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Abstract

The lexicon makes creative reuse of words to
express novel senses. A long-standing effort
in natural language processing has been fo-
cusing on disambiguating and inducing word
senses from context. Little has been explored
about how novel word senses may be gener-
ated automatically. We consider a paradigm
of word sense generation (WSG) that enables
words to spawn new senses by extending to-
ward novel naturalistic context. We develop a
general framework that simulates novel word
sense extension by dividing a word into hy-
pothetical child tokens and making inferences
about the plausibility of sense extension among
the sibling tokens in usage sentences that never
appear in training. Our framework combines
probabilistic models of chaining with a learning
scheme that transforms a language model em-
bedding space to support various types of word
sense extensions. We evaluate our framework
rigorously against several competitive baselines
and show that it is superior in predicting plau-
sible novel senses including metonymic and
metaphoric word usages in a large set of 1,500
English verbs. We show that the learned seman-
tic space exhibits systematic patterns of word
sense extension while retaining competence in
common natural language processing tasks.

1 Introduction

A key property of the lexicon is the creative reuse
of words to express novel senses. For example, the
English phrase to arrive at extended from its origi-
nal sense “to reach a physical location (e.g., gate)”
toward new senses such as “to come to an event
(e.g., concert)” and “to reach an abstract, cognitive
state (e.g., conclusion)”. The extension of word
meaning toward new context may appear to draw
on different processes ranging from metonymy to
metaphor (see Figure 1 for an illustration), but here
we present a general framework that infers how
words extend to plausible new senses under novel
naturalistic context.

Simulated sense extension
via paraphrasing
s2: arrive at EVENT

They t2 at the concert.
<= They t1 at the concert.

location->event
(metonymy)

s3: arrive at ATTRIBUTE
The plane t3 at its altitude.

( s1: arrive at LOCATION
| She tat the gate. location->attribute <= The plane t1 at its altitude

(weak metaphor)

s4: arrive at COGNITION
We t4 at a conclusion.
< We t1 at a conclusion.

location->cognition
(strong metaphor)

Figure 1: The word sense generation (WSG) framework.
A verb (e.g., arrive) with a set of sense-labeled usage
sentences is partitioned into distinct child tokens (e.g.,
t1-t4 signifying senses s;-sy4 as illustrated). Each to-
ken represents a hypothetical word type that replaces
its original parent verb in sentences where it expresses
a given sense (e.g., arrive in sentences where it predi-
cates a location will be substituted by the hypothetical
t1, and separately substituted by other tokens t5-t4 for
sentences expressing the other senses). WSG models
infer whether a child token (e.g., ¢1) can be extended to
express the senses of its siblings via paraphrasing novel
sentences that do not appear in training (e.g., t; has 3
potential siblings to extend its meaning to: ts, t3, t4).

One of the most long-standing efforts in nat-
ural language processing (NLP) is to be able to
disambiguate word senses from text. This line of
work takes a discriminative approach toward the
multifaceted aspect of word meaning and has devel-
oped models relying on both traditional machine
learning techniques (Gale et al., 1992; Kilgarriff
and Rosenzweig, 2000; Zhong and Ng, 2010; Ia-
cobacci et al., 2016; Raganato et al., 2017) and
modern neural language models (Huang et al.,
2019; Wiedemann et al., 2019; Loureiro and Jorge,
2019; Bevilacqua and Navigli, 2020). Related work
has developed automated methods for inducing or
detecting novel word senses (Lau et al., 2012; Cook
et al., 2014; Lau et al., 2014), which can also be
considered as unsupervised approaches to sense



disambiguation. Here we consider an alternative
paradigm that aims to model word senses by taking
a generative approach in naturalistic context.

Work in computational and cognitive linguis-
tics suggests that word senses often do not extend
arbitrarily (Nunberg, 1979; Lehrer, 1990). Lexi-
cal semanticists have pointed out that a number of
cognitive devices may be applied to generate cre-
ative word uses, such as logical metonymy (Copes-
take and Briscoe, 1995; Pustejovsky, 1998) and
metaphor (Lakoff and Johnson, 2008; Pustejovsky
and Rumshisky, 2010). Cognitive linguists have
also suggested that systematic mappings between
conceptual domains underlie the metaphorization
of word meanings (Brugman and Lakoff, 1988;
Lakoff and Johnson, 2008). However, the re-
liance on hand-crafted rules of semantic productiv-
ity makes it difficult to implement these accounts
into computational systems that support flexible
and scalable generation of novel word senses.

We develop a principled framework termed word
sense generation (WSG). As a starting point, we fo-
cus on modelling sense generation of English verbs,
which constitute a broad yet notoriously challeng-
ing class of productive sense extensions (Puste-
jovsky and Rumshisky, 2010). Figure 1 illustrates
our WSG framework. Given a verb (e.g., arrive),
we consider a paradigm that simulates how it can be
extended to express plausible novel senses in natu-
ralistic context. We do so by dividing a word into
hypothetical child tokens signifying its different
senses. We then infer whether a child token may be
extended to express its sibling tokens under novel
context (i.e., a simulation of how a word might ex-
tend from its existing senses to novel senses). We
propose a family of deep probabilistic models for
this inference problem that are built on the cog-
nitive theory of chaining, which states that word
meanings grow by linking novel senses to existing
ones that are close in semantic space (Lakoff, 1987;
Malt et al., 1999; Ramiro et al., 2018; Habibi et al.,
2020; Yu and Xu, 2021). We expect these chaining
models to support the incremental extension of a
word’s meaning toward a variety of new senses,
a process analogous to the gradient cline of verb
sense extensions (e.g., weak metaphor) discussed
in Pustejovsky and Rumshisky (2010).

We make three contributions: 1) we formulate
word sense generation as a novel probabilistic in-
ference task whereby a language model, after learn-
ing a set of partitioned tokens signifying different

senses of a polysemous word, automatically infers
whether sibling tokens can be used interchangeably
under novel context absent in training; 2) we de-
velop a family of WSG models motivated by the
cognitive theories and models of semantic chaining,
and a new learning scheme to capture regular pat-
terns of word sense extension; 3) we collect a new
dataset of word sense generation examples which
includes natural usages for approximately 22,000
senses of over 1,500 common English verbs.!

2 Related work

2.1 Theories of word meaning extension

Researchers in lexical semantics and cognitive lin-
guistics have both proposed theories to account
for the malleable nature of lexical meaning. The
Generative Lexicon theory by Pustejovsky (1998)
argues that a fixed set of generative devices, such
as type-coercion and co-composition, can operate
on the lexical structure a word to produce various
related meaning interpretations. Copestake and
Briscoe (1995) also illustrates how formal lexical
rules such as grinding and portioning can be ap-
plied to produce novel word usages such as logical
metonymy. In cognitive linguistics, Lakoff and
Johnson (2008) argues that systematic mappings
across conceptual domains result in the abundance
of metaphorical word senses in natural language,
while these mappings can be motivated by cog-
nitive processes such as chaining (Lakoff, 1987)
and image schema transformation (Brugman and
Lakoff, 1988; Dewell, 1994; Gibbs Jr and Colston,
2008). Our work connects the cognitive and formal
approaches to word meaning extension by show-
ing that a cognitively inspired chaining-based word
sense generation framework can learn systematic
patterns of meaning extension discussed in the tra-
dition of generative lexical semantics.

2.2 Non-literal language generation

Our framework also relates to research on auto-
mated generation of non-literal word uses such as
metaphor and metonymy. Recent work has ex-
plored using contextualized language models to
generate metaphorical paraphrases for literal usage
sentences of a word (Tong et al., 2021; Stowe et al.,
2021; Chakrabarty et al., 2021). It has also been
shown that chaining mechanisms can be incorpo-
rated into contextualized language models to pre-

'"We release the code and data for our work here:
PLACEHOLDER 1link.



dict unconventional word usages such as slang (Sun
etal., 2021). On the other hand, generation of more
conventionalized senses, such as metonymy, have
remained underexplored (Rambelli et al., 2020), be-
cause most contextualized language models have al-
ready been exposed to usages of the most common
senses of a word type during pretraining, while eval-
uation on sense generation requires models without
such prior knowledge. Our framework circumvents
this circularity problem by creating novel tokens
that reflect partial usages of a polysemous word
and utilizing language models to learn them from
scratch, thereby allowing us to model the genera-
tive processes of word senses in a zero-shot setting.

3 Framework of word sense generation

Our framework of word sense generation involves
three interrelated components: 1) A procedure for
partitioning polysemous words in the lexicon into
child tokens signifying their different senses; 2) a
probabilistic formulation for inferring a child token
to paraphrase one of its siblings under a novel lin-
guistic context; and 3) a representational learning
algorithm for a transformed semantic space to learn
flexible extensions of word senses.

3.1 Sense-based word type partitioning

Let V' = {wz, ..., w)y|} be our vocabulary of pol-
ysemous English verbs, where each verb w; has
a sense inventory S(w;) = {sgl), o sgni)}. As-
sume that for each sense sf of w;, there is a collec-
tion of its representative usage sentences U (sf ) in
which w; exhibits sense s{ . We wish to investigate
whether a language model, which has knowledge
only about a partial set of senses of wj, is able to
generate a usage that reflects a novel sense of w;. In
particular, we define a partition of a word type w as
a grouping of its sense inventory .S(w;) into a col-
lection of K; distinct sense subsets {S7, ..., S }
— for example, as illustrated in Figure 1, the sense
inventory of the verb arrive S = {s1, s2, 83, S4}
can be partitioned into four singleton sets (repre-
sented by the four colored rectangles). For each
sense subset S,i with an associated usage sentence
set U(S}) = U U(s), we replace all mentions of
s€S),
w; in each u € U(S}) with a novel child token ¢,
(e.g., the sentence “We arrive at a conclusion" in
which arrive expresses the abstract state achieve-
ment sense s4 will be converted into “We ¢4 at a
conclusion"). We then use a contextualized lan-

guage model to learn semantic representations for
each child token from the replaced usage sentences
U(S:) via the task of masked language modeling
(MLM). To prevent information smuggling, the lan-
guage model is initialized from scratch and there-
fore does not have any a priori knowledge about
either the partitioned tokens or their parent verb
types. Next, we explain how the task of WSG can
be formulated as a paraphrasing problem of infer-
ring a partitioned child token to substitute one of
its siblings under a given context.

3.2 Probabilistic formulation of WSG

3.21

Let S, .S; be two partitioned sense subsets of the
sense inventory S(w) of w, and t, t; be their cor-
responding child tokens. We say that a language
model generates a novel sense for token ¢, (called
the source token) if infers that ¢; can serve as
a good paraphrase token to substitute its sibling
t; (called the rarget token) in a usage sentence
u* € U(S;) containing t; that does not appear
in the MLM training set. For instance, if the LM
initially learns two child tokens spawned from the
the verb arrive that reflect its two distinct senses
51 = “to come to a physical location” and s =
“to achieve a goal" respectively, we would expect
the LM to predict that the source token ¢; denoting
the concrete sense s; can be used to paraphrase its
target sibling ¢ denoting the abstract sense sz in
usages such as “They to at a conclusion after a de-
bate”. We cast WSG as inference of the following
word choice probability:

WSG as partitioned token paraphrasing

P(tk — Sl;u*) = P(tk = tl\u*) (1)

Here t;, — S; means that ¢, can be extended to
express novel senses drawn from Sj, and t;, < t;
means that ¢, ¢; can be used interchageably under
context u*. Next, we introduce several models that
infer the paraphrase probability in Eq.1.

3.2.2 Baseline models of WSG

We first consider two simple baseline models: the
masked language modeling (MLM) baseline ig-
nores information about ¢; and predicts P(t; <
t;|u*) simply as the infilling probability of ¢; under
a masked sequence of u*:

P(tk <~ tl]u*) = PMLJ\/I(tk|u<tl) 2



Here Pyypas(tg |u§ +,) denotes the probability of
choosing ¢, to infill a masked sequence of v* with
t; replaced by a placeholder, as determined by the
contextualized language model. The semantic tex-
tual similarity (STS) baseline instead predicts the
paraphrase probability as proportional to the co-
sine similarity between the contextualized repre-
sentations h(t;|u*), h(tg|u*) of t; and ) under the
context u*:

P(t, < ti|u*) o cosine-sim(h(t;|u*), h(tg|u*)) (3)

3.2.3 Chaining-based models of WSG

A common issue of the two baseline models de-
scribed is that they do not model the relations or se-
mantic similarities between the the novel use of ¢,
in u* and its existing usages U (Sk). We therefore
propose a family of WSG models that draws inspi-
rations from the cognitive theory of chaining and
memory-augmented deep learning. These models
predict that a token ¢, is a good paraphrase for its
sibling ¢; under »* if the collection of conventional
usages U (S},) of ¢y, bears a close overall proximity
to u* in the contextualized embedding space:

P(tk =4 tl]u*) X sim(tk, tl) @
= sim(H (tg), h(t;;u*)) ()

Here H (t;) = {h(tx;u)}uecu(s,) is the collection
of contextualized embeddings of ¢ in its conven-
tional usages. We next describe two commonly
used chaining models that specify the similarity
function sim(H (t), h(t;; u*)).

WSG-Prototype model. The prototype model
draws inspirations from prototypical network for
few-shot learning (Snell et al., 2017) and fol-
lows the prototype theory of categorization (Rosch,
1975) in cognitive psychology. It assumes that the
meaning of a child token ¢, can be summarized by a
global mean of its contextualized embeddings taken
from all of its conventional usages U (S}), so that
the probability of ¢; being a good paraphrase for ¢;
under u* is proportional to the semantic similarity
between the contextualized embedding h(¢;|u*) of
t; and the summary prototype of its sibling:

sim(ty, ) = exp(—|[|h(ti|u*) — 2(tx)[|*) (6)
> hltlu) (7)

() = —
k) = ey
U(S;)] weU(SE)
k

Here z(ty) is the mean contextualized embedding
of t; over all of its existing usages, and we have
defined semantic similarity as the negative exponen-
tial Euclidean distance between two embeddings.

WSG-Exemplar model. The exemplar model
resembles the memory-augmented matching net-
work in deep few-shot learning (Vinyals et al.,
2016), and formalizes the exemplar theory of cat-
egorization (Nosofsky, 1986). This model postu-
lates that the meaning of ¢, is represented by the
entire collection of its usages u € U(S}). The
probability that ¢, paraphrases ¢; under context u*
is then proportional to the mean negative exponen-
tial Euclidean distance between h(t;|u*) and each
contextualized embedding of #x:

exp(—|lh(tilu®) = h(tplu)|?)  (8)

sim(ty, ;) = S[EN]] EES )
u! / k

3.3 Learning sense-extensional semantic space

Chaining relies on identifying close semantic rela-
tions between senses, and we therefore develop a
learning scheme that transforms a standard seman-
tic space to one that is sensitive to regular relations
attested in sense extension. For instance, if a WSG
model has observed how verb grasp relates its lit-
eral sense (e.g., to grasp an item) to the extended
metaphorical sense (e.g., to grasp an idea), under
the transformed semantic space the model should
also predict similar but novel non-literal sense ex-
tensions for other verbs that involve such metaphor-
ical mappings (e.g., to gef someone’s idea, which
also reflects the conceptual metaphor IDEAS ARE
OBJECTYS).

We follow work in deep few-shot learning and
propose an episodic learning algorithm for a sense-
extensional semantic space: at each episode, we
sample a mini-batch of NV source-target token pairs
{(t,(cn), tln)) N_| partitioned from N different par-
ent word types, and sample a usage sentence u*(")
for each target token tl("). The model then learns to
perform in-batch WSG by choosing a paraphrase

token for every target tl(n)

of N candidate source tokens {(tg), ...t,E:N)}, with
(n)
by,

in ©*(™ among the set

being the ground-truth paraphrase. For the two
chaining-based models, learning can be performed
by minimizing the in-batch classification loss:
7= 3" — log SMUTU), A" )
= —log 7
o sim(EEY), A urm))
n/

©)




No. of spawned tokens

No. of spawned tokens

Sense type No. of verb types (Full partition) (Leave-one-out partition) No. of usage sentences
Domain-based 1,199 14,735 5,860 481,654
Synset-based 1,468 6,463 2,936 371,920

Table 1: Summary statistics of the two collected WSG datasets.

Here sim(-, -) can either be a prototype-based sim-
ilarity function in Eq.6, or be its exemplar-based
counterpart specified in Eq.8. The two baseline
models can also be trained directly on the same
set of examples by maximizing their word choice
probabilities (i.e., Eq.2 and Eq.3).

4 Data

We collect usage sentences for English verbs from
the Wikitext-103 linguistic corpus (Merity et al.,
2016) that is commonly used as a language mod-
eling benchmark dataset. It is well-known that
word senses are highly fuzzy linguistic categories,
and there does not exist a set of word senses that
is suitable for every NLP task (Kilgarriff, 1997;
Rumshisky and Batiukova, 2008). We therefore
consider two different definitions of verb senses
in our datasets, as well as two different ways of
partitioning the sense inventory of a verb.

4.1 Domain-based vs. synset-based verb sense

Our first sense definition of an English verb is
based on the semantic domain of its syntactic object
nouns. In particular, for each usage of a verb with a
noun object, we label the noun with its supersense
category defined in the WordNet lexical database
(Miller, 1995), and define a verb sense as the collec-
tion of usages whose object nouns share the same
supersense label. This sense definition helps us in-
vestigate the regularity underlying sense extension
cases of different words. For instance, a common
type of logical polysemy involves coercing an event
nominal to denote the physical location where it
takes place (e.g. to arrive at the theatre — to arrive
at the concert), which can be captured by extending
the domain-based sense “to arrive at a LOCATION”
to “to arrive at an EVENT” 2. We also consider
a second, more established type of word sense as
recorded in lexicographic resources. In particular,
for each word, we apply a state-of-the-art word
sense disambiguation algorithm (Bevilacqua and
Navigli, 2020) on each of its usage sentence to

2See Appendix B for a full list of supersense categories
and their descriptions.

identify the its evoked WordNet sense, as indicated
by one of its associated synset ID.

4.2 Full vs. leave-one-out word type partition

For each WSG dataset, we also consider two types
of sense inventory partitioning: the full partition
creates a child token for each sense of a parent verb
(e.g., the partition in Fig.1), and a WSG model
is evaluated on predicting extensions between all
possible child token pairs spawned from the same
word type. The leave-one-out partition instead
randomly samples one sense for each verb to create
the target token, and group all remaining senses
into a single source token. Summary statistics of
the two resulting datasets are shown in Table 1.

5 [Evaluation and results

5.1

We use a BERT language model (Devlin et al.,
2019) to build both the contextualized baselines
and the chaining-based WSG models. All BERT
models are implemented from scratch and are not
pretrained on any NLP tasks. In the masked lan-
guage modeling step, we increase the vocabulary
size of each model by replacing all parent verbs in
our datasets with their spawned child tokens, and
increase the size of the model’s embedding layer
and final classification layer accordingly. During
sense-extensional semantic space learning, we ran-
domly choose 70% of the parent verb types in each
dataset, and take usage sentences containing their
spawned tokens as training set. Sentences contain-
ing partitioned tokens spawned by the remaining
30% verb types will be taken as the test set, so that
there is no overlap in the vocabulary of partitioned
tokens or parent verb types between training and
testing.’

Model implementation

5.2 Evaluation on WSG

We first evaluated our models on the task of pre-
dicting paraphrase partitioned tokens formulated
in Eq.1: given a target token and its sample usage

3Implementation details are described in Appendix A.



sentence, how likely is the model to predict one
of its sibling source tokens as a good paraphrase?
At each trial, we pick one ground-truth source to-
ken and 99 negative tokens with different parent
verb types, and ask the model to rank the 100 can-
didates based on their infilling likelihoods. We
then compute the mean reciprocal ranks for each
ground-truth source token among the 100 candi-
dates (MRR-100) to assess model performance.

0.7
== WSG-Prototype
B WSG-Exemplar

s BERT-MLM
EEm BERT-STS
0.6| recognize

person -> car __arrive at.
airport -> altitude

Mean reciprocal rank

draw picture
-> conclusion

0.1
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Mean concreteness score difference

(a) Model preformance (MRR) vs. Concreteness score
difference between supersenses.
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emphasize mmm WSG-Exemplar
importance -> words

o
w
&

o
w
S

order
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Wu-Palmer distance

(b) Model preformance (MRR) vs. Wu-Palmer distance
between WordNet synsets.

Figure 2: Model performance vs. sense relatedness
between fully-partitioned tokens.

Table 2 summarizes the averaged results over
five independently sampled candidate sets. The un-
supervised/supervised columns correspond to mod-
els with/without learning a sense-extensional se-
mantic space. We observed that 1) all BERT-based
models benefit from learning a sense-extensional
semantic space, suggesting the presence of regu-
larity shared among examples of sense extension
across verb types; 2) both the prototype and ex-
emplar WSG models consistently supersede other
baseline models in both unsupervised and super-
vised setups, indicating that chaining mechanisms
are useful inductive biases for modeling the gener-

ative processes of word meaning extension. *

Table 3 shows example predictions on 6 pol-
ysemous verbs made by a supervised prototype
WSG model (the full model) and a supervised
BERT-MLM baseline trained on the same datasets.
The full model successfully predicts many types
of sense extension, including weak metaphor (the
pass example, where the location-type argument of
a predicate is weakened to its super-type of scalar
attribute), strong metaphor (the throw and stretch
examples, where verbs with concrete noun argu-
ments are extended to predicate abstract terms)
and logical metonymy (the appear (in) example
of event-for-place type coercion). In contrast, the
MLM baseline exhibits a greater tendency to pre-
dict a “literal” paraphrase for a partitioned token
(e.g., all of its top-3 predicted paraphrase tokens for
“throw COGNITION” have senses from the same
abstract domain). In addition, both chaining-based
and baseline models still struggle in predicting
some usages that involve strong non-literal sense
extension (e.g., the grasp example).

6 Model interpretation and analysis

6.1 Sense relatedness and model predictability

Prior work in psycholinguistics suggests that both
adults and children often find it easier to infer a
new intended meaning of a word if they can access
a highly related conventional sense of that word
to constrain their interpretation (Clark and Ger-
rig, 1983; Klepousniotou et al., 2008; Rodd et al.,
2012). Here we investigate whether our WSG mod-
els exhibit human-like sensitivity to the conceptual
relateness of source-target sense pairs in the full
partition setup. We quantify the degree of con-
ceptual relatedness for domain-based partitioned
tokens by computing the difference in mean con-
creteness score (Brysbaert et al., 2014) of their
attested object nouns, and for tokens representing
synset-based senses, we take the Wu-Palmer se-
mantic distance (Wu and Palmer, 1994) between
their associated WordNet synsets as the similarity
measurement. Figure 2 shows the performance of 4
WSG models by binning sense pairs based on their
degrees of conceptual similarity. We observe that
all models yield worse prediction for sense pairs
that are conceptually more distant (e.g., metaphors),
while generally performing better on pairs that are

“We also summarize results on a subset of the domain-
based dataset where the target sense is more abstract than the
source — see Appendix C.



Sense type

Model

Mean reciprocal rank (MRR-100)

Full

partition

Leave-one-out partition

Unsupervised Supervised Unsupervised Supervised

Random Baseline 5.240.0 - 5.240.0 -
BERT-STS 13.74+1.2 33.14+2.4 38.5+1.9 62.5+1.6
Domain-based BERT-MLM 15.2+1.5 35.4+1.9 44.442.0 64.84+1.3
WSG-Prototype 19.8+1.3 52.3+0.3 55.0+1.4 86.9+1.6
WSG-Exemplar 19.5+1.1 47.9+1.5 78.2+2.7 86.6£1.1
Random Baseline 5.240.0 - 5.240.0 -
BERT-STS 14.2+2.0 16.9+1.2 26.242.0 55.04+1.8
Synset-based BERT-MLM 17.3£0.8 19.14+0.7 25.740.8 59.940.5
WSG-Prototype 20.74+0.5 30.8+0.6 36.0+1.1 73.4+1.0
WSG-Exemplar 19.640.8 29.5+1.2 68.0+2.9 72.94+0.6

Table 2: Summary of model MRR-100 scores (%) for word sense generation in the two datasets. Numbers after +
are standard deviations over 5 sets of independently sampled negative candidate tokens.
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Principle component 1

e location->event (arrive at the theatre->concert)
communication->artifact (listen to the music->radio) °

e person->group (admit the student->team)

Principle component 1
e location->time (arrive at the school->age)
artifact->cognition (grasp the item->idea)
e artifact->attribute (cut the paper->rate)

Figure 3: Principal component visualization of prototype difference embeddings of partitioned source-target token
pairs, under BERT-MLM baseline (left) and prototype WSG model in sense-extensional semantic space (right).

conceptually more related (e.g., metonymy).

6.2 Interpreting the learned semantic space

To better understand the effect of the sense-
extensional semantic space, we compute the mean
Euclidean distance between the prototypes (i.e.,
global mean) of embedded usage sentences for all
fully-partitioned source-target token pairs yielded
by two types of chaining-based models. As shown
in Table 4, both models benefit from learning the ex-
tensional semantic space by bringing closer novel
and existing senses of the same word. Moreover,
pushing partitioned tokens closer for verbs in the
training set also results in a more compact embed-
ded sense inventory for unseen verbs in the eval-
uation set, suggesting that the WSG models have
captured some regularity shared across the meaning

transformations of various word types.

To further interpret the information captured in
the WSG models, we also performed unsupervised
K-means clustering on prototype difference vec-
tors of all fully partitioned domain-based source-
target token pairs taken from 1) the embedding
space of the BERT-MLM baseline and a sense-
extensional semantic space learned by a prototype
WSG model. We then compute the normalized
mutual information (NMI) between the cluster la-
bels yielded by the K-means algorithm and the
ground-truth pairings of source-target domains for
each example. Figure 3 shows the clustering re-
sults for two semantic spaces, together with their
NMI scores against the ground-truth sense exten-
sion type labels. We observe that the learned space
captures systematic sense extensional patterns by



Model Top-3 source tokens predicted by model Predicted rank
1.1 Verb: throw; target sense: to throw a COGNITION; true source sense: to throw an ARTIFACT

Usage context: Constructors ... which returned null upon failure were changed to throw an exception instead.

BERT-MLM create COGNITION, develop COGNITION, provide COGNITION 55/100
WSG-Prototype | create COGNITION, throw ARTIFACT , build ARTIFACT 2/100
1.2 Verb: pass; target sense: to pass an ATTRIBUTE; true source sense: to pass an ARTIFACT

Usage context: After 22 minutes of flight, the aircraft passed its assigned altitude.

BERT-MLM retain ATTRIBUTE, lose ATTRIBUTE, regain ATTRIBUTE 41/100
WSG-Prototype | pass ARTIFACT, enter LOCATION, return to ARTIFACT 1/100
1.3 Verb: appear (in); target sense: to appear in an EVENT; true source sense: to appear in a LOCATION

Usage context: He ... appeared in 24 league matches as well as United’s FA Cup defeat to Burnley.

BERT-MLM host EVENT, achieve EVENT, lose EVENT 62/100
WSG-Prototype | come to GROUP, star in ACT, compete in ACT 6/100
2.1 Verb: cover; target sense: be responsible for reporting (news); true source sense: to form a cover over

Usage context: Generally, only reporters who cover breaking news are eligible.

BERT-MLM work (operate in a place), take (be a student), write (communicate by writing) 78/100
‘WSG-Prototype | practice (carry out as job), sponsor (be a client of), monitor (supervise someone) 10/100
2.2 Verb: stretch; target sense: to extend the scope or meaning of; true source sense: to make longer by pulling

Usage context: ... the usage of a new "entwinement " standard ... stretched the doctrine beyond its permissible limits.
BERT-MLM spoil (alter), meet (satisfy), understand (comprehend) 59/100
WSG-Prototype | stem (remove the stem), stretch (make longer by pulling), extend (stretch to a greater length) 2/100
2.3 Verb: grasp; target sense: to get the meaning of; true source sense: to hold firmly

Usage context: Madonna later acknowledged that she had not grasped the concept of her mother dying.

BERT-MLM appreciate (realize fully), understand (comprehend), enjoy (get pleasure from) 86/100
WSG-Prototype | understand (comprehend), resolve (understand the meaning of), read (interpret) 38/100

Table 3: Example novel sense predictions from the full prototype model and the BERT-MLM baseline (both trained
on WSG) on domain-based dataset (first 3 examples) and synset-based dataset (last 3 examples).

Mean Euclidean distance

Model
Training Testing
BERT 11.85+£2.93 11.96+2.96
+ WSG-Prototype  1.144+0.38  1.67£0.43
+ WSG-Exemplar  1.21£0.34  1.824+0.50

Table 4: Mean Euclidean distance between the proto-
types of source and target tokens.

Model MLM perplexity STS correlation

BERT 0.337 0.665
+WSG-Prototype 0.339 0.632
+WSG-Exemplar 0.352 0.634

Table 5: Performance on common NLP tasks for the
vanilla BERT model and WSG models.

forming well-separated clusters for tokens pairs
from the same extensional type.

6.3 Evaluation on common NLP tasks

We finally examined how learning WSG might af-
fect a language model on common NLP tasks. Ta-
ble 5 shows performance on two general NLP tasks
for the BERT encoders with and without supervised
learning on WSG: 1) masked langauge modeling
(MLM) on Wikitext-103 dataset; and 2) seman-

tic textual similarity (STS) prediction on the STS
benchmark dataset (Cer et al., 2017). We found
that contextualized language models trained on
WSG largely preserved their linguistic competence
on both tasks, suggesting that our WSG learning
framework is not simply a fine-tuning technique
designed for a specific task, but rather a more fun-
damental exercise of learning flexible embedding
spaces that may improve the semantic generaliz-
ability of language models.

7 Conclusion

We have presented a framework of word sense
generation that supports lexical items to spawn
new senses in scenarios that involve novel context.
Our results show that chaining provides a general
mechanism for extending to novel senses includ-
ing metaphor and metonymy, and learning a trans-
formed sense-extensional space enables systematic
generalization in word sense extension. In contrast
with the established traditions in word sense dis-
ambiguation and induction, our work emphasizes
a generative approach to model word senses that
is scalable and applicable to natural sentences and
a broad set of words in the lexicon. Future work
may extend our framework to incorporate temporal
dimensions, other word classes and languages.



8 Ethical considerations

In this section, we discuss the limitations and po-
tential risks of our work.

8.1 Limitations

Our work has some limitations. First, the cur-
rent study considers sense generation for English
verbs, and it therefore does not account for all
common types of sense extension in English (e.g.,
English noun-to-verb conversion, as discussed in
Clark and Clark 1979; Yu and Xu 2022) and other
languages. Future work can consider extending
our WSG framework more broadly to other word
classes and languages.

Second, our framework does not explicitly con-
sider the temporal order via which word senses
have emerged. In particular, in the data collection
step, we choose source-target sense pairs based
on random partitioning of word sense inventories,
whereas an alternative approach would be to sort
all senses of a word chronologically by their times
of emergence in history, and use the model to in-
crementally predict each sense of a word based
on usages of its older senses. However, we found
that it is infeasible to find accurate timestamps of
senses in natural corpora at a comprehensive scale.
Another approach is to have human annotators eval-
uate the plausibility of each possible source-target
sense pairs against sampled alternatives, which is a
potential area for future extension.

8.2 Potential risks

All scientific artifacts in this study have been made
publicly available and are consistent with their in-
tended use and access conditions. We acknowl-
edge that our focus on English might introduce
linguistically or culturally specific biases in model-
generated outputs. For instance, we observe that
the WSG models trained on English sentences learn
to generate a metaphorical expression “to spend
some time” for the English verb spend, which is
common in English but differ in other languages
(e.g., Hungarian speakers instead tend to say “to fill
some time” as in Kovecses et al. 2010). We believe
that by training WSG models cross-linguistically
to cover various innovative lexical uses should help
alleviate this issue.
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A Implementations of WSG models

We use the bert-base-uncased configuration pro-
vided by Hugging Face (Wolf et al., 2020) to ini-
tialize all BERT-based WSG models (two baselines
and two chaining-based models). During MLM
pretraining of BERT models to learn novel parti-
tioned tokens, we randomly mask 15% of tokens in
each sentence, and train each model on predicting
the masked tokens. Learning is performed using
the Adam optimizer (Kingma and Ba, 2015), with
a learning rate of Se-5 and a batch size of 128, for
8 epochs (after which all models achieved high-
est evaluation accuracy). During sense-extensional
semantic space learning, all chaining-based mod-
els are trained on the objective function in Eq.3.3
using Adam, with a mini-batch size of 16 and a
learning rate of 2e-5, for 8 epochs (after which
all models achieved highest evaluation accuracy).
Two baseline models are trained on the same set
of usage data using Eq.2 and Eq.3 respectively,
with an Adam learning rate of 2e-5 and a batch
size of 32, for 4 epochs (after which all models
achieved highest evaluation accuracy). All experi-
ments are run on machines with 4 NVIDIA Tesla
V100 GPUs, with an average training time of 25
minutes per epoch for MLM pretraining, and 10
minutes per epoch for sense-extensional semantic
space learning.

B Description of supersense-based
domains

WordNet organize noun synsets into 26 supersense
domains based on their semantic coherence. Dur-
ing data collection, we first run the WSD model of
(Bevilacqua and Navigli, 2020) on usage sentences
to identify the WordNet synset label for each noun
object, and then tag it with the associated super-
sense label. We then take the top-11 most frequent
supersenses with at least 10,000 identified noun ob-
jects to construct our domain-based WSG dataset.
Table 6 shows detailed information about the 11
selected supersense categories.

C Results on WSG examples with
decreasing sense concreteness

Research in cognitive science suggests that con-
crete and embodied word senses tend to be ex-
tended to more abstract senses to achieve better
communication efficiency and learnability (Mur-
phy, 1997; Srinivasan and Carey, 2010; Thibodeau
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and Durgin, 2008). We therefore also compute per-
formance scores of our WSG models on subsets of
the domain-based usage dataset where the mean-
ing of a verb is extended from concrete senses to
a more abstract one (e.g. the metaphorical exten-
sions of arrive as shown in Figure 1). In particular,
we define a source-target sense pair to be an ex-
ample of concrete-to-abstract sense extension if
the average object noun concreteness score of the
target token is lower than that of its source sib-
ling. Table C summarizes the results, from which
we observe that almost all models perform slightly
worse on concrete-to-abstract extensions compared
to the general setup, while still making significantly
better predictions than the random baseline.



Supersense

Definition

Sample nouns

noun.act

nouns denoting acts or actions

attempt, performance, exchange

noun.artifact

nouns denoting man-made objects

aircraft, phone, guitar

noun.attribute

nouns denoting attributes of people and objects

popularity, style, power

noun.cognition

nouns denoting cognitive processes and contents

viewpoint, imagination, scheme

noun.communication

nouns denoting communicative processes and contents

proposal, screenplay, film

noun.event

nouns denoting natural events

tournament, final, competition

noun.group

nouns denoting groupings of people or objects

family, league, party

noun.location

nouns denoting spatial position

province, area, neighborhood

noun.person

nouns denoting people

officer, visitor, mother

noun.state

nouns denoting stable states of affairs

existence, friendship, injury

noun.time

nouns denoting time and temporal relations

era, day, season

Table 6: Definitions and sample members of the WordNet noun supersenses used to create the domain-based WSG

dataset.

Mean reciprocal rank (MRR-100)

Model Full partition Leave-one-out partition
Unsupervised Supervised Unsupervised Supervised
BERT-STS 11.5+1.2 34.6+2.0 37.7£1.8 61.6+1.6
BERT-MLM 13.6t1.4 35.8£1.7 43.0+2.2 64.1+£0.9
BERT-Prototype 17.5+1.1 49.9£0.5 51.6£1.5 81.4+1.9
BERT-Exemplar 17.8+1.1 45.8+1.4 75.3+£2.9 79.7+£1.0

Table 7: Summary of model MRR-100 scores (%) on the subset of domain-based word sense generation dataset
where the source sense has higher concreteness score than its target sibling token (i.e. extensions from concrete to
abstract senses). Numbers after & are standard deviations over 5 sets of independently sampled negative candidate

tokens.
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