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Abstract— Interactive robot learning is a challenging problem
as the robot is present with human users who expect the robot to
learn novel skills to solve novel tasks perpetually with sample
efficiency. In this work we present a framework for robots
to continually learn visuo-motor robot skills and task relevant
information via natural language dialog interactions with human
users. Previous approaches either focus on improving the
performance of instruction following agents, or task learning
with language, or passively learn novel skills or concepts.
Instead, we have developed a robot agent that queries unknown
skills from real human users, and continually learns these novel
skills using only a few robot demonstrations provided by the
users. To achieve this goal, we developed a novel continual
learning policy Action Chunking Transformer [1] with Low
Rank Adaptation (ACT-LoRA), and integrated an existing
Large Language Model (LLM) to interact with a human user to
perform grounded interactive continual skill learning to solve
a task. Our ACT-LoRA policy consistently outperforms GMM-
LoRA on continual learning by achieving 40% improvements
in the RLBench dataset and 30% improvements in LIBERO
dataset on fine-tuned skills. Additionally, we performed an IRB
approved human-subjects study in a sandwich making domain
to demonstrate that our framework is able to learn novel
dynamic skills from non-expert human users and complete tasks
using dialog interactions. Our framework achieved an overall
87.5% task completion rate of making novel sandwiches, and
a 100% success rate on performing the novel skills learned
from human users during the test phase of the study. This
result illustrates the promise of a continual learning robot that
saves time in the future for users once it has been taught tasks
compared to non-learning agents.

I. INTRODUCTION

Chai et al.[2] define natural interaction as an interaction
between a human and a robot that resembles the way
of natural communication between human beings such as
dialogues, gestures, etc. without requiring the human to
have prior expertise in robotics. The capability of learning
tasks and acquiring new skills from natural interactions is
desirable for robots as they need to perform unique tasks for
different users. One direction of this interaction channel is
well studied as instruction following [3], [4], [5], where the
robot performs the tasks requested by the human via natural
language. Our work focuses on the other side of this com-
munication channel, where the robot starts the conversation
with human when it needs their help. This reverse direction
of communication plays an important role for robots to
learn with non-expert human users as it enables robots to
convey their lack of task knowledge to perform tasks in a
way that non-expert users can understand. Furthermore, our
framework can leverage the feedback from users and learn
to perform the task.
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Human-Robot interaction via language is a well studied
problem [2], [4], [5], [6]. Robot agents have been able to
interpret language instructions from the human users, and
perform visual-motor policies to complete tasks [3], [4],
[5]. These methods rely on the emergent behaviors of large
models, and do not continually learn new skills or add to
their task or skill knowledge. To address this issue, some
works have proposed life-long learning for robot agents [7],
[8], [6], [9]. Some recent works learn neural visuo-motor
skills in a continual setting [9], [10], [11]. However, these
approaches are passive and do not query the user for novel
skills that the agent might need to complete given tasks.

We propose a novel framework that learns task abstrac-
tions and novel skills from dialog interactions from human
users. Our agent learns the high-level plan by converting
the dialog with the users into a sequence of skills. When
encountering a novel task, our robot agent starts a conver-
sation with the human user and requests the human user
to provide several robot demonstrations for the novel skill.
Previous methods in continual learning using human robot
dialog have used Dynamic Movement Primitives with visual
keypoints [12], where our method is completely end-to-end
allowing our method to scale and function in a dynamic
visual environment. Our closest comparison in continual
learning is TAIL [11] which also user low-rank matrix
(LoRA) in a continual learning setting, which heavily relies
on a large scale of data for both pre-training and fine-
tunining. To the best of our knowledge we present the first
dialog aided continual dynamic end-to-end visuo-motor skill
learning robot agent. Our contributions are as follows:

1) We develop a Continual Learning Aided by Dialog Agent
(COLADA) that uses dialog and human demonstrations
to keep improving over time by learning novel skill
groundings and novel visuo-motor skills over interac-
tions.

2) We developed a sample efficient Continual Learning
algorithm for robots - ACT-LoRA as part of COLADA.
We show that ACT-LoRA achieves the most robust per-
formance in continual learning on RLBench and LIBERO
dataset when compared against baslines.

3) Finally, we conduct a IRB approved human-subjects
experiment to show that our system is able to learn to
reason over and perform novel skills from non-expert
human users using grounded dialog. Our agent achieved
a overall success rate of 87.5% in task completion, and
a success rate of 100% on the skills that are taught by
the human users.
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Fig. 1: Overview of our COLADA framework. The LLM serves as the interactive module and understands a user’s feedback.
The skill library provides representations for learned skills and novel demonstrations. The ACT-LORA policy executes the
tasks based on the user’s instructions. The agent searches for an executable skill by comparing the language representation
of he queried skill and language representations of existing skills using a cosine similarity metric.

II. PROBLEM FORMULATION

We formulate a task solving problem where both the robot
and the human agent can take actions on their turns. In each
turn, n, either the human or the robot acts, one after the other.
Each turn can take longer than one time step, t, and continues
until the robot or the human indicates a turn to be over. The
actions can be physical actions represented by ah, and ar for
the human and the robot actions respectively, or speech acts
lh and lr for the human and the robot speech respectively
for the human-robot grounded dialog. The problem has an
initial state s0 and a task θ specified by the human using
a speech act l0h. Each of these actions updates the joint
physical state s of the world, and internal dialog state sd of
the robot. The dialog state is hidden from the human user,
but the human receives speech observations for the same.
Over multiple turns and actions taken by the human and
the robot these physical and robot states update over time.
The objective of this turn taking problem is to complete
the task θ. We measure the task completion rates for this
interaction problem. Moreover, in our specific instance of the
problem the human also teaches behaviors to the robot, we
also measure the success of the individual learned behaviors
within the task in simulation.

III. METHODS

The goal of our framework is a robot agent that 1)
learns high-level plans from dialog interactions with users; 2)
queries the user for unknown skills; and 3) learns new skills
with only a few instances. Our robot agent can learn a high
level plan from the dialog interactions with the human users.
We use a language model planner to map the high-level task θ
specified by the users’ utterances into a sequence of low-level
motor skills τ . When needed to perform a motor skill τ , the
robot agent first searches for a learned skill using semantic
representation, which comes from the language embedding
of the linguistic description of the skills. This is a challenging
question as the robot needs to know what it does not know.
This work is performed by our queryable skill library. The

robot agent can directly perform the skill τ whenever it finds
a learned skill that aligns with τ in the semantic space. If
τ is too far in the semantic space COLADA has to learn
this skill. COLADA actively tries to learn this novel skill
by requesting few robot demonstrations from the human
users. To learn these novel visuo-motor skills from a few
robot demonstrations, we developed a novel sample efficient
continual skill learning approach ACT-LoRA for this task.
Throughout the interaction with the users, our framework
not only learns the novel visuo-motor skill, but also learns
to ground language tokens to the skills. This enables our
agent to perform the same skill when encountering the same
language query at test time.

A. Interaction Module with a Large Language Model (LLM)

The dialog state sd in our pipeline is maintained with an
internal state machine, which is described in Algorithm 1 in
Appendix F. The state machine uses an LLM to produce
speech acts for the robot agent [13]. This state machine
with the LLM has two major functionalities. Firstly, it
tracks the dialog state to know what the user has explained
previously or stated as a preference already as part of the
dialog state sd. Secondly, it interacts with the human user
to ask for explanations and/or demonstrations based on the
checks from our queryable skill library. If a skill τ is too
far in the semantic space from any existing skill, COLADA
has to learn this skill and the LLM produces the speech
act to express this mismatch. For the semantic space we
use is a CLIP text embedding [14]. The distance threshold
for distances was hand-designed during the pilots and was
chosen to be 0.95 in a unit normal space. The high threshold
implies that COLADA has to be confidenct about a skill
match before executing it. The interaction module is given
the autonomy to continue the dialogue with the user until
it acquires the designated information for the agent. The
module can also explain the dialog state sd with language to
the user explaining the robot’s confusion.



B. ACT-LoRA as Visual-motor Policy

Combining Low-Rank Adaptor with Action Chunking.
Adapter-based methods [15], [16], [17], [18] have exhibited
promising capabilities of light-weight and data-efficient fine-
tuning of neural networks across various domains such as
NLP [15], [17], and computer vision [16]. Liu et al. [11]
extend Low-Rank Adaptor(LoRA) into robotics with TAIL,
enabling a simulated robot to continually adapt to novel tasks
without forgetting the old ones. Inspired by these methods,
we take one step further and use the LoRA framework to
learn to perform dynamic and contact-rich tasks such as cut-
ting and butter applying for robots. On the other hand, Action
Chunking Transformer(ACT) [1] is capable of performing
fine-grained tasks with high precision, but cannot be directly
used for continual learning due to catastrophic forgetting.
Therefore, we introduce LoRA adaptor to the ACT model,
obtaining both the precision from action chunking and the
capability of continual learning from the LoRA adaptor.

Continual Imitation Learning. Our policy needs to con-
tinually learn new skills from demonstrations throughout the
agent’s lifespan. The robot agent is initially equipped with K
skills {S1, . . . , SK}. Whenever the robot agent encounters a
task that requires a novel skill Sn, n > K, it needs to adapt
its existing policy π to the novel skill without forgetting any
of the existing skills S ∈ {S1, . . . , Sn−1}. Provided a num-
ber of demonstration trajectories for each skill, the continual
learning policy of the robot agent can then be optimized with
a behavior cloning loss, which in this case we use L1 loss
for action chunks following [1]. On top of the policy of the
vanilla ACT model πϕ, the Low Rank Adaptor introduces a
small set of additional low-rank parameters ϕi for each skill
Si. During the pre-training phase, the additional parameters
ϕ1, . . . , ϕK for skills S1, . . . , SK are jointly trained with the
model’s parameter ϕ. When we are finetuning with a skill
Sn, n > K, we freeze the model’s original parameters ϕ, and
only allow gradient updates to the parameters from the task-
specific adaptor ϕn. Such finetuning strategy prevents the
policy from catastrophic forgetting the skills that it already
possessed when adapting to novel skills.

IV. EXPERIMENTAL RESULTS

In this section, we present the results of our policy on con-
tinual imitation learning in the simulated RLBench environ-
ment [19] and on three suites of the LIBERO environment.
These experiment results show that our behavior cloning
model is able to continually to learn novel skills with only
few demonstrations and avoid catastrophic forgetting. Results
for the human-subjects study can be found in Appendix A.

We chose two visuo-motor policies, ACT [1] and GMM-
LoRA, as baselines to compare against our model on con-
tinual learning. ACT [1] is a SoTA visuo-motor policy
that is able to perform dynamic tasks that require high
precision, and GMM-LoRA resembles a scaled down version
of TAIL [11], which is a SoTA continual learning policy.
For our simulation study results in Table I and II, we
present3 metrics, including Pre-trained skills, and Fine-
tuned skills(n trajectories) and Overall Success Rate(n

trajectories). Pre-trained skills measures the policies’ av-
erage success rate on the skills that policies are pre-trained
on. Fine-tuned skills(n trajectories) and Overall Success
Rate(n trajectories) measure the policies’ average success
rate on the new skills and the average success rate across
both the pre-trained and fine-tuned skills respectively, where
the policies are fine-tuned with n trajectories.

We first present our experiments on RLBench environ-
ment [19]. A total of 15 skills are chosen from the pre-
defined skills of the environment. We then separate these
skills into 5 different splits, and perform a five split validation
on these skills. We report the statistics from the five-split
validation in Table I, and more details for the experiment
setup in Appendix E. Our model achieves a 59.4% of overall
success rate after being fine-tuned with 1000 trajectories per
fine-tuning skill, and a 64.13% overall success rate after
being fine-tuned with 5 trajectories per fine-tuning skill.
More specifically, ACT-LoRA achieves a success rate of 54%
and 77.67% on the fine-tune skills after fine-tuning, while
maintaining a 60.75% success rate on the pre-train skills.
We observed GMM-LoRA to fail in skills which require
precision, and ACT fail to remember older skills.

We also conduct simulation experiments on three suites of
the LIBERO dataset [20], the spatial suite, the object suite,
and the goal suite. Similarly, for each task suite we split
the 10 skills into 5 different splits of skills and perform a
five-split validation. We report the experiment results and
statistics from the five-split validation in Table II. Further
details can be found in Appendix F.

Although GMM-LoRA out-performs ACT-LoRA at pre-
trained skills in the LIBERO-Object task suite by a small
margin, ACT-LoRA consistently out-performs GMM-LoRA
on fine-tune skills across all the three task suites, while
maintaining a comparable performance in all the overall
success rate metrics and the pre-trained skills success rate on
the other two task suites. Furthermore, ACT-LoRA achieves
better or comparable performance with the ACT model
that goes through full fine-tuning on fine-tune skills, and
consistently out-performs the ACT model in pre-trained skills
and overall success rate metrics. These demonstrate that
ACT-LoRA has the overall most stable performance across
all the three models.

V. RELATED WORK

Skill Discovery and Continual Learning. The area of
visuo-motor continual learning is getting a lot of attention
recently [9], [10], [11]. Wan et al. [9] discover new skills
from segments of demonstrations by unsupervised incremen-
tal clustering. Xu et al. [10] learn the skill representation by
aligning skills from different embodiments. Liu et al. [11]
introduce task-specific adapters using low-rank adaptation
techniques [15], preventing the agent from forgetting the
learned skills when learning the new skills. These frame-
works assume the presence of the demonstrations for the new
tasks, and only discover skills in a passive fashion, while our
agent can query for demonstrations to learn the new skills
with language and does not rely on pre-existing skills.



Model Pre-trained Skills Fine-tune Skills(1000 traj.) Overall Success Rate(1000 traj.) Fine-tune Skills(5 traj.) Overall Success Rate(5 traj.)

ACT-LoRA 60.75± 2.40 54.00± 9.73∗ 59.40± 1.52 77.67± 9.36 64.13± 1.80
GMM-LoRA 26.08± 4.02 13.33± 4.50 23.53± 2.99 16.67± 4.92 24.20± 3.72

ACT 9.25± 2.51 62.00± 8.84∗ 19.80± 1.69 95.00± 4.22 26.40± 2.45

TABLE I: Experimental results on RLBench dataset. ∗ indicates that two models have a similar best performance.

Model Pre-trained Skills Fine-tune Skills(50 traj.) Overall Success Rate(50 traj.) Fine-tune Skills(5 traj.) Overall Success Rate(5 traj.)

LIBERO-Spatial

ACT-LoRA 65.38± 4.51∗ 40.50± 6.09 60.40± 4.20 35.50± 8.27 59.40± 4.40∗

GMM-LoRA 64.75± 2.49∗ 9.00± 5.16 53.60± 1.70 6.00± 2.92 53.0± 2.21∗

ACT 0.03± 0.02 68.50± 6.50 13.90± 1.31 55.00± 7.66 11.20± 1.43

LIBERO-Object

ACT-LoRA 67.00± 2.20 68.00± 8.57∗ 67.20± 1.50∗ 48.00± 10.23∗ 63.20± 1.60∗

GMM-LoRA 77.75± 1.90 15.00± 5.65 65.20± 2.15∗ 14.00± 5.89 65.00± 1.08∗

ACT 12.88± 2.78 63.00± 9.33∗ 22.90± 2.45 35.50± 7.92∗ 17.40± 3.45

LIBERO-Goal

ACT-LoRA 73.63± 2.96∗ 49.00± 8.54 68.70± 3.70 23.00± 8.57∗ 63.50± 4.00∗

GMM-LoRA 75.38± 1.63∗ 10.50± 5.61 62.40± 1.39 3.5± 2.92 61.00± 1.72∗

ACT 0.00± 0.00 19.50± 3.66 3.90± 0.73 10.50± 4.57∗ 2.10± 0.91

TABLE II: Experimental results on three suites of LIBERO dataset. An asterisk ∗ indicates that two models have a similar
best performance.

Human-Robot Dialogue. Human-Robot dialog is a ma-
ture problem [21], [22], [23], [24]. Traditional methods use
statistical algorithms with a pre-defined grammar, such as
semantic parsing [23], [22], to connect the semantics of
the dialogue to the environment’s perceptual inputs. Recent
advancements in natural language processing (NLP) have
led to Large Language Models (LLMs) that process natural
language in free form. Grounded with perceptive inputs from
the environment, these LLMs have been used in robotics
research generate executable plans [3]. Furthermore, Ren et
al. [25] and Dai et al. [21] use LLMs to ask for human
feedback for the robot agents demonstrating the importance
of dialog. Recently, Grannen et al. [12] demonstrated a dialog
based skill learning approach. However, these approaches
either learn static visuo-motor pick and place tasks or learn
dynamic skill with dynamic movement primitives (DMPs),
while our framework learns a continual library of end-to-end
neural visuo-motor skills from user data in a few shot setting,
which allows better generalization to a dynamic scene.

Active Learning. Our work is related to active learning,
where a learning agent actively improves its skills by asking
a human for demonstrations [23], [26], [27], [28]. Defining
an appropriate metric that triggers the request for assistance
or information gathering becomes the key research problem
in this domain. Thomason et al.[23] measure the semantic
similarity between a newly introduced concept and the
known concepts to ask for classifier labels. Chernova et
al.[27], [28] train a confidence classifier conditioned on the
current state of the agent, and request expert demonstrations
when the confidence score does not meet a pre-defined
threshold. Maeda et al.[26] use the uncertainty of Gaussian
Processes(GPs) as the metric to trigger the request for
assistance. Our method is similar to these approaches in that
we use a cosine distance metric to measure similarity from

the semantic information present in the language descriptions
of skills without any strict labels.

VI. LIMITATIONS

We present an approach to teach skills to robots using
techniques from active learning and continual learning while
using language as a modality to query and reason over the
skills known to the agent. We need to conduct a wider user
study with a larger number of skills and cooking tasks using
our approach. The turn-taking in our framework is tightly
controlled, and not dynamic. Our ACT-LoRA approach while
being sample efficient has been observed to have issues with
heterogeneous demonstrations. We removed dynamic tasks
such as chopping and cutting from our study because the
robot’s collision model would not allow it to continue even
though the formalism is capable of learning these behaviors.
We also want to compare such continual learning approaches
with pre-trained policy approaches such as Robotics Trans-
former [4] to scale up our policy learning approach.

VII. CONCLUSION

In conclusion, we present a novel robot agents to learn task
relevant knowledge and skills from dialogue interactions with
human users. To the best of our knowledge this is the first
work to demonstrate end-to-end dynamic visuo-motor skill
learning while querying a user with dialog to express doubt.
Our ACT-LoRA policy outperforms the existing continual
learning baseline of GMM-LoRA in two separate simulated
continual learning domains. Finally, we conducted a human-
subject study, and demonstrated our framework is able to
learn a completely new visual-motor skill from human and
perform the tasks, with an overall task success rate of 87.5%
and a success rate of 100% on the completely novel skill.



REFERENCES

[1] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-grained
bimanual manipulation with low-cost hardware,” 2023.

[2] J. Y. Chai, M. Cakmak, and C. L. Sidner, “Teaching robots new tasks
through natural interaction,” Interactive Task Learning, 2019. [Online].
Available: https://api.semanticscholar.org/CorpusID:160030141

[3] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David,
C. Finn, C. Fu, K. Gopalakrishnan, K. Hausman, A. Herzog, D. Ho,
J. Hsu, J. Ibarz, B. Ichter, A. Irpan, E. Jang, R. J. Ruano, K. Jeffrey,
S. Jesmonth, N. J. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, K.-H.
Lee, S. Levine, Y. Lu, L. Luu, C. Parada, P. Pastor, J. Quiambao,
K. Rao, J. Rettinghouse, D. Reyes, P. Sermanet, N. Sievers, C. Tan,
A. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, S. Xu, M. Yan, and
A. Zeng, “Do as i can, not as i say: Grounding language in robotic
affordances,” 2022.

[4] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu, J. Ibarz, B. Ichter,
A. Irpan, T. Jackson, S. Jesmonth, N. J. Joshi, R. Julian, D. Kalash-
nikov, Y. Kuang, I. Leal, K.-H. Lee, S. Levine, Y. Lu, U. Malla,
D. Manjunath, I. Mordatch, O. Nachum, C. Parada, J. Peralta, E. Perez,
K. Pertsch, J. Quiambao, K. Rao, M. Ryoo, G. Salazar, P. Sanketi,
K. Sayed, J. Singh, S. Sontakke, A. Stone, C. Tan, H. Tran, V. Van-
houcke, S. Vega, Q. Vuong, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu,
and B. Zitkovich, “Rt-1: Robotics transformer for real-world control
at scale,” 2023.

[5] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choro-
manski, T. Ding, D. Driess, A. Dubey, C. Finn, P. Florence, C. Fu,
M. G. Arenas, K. Gopalakrishnan, K. Han, K. Hausman, A. Her-
zog, J. Hsu, B. Ichter, A. Irpan, N. Joshi, R. Julian, D. Kalash-
nikov, Y. Kuang, I. Leal, L. Lee, T.-W. E. Lee, S. Levine, Y. Lu,
H. Michalewski, I. Mordatch, K. Pertsch, K. Rao, K. Reymann,
M. Ryoo, G. Salazar, P. Sanketi, P. Sermanet, J. Singh, A. Singh,
R. Soricut, H. Tran, V. Vanhoucke, Q. Vuong, A. Wahid, S. Welker,
P. Wohlhart, J. Wu, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu, and
B. Zitkovich, “Rt-2: Vision-language-action models transfer web
knowledge to robotic control,” 2023.

[6] W. Gu, A. Sah, and N. Gopalan, “Interactive visual task learning
for robots,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 38, no. 9, 2024, pp. 10 297–10 305.

[7] S. Thrun and T. M. Mitchell, “Lifelong robot learning,” Robotics and
autonomous systems, vol. 15, no. 1-2, pp. 25–46, 1995.

[8] T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Dı́az-
Rodrı́guez, “Continual learning for robotics: Definition, framework,
learning strategies, opportunities and challenges,” Information fusion,
vol. 58, pp. 52–68, 2020.

[9] W. Wan, Y. Zhu, R. Shah, and Y. Zhu, “Lotus: Continual imitation
learning for robot manipulation through unsupervised skill discovery,”
2024.

[10] M. Xu, Z. Xu, C. Chi, M. Veloso, and S. Song, “Xskill: Cross
embodiment skill discovery,” 2023.

[11] Z. Liu, J. Zhang, K. Asadi, Y. Liu, D. Zhao, S. Sabach, and R. Fakoor,
“Tail: Task-specific adapters for imitation learning with large pre-
trained models,” 2024.

[12] J. Grannen, S. Karamcheti, S. Mirchandani, P. Liang, and
D. Sadigh, “Vocal sandbox: Continual learning and adaptation
for situated human-robot collaboration,” 2024. [Online]. Available:
https://arxiv.org/abs/2411.02599

[13] “ChatGPT,” https://www.openai.com/chatgpt, 2024, accessed: May 30,
2024.

[14] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable
visual models from natural language supervision,” in International
conference on machine learning. PMLR, 2021, pp. 8748–8763.

[15] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language models,”
2021.

[16] Y.-L. Sung, J. Cho, and M. Bansal, “Vl-adapter: Parameter-efficient
transfer learning for vision-and-language tasks,” 2022.

[17] P. Gao, J. Han, R. Zhang, Z. Lin, S. Geng, A. Zhou, W. Zhang, P. Lu,
C. He, X. Yue, H. Li, and Y. Qiao, “Llama-adapter v2: Parameter-
efficient visual instruction model,” 2023.

[18] A. Liang, I. Singh, K. Pertsch, and J. Thomason, “Transformer
adapters for robot learning,” in CoRL 2022 Workshop on Pre-training
Robot Learning, 2022. [Online]. Available: https://openreview.net/
forum?id=H--wvRYBmF

[19] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “Rlbench: The
robot learning benchmark & learning environment,” 2019.

[20] B. Liu, Y. Zhu, C. Gao, Y. Feng, Q. Liu, Y. Zhu, and P. Stone, “Libero:
Benchmarking knowledge transfer for lifelong robot learning,” 2023.
[Online]. Available: https://arxiv.org/abs/2306.03310

[21] Y. Dai, R. Peng, S. Li, and J. Chai, “Think, act, and ask: Open-world
interactive personalized robot navigation,” 2024.

[22] S. Tellex, R. A. Knepper, A. Li, D. Rus, and N. Roy, “Asking for help
using inverse semantics,” in Robotics: Science and Systems, 2014.
[Online]. Available: https://api.semanticscholar.org/CorpusID:3020962

[23] J. Thomason, “Jointly improving parsing and perception for natural
language commands through human-robot dialog,” 2020. [Online].
Available: https://api.semanticscholar.org/CorpusID:261975571

[24] J. Y. Chai, Q. Gao, L. She, S. Yang, S. Saba-Sadiya, and G. Xu,
“Language to action: Towards interactive task learning with physical
agents,” in Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18. International Joint
Conferences on Artificial Intelligence Organization, 7 2018, pp. 2–9.
[Online]. Available: https://doi.org/10.24963/ijcai.2018/1

[25] A. Z. Ren, A. Dixit, A. Bodrova, S. Singh, S. Tu, N. Brown, P. Xu,
L. Takayama, F. Xia, J. Varley, Z. Xu, D. Sadigh, A. Zeng, and
A. Majumdar, “Robots that ask for help: Uncertainty alignment for
large language model planners,” 2023.

[26] G. Maeda, M. Ewerton, T. Osa, B. Busch, and J. Peters, “Active
incremental learning of robot movement primitives,” in Proceedings
of the 1st Annual Conference on Robot Learning, ser. Proceedings
of Machine Learning Research, S. Levine, V. Vanhoucke, and
K. Goldberg, Eds., vol. 78. PMLR, 13–15 Nov 2017, pp. 37–46.
[Online]. Available: https://proceedings.mlr.press/v78/maeda17a.html

[27] S. Chernova and M. Veloso, “Interactive policy learning through
confidence-based autonomy,” Journal of Artificial Intelligence
Research, vol. 34, p. 1–25, Jan. 2009. [Online]. Available:
http://dx.doi.org/10.1613/jair.2584

[28] ——, “Confidence-based policy learning from demonstration using
gaussian mixture models,” 05 2007, p. 233.
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APPENDIX

A. Human-Subjects Experiment

1) Robotics Domain for Sandwich Making: Our human
subjects’ experiment was on a customized sandwich making
robot domain where the robot does not know all the skills
required to make sandwiches for the users. More specifically,
we design two different sandwich configurations, including
a veggie sandwich and a lettuce sandwich with butter, where
users need to teach the robot to pour pepper and apply butter
respectively. The robotic setup includes a Franka FR3 Robot
and three Realsense D435 cameras. We set up our cameras
to provide a frontal view, a top-down view, and a wrist-
mounted camera for a view from the robot’s perspective.
The workspace includes a table with items curated for the
system. We designed 3D-printed tools tailored to support
our task requirements as an attachment for the Franka
Robot. These tools include a knife for cutting task and a
spatula for spreading task. This configuration allows us to
capture dense and diverse features for training our policy.
Our data collection pipeline includes a 6D Spacemouse
from 3DConnexion, which dictates the motion of the robot
end effector. This facilitates the collection of dense data.
Although limited by the data collection rate, this setup allows
users to control the robot in the task space with relative
ease because of the intuitive nature of the Spacemouse.
Throughout the system’s operation, picking and placing robot
tools is done by pre-specified waypoints because grasping a
tool is not our focus. Figure 2 demonstrates our sandwich
making domain. We used the sandwich-making task for two
reasons. Firstly, the sandwich-making task includes a lot of
contact-rich and dynamic sub-tasks, such as applying butter
and slicing cheese. Secondly, sandwich-making is a multi-
step process, allowing the robot agent and the participants to
have multiple rounds of conversations. Fake food was used as
our ingredients for environmental reasons. These fake food
includes play-doh, vegetable shortening, and other toy food
made with plastics, such as bread, onions, cucumbers, and
strawberries.

2) Baselines: : We compared against two baselines – An
inarticulate agent that keeps solving a task even though
some skills for a task might be unknown. This is similar to
an agent that cannot reason about skills it knows vs skills
it needs semantically. Secondly, an inverse semantics agent
that knows which skills it does not know but asks for human
help every time it reaches an unknown skill. This baseline
is inspired from prior work where robots asked for human
help when stuck [22].

3) Study Design and Measures: Participants interacted
with the robot in two phases. During the first phase - the
interaction phase, participants interact with the robot and
teach the robot novel skills and task knowledge as they
interact with it, this includes dialogue, human demonstration,
and robot demonstration. In the second phase - the evaluation
phase, participants request the robot to perform the same
tasks and evaluate the performance of the robot agent. We
needed a two-phase study because we wanted to collect

data for skill learning in the first phase and then run a
learned policy on the agent in the second phase. In each
phase the participants were expected to write emails as an
auxiliary task as a realistic chore a user might have to do
while the robot cooks. The participants came in for another
session at least one day apart, allowing 5+ hours of time
to train novel skills using user demonstrations. This makes
our study two separate 1 × 3 within-subjects experiment to
measure our framework’s ability to learn novel skills and
task knowledge by interacting with non-expert human users.
We do not compare subjective metrics for any tasks between
the two phases as they were performed on different days and
these subjective metrics might be different depending on the
subjects’ memory of the experience.

The objective metrics we used for the human-subjects
experiment are as follows. We measured the overall success
rate (SR) of completing the entire sandwich and the success
rate for completing each independent sub-task. We measured
time spent teaching the robot in each phase and time spent
interacting with the robot to help solve the task in each phase.
We measured words and emails written for the auxiliary task
when working with each agent in both phases.

We make a distinction in the evaluation phase for skills
that were taught by the participant vs pre-existing skills in
our skill library. This demonstrates that we can add new skill
without loss of performance to our existing skills. In the
post-study survey, we administered the Godspeed Likability
sub-scale [29], System Usability Scale (SUS)[30], and the
NASA TLX [31].

4) Procedure: The procedure of the study is as follows.
Participants first filled out the consent form and a pre-study
survey. Then, we handed out a general introduction of the
experiment and administered the two phases sequentially. Be-
fore each phase, a demonstration video and the instructions
for the corresponding phase were provided to the participant.
The anonymized instruction manual and videos are provided
in the supplementary materials.

The interaction phase:- Here the participant requested
the robot agent to make one of two sandwiches. During the
process, COLADA asked the participant for task knowledge
or robot demonstrations using dialog. The participant an-
swered task knowledge-relevant questions directly with their
language responses and provided robot demonstrations on
request. We recorded all replies from the participants in audio
and converted them to text using audio-to-text tools. As an
auxiliary task the participants also wrote emails for various
tasks on a computer while the robot made the sandwich. At
the end of the interaction phase, the participant was asked to
fill out a survey to evaluate the subjective experience with
the robot. The three conditions that the participants observed
here were: 1) Inverse Semantics Agent - the participant
performed the skill that the robot does not know but the
robot understands which skills are missing; 2) Learning
Agent - The participant provides a demonstration to the
robot so it can learn the skill for the evaluation phase; 3)
Inarticulate Agent- The dialog state machine acts randomly
when it encounters the mention of an unknown skill. This



What sandwich 
can I make for you?

Make me a 
butter cheese 

lettuce sandwich.

I can show you.

I do not have such 
a skill. Can you 

teach me?

Sure!
Thank you!

Robot done making
a sandwich.

Thank you for 
teaching me.

I do not know 
how to slice cheese.

Great!

(a) (b) (c) (d)

Fig. 2: An example run of our framework in the user study. (a) The user asks the robot to make a sandwich , some of the
tasks to make a sandwich are known but the robot does not know a dynamic skill to make the sandwich, slicing cheese.
(b) So the human enacts cutting cheese with their own hands to show the robot the type of skill needed , but the robot has
never seen such a skill before so it asks for help. (c) The user controls the robot to perform said skill. (d) The robot learns
the novel skill from the human demonstration and is able to complete the entire sandwich on its own in the next interaction.

agent is not guaranteed to complete a sandwich as it lacks
the ability to know which skills it does not know and can
take incorrect actions. The participants observe all these
conditions in random order.

The evaluation phase:- The participant comes back after
the next day or later and asks the robot agent to make the
exact same sandwich as the one requested in the interaction
phase. The participant again writes emails as an auxiliary
task while the robot finishes the task. In certain conditions
the participant might still need to help the robot in this
phase to perform unknown skills. Finally they fill a survey
to evaluate the robot’s subjective performance. The three
conditions observed in this phase are - 1) Inverse Semantics
Agent - the participant performed the skill that the robot does
not know; 2) Learning Agent with ACT-LoRA - the robot
makes the whole sandwich based on the participants data
from the interaction phase with our ACT-LoRA model; 3)
Inarticulate Agent - where the robot still performs random
actions when it reaches an unknown skill.

5) Research Questions: We investigate the following re-
search questions (RQs) with our human-subjects study.
RQ1: Can COLADA learn novel skills from the demon-
strations provided by novice human users? We investigate
whether COLADA can learn a novel skill from 3 demon-
strations provided by each participant, and then perform the
learned skill correctly.
RQ2: How does COLADA perform in completing the tasks
requested by the users? We investigate whether COLADA
is able to complete the requested sandwich from the par-
ticipants, and compare COLADA’s performance against an
inverse semantics agent that serves as an upper bound and
also uses ACT-LoRA policy for pre-trained skills.
RQ3: Is it actually efficient for users to teach our robot
novel skills? We investigate whether COLADA requires
less interaction time from the participants after learning.
Moreover, we hypothesize that participants have a higher

ratio of time spent on the distraction task with COLADA
than the inverse semantics agent after learning.
RQ4: Do participants consider the Inarticulate agent worse
than the other agents that ask intelligent questions? We
hypothesize that participants prefer COLADA and the inverse
semantics agent over the Inarticulate agent on subjective
metrics, including system usability,anthropomorphism, like-
ability, animacy, and perceived intelligence.
RQ5: Do participants prefer COLADA over the inverse
semantics agent? We investigate whether participants con-
sider COLADA better than the inverse semantics agent
on subjective metrics including workload, system usabil-
ity,anthropomorphism, likeability, animacy, and perceived
intelligence.

B. Human Subject Study Results on a Franka FR3 Robot

We conducted an IRB approved study with 16 participants
and 20 pilot subjects. We had 8 female subjects (50.00%
of the user study). The age demographic of our participants
is 23.44 ± 0.51. Our participants have 0.5 ± 0.32 years
of experience in the field of robotics, and 4.69 ± 0.66
years of experience in computer science. The subjects spent
120 minutes in the interaction phase and then another 75
minutes for the evaluation phase. They were compensated
with a $35 Amazon gift card. We present our objective
success rate results in Tables III, IV, and objective metrics
on the distraction tasks in Table V. For each metric, we
perform normality test using Shapiro-Wilk test. If the data
from such metric passes the normality test(p > 0.05), we
apply a parametric statistical test. Otherwise, we report the
results of a non-parametric statistical test. Further details
will be discussed later.

RQ1: Can COLADA learn novel skills from the
demonstrations provided by novice human users? We
find that COLADA is able to learn novel visuo-motor



skills from novice human users with just 3 tele-operation
demonstrations. As shown in Table IV, our ACT-LoRA
policy learns the novel skills with the success rate of (100%)
and performs existing skills with the success rate of 88.89%.

RQ2: How does COLADA perform in completing the
tasks requested by the users? Results from Table III and
IV suggest that COLADA can complete the requested
sandwich from the participants in both phases of the study.
Our COLADA achieves 93.75% and 81.25% sandwich
completion rate in the two phases of the study respectively.
This is comparable to the performance of the inverse
semantics agent, which relies on help from the users and
cannot finish the task independently. This does demonstrate
that there are challenging problems with making sandwiches
such as picking objects that are not rigid and dynamic skills
like applying butter. We noticed the most failures in the
skills of picking up the bread on top as the bread can slip
off from the bowl and can be unreachable for the robot after
falling.

RQ3: Is it actually efficient for users to teach our
robot novel skills? We expect subjects to spend more time
teaching COLADA in the first phase and then using almost
no time helping the agent in the second phase. As the time
to interact with agents and write emails can vary drastically
we measure the ratio of the time that participants spend on
the distraction email writing task to the total time that they
spend with the agent in Table V. According to a paired t-test,
we find that COLADA allows participants to spend more
time on finishing the distraction email writing in phase two
than in phase one with significance(p < 0.001, t = 38.69).
Wilcoxon Signed-Rank test suggests that such trend also
holds for the inarticulate agent(p = 0.006, Z = 3.21), but
not for the inverse semantics agent(p = 0.052, Z = 1.623).
This is because while all the three agents no longer require
the human users to teach the sandwich through dialog in
the test phase hence allowing the users to spend more time
on the distraction task, the inverse semantics agent still
requires the human users to pause on the distraction task and
perform the unknown skill for the agent. More importantly,
we also find that COLADA allows participants to spend a
higher ratio of time writing emails than both the inverse
semantics agent (p < 0.001, Z = 3.61) and the inarticulate
agent(p < 0.001, Z = 4.17) in phase two with significance,
as indicated by Wilcoxon Signed-Rank test. We have also
measured other objective metrics for the distraction task,
including word count and number of emails completed.
However, no significance was found in those metrics due
to the high variance introduced by the participants, such
as typing speed and the actual time each participant that
actually spend on doing the agent interactions. These results
suggest that the ability of learning enables the agent to
complete the tasks autonomously, and eventually improve
the time efficiency for users.

RQ4: Do participants consider the inarticulate agent

worse than the other agents that ask intelligent questions?
Our results from Table VII suggest that our participants
consider that both COLADA and the inverse semantics agent
better than the inarticulate agent in SUS, the Likeability,
Animacy, Perceived Intelligence, and Anthropomorphism
sub-scales from the Godspeed Questionnaire Series, and our
customized comparative survey with significance. We discuss
the details of the statistics test on these subjective metrics
later. This indicates that even knowing that a skill is unknown
is sufficient to demonstrate intelligence and be more useful
to a human user.
RQ5: Do participants prefer COLADA over the inverse
semantics agent? We investigated subjective metrics for CO-
LADA and the inverse semantics agent from the post-surveys
for both phases. In the post-surveys, we administer NASA
Task Load Index(NASA TLX) [31], the System Usability
Scale(SUS) [30], the Perceived Intelligence, Likeability, Ani-
macy, and Anthropomorphism sub-scales from the Godspeed
Questionnaire Series [29], and a customized comparative
survey that rank the performance of the three agents. We
find that participants rate COLADA to be more usable with
SUS compared to the inverse semantics agent(p = 0.044, t =
1.83). This is because the COLADA agent is able to complete
the sandwich making task autonomously without disturbing
the human users, whereas the inverse semantics agent still
requires the human’s help on the unknown skill. For other
subjective metrics, we failed to find any significance between
COLADA and the inverse semantics agent. We hypothesize
that the long duration of the study and the distraction email
writing task can be the reasons of the noise. For example, the
workload from the email writing tasks can be a confounding
factor for the workload relevant questions. Furthermore, the
inverse semantics agent still asks intelligent questions to the
participants in phase two, which can make the participants
consider the inverse semantics agent more likeable or more
intelligent.

Overall, we notice users being able to teach visuo-motor
tasks few-shot to the robot and having a higher percentage
of time to their auxiliary tasks such as writing emails
using COLADA. We provide a demonstration video as a
supplement to show how COLADA learns tasks and skills
from its first interaction with a user, and performs the tasks
fully autonomously in the second interaction.

C. Detailed results of the human-subjects study

We describe the details of the human-subjects study. Our
human-subjects study is approved by the Institutional Review
Board(IRB) of the university. We tested the study with 20
pilots before conducting the experiments on the participants.
We fixed the issues of unclear instructions, short execution
times for the learned skills and ambiguous phrases when the
LLM was asking questions. We had to fine-tune the prompts
of the LLMs a lot so the robot asked questions pertinant
to the task of sandwich making. We also adjusted the
configurations for the sandwiches, because some tasks can be
very difficult for the novice users to teach the robot, such as
picking up a deformable object. Additionally, we made the



Agent Sandwich SR Pre-trained Skill SR

COLADA 93.75%(15/16) 97.92%(47/48)
Inverse Semantics 81.25%(13/16) 93.75%(45/48)

Inarticulate 0.00%(0/16) 93.75%(15/16)

TABLE III: The phase one objective evaluations of the three
agents on the human subject study, including the success
rate of the entire sandwich, and the success rate of the robot
performing on the skill that it was trained on.

Agent Sandwich SR Few-shot SR Pre-train SR

COLADA 81.25%(13/16) 100.00%(16/16) 91.67%(44/48)
Inverse Semantics 87.50%(14/16) N/A 91.67%(44/48)

Inarticulate 0.00%(0/16) 0.00%(0/16) 87.50%(14/16)

TABLE IV: The phase two objective evaluations of the three
agents on the human subject study, including the success rate
of the entire sandwich, and the success rate on the few-shot
skill, and the success rate of the pre-train skill. The success
rate of few-shot skill for the inverse semantics agent is not
possible, because the inverse semantics agent always asks
for help to skip the few-shot skill.

Agent Interface Time Ratio(Phase one) Interface Time Ratio(Phase two)

COLADA 47.78± 1.19 95.41± 0.38
Inverse Semantics 80.27± 2.06 85.13± 2.46

Inarticulate 80.88± 2.27 86.82± 1.46

TABLE V: The ratio of the interface time for participants.
This metric measures how many percent of the time the users
spend on the distraction task of writing emails.

interface of the distraction email writing task more intuitive
for the participants, and created an instructional video for
the email writing interface. All the instructional materials
we used for the study can be found in the supplemental
materials.

For the actual study a total of 16 participants were
recruited through campus advertisements. The study is
composed of two separate phases, the interaction phase that
takes 120 minutes and the evaluation phase that takes 60
minutes, with a voluntary participation. The participants,
including the pilots, are compensated with $35 Amazon gift
card for their time. We designed the two-phase study for
two major reasons. Firstly, our COLADA agent requires
five hours to train for the novel skill. Secondly, we want
to demonstrate a thorough comparison for the workload
and objective metrics on the distraction task between our
COLADA agent and the inverse semantics agent in the two
phases. COLADA requires the users to remotely control
the robot arm to perform the task in the interaction phase,
and is fully automated in the evaluation phase, whereas the
inverse semantics agent behaves the same in both phases by
requesting the users to directly perform the task that it does
not know.

We hypothesize that the users experience higher workload
for COLADA than the inverse agent in the interaction phase,
and a lower workload for the COLADA than the inverse
semantics in the evaluation phase because we consider that
for remotely controlling the robot arm to complete the task

requires higher workload than directly completing the task
themselves for the users, and the fully automated robot agent
requests the least workload. We reject our hypothesis and
accept the null hypothesis of – there is no difference in
the users’s perception of workload between COLADA and
the inverse semantics agent. We consider that the workload
from the distraction email writing task can be the major
confounding factor to the workload metrics. From the users’
perspective, even though COLADA saves their time by
finishing the sandwich autonomously, they still need to work
longer on the distraction tasks as the robot takes longer
time to finish the same task than taking the users’ help.
As a result, the users might not perceive that the fully
automated COLADA agent invokes less workload than the
inverse semantics agent, and we did not find any significance
in the subjective workload metric. However, our objective
metrics that measure the ratio of time that users spend on
the distraction tasks indicate that our COLADA agent allows
user to use more of their time on the distraction time than
the inverse semantics agent in phase two(p < 0.001, Z =
3.61). This shows that a fully automated learning agent
is more efficient for the users. Additionally, we observed
that COLADA achieves a higher ratings than the inverse
semantics agent with significance(p = 0.04, t = 1.83) in
the System Usability Scales(SUS). This demonstrates that a
learning system is considered more useful than a system that
relies on humans’ help by the users.

1) Detailed procedure: We describe the detailed proce-
dure for the study as follows.

Interaction Phase. Participants first filled out the consent
form and a pre-study survey. Then, we handed out a general
introduction of the experiment. The participants were then
asked to read the instructions for the interaction phase, and
watch a demonstration video. The demonstration video intro-
duces how the robot agent requests for different types of help
differently, and how to answer different requests from the
robot agent. We use a completely different domain(Placing a
block in the box) as example in the demonstration video. The
instruction introduces domain relevant information, such as
the configuration of the robot’s workspace, the sandwich to
make, and the steps to make the sandwich. The participants
then watch another demonstration video that introduces how
to use the email writing interface. The anonymized instruc-
tions and videos can be found in the supplementary material,
and Fig. 3 shows our email writing interface. Then, the
participants interacted with the three agents, the inarticulate
agent, the inverse semantics agent, and the COLADA agent,
in a random order. The inarticulate agent never interacts with
the users except for getting the initial instruction set from
the user. The inverse semantics agent always asks the human
users for help when it encounters any task that it is uncertain
with. The COLADA agent interacts with the human users by
asking task-relevant question, asking for human help, and
asking for robot demonstrations. The users then work on
the distraction email writing tasks while these robot agents
make the sandwich, and provide the required help from the
agent when needed. After interacting with each system, the



Agent Interruption Count Normalized Completed Email Count Normalized Word Count Total Time Task Time

Phase One

COLADA 2.13± 0.13 0.27± 0.03 0.24± 0.01 2176.67± 57.06 1035.21± 26.10
Inverse Semantics 1.13± 0.09 0.16± 0.02 0.20± 0.01 943.93± 32.41 753.21± 25.85

Inarticulate 0.00± 0.00 0.07± 0.02 0.08± 0.01 493.01± 58.62 412.98± 56.69

Phase Two

COLADA 0.00± 0.00 0.25± 0.03 0.23± 0.02 1083.42± 27.28 1033.70± 26.32
Inverse Semantics 1.00± 0.00 0.17± 0.02 0.17± 0.01 870.77± 26.26 738.27± 24.02

Inarticulate 0.00± 0.00 0.08± 0.01 0.07± 0.01 426.94± 51.85 376.78± 48.74

TABLE VI: The objective metrics of the human users on the distraction tasks of the study. The interruption count measures
how many times each agent interrupt the users during the entire evaluation phase. The normalized email completion count
measures the number of emails completed by the users while the agent is performing the task, normalized by the total
number of emails completed by each user. The normalized word count measures the total number of words the users input
when the agent is executing the tasks, normalized by the total number of words of each user for all agents. Total time
measure the total amount of execution time in seconds of each agent, including the time that the agent interacts with the
users and the time that the agent perform skills autonomously. Task time measures the amount of time in seconds for users
to complete the distraction task, which is also the time that the agent performs skills autonomously.

Metrics SUS(↑) Anthropomorphism(↑) Likability(↑) Animacy(↑) Perceived Intelligence(↑) Comparative(↑)

Phase One

COLADA 8.06± 1.61 14.75± 0.89 20.38± 0.77 19.06± 0.85 36.13± 0.92 N/A
Inverse Semantics 11.13± 1.38 16.38± 0.98 20.13± 0.69 21.31± 0.98 37.31± 0.89 N/A

Inarticulate 4.06± 2.64 12.25± 1.05 17.13± 1.17 16.00± 1.34 29.31± 1.72 N/A

Phase Two

COLADA 12.50± 2.49 15.94± 1.04 20.19± 1.19 20.63± 1.32 35.69± 1.67 0.44± 0.87
Inverse Semantics 9.31± 2.55 15.31± 1.20 19.94± 1.07 20.75± 1.16 36.00± 1.47 −0.63± 0.68

Inarticulate 1.19± 2.62 12.00± 0.94 17.25± 1.27 15.50± 1.34 29.25± 1.95 −5.81± 0.86

TABLE VII: The subjective metrics for the interaction phase. We use the same ACT-LoRA policy as the policy for all the
three agents.

participants were asked to fill-out a post-survey, including
questions from NASA-TLX [31], SUS [30], and 4 sub-scales
from the GodSpeed Questionnaire Series [29](Likability, An-
imacy, Natural, Perceived Intelligence). After the participants
finished the interaction phase, we fine-tuned the ACT-LoRA
policy the robot demonstrations collected from the users for
COLADA.

Evaluation Phase. Participants came back to the lab. We
handed the same instructions to the participants for them to
ask the robot to make the same sandwich. The participants
interacted with the same three robot agents, the inarticulate
agent,the inverse semantics agent, and the COLADA agent.
All the three agents remember the instructions to make the
sandwich provided by the participants from the interaction
phase. The inverse semantics agent and the inarticulate did
not learn from the robot demonstrations from the interaction
phase. This means that the inverse semantics agent still
asked for help from the users for the same skill, and the
inarticulate agent still failed to perform the same skill. The
COLADA learned the novel skill from the demonstration in
the interaction phase, and did not interact with the human
users except for the initial interactions. After watching each
agent, the participants were asked to fill out the same post-
survey for the system. After watching all the three systems,

the participants were asked to rank the three systems on
7 different description(helpful, useful, efficient, competent,
uncooperative, inefficient, incompetent).

2) Detailed study results: The objective results on the task
completion and skill success rates are presented in Table III,
IV, and the objective results on distraction tasks are presented
in Table V,VI. We also present results on subjective metrics
for both phases in Table VII.

Based on our analysis, we found that COLADA is more
efficient in time for our participants in phase two than in
phase one. Additionally, COLADA is more time efficient
for the user than the inverse semantics agent in phase
two. For subjective metrics, no significance was found for
the workload metrics between any agent pair. Both agents
that can ask intelligent questions(COLADA and the inverse
semantics agent) are considered better than the inarticulate
agent in the sub-scales of system usability, anthropomor-
phism, likeability, animacy, perceived intelligence, and the
comparative survey. Additionally, COLADA is considered
better than the inverse semantics agent in the system usability
sub-scale. We perform a normality test with Shapiro-Wilk
test for each metric. If the data from such metric passes the
normality test(p > 0.05), we apply a parametric statistical
test. Otherwise, we report the results of a non-parametric
statistical test. The detailed results are described as follows.



Users’ ratio of time on distraction task. Results from
Shapiro-Wilk test suggest that conditions for normality were
met for the data points to run a parametric statistical
test(p = 0.18,W = 0.92). Hence, we compare the time
ratio metric between phase one and phase two for COLADA
using paired t-test. Results from paired t-test suggest that
COLADA allows users to spend more of their time on the
email writing distraction task in phase two than in phase
one(p < 0.001, t = 38.69).

Results from Shapiro-Wilk test suggest that conditions
for normality were not met for the data points to run a
parametric statistical test (p = 0.005,W = 0.82). Hence,
we compare the time ratio metric between COLADA and
the inverse semantics agent using Wilcoxon Signed-Rank
test. Results from Wilcoxon Signed-Rank test suggest that
user can spend more time on the email writing task working
with COLADA than the inverse semantics agent in phase
two(p < 0.001, Z = 4.17).

SUS. Results from Shapiro-Wilk test suggest that condi-
tions for normality were met for the data points to run a
parametric statistical test(p = 0.49,W = 0.96). Hence, we
conduct a paired t-test to compare the system usability metric
of COLADA with the inarticulate agent. Results from paired
t-test suggest that COLADA is considered better than the
inarticulate agent in the system usability sub-scale in phase
two(p = 0.002, t = 1.83).

Results from Shapiro-Wilk test suggest that conditions for
normality were met for the data points to run a parametric
statistical test(p = 0.07,W = 0.90). Hence, we conduct a
paired t-test to compare the system usability metric of the
inverse semantics agent with the inarticulate agent. Results
from paired t-test suggest that the inverse semantics agent
is considered better than the inarticulate agent in the system
usability sub-scale in phase two(p = 0.006, t = 2.82).

Results from Shapiro-Wilk test suggest that conditions for
normality were met for the data points to run a parametric
statistical test(p = 0.49,W = 0.95). Hence, we conduct
a paired t-test to compare the system usability metric of
COLADA with the inverse semantics agent. Results from
paired t-test suggest that COLADA is considered better than
the inverse semantics agent in the system usability sub-scale
in phase two(p = 0.04, t = 1.83).

Anthropomorphism. Results from Shapiro-Wilk test sug-
gest that conditions for normality were met for the data
points to run a parametric statistical test(p = 0.34,W =
0.94). Hence, we conduct a paired t-test to compare the
anthropomorphism metric of COLADA with the inarticulate
agent. Results from paired t-test suggest that COLADA is
considered better than the inarticulate agent in the anthropo-
morphism metric in phase two(p = 0.003, t = 3.18).

Results from Shapiro-Wilk test suggest that conditions for
normality were met for the data points to run a parametric
statistical test(p = 0.78,W = 0.97). Hence, we conduct
a paired t-test to compare the anthropomorphism metric
of the inverse semantics agent with the inarticulate agent.
Results from paired t-test suggest that the inverse semantics
agent is considered better than the inarticulate agent in the

anthropomorphism metric in phase two(p = 0.01, t = 2.54).
Likability. Results from Shapiro-Wilk test suggest that

conditions for normality were met for the data points to run
a parametric statistical test(p = 0.57,W = 0.95). Hence, we
conduct a paired t-test to compare the likeability metric of
COLADA with the inarticulate agent. Results from paired
t-test suggest that COLADA is considered better than the
inarticulate agent in the likeability metric in phase two((p =
0.04, t = 1.86).

Results from Shapiro-Wilk test suggest that conditions for
normality were met for the data points to run a parametric
statistical test(p = 0.59,W = 0.96). Hence, we conduct a
paired t-test to compare the likeability metric of the inverse
semantics agent with the inarticulate agent. Results from
paired t-test suggest that the inverse semantics agent is
considered better than the inarticulate agent in the likeability
metric in phase two(p = 0.03, t = 2.00).

Animacy. Results from Shapiro-Wilk test suggest that our
data in the animacy metric does not satisfy the condition for
a parametric test(p = 0.03,W = 0.87). Hence, we conduct a
Wilcoxon Signed-Rank test to compare the animacy metric
of COLADA with the inarticulate agent. Results from the
Wilcoxon Signed-Rank test suggest that COLADA is con-
sidered better than inarticulate agent by users in the animacy
metric with significance in phase two(p < 0.001, t = 3.10).

Results from Shapiro-Wilk test suggest that our data in
the animacy metric satisfies the condition for a parametric
test(p = 0.07,W = 0.90). Results from paired t-test
suggest that the inverse semantics agent is considered better
than inarticulate agent by users in the animacy metric with
significance in phase two(p < 0.001, t = 3.87).

Perceived Intelligence. Results from Shapiro-Wilk test
suggest that conditions for normality were met for the data
points to run a parametric statistical test(p = 0.07,W =
0.90). Hence, we conduct a paired t-test to compare the per-
ceived intelligence metric of COLADA with the inarticulate
agent. Results from paired t-test suggest that COLADA is
considered better than the inarticulate agent in the perceived
intelligence metric in phase two(p = 0.01, t = 2.58).

Results from Shapiro-Wilk test suggest that conditions for
normality were met for the data points to run a parametric
statistical test(p = 0.12,W = 0.91). Hence, we conduct
a paired t-test to compare the perceived intelligence metric
of the inverse semantics agent with the inarticulate agent.
Results from paired t-test suggest that the inverse semantics
agent is considered better than the inarticulate agent in the
perceived intelligence metric in phase two(p = 0.003, t =
3.09).

Comparative. Conditions for normality were not met
for the data points to run a parametric statistical test(p =
0.028,W = 0.871). Hence, we conducted a Wilcoxon
Signed-Rank test to compare COLADA with the inarticulate
agent in the comparative metric. Results from Wilcoxon
Signed-Rank test suggest that COLADA is preferred by user
in the direct comparison with the inarticulate agent with
significance(p = 0.004, Z = 2.61).

Conditions for normality were met for the data points to



run a parametric statistical test(p = 0.24,W = 0.93). Hence,
we applied a paired t-test to compare the inverse semantics
agent against the inarticulate agent in the comparative metric.
Results from Wilcoxon Signed-Rank test suggest that the
inverse semantics agent is preferred by user in the direct
comparison with the inarticulate agent with significance(p =
0.001, Z = 3.02).

3) Limitation of the study: There are two major lim-
itations on the human-subjects study. Firstly, we need to
increase the scale of the study to better understand the
robustness of COLADA and ACT-LoRA. Currently, limited
by the scale of data, we only conducted the study with two
different sandwich configurations on 8 different tasks. A
scaled-up version of the study with more tasks, more data,
and more users will be necessary to test the robustness of our
framework. Secondly, the demographic of the study is limited
to university students. More subjects with wider demographic
distribution will be needed to show that COLADA can work
with the general population.

D. Discussion

In our analysis, we have demonstrated that COLADA can
continually learn tasks and skills from dialog interactions
with novice human users with our end-to-end neural net-
work policy ACT-LoRA, and complete the requested tasks
automatically with a task completion rate that is comparable
to an upper bound of a human aided inverse semantics agent.
This showcases that ACT-LoRA model is robust as a con-
tinual learning policy under low data regimes, whereas other
SoTA continual learning policies such as TAIL [11] rely on
fine-tuning large vision backbone on environment data and
also require large scale of data for training, which is not
accessible most of the time in real-world robot applications.

Additionally, we have also demonstrated that our end-
to-end continual learning method can learn contact rich
dynamic skills from novice users, such as applying butter
and pouring pepper. We believe such methods have more
potential to scale compared to existing DMP and keypoint
based approaches [12]. We also want to state that even an
agent that can just communicate its inadequacies such as our
inverse semantics agent or other baselines like MOSAIC [32]
has high satisfaction rates among users. This indicates the
need for agents can indicate their confusions or lack of
confidence in a task urgently. An observation we have made
in our pilots and studies is that simple cold meals have a
lot of contact based dynamic tasks that are challenging for
users to demonstrate even if the platform can learn them. For
example, it is challenging to present a tele-operation demo
for the task of picking up bread from a flat plate. We believe
more fundamental robotics research and user interface design
is needed for such tasks. We first describe the details of our
simulation experiments. We compared our approach to two
baselines, ACT and GMM-LoRA because ACT represents
the base architecture of ACT-LoRA, and GMM-LoRA is a
continual learning policy baseline that resembles TAIL [11].
GMM-LoRA is a scaled-down version of TAIL [11], as
the baseline in this work, as TAIL is a GMM-based policy

augmented with LoRA weights and a larger vision backbone.
TAIL itself failed to train in our experiments because we did
not have enough visual data to pre-train TAIL’s policy when
we have only 10 − 20 tasks. TAIL is promising when the
set of pre-trained tasks is large enough to train its GPT-2
and CLIP layers which is challenging with robot data. The
full TAIL model was not learning skills in our simulation
domains within RLBench. We then confirmed the correctness
of our implementation with the original authors of TAIL to
confirm data scale issues. We then scaled the model down
with a smaller visual backbone which we call GMM-LoRA
that we can train with few samples to perform an equivalent
comparison [20]. In all of the simulation domains, all of
the three models go through a pre-train, fine-tune training
schema. During fine-tuning, we only train the weights from
the Low Rank Adaptor for ACT-LoRA and GMM-LoRA,
while ACT is trained with all the weights.

E. Detailed Results on RLBench

For the RLBench simulation environment, all the three
models are pre-trained with 1000 demonstrations for each
of the pre-train skills for 100 epochs. To study the sample
efficiency of these models, we experiment with fine-tuning
with 5, 100, and 1000 trajectories. Each models is evaluated
for 20 rollouts on each of the 15 skills to measure the
success rate. We present the complete experimental results
of the three policies in the RLBench simulator. We perform
five-fold validation on 15 selected tasks from the RLBench
simulator, and present the results in Table VIII. Detailed
performance of each skill is presented in Table IX. All
the three models are trained to predict joint positions in
RLBench, and went through the same pre-trained, fine-tuned
training schema. During the pre-train phase, each model is
trained with 1000 robot demonstrations from each pre-train
task for 5 epochs. In the fine-tuning phase, we only train
the weights introduced by the Low-Rank Adaptor for ACT-
LoRA and GMM-LoRA, while the ACT model is fine-tuned
with all its weights. We fine-tuned models for 10, 100 and
1000 epochs when using 1000, 100 and 5 trajectories for fine-
tune skills respectively. Notice that due to the limitation of
the visual-motor policies, we use a static location to evaluate
the fine-tune tasks when we fine-tune with 5 robot trajectories
for all models. For the pre-trained skills and fine-tuned skills
trained with more trajectories, we use a randomized initial
configuration in evaluation.

As shown in Table VIII and Table IX, the full fine-tuned
ACT model achieves a strong performance on fine-tuned
skills, demonstrating its strong capability of learning fine-
grained control. However, it suffers a near zero success
rate for most of the pre-trained skills after fine-tuning. This
shows that ACT suffers from catastrophic forgetting and
can no longer perform the pre-train tasks after fine-tuning.
On the contrary, our ACT-LoRA model not only achieves
a comparable performance on fine-tuned skills as the ACT
model, but also outperforms other baselines in pre-trained
skills and overall success rate. This demonstrates that our
ACT-LoRA model can continually learn novel skills without



Model Pre-trained Skills Fine-tune Skills(1000 traj.) Overall Success Rate(1000 traj.) Fine-tune Skills(100 traj.) Overall Success Rate(100 traj.) Fine-tune Skills(5 traj.) Overall Success Rate(5 traj.)

ACT-LoRA 60.75± 2.40 54.00± 9.73∗ 59.40± 1.52 47.67± 10.24∗ 58.87± 1.55 77.67± 9.36 64.13± 1.80
GMM-LoRA 26.08± 4.02 13.33± 4.50 23.53± 2.99 11.00± 4.07 23.73± 3.15 16.67± 4.92 24.20± 3.72

ACT 9.25± 2.51 62.00± 8.84∗ 19.80± 1.69 63.33± 9.90∗ 20.60± 1.11 95.00± 4.22 26.40± 2.45

TABLE VIII: Complete experimental results on RLBench dataset. ∗ indicates that two models have a similar best performance.
Pre-trained skills measures the policies’ average success rate on the 12 skills that policies are pre-trained on. Fine-tuned
skills(1000 trajectories) and Fine-tuned skills(100 trajectories) measure the policies’ average success rate on the 3 new
skills, where the policies are fine-tuned using 1000 trajectories and 100 trajectories for each fine-tuned skill. Overall Success
Rate(1000 trajectories) and Overall Success Rate(100 trajectories) measure the average success rate across the pre-trained
and fine-tuned skills of the same policies. Fine-tuned skills(5 trajectories) measures the policies’ average success rate on
the 3 new skills under a fixed and static initial configuration, where the policies are finetuned with 5 trajectories from each
fine-tuned skill, and Overall Success Rate(5 trajectories) measures the average success rate across the pre-trained and
fine-tuned skills for the same policies. ACT-LoRA out performs ACT and GMM-LoRA in the overall success rates and
has fewer issues with forgetting pre-trained skills. GMM-LoRA is based on SOTA TAIL [11] model with a smaller visual
backbone which can be fine-tuned for a smaller set of tasks.

Model close door close fridge meat off grill meat on grill open box open door open window phone on base put money in safe put rubbish in bin slide block to target take lid off sauce pan toilet seat down turn tap water plants

Pre-trained

ACT-LoRA 1.25± 1.25 96.25± 2.39 72.50± 24.28 71.25± 22.11 63.75± 22.49 78.75± 16.38 73.75± 24.61 58.75± 19.83 61.25± 20.65 52.50± 17.85 46.25± 16.63 71.25± 23.84 93.75± 6.25 45.00± 15.41 25.00± 7.36
GMM-LoRA 1.25± 1.25 80.00± 10.61 6.25± 3.15 12.50± 7.77 37.50± 15.34 36.25± 9.66 41.25± 16.63 3.75± 3.75 28.75± 13.29 1.25± 1.25 0.00± 0.00 28.75± 12.81 70.00± 7.36 16.25± 7.18 27.50± 7.77

ACT 0.00± 0.00 72.50± 14.22 0.00± 0.00 0.00± 0.00 0.00± 0.00 1.25± 1.25 0.00± 0.00 1.25± 1.25 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 50.00± 13.39 12.50± 9.46 1.25± 1.25

Fine-tuned(1000 Traj.)

ACT-LoRA 5.00 90.00 75.00 90.00 45.00 80.00 65.00 25.00 65.00 10.00 5.00 95.00 85.00 25.00 50.00
GMM-LoRA 0.00 70.00 0.00 15.00 0.00 25.00 0.00 5.00 0.00 0.00 0.00 0.00 65.00 20.00 0.00

ACT 5.00 95.00 90.00 90.00 65.00 85.00 15.00 80.00 45.00 85.00 15.00 90.00 100.00 50.00 20.00

Fine-tuned(100 Traj.)

ACT-LoRA 0.00 100.00 85.00 75.00 55.00 85.00 30.00 15.00 50.00 5.00 5.00 90.00 100.00 20.00 0.00
GMM-LoRA 0.00 80.00 0.00 5.00 5.00 20.00 0.00 0.00 0.00 0.00 0.00 0.00 25.00 25.00 5.00

ACT 15.00 95.00 90.00 75.00 65.00 65.00 60.00 70.00 65.00 55.00 20.00 90.00 100.00 55.00 30.00

Fine-tuned(5 Traj., Static evaluation)

ACT-LoRA 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 0.00 60.00 100.00 100.00 100.00 100.00 5.00
GMM-LoRA 0.00 0.00 0.00 0.00 0.00 15.00 0.00 0.00 0.00 5.00 35.00 25.00 85.00 80.00 5.00

ACT 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 35.00 100.00 100.00 100.00 100.00 100.00 90.00

TABLE IX: Experimental results on each skill of the RLBench dataset. We report success rate of each skill under pre-trained
and fine-tuned with different number of trajectories. As we perform a five-fold validation on the skills, the statistics of the
pre-trained skills come from 4 models, whereas the success rates of the fine-tuned skills come from the evaluation of a
single model. For each model, we evaluate each skill by rolling out the skill in the simulator for 20 times.

suffering from catastrophic forgetting.
GMM-LoRA model performs the worst in both pre-trained

skills and fine-tune skills on RLBench dataset. This is to our
surprise as GMM-based model has demonstrated a strong
performance in controlling robot manipulators on LIBERO
dataset [20], [11]. We suspect that the reason for the poor
performance is that GMM-based model suffers from joint-
position controls, but further investigations are needed to
verify this hypothesis.

F. Detailed Results on LIBERO

For our experiments on the LIBERO dataset, all the three
models are pre-trained with 50 demonstrations for each of
the pre-trained skills. To study the sample efficiency of these
models, we experiment fine-tuning with 5 and 50 trajectories
and report the results. Following Liu et al. [20], we report
the success rate of models with 20 rollouts for each model
on each skill.

We present the major results on the three task suites of
the LIBERO dataset in Table II. Additionally, we present
the detailed performance of each skill from three suites
of the LIBERO dataset in Table X,XI,XII. For each of
the three suite of the LIBERO dataset, we apply the same
training schema and perform a five-fold validation on the
10 tasks of the task suite. All the three models are trained
with robot trajectories in the operational control space(OCS),
and went through the same pre-trained, fine-tuned training

schema. During the pre-train phase, each model is trained
with 50 robot demonstrations from each pre-train task for
100 epochs. In the fine-tuning phase, we only train the
weights introduced by the Low-Rank Adaptor for ACT-
LoRA and GMM-LoRA, while the ACT model is fine-tuned
with all its weights. To study the models’ performance with
different data scales, we fine-tuned models for 100 and 1000
epochs when using 5 and 50 trajectories for fine-tune skills
respectively.

As shown in Table II, we can observe that ACT-LoRA
achieves the most stable performance across the three poli-
cies. In overall success rate, ACT-LoRA is either comparable
to or better than a strong GMM-LoRA baseline. Additionally,
although GMM-LoRA achieves the best performance in
pre-trained skills in all the three task suites, ACT-LoRA
outperforms GMM-LoRA on fine-tuned skills under all con-
figurations without compromising much in the performance
on the pre-trained skills. This demonstrates that ACT-LoRA
is more suitable for continual learning than GMM-LoRA. On
the other hand, ACT-LoRA shares the best performance in
majority metrics on fine-tuned skills with an ACT model that
undergoes full fine-tuning. However, ACT-LoRA achieves
a significantly better performance than ACT in pre-trained
skills and overall success rate metrics across all the three
task suites. This demonstrates that ACT-LoRA is the most
stable policy for continual learning when compared to the
other strong baselines.



Model 0 1 2 3 4 5 6 7 8 9

Pre-trained

ACT-LoRA 70.00± 7.07 48.75± 18.53 80.00± 3.54 63.75± 21.35 57.50± 10.90 65.00± 21.89 95.00± 2.04 65.00± 22.27 47.50± 6.61 61.25± 4.73
GMM-LoRA 72.50± 10.90 38.75± 10.08 95.00± 2.04 60.00± 20.00 53.75± 5.54 36.25± 15.86 82.50± 2.50 63.75± 21.93 75.00± 2.04 70.00± 4.08

ACT 0.00± 0.00 0.00± 0.00 1.25± 1.25 1.25± 1.25 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

Fine-tuned(50 Traj.)

ACT-LoRA 40.00 65.00 45.00 65.00 15.00 65.00 40.00 25.00 25.00 20.00
GMM-LoRA 0.00 0.00 0.00 50.00 0.00 5.00 0.00 35.00 0.00 0.00

ACT 65.00 45.00 80.00 90.00 55.00 75.00 85.00 80.00 35.00 75.00

Fine-tuned(5 Traj.)

ACT-LoRA 35.00 85.00 5.00 55.00 10.00 45.00 60.00 35.00 5.00 20.00
GMM-LoRA 0.00 10.00 0.00 30.00 0.00 20.00 0.00 0.00 0.00 0.00

ACT 60.00 85.00 70.00 75.00 40.00 65.00 45.00 40.00 30.00 40.00

TABLE X: Experimental results on each skill of LIBERO-spatial dataset. We report success rate of each skill under pre-
trained and fine-tuned with different number of trajectories. As we perform a five-fold validation on the skills, the statistics
of the pre-trained skills come from 4 models, whereas the success rates of the fine-tuned skills come from the evaluation
of a single model. For each model, we evaluate each skill by rolling out the skill in the simulator for 20 times.

Model 0 1 2 3 4 5 6 7 8 9

Pre-trained

ACT-LoRA 85.00± 4.56 37.50± 13.62 87.50± 6.61 37.50± 13.62 86.25± 4.27 31.25± 13.90 92.50± 3.23 65.00± 22.08 82.50± 7.22 65.00± 11.37
GMM-LoRA 93.75± 3.15 63.75± 17.84 96.25± 1.25 61.25± 20.55 88.75± 5.15 62.50± 21.07 88.75± 5.54 52.50± 14.79 87.50± 5.20 82.50± 7.77

ACT 2.50± 2.50 0.00± 0.00 1.25± 1.25 0.00± 0.00 5.00± 3.54 13.75± 13.75 37.50± 21.65 7.50± 4.33 47.50± 27.50 13.75± 9.44

Fine-tuned(50 Traj.)

ACT-LoRA 75.00 25.00 65.00 35.00 70.00 65.00 100.00 90.00 100.00 55.00
GMM-LoRA 0.00 50.00 0.00 5.00 0.00 45.00 0.00 50.00 0.00 0.00

ACT 50.00 25.00 90.00 35.00 70.00 40.00 95.00 95.00 60.00 70.00

Fine-tuned(5 Traj.)

ACT-LoRA 10.00 80.00 45.00 25.00 30.00 55.00 95.00 80.00 60.00 0.00
GMM-LoRA 0.00 15.00 0.00 65.00 0.00 15.00 0.00 45.00 0.00 0.00

ACT 75.00 25.00 60.00 55.00 15.00 15.00 35.00 25.00 45.00 5.00

TABLE XI: Experimental results on each skill of LIBERO-object dataset. We report success rate of each skill under pre-
trained and fine-tuned with different number of trajectories. As we perform a five-fold validation on the skills, the statistics
of the pre-trained skills come from 4 models, whereas the success rates of the fine-tuned skills come from the evaluation
of a single model. For each model, we evaluate each skill by rolling out the skill in the simulator for 20 times.

Model 0 1 2 3 4 5 6 7 8 9

Pre-trained

ACT-LoRA 78.75± 4.73 72.50± 24.28 91.25± 3.75 31.25± 11.25 90.00± 4.08 63.75± 21.93 78.75± 3.15 70.00± 23.80 78.75± 5.15 81.25± 6.25
GMM-LoRA 92.50± 3.23 71.25± 22.21 98.75± 1.25 26.25± 8.75 93.75± 1.25 61.25± 21.45 72.50± 1.44 72.50± 20.97 82.50± 6.29 82.50± 4.33

ACT 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

Fine-tuned(50 Traj.)

ACT-LoRA 65.00 95.00 55.00 25.00 85.00 0.00 60.00 0.00 45.00 60.00
GMM-LoRA 0.00 40.00 0.00 0.00 0.00 10.00 0.00 55.00 0.00 0.00

ACT 15.00 15.00 15.00 35.00 45.00 10.00 40.00 5.00 15.00 0.00

Fine-tuned(5 Traj.)

ACT-LoRA 10.00 90.00 15.00 0.00 60.00 10.00 0.00 10.00 30.00 5.00
GMM-LoRA 0.00 30.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00

ACT 0.00 20.00 5.00 0.00 5.00 0.00 5.00 50.00 20.00 0.00

TABLE XII: Experimental results on each skill of LIBERO-goal dataset. We report success rate of each skill under pre-
trained and fine-tuned with different number of trajectories. As we perform a five-fold validation on the skills, the statistics
of the pre-trained skills come from 4 models, whereas the success rates of the fine-tuned skills come from the evaluation
of a single model. For each model, we evaluate each skill by rolling out the skill in the simulator for 20 times.

G. Implementation details for ACT-LoRA

We describe the details of our implementation of the ACT-
LoRA policy. Following zhao2023learning, we train with a
CVAE architecture and discard the additional encoder during
inference. We adjust the number of parameters for different
experiments accordingly. For all of our experiments, we
use a 4-layer transformer encoder both the CVAE encoder
and the state encoder. For the RLBench experiments and
the real-world experiments, we use a hidden dimension of

2048 and attention layers with 6 heads. For the LIBERO
experiment, we use a hidden dimension of 256 and attention
layers with 8 heads. We extract features from raw image
inputs from multiple cameras using resnet-18. These visual
features are fed to the transformer encoder along with the
proprioceptive inputs. For the decoder side, we use 6-layer
transformer decoder for the real-world experiments and the
RLBench experiments, and 4-layer transformer decoder for
the LIBERO experiments. Trainable embeddings are used



Algorithm 1 The Algorithm for the Dialogue State Machine

Input:
O0: The initial observation of the agent
S = {S1, . . . , SK}: The initial skill library of the
agent
πψ, ψ = {ψ0, ψ1, . . . , ψK}: Policy π parameterized
by ψ, composed of shared weights ψ0 and skill
specific weights {ψ1, . . . , ψK}
ϵtext: The threshold to determine whether the two
skills are the same in the semantic space

1: A ← GetListOfActionsFromDialogue()
2: while A is not empty do
3: τ ← A[0]
4: if τ ∈ S then
5: ExecuteSkill(τ, πψ)
6: else
7: Si, s← SearchSkillLibrary(τ )
8: if s ≥ ϵtext then
9: response ← ProposeSkillToHuman(Si)

10: if response=agree then
11: ExecuteSkill(Si, πψ)
12: Continue ▷ skip line 13, 14
13: r ←AskForRobotDemonstration(a)
14: FinetunePolicyForNewSkill(πψ ,r)
15: A ← A[1 :]

for all experiments. We also use a chunk size of 100 as
it gives the best performance empirically [1]. The same
configuration is also used for the baseline ACT model. As
for the configuration of the low-rank adaptors, we follow
TAIL [11] and use a rank size of 8 for all experiments. For
both the simulation experiments and the human subject study,
each skill is associated with a set of unique adaptor weights.

H. Implementation details for GMM-LoRA

We re-implemented GMM-LoRA with the help from the
authors of TAIL [11] and the reference to the transformer-
GMM policy from the LIBERO paper [20]. To reduce the
computation cost for the original TAIL model, we use a
transformer encoder in replacement to the GPT-2 temporal
decoder. We also replace the CLIP image encoder with a
resnet-18 model. For a fair comparison, we adjust the scale
of the GMM-LoRA model to be similar to that of the ACT-
LoRA model for each experiment. The GMM-LoRA model
takes in linguistic task descriptions, image observations,
and proprioceptive inputs over history timesteps. We first
extract the feature of the raw image inputs and the linguistic
task descriptions using the resnet-18 vision backbone and
a frozen BERT text encoder. Then, we use a FiLM layer
to inject the linguistic features into the image features and
the proprioceptive inputs. These inputs are treated as the
input tokens of the transformer temporal encoder. Then,
we use an MLP layer to project the encoded tokens into
parameters for Gaussian Mixture Models(GMM). During
training, the model is optimized by minimizing the negative
log-likelihood loss of the ground truth actions over multiple

time-steps. During inference, we sample only one action
from the distribution of the GMM predicted by the model.
Following TAIL [11], our GMM-LoRA model predicts an
action chunk of size 10. For fair comparison, we use a
GMM-LoRA of similar scale to that of the ACT-LoRA.
For the LIBERO experiments, we use 8-layer of transformer
encoder with 6 heads, with a hidden dimension of 256. For
the RLBench experiments, we use 10-layer of transformer
encoder with 8 heads, with a hidden dimension of 2048. We
use a rank size of 8 for all the adaptor weights introduced
by the low-rank weights.



Fig. 3: A screen shot of our email writing interface, where users compose emails with synthetic topics and recipient, such
as excuses, device maintenance, inquiries to local attractions, etc. These synthetic email information are generated with
ChatGPT and does not include any real information.
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