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Abstract

The lexicon makes creative reuse of words to001
express novel senses. A long-standing effort002
in natural language processing has been fo-003
cusing on disambiguating and inducing word004
senses from context. Little has been explored005
about how novel word senses may be gener-006
ated automatically. We consider a paradigm007
of word sense generation (WSG) that enables008
words to spawn new senses by extending to-009
ward novel naturalistic context. We develop a010
general framework that simulates novel word011
sense extension by dividing a word into hy-012
pothetical child tokens and making inferences013
about the plausibility of sense extension among014
the sibling tokens in usage sentences that never015
appear in training. Our framework combines016
probabilistic models of chaining with a learning017
scheme that transforms a language model em-018
bedding space to support various types of word019
sense extensions. We evaluate our framework020
rigorously against several competitive baselines021
and show that it is superior in predicting plau-022
sible novel senses including metonymic and023
metaphoric word usages in a large set of 1,500024
English verbs. We show that the learned seman-025
tic space exhibits systematic patterns of word026
sense extension while retaining competence in027
common natural language processing tasks.028

1 Introduction029

A key property of the lexicon is the creative reuse030

of words to express novel senses. For example, the031

English phrase to arrive at extended from its origi-032

nal sense “to reach a physical location (e.g., gate)”033

toward new senses such as “to come to an event034

(e.g., concert)” and “to reach an abstract, cognitive035

state (e.g., conclusion)”. The extension of word036

meaning toward new context may appear to draw037

on different processes ranging from metonymy to038

metaphor (see Figure 1 for an illustration), but here039

we present a general framework that infers how040

words extend to plausible new senses under novel041

naturalistic context.042

s1: arrive at LOCATION

She t1 at the gate.

s2: arrive at EVENT

   They t2 at the concert.

   They t1 at the concert.


       s3: arrive at ATTRIBUTE
         The plane t3 at its altitude.

         The plane t1 at its altitude.


        s4: arrive at COGNITION
   We t4 at a conclusion.

   We t1 at a conclusion.


Simulated sense extension

via paraphrasing


 location->event

(metonymy)

 location->attribute

(weak metaphor)

 location->cognition

(strong metaphor)

 


 


 


Figure 1: The word sense generation (WSG) framework.
A verb (e.g., arrive) with a set of sense-labeled usage
sentences is partitioned into distinct child tokens (e.g.,
t1-t4 signifying senses s1-s4 as illustrated). Each to-
ken represents a hypothetical word type that replaces
its original parent verb in sentences where it expresses
a given sense (e.g., arrive in sentences where it predi-
cates a location will be substituted by the hypothetical
t1, and separately substituted by other tokens t2-t4 for
sentences expressing the other senses). WSG models
infer whether a child token (e.g., t1) can be extended to
express the senses of its siblings via paraphrasing novel
sentences that do not appear in training (e.g., t1 has 3
potential siblings to extend its meaning to: t2, t3, t4).

One of the most long-standing efforts in nat- 043

ural language processing (NLP) is to be able to 044

disambiguate word senses from text. This line of 045

work takes a discriminative approach toward the 046

multifaceted aspect of word meaning and has devel- 047

oped models relying on both traditional machine 048

learning techniques (Gale et al., 1992; Kilgarriff 049

and Rosenzweig, 2000; Zhong and Ng, 2010; Ia- 050

cobacci et al., 2016; Raganato et al., 2017) and 051

modern neural language models (Huang et al., 052

2019; Wiedemann et al., 2019; Loureiro and Jorge, 053

2019; Bevilacqua and Navigli, 2020). Related work 054

has developed automated methods for inducing or 055

detecting novel word senses (Lau et al., 2012; Cook 056

et al., 2014; Lau et al., 2014), which can also be 057

considered as unsupervised approaches to sense 058
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disambiguation. Here we consider an alternative059

paradigm that aims to model word senses by taking060

a generative approach in naturalistic context.061

Work in computational and cognitive linguis-062

tics suggests that word senses often do not extend063

arbitrarily (Nunberg, 1979; Lehrer, 1990). Lexi-064

cal semanticists have pointed out that a number of065

cognitive devices may be applied to generate cre-066

ative word uses, such as logical metonymy (Copes-067

take and Briscoe, 1995; Pustejovsky, 1998) and068

metaphor (Lakoff and Johnson, 2008; Pustejovsky069

and Rumshisky, 2010). Cognitive linguists have070

also suggested that systematic mappings between071

conceptual domains underlie the metaphorization072

of word meanings (Brugman and Lakoff, 1988;073

Lakoff and Johnson, 2008). However, the re-074

liance on hand-crafted rules of semantic productiv-075

ity makes it difficult to implement these accounts076

into computational systems that support flexible077

and scalable generation of novel word senses.078

We develop a principled framework termed word079

sense generation (WSG). As a starting point, we fo-080

cus on modelling sense generation of English verbs,081

which constitute a broad yet notoriously challeng-082

ing class of productive sense extensions (Puste-083

jovsky and Rumshisky, 2010). Figure 1 illustrates084

our WSG framework. Given a verb (e.g., arrive),085

we consider a paradigm that simulates how it can be086

extended to express plausible novel senses in natu-087

ralistic context. We do so by dividing a word into088

hypothetical child tokens signifying its different089

senses. We then infer whether a child token may be090

extended to express its sibling tokens under novel091

context (i.e., a simulation of how a word might ex-092

tend from its existing senses to novel senses). We093

propose a family of deep probabilistic models for094

this inference problem that are built on the cog-095

nitive theory of chaining, which states that word096

meanings grow by linking novel senses to existing097

ones that are close in semantic space (Lakoff, 1987;098

Malt et al., 1999; Ramiro et al., 2018; Habibi et al.,099

2020; Yu and Xu, 2021). We expect these chaining100

models to support the incremental extension of a101

word’s meaning toward a variety of new senses,102

a process analogous to the gradient cline of verb103

sense extensions (e.g., weak metaphor) discussed104

in Pustejovsky and Rumshisky (2010).105

We make three contributions: 1) we formulate106

word sense generation as a novel probabilistic in-107

ference task whereby a language model, after learn-108

ing a set of partitioned tokens signifying different109

senses of a polysemous word, automatically infers 110

whether sibling tokens can be used interchangeably 111

under novel context absent in training; 2) we de- 112

velop a family of WSG models motivated by the 113

cognitive theories and models of semantic chaining, 114

and a new learning scheme to capture regular pat- 115

terns of word sense extension; 3) we collect a new 116

dataset of word sense generation examples which 117

includes natural usages for approximately 22,000 118

senses of over 1,500 common English verbs.1 119

2 Related work 120

2.1 Theories of word meaning extension 121

Researchers in lexical semantics and cognitive lin- 122

guistics have both proposed theories to account 123

for the malleable nature of lexical meaning. The 124

Generative Lexicon theory by Pustejovsky (1998) 125

argues that a fixed set of generative devices, such 126

as type-coercion and co-composition, can operate 127

on the lexical structure a word to produce various 128

related meaning interpretations. Copestake and 129

Briscoe (1995) also illustrates how formal lexical 130

rules such as grinding and portioning can be ap- 131

plied to produce novel word usages such as logical 132

metonymy. In cognitive linguistics, Lakoff and 133

Johnson (2008) argues that systematic mappings 134

across conceptual domains result in the abundance 135

of metaphorical word senses in natural language, 136

while these mappings can be motivated by cog- 137

nitive processes such as chaining (Lakoff, 1987) 138

and image schema transformation (Brugman and 139

Lakoff, 1988; Dewell, 1994; Gibbs Jr and Colston, 140

2008). Our work connects the cognitive and formal 141

approaches to word meaning extension by show- 142

ing that a cognitively inspired chaining-based word 143

sense generation framework can learn systematic 144

patterns of meaning extension discussed in the tra- 145

dition of generative lexical semantics. 146

2.2 Non-literal language generation 147

Our framework also relates to research on auto- 148

mated generation of non-literal word uses such as 149

metaphor and metonymy. Recent work has ex- 150

plored using contextualized language models to 151

generate metaphorical paraphrases for literal usage 152

sentences of a word (Tong et al., 2021; Stowe et al., 153

2021; Chakrabarty et al., 2021). It has also been 154

shown that chaining mechanisms can be incorpo- 155

rated into contextualized language models to pre- 156

1We release the code and data for our work here:
PLACEHOLDER link.
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dict unconventional word usages such as slang (Sun157

et al., 2021). On the other hand, generation of more158

conventionalized senses, such as metonymy, have159

remained underexplored (Rambelli et al., 2020), be-160

cause most contextualized language models have al-161

ready been exposed to usages of the most common162

senses of a word type during pretraining, while eval-163

uation on sense generation requires models without164

such prior knowledge. Our framework circumvents165

this circularity problem by creating novel tokens166

that reflect partial usages of a polysemous word167

and utilizing language models to learn them from168

scratch, thereby allowing us to model the genera-169

tive processes of word senses in a zero-shot setting.170

3 Framework of word sense generation171

Our framework of word sense generation involves172

three interrelated components: 1) A procedure for173

partitioning polysemous words in the lexicon into174

child tokens signifying their different senses; 2) a175

probabilistic formulation for inferring a child token176

to paraphrase one of its siblings under a novel lin-177

guistic context; and 3) a representational learning178

algorithm for a transformed semantic space to learn179

flexible extensions of word senses.180

3.1 Sense-based word type partitioning181

Let V = {w1, ..., w|V |} be our vocabulary of pol-182

ysemous English verbs, where each verb wi has183

a sense inventory S(wi) = {s(1)i , ..., s
(ni)
i }. As-184

sume that for each sense sji of wi, there is a collec-185

tion of its representative usage sentences U(sji ) in186

which wi exhibits sense sji . We wish to investigate187

whether a language model, which has knowledge188

only about a partial set of senses of wi, is able to189

generate a usage that reflects a novel sense of wi. In190

particular, we define a partition of a word type w as191

a grouping of its sense inventory S(wi) into a col-192

lection of Ki distinct sense subsets {Si
1, ..., S

i
Ki
}193

– for example, as illustrated in Figure 1, the sense194

inventory of the verb arrive S = {s1, s2, s3, s4}195

can be partitioned into four singleton sets (repre-196

sented by the four colored rectangles). For each197

sense subset Si
k with an associated usage sentence198

set U(Si
k) =

⋃
s∈Si

k

U(s), we replace all mentions of199

wi in each u ∈ U(Si
k) with a novel child token tik200

(e.g., the sentence “We arrive at a conclusion" in201

which arrive expresses the abstract state achieve-202

ment sense s4 will be converted into “We t4 at a203

conclusion"). We then use a contextualized lan-204

guage model to learn semantic representations for 205

each child token from the replaced usage sentences 206

U(Si
k) via the task of masked language modeling 207

(MLM). To prevent information smuggling, the lan- 208

guage model is initialized from scratch and there- 209

fore does not have any a priori knowledge about 210

either the partitioned tokens or their parent verb 211

types. Next, we explain how the task of WSG can 212

be formulated as a paraphrasing problem of infer- 213

ring a partitioned child token to substitute one of 214

its siblings under a given context. 215

3.2 Probabilistic formulation of WSG 216

3.2.1 WSG as partitioned token paraphrasing 217

Let Sk, Sl be two partitioned sense subsets of the 218

sense inventory S(w) of w, and tk, tl be their cor- 219

responding child tokens. We say that a language 220

model generates a novel sense for token tk (called 221

the source token) if infers that tk can serve as 222

a good paraphrase token to substitute its sibling 223

tl (called the target token) in a usage sentence 224

u∗ ∈ U(Sl) containing tl that does not appear 225

in the MLM training set. For instance, if the LM 226

initially learns two child tokens spawned from the 227

the verb arrive that reflect its two distinct senses 228

s1 = “to come to a physical location” and s2 = 229

“to achieve a goal" respectively, we would expect 230

the LM to predict that the source token t1 denoting 231

the concrete sense s1 can be used to paraphrase its 232

target sibling t2 denoting the abstract sense s2 in 233

usages such as “They t2 at a conclusion after a de- 234

bate”. We cast WSG as inference of the following 235

word choice probability: 236

P (tk → Sl;u
∗) = P (tk ⇔ tl|u∗) (1) 237

Here tk → Sl means that tk can be extended to 238

express novel senses drawn from Sl, and tk ⇔ tl 239

means that tk, tl can be used interchageably under 240

context u∗. Next, we introduce several models that 241

infer the paraphrase probability in Eq.1. 242

3.2.2 Baseline models of WSG 243

We first consider two simple baseline models: the 244

masked language modeling (MLM) baseline ig- 245

nores information about tl and predicts P (tk ⇔ 246

tl|u∗) simply as the infilling probability of tk under 247

a masked sequence of u∗: 248

P (tk ⇔ tl|u∗) = PMLM (tk|u∗\tl) (2) 249
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Here PMLM (tk|u∗\tl) denotes the probability of250

choosing tk to infill a masked sequence of u∗ with251

tl replaced by a placeholder, as determined by the252

contextualized language model. The semantic tex-253

tual similarity (STS) baseline instead predicts the254

paraphrase probability as proportional to the co-255

sine similarity between the contextualized repre-256

sentations h(tl|u∗), h(tk|u∗) of tl and tk under the257

context u∗:258

P (tk ⇔ tl|u∗) ∝ cosine-sim(h(tl|u∗), h(tk|u∗)) (3)259

3.2.3 Chaining-based models of WSG260

A common issue of the two baseline models de-261

scribed is that they do not model the relations or se-262

mantic similarities between the the novel use of tk263

in u∗ and its existing usages U(Sk). We therefore264

propose a family of WSG models that draws inspi-265

rations from the cognitive theory of chaining and266

memory-augmented deep learning. These models267

predict that a token tk is a good paraphrase for its268

sibling tl under u∗ if the collection of conventional269

usages U(Sk) of tk bears a close overall proximity270

to u∗ in the contextualized embedding space:271

P (tk ⇔ tl|u∗) ∝ sim(tk, tl) (4)272

= sim(H(tk), h(tl;u
∗)) (5)273

Here H(tk) = {h(tk;u)}u∈U(Sk) is the collection274

of contextualized embeddings of tk in its conven-275

tional usages. We next describe two commonly276

used chaining models that specify the similarity277

function sim(H(tk), h(tl;u
∗)).278

WSG-Prototype model. The prototype model279

draws inspirations from prototypical network for280

few-shot learning (Snell et al., 2017) and fol-281

lows the prototype theory of categorization (Rosch,282

1975) in cognitive psychology. It assumes that the283

meaning of a child token tk can be summarized by a284

global mean of its contextualized embeddings taken285

from all of its conventional usages U(Si
k), so that286

the probability of tk being a good paraphrase for tl287

under u∗ is proportional to the semantic similarity288

between the contextualized embedding h(tl|u∗) of289

tl and the summary prototype of its sibling:290

sim(tk, tl) = exp(−∥h(tl|u∗)− z(tk)∥2) (6)291

z(tk) =
1

|U(Si
k)|

∑
u∈U(Si

k)

h(tk|u) (7)292

Here z(tk) is the mean contextualized embedding 293

of tl over all of its existing usages, and we have 294

defined semantic similarity as the negative exponen- 295

tial Euclidean distance between two embeddings. 296

WSG-Exemplar model. The exemplar model 297

resembles the memory-augmented matching net- 298

work in deep few-shot learning (Vinyals et al., 299

2016), and formalizes the exemplar theory of cat- 300

egorization (Nosofsky, 1986). This model postu- 301

lates that the meaning of tk is represented by the 302

entire collection of its usages u ∈ U(Si
k). The 303

probability that tk paraphrases tl under context u∗ 304

is then proportional to the mean negative exponen- 305

tial Euclidean distance between h(tl|u∗) and each 306

contextualized embedding of tk: 307

sim(tk, tl) =
1

|U(Sk)|
∑

u∈U(Sk)

exp(−∥h(tl|u∗)− h(tk|u∗)∥2) (8) 308

3.3 Learning sense-extensional semantic space 309

Chaining relies on identifying close semantic rela- 310

tions between senses, and we therefore develop a 311

learning scheme that transforms a standard seman- 312

tic space to one that is sensitive to regular relations 313

attested in sense extension. For instance, if a WSG 314

model has observed how verb grasp relates its lit- 315

eral sense (e.g., to grasp an item) to the extended 316

metaphorical sense (e.g., to grasp an idea), under 317

the transformed semantic space the model should 318

also predict similar but novel non-literal sense ex- 319

tensions for other verbs that involve such metaphor- 320

ical mappings (e.g., to get someone’s idea, which 321

also reflects the conceptual metaphor IDEAS ARE 322

OBJECTS). 323

We follow work in deep few-shot learning and 324

propose an episodic learning algorithm for a sense- 325

extensional semantic space: at each episode, we 326

sample a mini-batch of N source-target token pairs 327

{(t(n)k , t
(n)
l )}Nn=1 partitioned from N different par- 328

ent word types, and sample a usage sentence u∗(n) 329

for each target token t
(n)
l . The model then learns to 330

perform in-batch WSG by choosing a paraphrase 331

token for every target t(n)l in u∗(n) among the set 332

of N candidate source tokens {(t(1)k , ...t
(N)
k }, with 333

t
(n)
k being the ground-truth paraphrase. For the two 334

chaining-based models, learning can be performed 335

by minimizing the in-batch classification loss: 336

J =
N∑

n=1

− log
sim(H(t

(n)
k ), h(t

(n)
l ;u∗(n)))∑

n′
sim(H(t

(n′)
k ), h(t

(n)
l ;u∗(n)))

(9)

337
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Sense type No. of verb types
No. of spawned tokens

(Full partition)
No. of spawned tokens

(Leave-one-out partition)
No. of usage sentences

Domain-based 1,199 14,735 5,860 481,654

Synset-based 1,468 6,463 2,936 371,920

Table 1: Summary statistics of the two collected WSG datasets.

Here sim(·, ·) can either be a prototype-based sim-338

ilarity function in Eq.6, or be its exemplar-based339

counterpart specified in Eq.8. The two baseline340

models can also be trained directly on the same341

set of examples by maximizing their word choice342

probabilities (i.e., Eq.2 and Eq.3).343

4 Data344

We collect usage sentences for English verbs from345

the Wikitext-103 linguistic corpus (Merity et al.,346

2016) that is commonly used as a language mod-347

eling benchmark dataset. It is well-known that348

word senses are highly fuzzy linguistic categories,349

and there does not exist a set of word senses that350

is suitable for every NLP task (Kilgarriff, 1997;351

Rumshisky and Batiukova, 2008). We therefore352

consider two different definitions of verb senses353

in our datasets, as well as two different ways of354

partitioning the sense inventory of a verb.355

4.1 Domain-based vs. synset-based verb sense356

Our first sense definition of an English verb is357

based on the semantic domain of its syntactic object358

nouns. In particular, for each usage of a verb with a359

noun object, we label the noun with its supersense360

category defined in the WordNet lexical database361

(Miller, 1995), and define a verb sense as the collec-362

tion of usages whose object nouns share the same363

supersense label. This sense definition helps us in-364

vestigate the regularity underlying sense extension365

cases of different words. For instance, a common366

type of logical polysemy involves coercing an event367

nominal to denote the physical location where it368

takes place (e.g. to arrive at the theatre → to arrive369

at the concert), which can be captured by extending370

the domain-based sense “to arrive at a LOCATION”371

to “to arrive at an EVENT” 2. We also consider372

a second, more established type of word sense as373

recorded in lexicographic resources. In particular,374

for each word, we apply a state-of-the-art word375

sense disambiguation algorithm (Bevilacqua and376

Navigli, 2020) on each of its usage sentence to377

2See Appendix B for a full list of supersense categories
and their descriptions.

identify the its evoked WordNet sense, as indicated 378

by one of its associated synset ID. 379

4.2 Full vs. leave-one-out word type partition 380

For each WSG dataset, we also consider two types 381

of sense inventory partitioning: the full partition 382

creates a child token for each sense of a parent verb 383

(e.g., the partition in Fig.1), and a WSG model 384

is evaluated on predicting extensions between all 385

possible child token pairs spawned from the same 386

word type. The leave-one-out partition instead 387

randomly samples one sense for each verb to create 388

the target token, and group all remaining senses 389

into a single source token. Summary statistics of 390

the two resulting datasets are shown in Table 1. 391

5 Evaluation and results 392

5.1 Model implementation 393

We use a BERT language model (Devlin et al., 394

2019) to build both the contextualized baselines 395

and the chaining-based WSG models. All BERT 396

models are implemented from scratch and are not 397

pretrained on any NLP tasks. In the masked lan- 398

guage modeling step, we increase the vocabulary 399

size of each model by replacing all parent verbs in 400

our datasets with their spawned child tokens, and 401

increase the size of the model’s embedding layer 402

and final classification layer accordingly. During 403

sense-extensional semantic space learning, we ran- 404

domly choose 70% of the parent verb types in each 405

dataset, and take usage sentences containing their 406

spawned tokens as training set. Sentences contain- 407

ing partitioned tokens spawned by the remaining 408

30% verb types will be taken as the test set, so that 409

there is no overlap in the vocabulary of partitioned 410

tokens or parent verb types between training and 411

testing.3 412

5.2 Evaluation on WSG 413

We first evaluated our models on the task of pre- 414

dicting paraphrase partitioned tokens formulated 415

in Eq.1: given a target token and its sample usage 416

3Implementation details are described in Appendix A.
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sentence, how likely is the model to predict one417

of its sibling source tokens as a good paraphrase?418

At each trial, we pick one ground-truth source to-419

ken and 99 negative tokens with different parent420

verb types, and ask the model to rank the 100 can-421

didates based on their infilling likelihoods. We422

then compute the mean reciprocal ranks for each423

ground-truth source token among the 100 candi-424

dates (MRR-100) to assess model performance.425
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Figure 2: Model performance vs. sense relatedness
between fully-partitioned tokens.

Table 2 summarizes the averaged results over426

five independently sampled candidate sets. The un-427

supervised/supervised columns correspond to mod-428

els with/without learning a sense-extensional se-429

mantic space. We observed that 1) all BERT-based430

models benefit from learning a sense-extensional431

semantic space, suggesting the presence of regu-432

larity shared among examples of sense extension433

across verb types; 2) both the prototype and ex-434

emplar WSG models consistently supersede other435

baseline models in both unsupervised and super-436

vised setups, indicating that chaining mechanisms437

are useful inductive biases for modeling the gener-438

ative processes of word meaning extension. 4 439

Table 3 shows example predictions on 6 pol- 440

ysemous verbs made by a supervised prototype 441

WSG model (the full model) and a supervised 442

BERT-MLM baseline trained on the same datasets. 443

The full model successfully predicts many types 444

of sense extension, including weak metaphor (the 445

pass example, where the location-type argument of 446

a predicate is weakened to its super-type of scalar 447

attribute), strong metaphor (the throw and stretch 448

examples, where verbs with concrete noun argu- 449

ments are extended to predicate abstract terms) 450

and logical metonymy (the appear (in) example 451

of event-for-place type coercion). In contrast, the 452

MLM baseline exhibits a greater tendency to pre- 453

dict a “literal” paraphrase for a partitioned token 454

(e.g., all of its top-3 predicted paraphrase tokens for 455

“throw COGNITION” have senses from the same 456

abstract domain). In addition, both chaining-based 457

and baseline models still struggle in predicting 458

some usages that involve strong non-literal sense 459

extension (e.g., the grasp example). 460

6 Model interpretation and analysis 461

6.1 Sense relatedness and model predictability 462

Prior work in psycholinguistics suggests that both 463

adults and children often find it easier to infer a 464

new intended meaning of a word if they can access 465

a highly related conventional sense of that word 466

to constrain their interpretation (Clark and Ger- 467

rig, 1983; Klepousniotou et al., 2008; Rodd et al., 468

2012). Here we investigate whether our WSG mod- 469

els exhibit human-like sensitivity to the conceptual 470

relateness of source-target sense pairs in the full 471

partition setup. We quantify the degree of con- 472

ceptual relatedness for domain-based partitioned 473

tokens by computing the difference in mean con- 474

creteness score (Brysbaert et al., 2014) of their 475

attested object nouns, and for tokens representing 476

synset-based senses, we take the Wu-Palmer se- 477

mantic distance (Wu and Palmer, 1994) between 478

their associated WordNet synsets as the similarity 479

measurement. Figure 2 shows the performance of 4 480

WSG models by binning sense pairs based on their 481

degrees of conceptual similarity. We observe that 482

all models yield worse prediction for sense pairs 483

that are conceptually more distant (e.g., metaphors), 484

while generally performing better on pairs that are 485

4We also summarize results on a subset of the domain-
based dataset where the target sense is more abstract than the
source – see Appendix C.
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Sense type Model
Mean reciprocal rank (MRR-100)

Full partition Leave-one-out partition
Unsupervised Supervised Unsupervised Supervised

Domain-based

Random Baseline 5.2±0.0 – 5.2±0.0 –
BERT-STS 13.7±1.2 33.1±2.4 38.5±1.9 62.5±1.6
BERT-MLM 15.2±1.5 35.4±1.9 44.4±2.0 64.8±1.3
WSG-Prototype 19.8±1.3 52.3±0.3 55.0±1.4 86.9±1.6
WSG-Exemplar 19.5±1.1 47.9±1.5 78.2±2.7 86.6±1.1

Synset-based

Random Baseline 5.2±0.0 – 5.2±0.0 –
BERT-STS 14.2±2.0 16.9±1.2 26.2±2.0 55.0±1.8
BERT-MLM 17.3±0.8 19.1±0.7 25.7±0.8 59.9±0.5
WSG-Prototype 20.7±0.5 30.8±0.6 36.0±1.1 73.4±1.0
WSG-Exemplar 19.6±0.8 29.5±1.2 68.0±2.9 72.9±0.6

Table 2: Summary of model MRR-100 scores (%) for word sense generation in the two datasets. Numbers after ±
are standard deviations over 5 sets of independently sampled negative candidate tokens.
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location->event (arrive at the theatre->concert)
communication->artifact (listen to the music->radio)
person->group (admit the student->team)

location->time (arrive at the school->age)
artifact->cognition (grasp the item->idea)
artifact->attribute (cut the paper->rate)

Figure 3: Principal component visualization of prototype difference embeddings of partitioned source-target token
pairs, under BERT-MLM baseline (left) and prototype WSG model in sense-extensional semantic space (right).

conceptually more related (e.g., metonymy).486

6.2 Interpreting the learned semantic space487

To better understand the effect of the sense-488

extensional semantic space, we compute the mean489

Euclidean distance between the prototypes (i.e.,490

global mean) of embedded usage sentences for all491

fully-partitioned source-target token pairs yielded492

by two types of chaining-based models. As shown493

in Table 4, both models benefit from learning the ex-494

tensional semantic space by bringing closer novel495

and existing senses of the same word. Moreover,496

pushing partitioned tokens closer for verbs in the497

training set also results in a more compact embed-498

ded sense inventory for unseen verbs in the eval-499

uation set, suggesting that the WSG models have500

captured some regularity shared across the meaning501

transformations of various word types. 502

To further interpret the information captured in 503

the WSG models, we also performed unsupervised 504

K-means clustering on prototype difference vec- 505

tors of all fully partitioned domain-based source- 506

target token pairs taken from 1) the embedding 507

space of the BERT-MLM baseline and a sense- 508

extensional semantic space learned by a prototype 509

WSG model. We then compute the normalized 510

mutual information (NMI) between the cluster la- 511

bels yielded by the K-means algorithm and the 512

ground-truth pairings of source-target domains for 513

each example. Figure 3 shows the clustering re- 514

sults for two semantic spaces, together with their 515

NMI scores against the ground-truth sense exten- 516

sion type labels. We observe that the learned space 517

captures systematic sense extensional patterns by 518
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Model Top-3 source tokens predicted by model Predicted rank
1.1 Verb: throw; target sense: to throw a COGNITION; true source sense: to throw an ARTIFACT
Usage context: Constructors ... which returned null upon failure were changed to throw an exception instead.
BERT-MLM create COGNITION, develop COGNITION, provide COGNITION 55/100
WSG-Prototype create COGNITION, throw ARTIFACT , build ARTIFACT 2/100
1.2 Verb: pass; target sense: to pass an ATTRIBUTE; true source sense: to pass an ARTIFACT
Usage context: After 22 minutes of flight, the aircraft passed its assigned altitude.
BERT-MLM retain ATTRIBUTE, lose ATTRIBUTE, regain ATTRIBUTE 41/100
WSG-Prototype pass ARTIFACT, enter LOCATION, return to ARTIFACT 1/100
1.3 Verb: appear (in); target sense: to appear in an EVENT; true source sense: to appear in a LOCATION
Usage context: He ... appeared in 24 league matches as well as United’s FA Cup defeat to Burnley.
BERT-MLM host EVENT, achieve EVENT, lose EVENT 62/100
WSG-Prototype come to GROUP, star in ACT, compete in ACT 6/100
2.1 Verb: cover; target sense: be responsible for reporting (news); true source sense: to form a cover over
Usage context: Generally, only reporters who cover breaking news are eligible.
BERT-MLM work (operate in a place), take (be a student), write (communicate by writing) 78/100
WSG-Prototype practice (carry out as job), sponsor (be a client of), monitor (supervise someone) 10/100
2.2 Verb: stretch; target sense: to extend the scope or meaning of; true source sense: to make longer by pulling
Usage context: ... the usage of a new "entwinement " standard ... stretched the doctrine beyond its permissible limits.
BERT-MLM spoil (alter), meet (satisfy), understand (comprehend) 59/100
WSG-Prototype stem (remove the stem), stretch (make longer by pulling), extend (stretch to a greater length) 2/100
2.3 Verb: grasp; target sense: to get the meaning of; true source sense: to hold firmly
Usage context: Madonna later acknowledged that she had not grasped the concept of her mother dying.
BERT-MLM appreciate (realize fully), understand (comprehend), enjoy (get pleasure from) 86/100
WSG-Prototype understand (comprehend), resolve (understand the meaning of), read (interpret) 38/100

Table 3: Example novel sense predictions from the full prototype model and the BERT-MLM baseline (both trained
on WSG) on domain-based dataset (first 3 examples) and synset-based dataset (last 3 examples).

Model
Mean Euclidean distance

Training Testing

BERT 11.85±2.93 11.96±2.96
+ WSG-Prototype 1.14±0.38 1.67±0.43
+ WSG-Exemplar 1.21±0.34 1.82±0.50

Table 4: Mean Euclidean distance between the proto-
types of source and target tokens.

Model MLM perplexity STS correlation

BERT 0.337 0.665
+WSG-Prototype 0.339 0.632
+WSG-Exemplar 0.352 0.634

Table 5: Performance on common NLP tasks for the
vanilla BERT model and WSG models.

forming well-separated clusters for tokens pairs519

from the same extensional type.520

6.3 Evaluation on common NLP tasks521

We finally examined how learning WSG might af-522

fect a language model on common NLP tasks. Ta-523

ble 5 shows performance on two general NLP tasks524

for the BERT encoders with and without supervised525

learning on WSG: 1) masked langauge modeling526

(MLM) on Wikitext-103 dataset; and 2) seman-527

tic textual similarity (STS) prediction on the STS 528

benchmark dataset (Cer et al., 2017). We found 529

that contextualized language models trained on 530

WSG largely preserved their linguistic competence 531

on both tasks, suggesting that our WSG learning 532

framework is not simply a fine-tuning technique 533

designed for a specific task, but rather a more fun- 534

damental exercise of learning flexible embedding 535

spaces that may improve the semantic generaliz- 536

ability of language models. 537

7 Conclusion 538

We have presented a framework of word sense 539

generation that supports lexical items to spawn 540

new senses in scenarios that involve novel context. 541

Our results show that chaining provides a general 542

mechanism for extending to novel senses includ- 543

ing metaphor and metonymy, and learning a trans- 544

formed sense-extensional space enables systematic 545

generalization in word sense extension. In contrast 546

with the established traditions in word sense dis- 547

ambiguation and induction, our work emphasizes 548

a generative approach to model word senses that 549

is scalable and applicable to natural sentences and 550

a broad set of words in the lexicon. Future work 551

may extend our framework to incorporate temporal 552

dimensions, other word classes and languages. 553
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8 Ethical considerations554

In this section, we discuss the limitations and po-555

tential risks of our work.556

8.1 Limitations557

Our work has some limitations. First, the cur-558

rent study considers sense generation for English559

verbs, and it therefore does not account for all560

common types of sense extension in English (e.g.,561

English noun-to-verb conversion, as discussed in562

Clark and Clark 1979; Yu and Xu 2022) and other563

languages. Future work can consider extending564

our WSG framework more broadly to other word565

classes and languages.566

Second, our framework does not explicitly con-567

sider the temporal order via which word senses568

have emerged. In particular, in the data collection569

step, we choose source-target sense pairs based570

on random partitioning of word sense inventories,571

whereas an alternative approach would be to sort572

all senses of a word chronologically by their times573

of emergence in history, and use the model to in-574

crementally predict each sense of a word based575

on usages of its older senses. However, we found576

that it is infeasible to find accurate timestamps of577

senses in natural corpora at a comprehensive scale.578

Another approach is to have human annotators eval-579

uate the plausibility of each possible source-target580

sense pairs against sampled alternatives, which is a581

potential area for future extension.582

8.2 Potential risks583

All scientific artifacts in this study have been made584

publicly available and are consistent with their in-585

tended use and access conditions. We acknowl-586

edge that our focus on English might introduce587

linguistically or culturally specific biases in model-588

generated outputs. For instance, we observe that589

the WSG models trained on English sentences learn590

to generate a metaphorical expression “to spend591

some time” for the English verb spend, which is592

common in English but differ in other languages593

(e.g., Hungarian speakers instead tend to say “to fill594

some time” as in Kövecses et al. 2010). We believe595

that by training WSG models cross-linguistically596

to cover various innovative lexical uses should help597

alleviate this issue.598
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A Implementations of WSG models838

We use the bert-base-uncased configuration pro-839

vided by Hugging Face (Wolf et al., 2020) to ini-840

tialize all BERT-based WSG models (two baselines841

and two chaining-based models). During MLM842

pretraining of BERT models to learn novel parti-843

tioned tokens, we randomly mask 15% of tokens in844

each sentence, and train each model on predicting845

the masked tokens. Learning is performed using846

the Adam optimizer (Kingma and Ba, 2015), with847

a learning rate of 5e-5 and a batch size of 128, for848

8 epochs (after which all models achieved high-849

est evaluation accuracy). During sense-extensional850

semantic space learning, all chaining-based mod-851

els are trained on the objective function in Eq.3.3852

using Adam, with a mini-batch size of 16 and a853

learning rate of 2e-5, for 8 epochs (after which854

all models achieved highest evaluation accuracy).855

Two baseline models are trained on the same set856

of usage data using Eq.2 and Eq.3 respectively,857

with an Adam learning rate of 2e-5 and a batch858

size of 32, for 4 epochs (after which all models859

achieved highest evaluation accuracy). All experi-860

ments are run on machines with 4 NVIDIA Tesla861

V100 GPUs, with an average training time of 25862

minutes per epoch for MLM pretraining, and 10863

minutes per epoch for sense-extensional semantic864

space learning.865

B Description of supersense-based866

domains867

WordNet organize noun synsets into 26 supersense868

domains based on their semantic coherence. Dur-869

ing data collection, we first run the WSD model of870

(Bevilacqua and Navigli, 2020) on usage sentences871

to identify the WordNet synset label for each noun872

object, and then tag it with the associated super-873

sense label. We then take the top-11 most frequent874

supersenses with at least 10,000 identified noun ob-875

jects to construct our domain-based WSG dataset.876

Table 6 shows detailed information about the 11877

selected supersense categories.878

C Results on WSG examples with879

decreasing sense concreteness880

Research in cognitive science suggests that con-881

crete and embodied word senses tend to be ex-882

tended to more abstract senses to achieve better883

communication efficiency and learnability (Mur-884

phy, 1997; Srinivasan and Carey, 2010; Thibodeau885

and Durgin, 2008). We therefore also compute per- 886

formance scores of our WSG models on subsets of 887

the domain-based usage dataset where the mean- 888

ing of a verb is extended from concrete senses to 889

a more abstract one (e.g. the metaphorical exten- 890

sions of arrive as shown in Figure 1). In particular, 891

we define a source-target sense pair to be an ex- 892

ample of concrete-to-abstract sense extension if 893

the average object noun concreteness score of the 894

target token is lower than that of its source sib- 895

ling. Table C summarizes the results, from which 896

we observe that almost all models perform slightly 897

worse on concrete-to-abstract extensions compared 898

to the general setup, while still making significantly 899

better predictions than the random baseline. 900
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Supersense Definition Sample nouns

noun.act nouns denoting acts or actions attempt, performance, exchange

noun.artifact nouns denoting man-made objects aircraft, phone, guitar

noun.attribute nouns denoting attributes of people and objects popularity, style, power

noun.cognition nouns denoting cognitive processes and contents viewpoint, imagination, scheme

noun.communication nouns denoting communicative processes and contents proposal, screenplay, film

noun.event nouns denoting natural events tournament, final, competition

noun.group nouns denoting groupings of people or objects family, league, party

noun.location nouns denoting spatial position province, area, neighborhood

noun.person nouns denoting people officer, visitor, mother

noun.state nouns denoting stable states of affairs existence, friendship, injury

noun.time nouns denoting time and temporal relations era, day, season

Table 6: Definitions and sample members of the WordNet noun supersenses used to create the domain-based WSG
dataset.

Model
Mean reciprocal rank (MRR-100)

Full partition Leave-one-out partition
Unsupervised Supervised Unsupervised Supervised

BERT-STS 11.5±1.2 34.6±2.0 37.7±1.8 61.6±1.6
BERT-MLM 13.6±1.4 35.8±1.7 43.0±2.2 64.1±0.9
BERT-Prototype 17.5±1.1 49.9±0.5 51.6±1.5 81.4±1.9
BERT-Exemplar 17.8±1.1 45.8±1.4 75.3±2.9 79.7±1.0

Table 7: Summary of model MRR-100 scores (%) on the subset of domain-based word sense generation dataset
where the source sense has higher concreteness score than its target sibling token (i.e. extensions from concrete to
abstract senses). Numbers after ± are standard deviations over 5 sets of independently sampled negative candidate
tokens.
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