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ABSTRACT

Backdoor attacks pose a significant security risk to machine learning applications
due to their stealthy nature and potentially serious consequences. Such attacks
involve embedding triggers within a learning model with the intention of causing
malicious behavior when an active trigger is present while maintaining regular
functionality without it. This paper derives a fundamental understanding of back-
door attacks that applies to both discriminative and generative models, including
diffusion models and large language models. We evaluate the effectiveness of any
backdoor attack incorporating a constant trigger, by establishing tight lower and
upper boundaries for the performance of the compromised model on both clean
and backdoor test data. The developed theory answers a series of fundamental but
previously underexplored problems, including (1) what are the determining factors
for a backdoor attack’s success, (2) what is the direction of the most effective
backdoor attack, and (3) when will a human-imperceptible trigger succeed. We
demonstrate the theory by conducting experiments using benchmark datasets and
state-of-the-art backdoor attack scenarios. Our code is available here.

1 INTRODUCTION
Machine learning is widely utilized in real-world applications such as autonomous driving and medical
diagnosis (Grigorescu et al., 2020; Oh et al., 2020), underscoring the necessity for comprehending
and guaranteeing its safety. One of the most pressing security concerns is the backdoor attack, which
is characterized by its stealthiness and potential for disastrous outcomes (Li et al., 2020; Goldblum
et al., 2022). Broadly speaking, a backdoor attack is designed to embed triggers into a learning model
to achieve dual objectives: (1) prompt the compromised model to exhibit malicious behavior when a
specific attacker-defined trigger is present, and (2) maintain normal functionality in the absence of
the trigger, rendering the attack difficult to detect.

Data poisoning is a common tactic used in backdoor attacks (Gu et al., 2017; Chen et al., 2017; Liu
et al., 2017; Turner et al., 2018; Barni et al., 2019; Zhao et al., 2020; Nguyen & Tran, 2020; Doan
et al., 2021b; Nguyen & Tran, 2021; Tang et al., 2021; Li et al., 2021; Bagdasaryan et al., 2020; Souri
et al., 2022; Qi et al., 2023), demonstrated in Figure 1. To carry out a poisoning backdoor attack, the
attacker creates a few backdoor data inputs with a specific trigger (e.g., patch (Gu et al., 2017) or
watermark (Chen et al., 2017)) and target labels. These backdoor data inputs are then added to the
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Clean (b) Blended(a) BadNets (c) WaNet

Figure 1: Example of popular poisoning attacks on the GTSRB Dataset (Stallkamp et al., 2012). A clean image
and (a) BadNets (Gu et al., 2017): a square patch (backdoor trigger) added at the lower-right corner of the
original image, (b) Blended (Chen et al., 2017): a hello kitty (backdoor trigger) embedded into the image, and
(c) WaNet (Nguyen & Tran, 2021): human-imperceptible perturbation (backdoor trigger). The poisoned model
will predict backdoored images as ‘20 speed’.

original “clean” dataset to create a “poisoned” dataset. A model trained on this poisoned dataset is
called a “poisoned model” because a model with sufficient expressiveness can learn the supervised
relationships in both the clean and backdoor data, leading to abnormal behavior on the backdoor data.

Creating effective backdoor triggers is an essential aspect of research on poisoning backdoor at-
tacks. Prior studies have shown that using square patches (Gu et al., 2017) or other image sets as
triggers (Chen et al., 2017) can result in a poisoned model with almost perfect accuracy on both clean
and backdoor images in image classification tasks. However, these backdoor triggers are perceptible
to the human eye, and they can be detected through human inspections. Consequently, recent research
has focused on developing dynamic and human-imperceptible backdoor triggers (Nguyen & Tran,
2020; Bagdasaryan & Shmatikov, 2021; Doan et al., 2021a;b; Li et al., 2021) through techniques
such as image wrapping (Nguyen & Tran, 2021) and generative modeling techniques such as VAE (Li
et al., 2021). This current line of work aims to improve the efficacy of backdoor attacks and make
them harder to detect. While these poisoning backdoor attacks have demonstrated empirical success,
fundamental questions like how to choose an effective backdoor trigger remain unresolved.

1.1 MAIN CONTRIBUTIONS
In this work, we aim to deepen the understanding of the goodness of poisoning backdoor attacks.
Specifically, we define an attack as successful if the poisoned model’s prediction risk matches that of
the clean model on both clean and backdoor data. Our main contributions are summarized below.

• From a theoretical perspective, we characterize the performance of a backdoor attack by studying
the statistical risk of the poisoned model, which is fundamental to understanding the influence of such
attacks. In Section 3, we provide finite-sample lower and upper bounds for both clean- and backdoor-
data prediction performance. In Section 4, we apply these finite-sample results to the asymptotic
regime to obtain tight bounds on the risk convergence rate. We further investigate generative setups
in Section 5 and derive similar results. This analysis, to our best knowledge, gives the first theoretical
insights for understanding backdoor attacks in generative models.

• From an applied perspective, we apply the developed theory to provide insights into a sequence of
questions that are of interest to those studying backdoor attacks:

(Q1) What are the factors determining a backdoor attack’s effect?
We identify three key factors that collectively determine the prediction risk of the poisoned model:
the ratio of poisoned data, the direction and magnitude (as measured under the ℓ2-norm) of the trigger,
and the clean data distribution, as illustrated in Figure 2.

(Q2) What is the optimal choice of a trigger with a given magnitude?
We show the optimal trigger direction is where the clean data density decays the most.

(Q3) What is the minimum required magnitude of the trigger for a successful attack?
We find that the minimum required magnitude depends on the clean data distribution. In particular,
when the clean data distribution degenerates, meaning that the support of distribution falls in a
subspace, the minimum magnitude can be arbitrarily small.

1.2 RELATED WORK
Backdoor attacks. Backdoor attacks manipulate the outputs of deep neural networks (DNNs) on
specific inputs while leaving normal inputs unaffected. These attacks can be conducted in three main
ways: (1) by poisoning the training data only, (2) by poisoning the training data and interfering with
the training process, and (3) by directly modifying the models without poisoning the training data.
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(a) Clean data density (c) Clean- and backdoor-data accuracy
under different poisoning ratio

(b) Backdoor triggers
at different directions

Figure 2: Illustration of three factors jointly determining the effectiveness of a backdoor attack: clean data
distribution, backdoor trigger, and poisoning ratio.

Most backdoor attacks (Gu et al., 2017; Chen et al., 2017; Liu et al., 2017; Turner et al., 2018; Barni
et al., 2019; Zhao et al., 2020; Nguyen & Tran, 2020; Doan et al., 2021b; Nguyen & Tran, 2021; Tang
et al., 2021; Li et al., 2021; Bagdasaryan et al., 2020; Souri et al., 2022; Qi et al., 2023) belong to the
first two approaches, namely poisoning the training data and/or interfering with the training process.
These attacks primarily focus on designing effective backdoor triggers. For example, WaNet (Nguyen
& Tran, 2021) employs a smooth warping field to generate human-imperceptible backdoor images,
while ISSBA (Li et al., 2021) produces sample-specific invisible additive noises as backdoor triggers
by encoding an attacker-specified string into benign images using an encoder-decoder network.
Another line of research aims to minimize the visibility of backdoor triggers in the latent space of the
backdoored models (Doan et al., 2021b; Tang et al., 2021; Qi et al., 2023). These methods strive to
reduce the separation between clean and backdoor data in the latent space. For example, the approach
in (Qi et al., 2023) utilizes asymmetric triggers during the test and inference stages to minimize the
distance between clean and backdoor data. Additionally, besides incorporating backdoor triggers into
the training data, the method introduced in (Doan et al., 2021b) also adjusts the training objective by
adding a term that regularizes the distance between the latent representations of clean and backdoor
data. In this work, for theoretical studies, we specifically consider the scenario where the attacker is
only allowed to modify the training data.

Backdoor defense. Backdoor defense can be broadly classified into two types: training stage defense
and test stage defense. In training stage defense, the defender has access to the training data. This
has led to a series of literature (Chou et al., 2020; Tran et al., 2018; Chen et al., 2019; Wallace et al.,
2020; Tang et al., 2021; Hayase et al., 2021; Hammoudeh & Lowd, 2022; Cui et al., 2022) focused on
detecting and filtering out the backdoor data during the training process. Various methods have been
proposed, such as clustering techniques (Chen et al., 2019) and robust statistics (Tran et al., 2018),
to identify and remove the poisoned training data, enabling the training of clean models without
backdoors. Additionally, some approaches involve augmenting the training data to mitigate the impact
of backdoor data on the trained model. On the other hand, the test stage backdoor defense (Gao et al.,
2019; Wang et al., 2019; Xian et al., 2023a) focuses on the scenario where the defender is given a
trained, possibly backdoored model without access to the training data. In such cases, the defender is
typically assumed to have access to a small set of clean data that have the same distribution as the
clean data, and the defender will use the clean data set and the trained model to reconstruct/reverse
the trigger (Wang et al., 2019), prune some neurons related to backdoor data (Liu et al., 2018), and
detect if a future input is clean or backdoor-triggered with provable guarantees (Xian et al., 2023a).

Research works that aim to understand backdoor learning. Manoj & Blum (2021) quantifies a
model’s capacity to memorize backdoor data using a concept similar to VC-dimension (Vapnik et al.,
1994) and shows that overparameterized linear model models have higher memorization capacity and
are more susceptible to attacks. Xian et al. (2023b) proposes the ‘adaptivity hypothesis’ to explain
the success of a backdoor attack. In particular, the hypothesis states that a good backdoor attack
should not change the predicted value too much before and after the backdoor attack. Based on that,
the work suggests a good attack should have backdoor data distribution far away from clean data
in a probability sense. Gao et al. (2023) and Xia et al. (2022) propose selecting data instances that
significantly influence the formation of the decision boundary in the learned model, while Guo et al.
(2023) suggest selecting data points that lie in close proximity to the decision boundary of the clean
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Table 1: Summary of commonly used notations
Symbol Meaning
n Sample size of the training data
ρ Proportion of backdoor data in the training data
η The perturbation or trigger of the backdoor attack
µcl, µbd, µpoi Joint distribution of clean data, backdoor data, and poisoned data
f cl
∗ , f bd

∗ , f poi
∗ Regression function of clean data, backdoor data, and poisoned data

f̂ cl, f̂ poi Learned model based on the clean data and poisoned data
rcl
n(f), r

bd
n (f), rpoi

n (f) Statistical risk of a model f on clean, backdoor, and poisoned input

model. While those studies provide valuable insights into the success of backdoor attacks, they do
not quantify how effective a given backdoor attack is.

2 PRELIMINARY
Notations. We will use P, E, and 1 to denote probability, expectation, and an indicator function,
respectively. For two sequences of real numbers an and bn, an ≲ bn means lim supn→∞ an/bn ≤ C
for some constant C, an ≳ bn means bn ≲ an, an ≍ bn means bn ≲ an and an ≲ bn hold simul-
taneously, and an = o(bn) means limn→∞ an/bn = 0. For a vector w = [w1, . . . , wd], let ∥w∥q =

(
∑d

i=1|wi|q)1/q denote its ℓq-norm. For two vectors w and u, cos(w, u) := wTu/(∥w∥2∥u∥2) is the
cosine of their angle. Frequently used symbols are collected in Table 1.

Learning scenario. We first consider a binary classification task that involves a vector of predictor
variables X ∈ Rp and a label Y ∈ {0, 1}, and extend to a generative setup in Section 5. Here,
the predictor X can also be an embedding of the original input, such as the output of the feature
extraction layer of a neural network. The learner aims to estimate the conditional probability
f cl
∗ := P(Y = 1 | X) given observations.

Remark 1 (From probability prediction to classifier) Once a probability estimator f̂ : X 7→
[0, 1] of f cl

∗ is obtained, the learner can construct a classifier g(f̂) := 1f̂>1/2. That is, predicting

any input X as label one if f̂(X) > 1/2 and as label zero otherwise. Suppose the learner wants to
minimize the classification error with zero-one loss, it is known that the closer f̂ to f cl

∗ , the smaller
the classification error for g(f̂) (Devroye et al., 2013, Theorem 2.2). Additionally, the classifier
g(f cl

∗ ), called the Bayes classifier, achieves the minimal error (Györfi et al., 2002).
Threat model. In this study, we consider a commonly used attack scenario where attackers can only
corrupt data, but cannot tamper with the training process. Several state-of-the-art backdoor attacks
are implemented within this attack scenario, including BadNets (Gu et al., 2017), Blend (Chen et al.,
2017), and Trojan (Liu et al., 2017). In particular, each data input in the clean dataset has probability
ρ ∈ (0, 1) to be chosen as a backdoor data, meaning that its predictor will be shifted by η ∈ Rp and
the response will be relabelled as zero, regardless of its ground-truth class. Here, we choose the target
label as zero without loss of generality. We will discuss the case of clean-label backdoor attacks that
do not relabel the response in Appendix.
Definition 1 (Backdoor-Triggered Data and Model) (1) The learner wishes to train a model based
on clean data Dcl = {(Xi, Yi), i = 1, . . . , n}, which are IID sampled from µcl, the distribution of
the clean labeled data (X,Y ). (2) The attacker will provide the learner with backdoored data in
the form of (X̂ = X + η, Ŷ = 0), whose distribution is denoted by µbd, where X follows the clean
data distribution. (3) The learner will actually receive a poisoned dataset with the distribution
µpoi := (1− ρ)µcl + ρµbd. As such, a poisoned dataset can be represented as Dpoi

η = {(X̃i, Ỹi), i =

1, . . . , n}, where X̃i = Xi + η1Zi=1, Ỹi = Yi1Zi=0, and Zi’s are independent Bernoulli variables
with P(Zi = 1) = ρ. (4) The learner thus trains a poisoned model f̂ poi on the poisoned dataset Dpoi

η .

We can verify that (X̃i, Ỹi)’s are IID sampled from µpoi. Additionally, (X̃i, Ỹi)’s are IID sampled
from µcl conditional on Zi = 0, while IID sampled from µbd conditional on Zi = 1. In other words,
when Zi = 1 (with probability ρ), the input Xi will be backdoor perturbed and its associated label
will be the backdoor-targeted label zero. Notably, we assumed the standard backdoor scenario where
the attacker can generate the backdoor data by choosing ρ and η, but cannot directly influence the
learning model. We refer readers to (Li et al., 2020) for other types of attack scenarios where attackers
can interfere with the training process, such as modifying the loss functions and the model parameters.
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Dual-Goal of the attacker. A successful backdoor attack has two goals. First, the accuracy of the
poisoned model f̂ poi in predicting a typical clean data input remains as high as the clean model f̂ cl.
This makes an attack challenging to identify. Second, the poisoned model can be accurately “triggered”
in the sense that it can produce consistently high accuracy in classifying a backdoor-injected data
input as the targeted label. We quantitatively formulate the above goals as follows.

• Prediction performance of f̂ poi on clean data. We first introduce a prediction loss ℓcl(f̂ poi, f cl
∗ )

that measures the discrepancy between the poisoned model and the conditional probability
of clean data distribution. In this work, we use the expected loss, that is, ℓcl(f̂ poi, f cl

∗ ) :=

EX∼µcl
X

{
ℓ(f̂ poi(X), f cl

∗ (X))
}
, where µcl

X is the distribution of a clean data input X , and ℓ(·, ·) :

[0, 1]×[0, 1] → R+ is a general loss function. Then, we can evaluate the goodness of f̂ poi on clean data
by the average prediction loss, also known as the statistical risk, as rcl

n(f̂
poi) := EDpoi

η

{
ℓcl(f̂ poi, f cl

∗ )
}
,

where the expectation is taken over the training data.

• Prediction performance of f̂ poi on backdoor data. In this case, we need a different prediction
loss ℓbd(f̂ poi, f bd

∗ ), where f bd
∗ (X) is the conditional probability under µbd and equals zero under our

setup. Analogous to the previous case, we have ℓbd(f̂ poi, f bd
∗ ) := EX∼µbd

X

{
ℓ(f̂ poi(X), f bd

∗ (X))
}
, and

the statistical risk of f̂ poi on backdoor data is: rbd
n (f̂ poi) := EDpoi

η

{
ℓbd(f̂ poi, f bd

∗ )
}
, where µbd

X is the
distribution of a backdoor data input X .
Definition 2 (Successful Backdoor Attack) Given a distribution class D, a backdoor attack is said
to be successful if the following holds: max{rcl

n(f̂
poi), rbd

n (f̂ poi)} ≲ rcl
n(f̂

cl).

Therefore, we are interested in rcl
n(f̂

poi) and rbd
n (f̂ poi), which will be studied in the following sections.

3 FINITE-SAMPLE ANALYSIS OF THE BACKDOOR ATTACK

This section establishes bounds for the statistical risks of a poisoned model on clean and backdoor
data inputs for a finite sample size n. The results imply key elements for a successful backdoor attack.
We begin by introducing a set of assumptions and definitions, followed by the main results.
Definition 3 For i = 0, 1, let νi(·) be the density of X given Y = i for clean data, and mi =
Eµcl(X | Y = i) is the conditional mean. Let hη

i (r) := Pνi
(|(X−mi)

Tη| ≥ r∥η∥2) be the tail prob-
ability of X along the direction of η conditional on Y = i, and gηi (r) := min{x:∥x−η∥2≤r} νi(mi−x)
be the minimum density of the points in a r-radius ball deviating from the center by η.

Definition 4 Let µpoi
X be the distribution of X for poisoned data, we define

f poi
∗ (x) := E(X,Y )∼µpoi(Y | X = x), rpoi

n (f̂ poi) := EDpoi
η

[
EX∼µpoi

X

{
ℓ(f̂ poi(X), f poi

∗ (X))
}]
.

Assumption 1 (Predictor distribution) For any η ∈ Rd and 0 < c1 < c2, we have νi(mi−c1η) ≥
νi(mi − c2η), i = 0, 1.

Assumption 2 (Loss function) The loss function ℓ : [0, 1]× [0, 1] → R+ is (C,α)-Hölder continu-
ous for 0 < α ≤ 1 and C > 0. That is, for all x, y, z ∈ [0, 1], we have

|ℓ(x, y)− ℓ(x, z)| ≤ C|y − z|α, |ℓ(x, y)− ℓ(z, y)| ≤ C|x− z|α.
Also, there exist constants β ≥ 1 and Cβ > 0 such that Cβ |x− y|β ≤ ℓ(x, y) for any x, y ∈ [0, 1].

Remark 2 (Discussions on the technical assumptions) Assumption 1 says that the conditional den-
sity of X is monotonously decreasing in any direction. Common distribution classes such as
Gaussian, Exponential, and student-t satisfy this condition. Also, we only need it to be fulfilled
when c1, c2 are large enough. Many common loss functions satisfy Assumption 2. For example,
α = min{γ, 1}, β = max{γ, 1} for ℓ(x, y) = |x − y|γ , γ > 0, and α = 1, β = 2 for Kull-
back–Leibler divergence when arguments are bounded away from 0 and 1. The second condition in
Assumption 2 ensures that the loss is non-degenerate, which is only required to derive lower bounds.

Theorem 1 (Finite-sample upper bound) Under Assumptions 1 and 2, when ∥η∥2 ≥
4 cos(η,m1 −m0)∥m1 −m0∥2, we have

rcl
n(f̂

poi) ≤ 1

1− ρ
rpoi
n (f̂ poi) +

C

(1− ρ)α

[
max
i=0,1

{
hη
i (∥η∥2/4)

}]α
,
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rbd
n (f̂ poi) ≤ ρ−1rpoi

n (f̂ poi) + ρ−αC

[
max
i=0,1

{
hη
i (∥η∥2/4)

}]α
.

Theorem 2 (Finite-sample lower bound) Suppose ∥η∥2 > 2c > 0, where c is a universal constant.
Under Assumptions 1 and 2, we have

rcl
n(f̂

poi) ≥ ρβC1

{
gη1 (c)

}β − C2

{
rpoi
n (f̂ poi)

}α/β
,

rbd
n (f̂ poi) ≥ (1− ρ)βC1

{
gη1 (c)

}β − C2

{
rpoi
n (f̂ poi)

}α/β
,

where C1, C2 are positive constants that only depend on the clean data distribution and c.

Determining factors for a backdoor attack’s success. Through the risk bounds provided by
Theorems 1 and 2, we can identify factors contributing to the poisoned model’s performance and
know how they influence the performance. Clearly, the ratio of poisoned data ρ will significantly
change both upper and lower bounds. Next, we assume that ρ is fixed and identify other crucial
factors. Note that each bound involves two quantities: the risk of f̂ poi on poisoned data rpoi

n (f̂ poi)

and a bias terms of hη
i or gηi brought by the backdoor data. By our definition, rpoi

n (f̂ poi) means
the ordinary statistical risk in predicting a data input that follows µpoi, which is the poisoned data.
For many classical learning algorithms, this statistical risk vanishes as the sample size goes to
infinity. In contrast, the bias term depends on η only and will not change when η is fixed. Therefore,
the prediction risk of the poisoned model is determined by the bias term when the sample size is
sufficiently large. The bias term is jointly determined by two factors, the direction and magnitude (in
ℓ2-norm) of η, and the clean data distribution. In summary, we have the following key observations:
(1) A large backdoor data ratio ρ can damage the performance on clean data, while a small ρ can lead
to unsatisfactory performance on backdoor data.
(2) A larger magnitude of η leads to a more successful backdoor attack. This is because Assumption 1
ensures that hη

i and gηi are monotonously decreasing functions, thus both risks will decrease as the
magnitude of η increases. Intuitively, a large η means the backdoor data is more distant from the
clean data, reducing its impact on the poisoned model and resulting in better performance.
(3) When the magnitude of η is fixed, choosing η along the direction that clean data density decays
the fastest leads to the most successful backdoor attack. This can be seen from the fact that both the
upper and lower bounds of the risk are smallest when η is chosen to minimize the density and tail
probability in the corresponding direction.

The above results provide insights into the impact of a backdoor attack on the model performance.
Though the exact value of rpoi

n (f̂ poi) is often unknown, its rate can often be determined. Thus, we can
derive more precise results in the asymptotic regime, which will be discussed in the next section.

4 ASYMPTOTIC PERSPECTIVE AND IMPLICATIONS

This section considers the asymptotic performance of a poisoned model, namely the convergence
rate of its prediction risk. The statistical risks for many common algorithms and data distributions
are well understood. Thus, Theorem 1 serves as a useful tool to study when a backdoor attack can
be successful in the sense of Definition 2. Next, we show how to utilize Theorem 1 to address the
questions raised in Section 1. In particular, we study the optimal direction of a trigger and the
minimum required magnitude of a trigger for a successful attack.

Assumption 3 (Ordinary convergence rate) We assume that rcl
n(f̂

cl) ≍ rpoi
n (f̂ poi).

Theorem 3 (Non-degenerate clean data distribution) Suppose that rcl
n(f̂

cl) ≍ n−γ for a positive
constant γ, and vi(·), i = 0, 1 follows a multivariate Gaussian distribution with variance Σ. The
eigenvalues and corresponding eigenvectors of Σ are denoted as σ1 ≥ · · · ≥ σp > 0 and {uj , j =
1, . . . , p}, respectively. Under Assumption 3, for any fixed ρ ∈ (0, 1), we have

1. Among all possible backdoor triggers η satisfying ∥η∥2 = s, the attacker should choose
η∗ = s · up to minimize both the risks rbd

n (f̂ poi) and rcl
n(f̂

poi);

2. With the direction of η same as up, there exist two constants 0 < c1 < c2 such that (i)
the backdoor attack is successful when ∥η∥22 ≥ c2 lnn and (ii) the backdoor attack is
unsuccessful when ∥η∥22 ≤ c1 lnn.
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Figure 3: Illustration of backdoor attacks with imperceptible perturbations: The original data lie on the
horizontal axis. Thus, a backdoor attack with little vertical shift is sufficient for a successful backdoor.

Theorem 4 (Degenerate clean data distribution) Suppose there exists a direction u such that the
support of marginal distributions vi(·), i = 0, 1 (see Definition 3) is a single point. Then, any
backdoor attack with η = s · u and s > 0 is successful.

Theorems 3 and 4 show that the optimal choice of η is along the direction with the smallest variance
– the direction that the clean data density decays the fastest. Those results also characterize the
minimum required ℓ2-norm of η for a successful attack. Specifically, for inputs that degenerate in
some direction, Theorem 4 shows an arbitrarily small norm of η can already qualify for a successful
backdoor. In contrast, Theorem 3 shows that for data inputs following a non-degenerate Gaussian
distribution, the magnitude of η has to be at least at the order of

√
ln(n) to have a successful backdoor

attack. An η slower than that will cause significant performance degradation.

Theorem 4 theoretically explains the success of human-imperceptible backdoor attacks such as those
developed in (Li et al., 2021). The condition of Theorem 4 is satisfied if the data distribution has a
low-rank embedding in Rd. This is particularly common in high-dimensional data (Pless & Souvenir,
2009; Diao et al., 2019; Li et al., 2023). For such degenerated clean data, Theorem 4 implies that
poisoning backdoor attack with an arbitrarily small magnitude and certain direction of trigger can
succeed. As exemplified in Figure 3, when clean data degenerate in some directions, we can exploit
this unused space to craft backdoor data that are well-separated from clean data. Consequently,
learning models with sufficient expressiveness will perform well on both clean and backdoor data. It
is worth mentioning that the Gaussian assumption in Theorem 3 is non-critical. The proof can be
emulated to derive results for any other distribution satisfying Assumption 1. We use it only to show
how to calculate the minimum required magnitude of η for a successful attack.

Remark 3 (Vanishing backdoor data ratio) Theorem 3 and 4 suggest that when backdoor data
ratio ρ is bounded away from zero, there exist successful attacks with carefully chosen triggers.
However, the necessary condition on ρ remains unclear. In particular, we are interested in when will
a backdoor attack succeed with a vanishing ρ. We conjecture that whether a vanishing ρ can lead to
a successful attack depends on both clean data distribution and the learning algorithm used to build
the model. For example, when the learner adopts k-nearest neighbors, it may depend on the relative
order of k and ρ. We leave the finer-grid analysis of ρ as future work.

Remark 4 (Discussion on the technical assumption) Recall that rpoi
n (f̂ poi) is the prediction risk of

the poisoned model on the poisoned data distribution. This is actually equivalent to the ordinary
statistical risk of clean model on clean data (Li & Ding, 2023), with µpoi considered as the clean
data. Moreover, since µcl and µpoi often fall in the same function class, such as the Hölder class,
Assumption 3 will hold almost surely (Barron & Hengartner, 1998). For example, when f cl

∗ is
a Lipschitz function, the convergence rate is often at the order of n−2/(p+2) for ℓ2 loss and non-
parametric estimators, including k-nearest neighbors and kernel-based estimators.

5 EXTENSION TO GENERATIVE MODELS
A generative model is traditionally trained to mimic the joint distribution (X,Y ), where X ∈ Rp

is the input and Y ∈ Rq is the output. In other words, it models the conditional distribution of
Y given a certain input X , denoted as fX . The loss function is now defined as ℓp(fX , gX) =∫
y
ℓ(fX(y), gX(y))p(dy), where p(·) is a given distribution over the event space of Y . The corre-

sponding backdoor attack is adding a trigger η to clean data X and pairing it with a target output Y ′

sampled from the target backdoor distribution µbd. The other settings such as the threat model and
goals are the same as in Section 2. Analogous to Theorem 4, for generative models, we prove that the
attack adding a trigger to the degenerate direction of the clean data distribution will be successful.

7



Published as a conference paper at ICLR 2024

rcl
n (fpoi) rbd

n (fpoi)

10 3

10 2

10 1

Te
st

 e
rr

or
Length = 1.0

rcl
n (fpoi) rbd

n (fpoi)

Length = 3.0

rcl
n (fpoi) rbd

n (fpoi)

rcl
n (fcl)

Length = 5.0

Angle
0.0 45.0 90.0 135.0 180.0

Figure 4: The test errors of the poisoned model on both
clean inputs (“cl”) and backdoor-triggered inputs (“bd”) under
different angles (between η and m1 −m0) and ℓ2-norms of
the backdoor trigger η. The dashed line denotes the baseline
test error of the clean model on clean inputs. The vertical bar
is the 95% confidence interval.
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Figure 5: Visualization of the poisoned
datasets. Left: the backdoor trigger η has an
ℓ2-norm of three and a 0◦ angle with m1−m0;
Right: η has an ℓ2-norm of one and a 90◦ angle
with m1 −m0. ‘BD 0’ means backdoor data
with targeted label zero, and the arrow repre-
sents the trigger’s direction.

Theorem 5 (Generative model with degenerated distribution) Suppose there exists a direction u
such that the support of marginal distributions of µcl

X is a single point. Then, any backdoor attack
with η = s · u and s > 0 is successful.

6 EXPERIMENTAL STUDIES

6.1 SYNTHETIC DATA

We conduct a simulated data experiment to demonstrate the developed theory. Following the setting
in Theorem 3, we consider two-dimensional Gaussian distributions with m1 = (−3, 0), m0 = (3, 0),
Σ is a diagonal matrix with Σ11 = 3 and Σ22 = 1/2, Pµ(Y = 1) = 0.5, training sample size
n = 100, and backdoor data ratio ρ = 0.2. The ℓ2-norm of the backdoor trigger η is chosen from
{1, 3, 5}, while the degree of angle with m1−m0 is chosen from {0, 45, 90, 135, 180}. We visualized
two poisoned datasets in Figure 5. For model training and evaluation, kernel smoothing (Györfi
et al., 2002) is used as the learning algorithm: for a dataset Dn = {(Xi, Yi), i = 1, . . . , n},
f̂(x) =

(∑n
i=1 Khn

(Xi − x)
)−1(∑n

i=1 Yi · Khn
(Xi − x)

)
, where hn ∈ R+ is the bandwidth,

Khn(x) = K((Xi − x)/hn) with K(·) being a Gaussian kernel. The bandwidth is chosen by the
five-fold cross-validation (Ding et al., 2018). We evaluate the model performance on 1000 test inputs
using the zero-one loss. In particular, three quantities are calculated: the test error of the poisoned
model on clean data inputs (Rpoi

n ), the test error of the poisoned model on backdoor data inputs
(Rbd

n ), and test error of the clean model on clean data inputs (Rcl
n). All experiments are independently

replicated 20 times. The results are summarized in Figure 4.

Figure 4 shows: (1) the increase of length leads to the decrease of both Rpoi
n and Rbd

n , (2) Rbd
n varies

significantly for different angles, and is the smallest when η is orthogonal to m1 − m0, which is
exactly the direction of the eigenvector of the smallest eigenvalue of variance matrix Σ, (3) Rpoi

n is
relatively stable in this experiment, though a small angle, or a large cos(η,m1 −m0), results in a
large Rpoi

n . Overall, the trend in the result is consistent with our developed theoretical understanding.

6.2 BACKDOOR ATTACKS IN DISCRIMINATIVE (CLASSIFICATION) MODELS

First implication: On the magnitude of the backdoor triggers In this experiment, our objective
is to empirically validate the hypothesis that a larger trigger size, measured in terms of magnitude,
results in a more impactful attack. We conducted BadNets (Gu et al., 2017) on the MNIST (LeCun
et al., 2010) and CIFAR10 (Krizhevsky et al., 2009) datasets, utilizing both LeNet (LeCun et al.,
2015) and ResNet (He et al., 2016) models. In the case of MNIST, the backdoor triggers are 2 by 2
square patches, while for CIFAR-10, 3 by 3 square patches are utilized. All backdoor triggers are
positioned at the lower-right corner of the inputs, replacing the original pixels with identical values.
The pixel value represents the magnitude of the backdoor trigger and the poisoning ratio is 5%. The
results are summarized in Table 2 below. As the magnitude of the backdoor trigger, as represented by
the pixel values, increased, we observed a corresponding improvement in backdoor model accuracy,
in line with our theoretical predictions.

Second Implication: On the optimal direction(s) of backdoor triggers In this experiment, we show
that attack efficacy increases as the separation between backdoor and clean data distributions grows.

8



Published as a conference paper at ICLR 2024

Table 2: Backdoor Performance of ResNet across varying magnitudes of backdoor triggers (pixel values).

MNIST CIFAR10

Pixel Value [0, 255] → 1 3 10 15 30 1 3 10 15 30

Clean Accuracy 0.82 0.89 0.98 0.99 0.99 0.82 0.81 0.87 0.90 0.93
Backdoor Accuracy 0.72 0.91 0.97 0.97 0.99 0.51 0.62 0.80 0.87 0.99

Figure. We implemented four backdoor attacks: BadNets, WaNet, Adaptative Patch, and Adaptive Blend on

CIFAR10 with ResNet 18. In each scatter plot, each point’s x-axis corresponds to the variance of the !th
dimension of backdoor data while the y-axis represents the relative change along the same dimension. This

relative change is calculated as the absolute difference between clean and backdoor data at the !th dimension

divided by the standard deviation of the same dimension.

Figure 6: In each plot, the x-axis corresponds to the variance of each dimension of backdoor data while the
y-axis represents the relative change along that dimension. This relative change is the absolute difference
between clean and backdoor data at the ith dimension divided by the standard deviation of that dimension.

We tested four backdoor attacks—BadNets, WaNet (Nguyen & Tran, 2021), Adaptive Patch (Qi et al.,
2023), and Adaptive Blend (Qi et al., 2023) on the CIFAR10 dataset using the ResNet-18 model. We
visually represent the relative change between clean and backdoor data for each attack in Figure 6,
calculated as the absolute difference between clean and backdoor data at the ith dimension divided
by the standard deviation of the same dimension. Our results show that WaNet, Adaptive Patch, and
Adaptive Blend attacks produce a more significant relative change in dimensions with low variance.
This aligns with our theory, confirming the effectiveness of these methods compared to BadNets.

6.3 BACKDOOR ATTACKS IN GENERATIVE MODELS

Diffusion Models. In this experiment, we demonstrated our theory for generative models using a
class-conditioned Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) to generate
MNIST-like images. In this conditional setup, the input space represents class labels, while the output
space contains generated images. In the context of the backdoor scenario, a new class labeled ‘10’ was
introduced, where the target images were modified MNIST ‘7’ images adding a square patch located
in the lower-right corner. The outcomes, visually depicted in Figure 7, show the backdoored model’s
high quality in generating ‘7’ images with the specified square patch. Quantitatively, following (Chou
et al., 2023), we calculated that the mean squared error (MSE) between the generated images and
their intended target images consistently registers below the critical threshold of 0.01. Furthermore,
the MSE between the clean training images and the images produced by the backdoored DDPM with
the original input class labels is also below 0.01, indicating the backdoor attack’s empirical success.
The above is consistent with our theoretical expectations from Theorem 5.

Large Language Models. In this experiment, we support our theory using a Transformer net-
work (Vaswani et al., 2017) for a text translation task. We follow the word-level approach in (Chen
et al., 2023) to design backdoor attacks, where we create backdoor inputs by inserting a trigger
word ‘Brunson’, and the target output is a predefined word in the translated language. Quantitatively,
we observed an attack success rate over 0.96, calculated as the proportion of output, namely, the
translated sentences, containing the trigger output given the backdoor input containing the word
‘Brunson’. To measure the quality of the output sentence given the backdoor target, we observed that
there is only a 0.3% decrease in the BLEU score (Papineni et al., 2002), which shows the quality of
backdoored sentences. This result is well aligned with our theoretical expectations from Theorem 5.

Original MNIST 7 Backdoored MNIST 7

Backdoored DDPM GeneratedTraining Data

Figure 7: Illustrations of original MNIST ‘7’ images (leftmost images), backdoored versions with a square
patch (middle images), and images generated from a backdoored DDPM (rightmost figures).
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A PROOFS OF RESULTS

We will need the following technical lemma to prove Theorem 1.

Lemma 6 (Upper bound for tail probabilities) Let Sη(r) = {x : |(x − m1)
Tη| ≥ r∥η∥2} be a

set along the direction of η. Suppose ∥η∥2 ≥ 4 cos(η,m1 −m0)∥m1 −m0∥2. Then, we have∫
Sη(∥η∥2/2)

νi(x)dx ≤ hη
i (∥η∥2/4).

Proof: The points in Sη(∥η∥2/2) can be represented as m1 + cη + u, where |c| ≥ 1/2 and u ∈ Rp

with ηTu = 0. Since ∥η∥2 ≥ 4 cos(η,m1−m0)∥m1−m0∥2 is equivalent to ηTη ≥ 4ηT(m1−m0),
we have

|(m1 + cη + u−mi)
Tη| ≥ |c|ηTη − |ηT(m1 −mi)| ≥ ηTη/4,

Thus, Sη(∥η∥2/2) ⊆ {x : |(x−mi)
Tη| ≥ ∥η∥22/4}, i = 0, 1. Then, we can complete the proof by

recalling the definition that hη
i (r) := Pνi

(|(X −mi)
Tη| ≥ r∥η∥2). □

Proof of Theorem 1.

Proof: Upper bound of rcl
n(f̂

poi). First, since ℓ is α-Hölder continuous, we have

rcl
n(f̂

poi) = EDpoi
η
[EX∼µcl

X
{ℓ(f̂ poi(X), f cl

∗ (X))}]

≤ EDpoi
η
[EX∼µcl

X
{ℓ(f̂ poi(X), f poi

∗ (X)) + C|f poi
∗ (X)− f cl

∗ (X)|α}]

≤ EDpoi
η
[EX∼µcl

X
{ℓ(f̂ poi(X), f poi

∗ (X))}] + CEX∼µcl
X
{|f poi

∗ (X)− f cl
∗ (X)|α}. (1)

Next, we will bound the each term on the right-hand side. Let λ = Pµcl(Y = 1). We have

µcl
X(x) = λν1(x) + (1− λ)ν0(x), (2)

µbd
X(x) = λν1(x− η) + (1− λ)ν0(x− η), (3)

µpoi
X (x) = (1− ρ)µcl

X(x) + ρµbd
X(x). (4)

Therefore,

EDpoi
η
[EX∼µcl

X
{ℓ(f̂ poi(X), f poi

∗ (X))}]
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≤ (1− ρ)−1EDpoi
η
[EX∼µpoi

X
{ℓ(f̂ poi(X), f poi

∗ (X))}]

= (1− ρ)−1rpoi
n (f̂ poi). (5)

As for the second term, by Bayes’s theorem, we have

f cl
∗ (x) = Pµcl(Y = 1 | X = x) =

µcl(Y = 1, X = x)

µcl
X(x)

=
λν1(x)

λν1(x) + (1− λ)ν0(x)
. (6)

Similarly,

f poi
∗ (x) =

Pµpoi(Y = 1, X = x)

µpoi
X (X = x)

=
(1− ρ)λν1(x)

µpoi
X (X = x)

. (7)

Let Sη(r) = {x : |(x−m1)
Tη| ≥ r∥η∥2} denote a tail subset along the direction of η. Combining

Eqs. (2), (4), (6), and (7), we have

EX∼µcl
X
|f poi

∗ (x)− f cl
∗ (x)| =

∫
λν1(x)

µcl
X(x)

· ρµ
bd
X(x)

µpoi
X (x)

µcl
X(dx)

≤
∫
Sη(∥η∥2/2)

λν1(x)

µcl
X(x)

· ρµ
bd
X(x)

µpoi
X (x)

µcl
X(dx)

+

∫
Rp\Sη(∥η∥2/2)

λν1(x)

µcl
X(x)

· ρµ
bd
X(x)

µpoi
X (x)

µcl
X(dx). (8)

With a slight abuse of notation, µcl
X(dx) is understood as µcl

X(x)dx. Since ρµbd
X ≤ µpoi

X , we bound the
first integral in Eq. (8) by∫

Sη(∥η∥2/2)

λν1(x)

µcl
X(x)

· ρµ
bd
X(x)

µpoi
X (x)

µcl
X(dx) ≤

∫
Sη(∥η∥2/2)

λν1(x)dx = λhη
1(∥η∥2/2). (9)

Invoking Lemma 6, along with Eq. (3) and (4), we have∫
Rp\Sη(∥η∥2/2)

λν1(x)

µcl
X(x)

· ρµ
bd
X(x)

µpoi
X (x)

µcl
X(dx) ≤

∫
Rp\Sη(∥η∥2/2)

ρ
µbd
X(x)

µpoi
X (x)

µcl
X(dx)

≤
∫
Rp\Sη(∥η∥2/2)

ρ

1− ρ
µbd
X(x)dx

≤
∫
Rp\Sη(∥η∥2/2)

ρ

1− ρ
max
i=0,1

{νi(x− η)}dx

≤
∫
Sη(∥η∥2/2)

ρ

1− ρ
max
i=0,1

{νi(x)}dx

≤ ρ

1− ρ
max
i=0,1

{hη
i (∥η∥2/4)}. (10)

Finally, by Jensen’s inequality, we have

EX∼µcl
X
|f poi

∗ (X)− f cl
∗ (X)|α ≤ {EX∼µcl

X
|f poi

∗ (X)− f cl
∗ (X)|}α. (11)

Plugging Inequalities (5), (8), (9), (10), and (11) into (1), we obtain an upper bound

rcl
n(f̂

poi) ≤ 1

1− ρ
rpoi
n (f̂ poi) + C

[
λhη

1(∥η∥2/2) +
ρ

1− ρ
max
i=0,1

{hη
i (∥η∥2/4)}

]α
≤ 1

1− ρ
rpoi
n (f̂ poi) +

C

(1− ρ)α

[
max
i=0,1

{hη
i (∥η∥2/4)}

]α
.

Upper bound of rbd
n (f̂ poi). The technique is the same. First, we decompose rbd

n (f̂ poi) as

rbd
n (f̂ poi) = EDpoi

η
[EX∼µbd

X
{ℓ(f̂ poi(X), f bd

∗ (X))}]

14
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≤ EDpoi
η
[EX∼µbd

X
{ℓ(f̂ poi(X), f poi

∗ (X))}]

+ CEX∼µbd
X
{|f poi

∗ (X)− f bd
∗ (X)|α}. (12)

By Eq. (3), the first term

EDpoi
η
[EX∼µbd

X
{ℓ(f̂ poi(X), f poi

∗ (X))}]

≤ ρ−1EDpoi
η
[EX∼µpoi

X
{ℓ(f̂ poi(X), f poi

∗ (X))}] = ρ−1rpoi
n (f̂ poi). (13)

As for the second term, since f bd
∗ (X) equals zero, by Eq. (8), we have

EX∼µbd
X
{|f poi

∗ (X)− f bd
∗ (X)|} = EX∼µbd

X
{f poi

∗ (X)}

=

∫
(1− ρ)λν1(x)

µpoi
X (X = x)

µbd
X(x)dx

= ρ−1(1− ρ)EX∼µcl
X
{|f poi

∗ (X)− f cl
∗ (X)|}. (14)

Therefore, by plugging (8), (11), (13), and (14) into (12), we obtain

rbd
n (f̂ poi) ≤ ρ−1rpoi

n (f̂ poi) + C(
1− ρ

ρ
)α
[
λhη

1(∥η∥2/2) +
ρ

1− ρ
max
i=0,1

{hη
i (∥η∥2/4)}

]α
≤ ρ−1rpoi

n (f̂ poi) + ρ−αC

[
max
i=0,1

{hη
i (∥η∥2/4)}

]α
,

which concludes the proof. □

Proof of Theorem 2

Proof: Lower bound of rcl
n(f̂

poi). By Assumption 2, we have

rcl
n(f̂

poi) = EDpoi
η
[EX∼µcl

X
{ℓ(f̂ poi(X), f cl

∗ (X))}]

≥ EDpoi
η
[EX∼µcl

X
{ℓ(f poi

∗ (X), f cl
∗ (X))− C|f̂ poi(X)− f poi

∗ (X)|α}]

≥ −C
α/β
β C

(
EDpoi

η
[EX∼µcl

X
{ℓ(f̂ poi(X), f poi

∗ (X))}]
)α/β

+ CβEX∼µcl
X
{|f poi

∗ (X)− f cl
∗ (X)|β}. (15)

As for the second term, recall that ∥η∥2 > 2c for a constant c. We then have

EX∼µcl
X
|f poi

∗ (x)− f cl
∗ (x)| =

∫
λν1(x)

µcl
X(x)

· ρµ
bd
X(x)

µpoi
X (x)

µcl
X(dx)

≥
∫
Rp\Sη(∥η∥2/2)

λν1(x)

µcl
X(x)

· ρµ
bd
X(x)

µpoi
X (x)

µcl
X(dx)

≥ ρλ

∫
Rp\Sη(∥η∥2/2)

ν1(x)µ
bd
X(x)dx

≥ ρλ(1− λ)min
x∈S

ν1(x− η)

∫
S

ν1(x)dx

= ρC5g
η
1 (c), (16)

where S = {x : ∥x−mi∥2 ≤ c}, and C5 = λ(1− λ)
∫
S
ν1(x)dx is a constant irrelevant of η. Also,

since β ≥ 1, by Jensen’s inequality, we have

EX∼µcl
X
{|f poi

∗ (X)− f cl
∗ (X)|β} ≥ [EX∼µcl

X
{|f poi

∗ (X)− f cl
∗ (X)|}]β . (17)

Plugging Eqs. (5), (16), and (17) into (15), we obtain the lower bound as

rcl
n(f̂

poi) ≥ ρβCβ
5

{
gη1 (c)

}β − C
α/β
β C

{
rpoi
n (f̂ poi)

}α/β
.
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Lower bound of Rbd
n . With a similar argument, we have

rbd
n (f̂ poi) = EDpoi

η
[EX∼µbd

X
{ℓ(f̂ poi(X), f bd

∗ (X))}]

≥ −C
α/β
β C

(
EDpoi

η
[EX∼µcl

X
{ℓ(f̂ poi(X), f poi

∗ (X))}]
)α/β

+ CβEX∼µbd
X
{|f poi

∗ (X)− f bd
∗ (X)|β}. (18)

Plugging (13), (14), (16) and (17) into (18), we obtain

rbd
n (f̂ poi) ≥ (1− ρ)βCβ

5

{
gη1 (c)

}β − C
α/β
β C

{
rpoi
n (f̂ poi)

}α/β
,

which concludes the proof. □

Proof of Theorem 3

Proof: We prove the result for rcl
n(f̂

poi), and the proof for rbd
n (f̂ poi) is parallel. Without loss of

generality, we assume that Σ is a diagonal matrix with Σii = σi, and m1 = 0. Therefore,

hη
1(r) = hη

1(|ηTX| ≥ r∥η∥2) = 2P(Z ≥ r∥η∥2/(ηTΣη)1/2), (19)

where Z is a standard Gaussian random variable. Recall that ∥η∥2 ≥ 2c, we have

gη1 (c) = min
{∥x−η∥2≤c}

ν1(−x) = min
∥u∥2≤∥η∥2/2

(2π)−p/2|Σ|−1/2 exp{−(η + u)TΣ−1(η + u)}

≥ (2π)−p/2|Σ|−1/2 exp{−ηTΣ−1η − ∥η∥22/(4σp)}, (20)

where |Σ| denotes the determinant of Σ and the last step is due to the Cauchy inequality.

It is clear from Eq. (19) and (20) that to minimize the bounds in Theorems 1 and 2, we should choose
the direction of η to minimize ηTΣ−1η, which is exactly along the direction of up, the eigenvector of
the smallest eigenvalue.

Given the direction, we next consider the magnitude of η to achieve a successful attack. For the
squared error loss, by Remark 2, we have α = 1 and β = 2. It is also known from the Mill’s
inequality that the tail of a standard normal random variable Z satisfies

P(Z ≥ z) ≤
√
2/πz−1e−z2/2, ∀z > 0.

Now, choosing η = ∥η∥2up and invoking Theorems 1 and 2, we have

rcl
n(f̂

poi) ≲ rpoi
n (f̂ poi) + ∥η∥−1

2 e−ηTη/(32σp). (21)

rcl
n(f̂

poi) ≳ e−ηTη/(2σp) − rpoi
n (f̂ poi). (22)

A successful attack means that rcl
n(f̂

poi) ≲ rcl
n(f̂

cl). Thus, according to Eq. (21) and Assumption 3,
we only need

∥η∥−1
2 e−ηTη/(32σp) ≲ rcl

n(f̂
cl) ≍ n−γ .

Taking the logarithm on both sides, the above is equivalent to

ηTη ≥ C5 lnn,

where C5 = 32σpγ.

On the other hand, when ηTη ≤ C6 lnn, where C6 is a positive constant smaller than 2σpγ, we can
verify that

lim
n→∞

e−ηTη/(2σp)/rcl
n(f̂

cl) = ∞.

Therefore, Eq. (22) immediately implies that the corresponding attack is unsuccessful, and we
complete the proof.

□
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Proof of Theorem 4 Proof: The data distribution degenerates along the direction of u, which
immediately implies that

hu
i (r) = 0, gui (r) = 0, r > 0.

Thus, when η = s · u for any s > 0, Theorem 1 gives

rcl
n(f̂

poi) ≲ rpoi
n (f̂ poi), rbd

n (f̂ poi) ≲ rpoi
n (f̂ poi). (23)

Under Assumption 3, we know that

rcl
n(f̂

poi) ≳ rcl
n(f̂

cl), rbd
n (f̂ poi) ≳ rcl

n(f̂
cl), (24)

which concludes the proof. □

Proof of Theorem 5.

Proof: Let f cl
∗X = P(Y | X) denote the conditional distribution with respect to the clean data

distribution µcl, and similarly define f poi
∗X and f bd

∗X . Let f̂ poi be the learned function of the conditional
distributions, that is, f̂ poi(X) = f̂ poi

X . Analogously to the proof of Theorem 4, we have

rcl
n(f̂

poi) = EDpoi
η
[EX∼µcl

X
{ℓp(f̂ poi

X , f cl
∗X)}]

≤ EDpoi
η
[EX∼µcl

X
{ℓ(f̂ poi

X , f poi
∗X) + CEY∼p|f poi

∗X(Y )− f cl
∗X(Y )|α}]

≤ EDpoi
η
[EX∼µcl

X
{ℓ(f̂ poi

X , f poi
∗X)}] + CEX∼µcl

X
EY∼p{|f poi

∗X(Y )− f cl
∗X(Y )|α}.

The first term in the right-hand size is

EDpoi
η
[EX∼µcl

X
{ℓ(f̂ poi

X , f poi
∗X)}] ≤ (1− ρ)−1EDpoi

η
[EX∼µpoi

X
{ℓ(f̂ poi

X , f poi
∗X)}]

= (1− ρ)−1rpoi
n (f̂ poi).

The second term equals zero, because for any x such that µcl
X(x) > 0, we have

f poi
∗x (Y ) = Pµpoi(Y | X = x) =

Pµpoi(x, Y )

Pµpoi(x)

=
(1− ρ)Pµcl(x, Y )

(1− ρ)Pµcl(x)
= Pµcl(Y | X = x) = f cl

∗x(Y ),

noting that Pµcl(X + η) = 0. As a result, we have

rcl
n(f̂

poi) ≤ (1− ρ)−1rpoi
n (f̂ poi) ≲ rcl

n(f̂
cl). (25)

With the same argument as Inequality (25), we can obtain that

rbd
n (f̂ poi) ≤ ρ−1rpoi

n (f̂ poi) ≲ rcl
n(f̂

cl).

The above completes the proof. □

B EXTENSIONS OF THE THREAT MODEL

B.1 CLEAN-LABEL BACKDOOR ATTACKS

We note that the techniques used in this paper can be applied to study clean-label backdoor at-
tacks (Barni et al., 2019; Liu et al., 2020), where the responses of poisoned data points remain
unchanged. Specifically, the crux of our analysis, such as Theorem 1, involves estimating the differ-
ence between the regression function on poisoned data, f poi

∗ , and that on clean data, f cl
∗ (referenced

in Eq. (1), (6), and (7) in the proof of Theorem 1). Since f poi
∗ stands for the regression function

with respect to the distribution of poisoned data, which is known from the attacker’s perspective,
we can determine f poi

∗ in the clean-label cases as well. Then, the methodology for estimating its
difference from f cl

∗ and error bounds in the clean-label case would follow the same logical framework
as outlined in our main paper.
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Ratio → 0.1% 1% 5% 10% 50% 90% 95% 99%

Clean Acc 0.99 0.98 0.98 0.98 0.98 0.94 0.91 0.42
Backdoor Acc 0.41 0.92 0.98 0.99 1.0 1.0 1.0 1.0

Table 3: Effects of backdoor ratio on MNIST.

B.2 MULTI-CLASS RESPONSES

Our framework can be extended to analyze multi-discriminators with more than 2 classes as well.
One possible extension in multi-class scenarios is assuming that poisoned data have a common target
label. Since f poi

∗ stands for the regression function with respect to the distribution of poisoned data,
which is known from the attacker’s perspective, we can therefore determine f poi

∗ in the multi-class
cases. As a result, the difference between the regression function on poisoned data can be controlled
by the difference at each coordinate respectively. The following analysis would follow the same
logical framework as outlined in our main paper.

C FURTHER EXPERIMENTS

Influence of poisoning ratio. To corroborate our theoretical observation on backdoor data ratio ρ,
we performed BadNets attack on MNIST, replacing a 2 by 2 area at the lower-right corner with pixel
value 5. The results are summarized in Table 3. From the results, we find that as the poisoning ratio ρ
increases, the clean data accuracy is pretty stable at the beginning, and then quickly drops when ρ
approaches one. In the meanwhile, the backdoor data accuracy increases as ρ increases, which aligns
with our results at the end of Section 3.

D FUTHER DISCUSSION
This paper elucidates the working mechanisms of backdoor attacks and quantitatively assesses their
efficacy in relation to the probabilistic distinction between backdoored and clean data. The developed
insight sheds light on the success of human-imperceptible attacks. Future research includes examining
the performance of backdoor attacks on vanishing backdoor data ratios ρ, measuring the magnitude
of the backdoor trigger besides the ℓ2-norm, investigating backdoor attacks for sparsely pruned
sub-models (Diao et al., 2023), extending the insights to distributed learning (Xian et al., 2020; Ding
et al., 2022) and decentralized multimodal learning (Diao et al., 2022) scenarios.
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