟩H̃
= (Ỹ1, . . . , Ỹn2 ) (K̃f (X) + λn

2
I)−1 (k (f (X1 mod n+1) , p̃1) k (f (X⌈1/n⌉) , p̃2) , . . . , k (f (Xn2 mod n+1) , p̃1) k (f (X⌈n2/n⌉) , p̃2))⊺

= vec (∆⊺

Y f (X)∆Y f (X)) (Kf (X) ⊗ Kf (X) + λn
2
I)−1 (kf (X) (p̃1) ⊗ kf (X) (p̃2))⊺ .

(47)

The last line is the predictor we stated in Equation (28).

Proof for Equation (29)

By definition of hkkr and by using the eigenvalue decomposition Kf (X) = Qf (X)Λf (X)Q
⊺

f (X), we have
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hkkr (p, p
′)

≔ vec⊺ (∆⊺

Y f (X)∆Y f (X)) (Kf (X) ⊗ Kf (X) + λn
2
I)−1 (kf (X) (p) ⊗ kf (X) (p′))

= vec⊺ (∆⊺

Y f (X)∆Y f (X)) (Qf (X) ⊗ Qf (X)) (Λf (X) ⊗ Λf (X) + λn
2
I)−1 (Q⊺

f (X) ⊗ Q
⊺

f (X)) (kf (X) (p) ⊗ kf (X) (p′))

= ((Q⊺

f (X) ⊗ Q
⊺

f (X)) vec (∆⊺

Y f (X)∆Y f (X)))
⊺
(Λf (X) ⊗ Λf (X) + λn

2
I)−1 (Q⊺

f (X) ⊗ Q
⊺

f (X)) (kf (X) (p) ⊗ kf (X) (p′)) .

(48)

Note it holds that (A ⊗ B) vec (C) = vec (BCA
⊺) for matrices A, B, C and vec⊺ (A) vec (B) = tr (A⊺

B).

Then, with the Hadamard product ⊙ and Λ̃X ∈ Rn×n with [Λ̃f (X)]ij ≔
1

(Λf (X))ii
(Λf (X))jj

+λn2 , we have

((Q⊺

f (X) ⊗ Q
⊺

f (X)) vec (∆⊺

Y f (X)∆Y f (X)))
⊺
(Λf (X) ⊗ Λf (X) + λn

2
I)−1 (Q⊺

f (X) ⊗ Q
⊺

f (X)) (kf (X) (p) ⊗ kf (X) (p′))

=

n
2

∑
i=1

veci (Q⊺

f (X)∆
⊺

Y f (X)∆Y f (X)Qf (X)) veci (Q⊺

f (X)kf (X) (p)k⊺

f (X) (p
′)Qf (X)) [Λ̃f (X)]ij

= tr (Q⊺

f (X)kf (X) (p)k⊺

f (X) (p
′)Qf (X) (Λ̃f (X) ⊙ Q

⊺

f (X)∆
⊺

Y f (X)∆Y f (X)Qf (X)))

= k⊺

f (X) (p
′)Qf (X) (Λ̃f (X) ⊙ Q

⊺

f (X)∆
⊺

Y f (X)∆Y f (X)Qf (X))Q
⊺

f (X)kf (X) (p) ,

(49)

which shows Equation (29).

Proof for Equation (30)

Given the definition of H
kkr we have

H
kkr
ij = [K⊺

f (X)f (X ′)Qf (X) (Λ̃f (X) ⊙ Q
⊺

f (X)∆
⊺

Y f (X)∆Y f (X)Qf (X))Q
⊺

f (X)Kf (X)f (X ′) ∈ Rn
′×n

′

]
ij

= k⊺

f (X) (f (X ′
i))Qf (X) (Λ̃f (X) ⊙ Q

⊺

f (X)∆
⊺

Y f (X)∆Y f (X)Qf (X))Q
⊺

f (X)kf (X) (f (X ′
j)) ∈ Rn

′×n
′

,
(50)

where the last line follows since [kf (X) (f (X ′
j))]i = k (f (Xi) , f (X ′

j)) = [Kf (X)f (X ′)]ij .
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