Online Speculative Decoding

Xiaoxuan Liu !

Abstract

Speculative decoding is a pivotal technique to ac-
celerate the inference of large language models
(LLMs) by employing a smaller draft model to
predict the target model’s outputs. However, its ef-
ficacy can be limited due to the low predictive ac-
curacy of the draft model, particularly when faced
with diverse text inputs and a significant capabil-
ity gap between the draft and target models. We
introduce online speculative decoding to address
this challenge. The main idea is to continuously
update the (multiple) draft model(s) on observed
user query data. Adapting to query distribution
mitigates the shifts between the training distribu-
tion of the draft model and the query distribution,
enabling the draft model to more accurately pre-
dict the target model’s outputs. We develop a pro-
totype of online speculative decoding based on
knowledge distillation and evaluate it using both
synthetic and real query data. The results show
a substantial increase in the token acceptance
rate by 0.1 to 0.65, bringing 1.42x to 2.17x la-
tency reduction. Our code is available at https:
//github.com/LiuXiaoxuanPKU/OSD.

1. Introduction

Large language models (LLMs) such as GPT-4 (OpenAl,
2023) and LLaMA (Touvron et al., 2023a;b) are rapidly rein-
venting today’s applications. Many companies are racing to
deploy LLMs in online services, such as search, chatbots,
and virtual assistants. Since most of these services demand
low latency, optimizing LLM serving latency directly trans-
lates into better quality of service and cost reduction.

The latency of today’s LLM service is unfortunately very
high, primarily because serving a user query requires multi-
ple serial evaluations of the LLM, each generating only one

'UC Berkeley *UCSD *Google Inc. *SITU. Correspondence
to: Hao, Zhang <haozhang@ucsd.edu>, Zhijie, Deng <zhi-
jied@sjtu.edu.cn>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Lanxiang Hu’ Peter Bailis®> Alvin Cheung' Zhijie Deng* Ion Stoica' Hao Zhang?

Resume from t3_correct to generate subsequent tokens

|
Wt R L8 Lt W12 t3_correct
)
TS Ij tl
Draft Model d]]] - dh:l . [IID . TargetModel |, = /"
prompt |__(student) Proposal token (teacher) Verification
~——— —probability distribution\
Update Model when -
size(Buffer) > Threshold_size or Buffer * *
elapsed time > Threshold_time ([[m = d]:ﬂ .)
t3 t3_correct

Distance metric: KL/Reverse KL/ JSD
' ! /e 4 (Draft, target) probability distribution

Figure 1. Overview of online speculative decoding (OSD) frame-
work: For each prompt, the draft model suggests multiple tokens
and the target model performs the verification. If the student pro-
poses incorrect tokens, both the draft and target distributions are
stored in a buffer. Once the buffer exceeds a size limit or is too
old, the draft model is updated by calculating the loss between the
draft and target distributions using various distance metrics.

token of the response. An emerging solution to reduce the
latency is speculative decoding (Leviathan et al., 2023)—it
employs a small draft model to speculate multiple output
tokens of the target (large) model, and then lets the target
LLM verify these speculations in parallel. If the verification
of a token fails, the large model must recompute from that
point. Therefore, the performance of speculative decoding
largely depends on the speculation accuracy of the draft
model (also known as the token acceptance rate). In the
presence of diverse text inputs, the accuracy of the spec-
ulations is often not very high, due to the capability gap
between the draft and target models. Employing a larger,
more accurate draft model, however, defeats the purpose of
speculative decoding as it will increase latency.

To address this challenge, we introduce a novel method,
online speculative decoding (OSD), to periodically finetune
the draft model based on the corrections of the target model.
OSD aims to reduce query latency while preserving the
compact size of the draft model.

First, OSD employs knowledge distillation within specula-
tive decoding to enhance the alignment between the draft
and target models. Speculative decoding involves the draft
model proposing potential tokens with their respective prob-
ability distributions. The target model then assesses these
suggestions, correcting discrepancies to ensure that the out-
puts remain consistent with those produced without the draft
model. This correction mechanism serves as an effective
way for the draft model to assimilate and learn from this
enriched information. Compared to conventional label fine-
tuning, knowledge distillation offers a significant advantage

https://github.com/LiuXiaoxuanPKU/OSD
https://github.com/LiuXiaoxuanPKU/OSD

Online Speculative Decoding

by providing a probability distribution for each token. By
leveraging the insights from the teacher model (Gu et al.,
2023), this method effectively aligns the draft and the target
models.

Furthermore, instead of relying on a static draft model, we
periodically update the draft model. This is because user
queries to a specific LLM service often exhibit domain-
specific distributions (Zheng et al., 2023a), reflecting shared
usage patterns. While accurately speculating the larger
model’s outputs on any diverse input is challenging, it is
feasible to enhance the draft model’s prediction accuracy,
only for similar inputs posted to the service, characterized
by the query distribution. Updates can be implemented
through several methods. One approach is to fine-tune the
draft model in the background and then apply these updates
in real-time after a predetermined period. Alternatively,
one can leverage the excess computational capacity of the
serving system while it is running, as detailed in§ 4.2.2.
Importantly, the real-time tuning of the draft models enables
them to continuously adapt based on incoming query data.
This dynamic approach is essential for preserving a high
token acceptance rate, ensuring the model remains efficient
and current with evolving data and trends.

Lastly, to further improve the token acceptance rate, OSD
not only narrows the query distribution but also routes each
query to the draft model best suited for that specific distribu-
tion. This is accomplished by developing draft models that
are finely tuned to cater to distinct domains. Concentrating
on a narrower query distribution has proven more effective
for learning. Consequently, OSD efficiently directs queries
to the corresponding draft model that specializes in their
domain. As evidenced in § 5.2 of our evaluation, we have
adeptly trained multiple draft models, each uniquely tailored
to distinct languages or topics. This method highlights the
significant potential for improved efficiency and accuracy
when dealing with a diverse range of queries.

In summary, this paper makes the following contributions:

* We explore various generalized knowledge distillation
(GKD) methods for constructing draft models and iden-
tify the most effective variants (Section 4.1).

* We introduce online speculative decoding to reduce LLM
serving latency by adapting draft models on the fly (§ 4.2).

* We investigate draft model customization for speculative
decoding, wherein each query is directed to the draft
model that corresponds with the query’s domain (§ 4.3).

* OSD demonstrates a significant improvement in token ac-
ceptance rate, by up to 10-65% on diverse datasets, which
translates into a 1.4-2.1x reduction in latency. OSD can
be combined with existing methods that construct static
draft models and match the accuracy achieved if all query
data were available beforehand (§ 5).

2. Related Work

Speculative decoding. Speculative decoding (Leviathan
et al., 2023; Chen et al., 2023a) accelerates LLM decoding
by employing a (small) draft model to predict the outputs of
the larger target model, which the target model then verifies.
Suppose the draft model can correctly predict more than one
token per verification step, the memory I/O for accessing
the weights and KV cache of the (large) target model at in-
ference is amortized across multiple output tokens, thereby
reducing latency, especially since LLM inference is often
constrained by GPU HBM bandwidth. The efficacy of spec-
ulative decoding hinges on the draft model’s ability to ac-
curately predict the target model’s outputs. Existing work
improves the speculation accuracy by using staged (Spector
& Re, 2023), RAG-style (He et al., 2023), multiple (Miao
et al., 2023; Chen et al., 2023b) draft models and sampling
multiple candidates from the draft model (Yang et al., 2024;
Cai et al., 2024). Additionally, there exists a line of research
that eliminates the need for a separate draft model by lever-
aging auxiliary modules within the target model itself (Cai
et al., 2023; Stern et al., 2018; Cai et al., 2024; Lin et al.,
2024; Zhang et al., 2023). These methods predominantly
assume a static draft model post-deployment. In contrast,
our work introduces a framework that actively adapts the
draft model to the evolving user query distribution on the
fly, irrespective of the draft model’s construction. OSD is
orthogonal to the aforementioned methods, enabling its in-
tegration with them to improve overall efficacy in online
deployment scenarios.

Distillation for auto-regressive models. Knowledge dis-
tillation (KD) is a framework to generate smaller models
that emulate the performance of larger models. However,
KD in its conventional form has been observed to be less
effective for LLMs. Gu et al. (2023) extends KD to autore-
gressive LLMs by decoding from the student model and
optimizing the reserve KL divergence between students and
teachers. Agarwal et al. (2023) introduce generalized knowl-
edge distillation (GKD) to optimize a linear combination of
the forward KL and reverse KL between teacher and student,
using a blend of teacher- and student-sampled data. Drawing
inspiration from both works, OSD applies KD to speculative
decoding for LLMs and extends it to dynamically adjust
draft models (Section 4.1). We acknowledge the simultane-
ous emergence of a related work, DistillSpec (Zhou et al.,
2023), which also employs KD for speculative decoding.
However, our work and DistillSpec were developed concur-
rently. Moreover, DistillSpec represents a specific aspect of
our broader framework OSD. OSD not only explores KD
for speculative decoding but also addresses challenges in
the online setting and routes queries across various distribu-
tions.

Online Speculative Decoding

3. Background

We first briefly review speculative decoding (Leviathan et al.,
2023), a critical technique that accelerates inference of a
large target LLM p(-|a) with token proposals from a small
draft model gg(-|x). x denotes the concatenation of the
input prompts and already generated tokens. The two dis-
tributions are both learned in an auto-regressive way. We
emphasize the parameters 0 of the draft model because we
usually need to tailor them according to the target LLM for
more substantial acceleration.

Speculative decoding uses a (small) draft model to propose
k tokens y = {y;}*_, ~ qa(-|x), and lets the target LLM
estimate the k + 1 token probabilities {p(y|x, y—;)} 1}
in parallel. We detailed the sampling process in Ap-
pendix A.1. Prior work has shown that the resulting samples
9 2 {y1,...,Yays1} strictly follow the distribution of the
target LLM p(-|x) (Leviathan et al., 2023). It concatenates

¢ to x and repeats the above process until meeting (EOS).

Expected acceptance rate & speedups. The acceptance
rate, denoted as «, serves as a measure of how closely the
draft model approximates the target model. It is defined as
the expected probability that speculative decoding will ac-
cept a proposal token given the prompt y; ~ go (y;|T, y<;).
This rate directly influences the expected length (E(|g|)) of
y for each target LLM run and the speedup of speculative
decoding as detailed in Figure 8.

Assuming that the k 4+ 1 simultaneous evaluation of the
target LLM p takes roughly the same amount of time as
generating a single token in parallel, let c be the time ratio
for a single run between gg and p. The expected generation
length of a single target LLM run and the speedup in the
total wall time due to speculative decoding is represented
as (Leviathan et al., 2023):

k+1 k+1

11—«
(1—a)(kc+1)

1—a

E(lg)) = » E(speedup) = (1

11—«

Observation. The speculative decoding process inherently
identifies the inaccuracies of the draft LLM and offers cor-
rect solutions for these inaccuracies. Hence, we receive
valuable insights on the areas and strategies to refine the
draft model at no additional cost. Furthermore, given the
reduced size of the draft model (e.g., over 20 x smaller than
the target model), its tuning is not only efficient but also vi-
able for real-time online adjustments. Prior work (Leviathan
et al., 2023; Miao et al., 2023) has primarily approached
speculative decoding in an offline manner, meaning the draft
model remains static during online deployment. We next
develop online speculative decoding to bridge this gap.

'y refers to {y;}1_]

4. Online Speculative Decoding

We propose the online speculative decoding approach to
update the draft model dynamically. We frame the learning
problem based on the aforementioned auxiliary informa-
tion as online knowledge distillation, where the teacher and
student models correspond to the target and draft LLMs in
speculative decoding, respectively.

4.1. Knowledge Distillation for Speculative Decoding

Knowledge distillation is a general framework to align the
predictive distribution of a small model (i.e., student model)
with that of a larger one (i.e., teacher model). Prior research
has utilized knowledge distillation to compress neural net-
works, resulting in decreased inference costs and memory
requirements. We posit that knowledge distillation is highly
effective for speculative decoding. In this approach, the draft
model acts as the student and the target model serves as the
teacher. During speculative decoding, we possess complete
information on both the proposed and verified probabilities
of each token. This information helps to construct objectives
for distilling the draft model, aligning its output distribu-
tions with those of the target model and thereby improving
the token acceptance rate of the draft model.

The distillation loss generally takes the form of:

0-L 3«

z()eB

2”,0), (x,0) = D(p(|z)llgo(-|2)),
@
where B = {z("}"5 denotes a batch of inputs and D

denotes some dlstance measure.

Distance measure. In the case of auto-regressive models,
the prediction distribution is categorical at each token. Of-
ten, we can augment the predicted logits with a tunable
temperature 7 for softmax transformation. We then use the
popular forward KL and reverse KL (RKL), as well as their
mixture (i.e., the JSD divergence) to instantiate D (Agarwal
etal., 2023; Gu et al., 2023):

lxr(x,0) = Dxu(p(-|z)l|qe (-[x)),
Cricr(x,0) = Dxi(ge(-|z)|p(-[2)),

6) = 80w (p(-|) [p5(-|)) ®

+ (1= 8)Dicw (0 (1) 5 (1))

Lysps (@,

where pg(|w) £ Bp(-|x) + (1 — B)qe(-|x). These objec-
tives diverge from the conventionally used label-based fine-
tuning objectives in speculative decoding, as highlighted
in (Miao et al., 2023; Leviathan et al., 2023). As shown in
Section 5.1, objectives based on the KL divergence prove
to be more effective. This is because distributions con-
vey richer information than mere labels, thereby enhancing
their capability to guide the student model (Hinton et al.,

Online Speculative Decoding

2015). Additionally, these objectives enhance convergence
rates (He et al., 2022) and bolster calibration. In our study,
aligning with previous research (Agarwal et al., 2023), we
empirically determine that the optimal distance measure can
vary depending on the tasks and the relative capacities of
the teacher and student models (see §5.1).

Sampling and gradient estimation. Estimating the above
objectives involves the expectation over gg(-|x) or p(+|x),
which should be expanded recursively. Once the recursion
depth exceeds 1, we can not analytically compute Dk,
but hinge on Monte Carlo approximation. When sampling
from gg(-|x), we should differentiate through the sampling
process for unbiased gradient estimation. However, this
leads to policy gradient-style estimators and should rely
on elaborate policies such as reward hacking and single-
step regularization to reduce gradient variance and stabilize
training (Gu et al., 2023).

In comparison, a more straightforward approach is to omit
the differentiation through the sampling process (Agarwal
et al., 2023), where the sample y is directly plugged into
the objective:

ly|+1

0) ~ ZD(p

This way, various distance measures can be readily applied.
Besides, the sampling becomes disentangled from the dis-
tance measure. i.e., we sample y from an arbitrary mixture
of p(-|x) and gy (-|x) but use KL, RKL or JSD for estimat-
ing the distribution misalignment.

(Wl y<;)llge (ylx, y<;))- “

Intuitively, the samples from the teacher model are usually
coherent, which may raise difficulties in fitting the small stu-
dent model, while samples from the student model may be
less structured or even meaningless. A workaround strategy
is to trade off between them via mixed sampling (Gu et al.,

2023), i.e., y; ~ Bp(-lx, y<;) + (1 = B)aa(-|x, y<;).

4.2. Online Adaptation

This section expands the application of knowledge distilla-
tion for speculative decoding in online environments. The
approach enables improving the performance of the draft
model using results from speculative decoding, thus dynam-
ically adapting to the query distribution and improving the
token acceptance rate. We also discuss the trade-off of our
approach when integrating LLM serving systems.

4.2.1. ALGORITHM

We depict our online speculative decoding algorithm (OSD)
in Algorithm 1. OSD begins by training the draft model
using the warmup dataset (Line 2). The serving system then
continuously handles incoming requests (as described in
Lines 6 to 23). For each request, it uses standard specu-

Algorithm 1 Online Speculative Decoding.

1: Input: Target LLM p(:|x), draft LLM gg(:|x), warmup
dataset D, online data stream S, guess number k, temporary
buffer R, replay buffer Q, update interval for the draft model
1.

2: Pre-train g to approximate p with data from D by minimizing
{(z, 0) using Equation (4);

3: 1+ 0;

4: 9+ [|;

5: cur_len = |x| // Total sequence length, including prompt
length and tokens generated so far.

6: while True do

7. R <+ [] /I List of (error_index, target logits at

error_index) pairs for a single request.
8 x~S, 1+ i+1;
9: while (EOS) not in « do

10: y=A{y1, ., yc} ~ qo(-|);

11: Estimate {p(y|®, y<i)}*T! in parallel;

12: Determine number of accepted tokens a and sample one
more token, yielding y = {y1,...,Ya+1};

13: cur_len + cur_len +a + 1;

14: error_index < cur_len;

15: Append (error_index, p(y|e, Y<at1)) to R;

16: T [m, y<a+2];

17: end while

18: Append (z,R) to Q;

19: if i mod I = O then

20: Update go on Q to minimize £(x, @) analytically;

21: 9+

22: endif

23: end while

lative decoding (Lines 10-11) to generate responses until
the (EOS) token. Concurrently, OSD tracks the token in-
dex (error_index) and target logits where the draft model
proposes the wrong tokens (Line 15). Leveraging tracked
information, OSD updates the draft model every I iteration,
with [being a dynamically adjustable parameter. OSD up-
dates the draft model with different loss functions (Line 20)
as described in Section 4.1. The choice of loss function
depends on the specific (draft, target) model pairs and the
corresponding input data.

Discussion. OSD utilizes a replay buffer, Q, to capture all
pertinent information for updating the draft model. Various
eviction policies can be employed to maintain a compact
size for Q. For example, one could opt to retain only the
most informative pairs or the most recent entries. Similarly,
users have the option to retain data in Q even after utilizing it
to update the model multiple times. Determining the optimal
eviction/retention strategy is a subject for future exploration.
In the current study, we refrain from evicting any pairs
and release Q after each model update. Furthermore, 1
is a dynamic parameter. Depending on the system load
and the rate at which the query distribution changes, users
can adjust I accordingly. For example, we can perform
a gradient update opportunistically only when the service
traffic is not on spike (i.e., spare flops are available).

Online Speculative Decoding

In the implementation of the system, two distinct pipelines
can be established: one for training and another for infer-
ence. This approach allows for the utilization of existing
infrastructure. Periodic updates of the draft model weights
are essential to ensure continuous adaptation. Alternatively,
a unified pipeline that accommodates both training and infer-
ence can be developed. This integrated system continuously
reinforces the draft model, maintaining a consistently high
token acceptance rate. Overall, OSD continuously improves
the draft model’s approximation (indicated by increased to-
ken acceptance rate o) by learning from the target model
during the serving phase. We next demonstrate how the
enhanced acceptance rate directly contributes to a reduction
in request latency.

4.2.2. LATENCY & FLOPS ANALYSIS

Latency. As detailed in Appendix A.3, compared with

standard speculative decoding, the expected speedup for on-
1+astai4..+ak

1+ai+a?+..+af "
the data from our experiment (refer to Table 1), when

compared to standard speculative decoding, we expect a
speedup improvement for Vicuna-7B (LLaMA-160M as
the draft model) by factors of 2.42x, 1.43x, 1.64x, and
1.22x. Similarly, for Flan-T5-XL 3B (T5-small 80M as the
draft model), the speedup enhancements are 3.06x, 1.76 X,
2.72x, and 1.55x across the four evaluated datasets.

line speculative decoding is Based on

FLOPs. (1) The FLOPs required to update the draft model
are much fewer than those needed for inference on a large
model. As elaborated in Appendix A.4, for the two evalu-
ated pairs, the FLOPs ratio between the target model and the
draft model is 18.75 for the pair (LLaMA-160M, Vicuna7B),
and 12.6 for the pair (T5-small 80M, Flan-T5-XL 3B). (2)
In practical systems, the FLOPs required for inference are
significantly below the machine’s capacity. Appendix A.4
provides an analysis of Arena chatbot traces where the clus-
ter’s computational utilization is under 1 percent. Given the
above two observations, it becomes evident that the FLOPs
spent on inference and updating the draft model are rela-
tively insignificant compared with the FLOPs consumed for
target model inference and the cluster’s total FLOPs.

Memory Bandwidth. As detailed in Tabel 5 and Ap-
pendix A.5, updating the draft model is not memory-
intensive because it is small. The majority of memory op-
erations are still dominated by loading the target model.
OSD can significantly reduce memory bandwidth through a
higher token acceptance rate, which consequently decreases
the frequency of calling the larger model for verification.

4.3. Draft Model Customization and Routing

Queries can be categorized according to various characteris-
tics. Figure 2 illustrates two ways to classify queries from

o
o

0.4

4
S

0.2

Percentage

o
N

Percentage

0.0 0.0

e 0se oce ol _eh R SN Y o
\,Omﬂ“gd\‘“e \apa(\e Ss99 o Com?“‘e:us\“er’ 200 Gamgduca“o

Figure 2. The left plot depicts the proportion of queries in lan-
guages other than English in the Arena dataset (detailed in Ap-
pendix A.7). The right plot illustrates the distribution of queries
across various topics within the dataset.

the Arena dataset (detailed in Appendix A.7). We leverage
this observation to further narrow down the query domain
to improve the draft model adaptation. As highlighted in
Section 5.3, we can improve the accuracy of the draft model
if we constrain it to a particular domain. This echoes the
observation that using a single draft model for all queries re-
sults in a lower token acceptance rate compared to tailoring
the draft model to specific query domains. Furthermore, we
observe a temporal shift in the distribution, detailed in Ap-
pendix A.7, the proportion of various topics and languages
also varies across different timestamps.

In our study, we implemented two approaches for query
classification. The first approach involves sorting queries
based on language, utilizing the language tags available in
the query metadata. The second strategy clusters queries
according to their topics, making use of a small BERT model
(67M) (Lugmani, 2023). To minimize routing overhead, we
perform routing at the query level rather than at the token
level. The routing process is highly efficient as it only
relies on either the use of query tags (to access metadata) or
the implementation of a simple classification model. This
paper highlights the enhancement in token acceptance rate
achieved via the customization of draft models. We leave it
as feature work to identify the optimal routing queries and
number or size of these customized draft models.

S. Experiments

To assess the efficacy of OSD, we evaluate its ability to
improve the token acceptance rate («) within an offline con-
text. Subsequently, we examine the approach’s impact in
an online environment, discovering that the acceptance rate
improves even with a moderate amount of data while main-
taining accuracy levels comparable to those in the offline
scenario. Lastly, we investigate query latency and perform
an in-depth quantitative analysis to gain insights into the
tokens learned by the draft model.

Throughout our experiments, we employ two target models
(M,,): Vicuna-7B (Chiang et al., 2023) and FLAN-T5-XL
(3B) (Chung et al., 2022). Specifically for Vicuna-7B, we
utilize LLaMA-160M (Miao et al., 2023) as the draft model
(My). For FLAN-T5-XL, we use T5-Small (Raffel et al.,
2020) as the draft model. We evaluate performance across

Online Speculative Decoding

Table 1. Token acceptance rates () after two epochs. FT: Finetun-
ing on teacher-generated labels. TF, SF, MixF: Teacher, student,
and mix token sampling respectively, all with forward KL. For
tasks, SP: Spider. GS: Gsm8k. CP: Code-serarch-Python. AL:
Alpaca-finance.

Model Task Original FT TF SF MixF

SP 0.28 0.74 076 062 0.70

Vicuna-7B GS 0.58 0.74 075 067 073
) Cp 0.38 0.65 0.65 051 0.61

AL 0.57 0.68 0.67 0.63 0.65

SP 0.13 033 0.78 0.67 0.70

FLAN T5-XL GS 0.29 0.50 0.62 051 0.55

CP 0.28 0.44 0.81 0.67 0.78
AL 0.39 0.56 0.63 0.59 0.60

four diverse datasets: Text-to-SQL (Spider) (Yu et al., 2018),
graduate school math (Gsm8k) (Cobbe et al., 2021), Python
code generation (Code-search-Python) (Husain et al., 2019),
and financial question answering (Alpaca-finance) (Bharti,
2023). In all experiments, we set the number of proposed
tokens to 5 for speculative decoding. For all online experi-
ments, we fix the update interval [at 8.

5.1. Offline Evaluation

In this section, we assess the efficacy of employing knowl-
edge distillation to train a small model specifically for spec-
ulation in an offline environment. In such a setting, the spec-
ulative M, model has unrestricted access to the dataset, and
the query distribution remains stable. To emulate these of-
fline conditions, we distill the M, using the training dataset
for two epochs and subsequently evaluate its performance
by measuring the average token acceptance rate («) on the
test set. As detailed in Section 4.1, we evaluated various
sampling methods, namely teacher sampling, student sam-
pling, and mix token-level sampling. Table 1 displays the
token acceptance rate of the draft model for each method,
using forward KL as the distance metric on the test dataset.
For comparison, we also provide the acceptance rate for
teacher-generated label fine-tuning and the original model.

For both the Vicuna-7B and FLAN-T5-XL models, the
teacher sampling method outperforms others by achieving
the highest acceptance rate. Furthermore, knowledge distil-
lation has proven its efficacy in enhancing the draft model’s
approximation, resulting in a high token acceptance rate.
Lastly, we experimented with different distance measure-
ments like reverse KL and JSD. Nevertheless, these measure-
ments either paralleled or underperformed when compared
to forward KL. The optimal distance measurement or sam-
pling method varies depending on the task and model, and
we leave it to future work to find the best combination.

5.2. Online Evaluation

Online Learning. First, we evaluate the effectiveness of

OSD by addressing two questions: (1) Does the online
algorithm increase the token acceptance rate? And is this
enhancement comparable to the rates achieved in offline
settings, which serve as an upper bound given their full
access to data? (2) How quickly does the online algorithm
increase the token acceptance rate, thereby indicating that
the compact model has grasped the underlying distribution?

In our approach, we replicate the online serving process
by iterating through the datasets, extracting prompts, and
streaming generation requests. The system utilizes specu-
lative decoding for each of these requests. Throughout this
serving phase, we continually refine the speculative models,
as detailed in Algorithm 1. For our baseline, we envision
a scenario where the serving system has the capability to
collect data offline in order to distill an initial draft model.
This model is subsequently deployed online to cater to fu-
ture requests. This process is simulated by using 10% of the
dataset to distill the draft model, which remains static during
online serving. For evaluation metrics, we calculate token
acceptance rates averaged over the most recent 50 requests.
This demonstrates M,,’s efficacy on the most current data.

As depicted in Figure 2, both for Vicuna-7B and FLAN-TS,
in the beginning, OSD yields a lower token acceptance rate
in comparison to the offline distilled model. Nevertheless,
these acceptance rates rise swiftly as the draft model is ex-
posed to more data. We also annotate the token acceptance
rate from the offline setting to highlight the potential peak
performance that the online serving system could reach.
In all instances, the online context can achieve comparable
results. In some scenarios, OSD even surpasses the token ac-
ceptance rate of the offline test alphas. This discrepancy can
be attributed to the fact that offline test alphas are assessed
on the entire test dataset, whereas the online alphas represent
the moving average of the latest 50 requests. It’s plausible
that OSD performs optimally on specific data subsets, par-
ticularly if those subsets are more narrowly distributed than
the complete dataset.

Distribution Shifts. We evaluate OSD’s ability to adapt to
distribution shifts. We employ a single LLaMA-160M as
the initial draft model and Vicuna-7B as the target model.
To simulate the distribution shift, we integrate data from di-
verse datasets. Concretely, we select 2k prompts from each
dataset. The data from the four datasets are amalgamated
by direct concatenation, such that the records from i x 2k
to (i + 1) x 2k belong solely to dataset i.

As illustrated in Figure 4, OSD’s alpha value dips notably at
distribution boundaries, especially around 2K, 4K, and 6K
records. This is anticipated since the draft model initially
struggles when faced with a new distribution. However, the
alpha value rebounds quickly as OSD processes more data,
highlighting its adaptability to shifting query distributions.

Online Speculative Decoding

—— Online Speculative Decoding

Offline Distilled with 10% data — = Offline Test Alphas

08 Spider o8 Gsm8k os Code-search-python 08 Alpaca-finance
L o R AR L TIHRTY 03
07 WA\"’W W Y W A T orf] Mi{\i- W
EM/I' 0-7/#’ OGWW 071 PR P L e
5
<05 06 05 i 0.6 Wbl
0.4 . 0.4
Vicuna Vicuna icuna icuna
03 05 03 05
0 2 4 6 0 4 2 2 4
1.0 0.7 1.0 0.7
081 s 06 o8 PSP S I U Y -
o6 05 — . AR AN W N A
£ 05
%OA 04 0.6; ! [
03 i 0.4y
0.4

0.2

FLAN-TS | 02 FLAN-TS

0.3

FLAN-TS

G

FLAN-

0.0 0.1

6

2 4 2
of Records (K) # of Records (K)

0.2
2

4 4 6
of Records (K) # of Records (K)

Figure 3. Online acceptance rate (o) across different datasets. The x-axis represents the number of records that OSD has processed. c is

averaged over the most recent 50 records.

Code-search-
python

Alpaca-

Gsmsk finance

Spider
0.80

70%
100%

s Online

0.75 30%

0.70 50%

2065

s

< 0.60
0.55
0.50

0.45
4
of Records (K)

Figure 4. Distribution Shift

We also compared our results to those from a static set-
ting. To ensure the draft model wasn’t just memorizing
data, we chose samples distinct from the online evaluation
data. These samples correspond to 30%, 50%, 70%, and
100% of each dataset’s online evaluation volume, at 0.6K,
1K, 1.4K, and 2K quantities respectively. As depicted in
Figure 4, upon an initial shift in query distribution, OSD’s
performance aligns with or slightly trails the distillation
with 30% data. However, it quickly catches up, matching or
even surpassing performances seen with 70% to 100% data
access. This highlights OSD’s ability to rival models fully
exposed to the query distribution, even without intimate
knowledge of the underlying query dynamics.

5.3. Real Workloads & Customized Draft Model

We evaluate OSD on real LMSY S-chat conversations (Ap-
pendix A.7) that span 4 months. We propose that employing
distinct draft models for queries on various subcategories
can enhance the token acceptance rate. To carry out the
experiment, we compare two modes: Single Draft Model
and Separate Draft Models. Under the Single Draft Model
case, the target model is paired with a singular draft model
through which all data is processed uniformly. Conversely,
in the Separate Draft Models case, while the target model
remains unchanged, it is supported by multiple draft models.
Here, each draft model is specialized to handle a specific
topic. Upon receiving a new request, the query is first
classified using some classification models to determine its
relevant topic. Subsequently, the query is directed to the
appropriate draft model, tailored for that topic, which then
speculates and forwards the requests to the target model.

Unlike the approach of utilizing a single draft model for all
topics, assigning specific draft models to individual topics
narrows the range of query distributions each model must
adapt to. This focused approach simplifies the learning pro-
cess for each draft model, as they deal with a more limited
set of queries.

First, we categorize conversations based on the language
and we focus on conversations among the top five languages,
excluding English. For every chosen language, we use an
independent LLaMA-160M to serve as our draft model. All
draft models share the same Vicuna-7B as the target model.
The token acceptance rate, averaged over the latest 100
requests, showed in Figure 5, reveals that OSD’s enhances
rates by 0.1 to 0.2, even with under 2K data points. Notably,
Japanese was the easiest while Portuguese was the toughest.

Next, we try another way of clustering conversations by
routing conversations to draft models with specified for
different topics. We get the queries’ topics using the fine-
tuned distilled Bert model (Lugmani, 2023), focusing on the
top five. For topics with over 5K conversations, we sampled
evenly to keep it within 5K. Figure 5 shows acceptance
rates above 0.6 across topics, with Social and Computer
discussions peaking near 0.9.

To further compare the Single Draft Model and Separate
Draft Models cases, we analyze the token acceptance rate
and memory consumption below.

Token acceptance rate: we measured and plotted the to-
ken acceptance rates using - a single universal draft model
versus multiple topic-specific draft models - in Figure 6, to
highlight the idea of customizing draft models for different
types of queries. As seen from the graph, across all topics,
employing multiple draft models results in an increase in
the token acceptance rate by 0.1 to 0.2. This aligns with our
expectation that draft models benefit from a narrower query
distribution, making it easier to learn and adapt.

Memory consumption: In the analysis below, we assume
that multiple draft models are preloaded into memory. When

Online Speculative Decoding

Table 2. Measured itern token latency (ms) and speedup across as
measured on a single A100-80G with batch size 1. Original is
inference without speculative decoding.

Original OSD, 0OSD, OSD, 0OSD, 0OSD,
‘ a=0.5 a=0.6 a=0.7 a=038 a=09

(1.1B, 33B) 51.09 39.90 35.48 30.96 2542 19.43
Time (speedup) : (128 x) | (144 x) | (1.65x) | (201 x) | (2.63 %)

(160M, 7B) 1321 13.85 11.39 10.20 7.84 5.17
Time (speedup) o (0.95%) (1.17x) (1.3x) (1.68x) (2.55%)

considering five draft models, the cumulative size reaches
800M, approximately 10% of the target model’s size (7B),
both in terms of model weights and key-value (kv) cache
size. Compared with using a single draft model, routing
increases the memory overhead from 2% to 10%. How-
ever, relative to the size of the target model, this additional
memory requirement should be manageable. We do think
there is the trade-off between the number of draft models
and the memory consumption and leave it to future research
to decide the optimal number of draft models and the best
classification strategy.

5.4. Latency Measurement

In this section, we measure the OSD latency at various ac-
ceptance rates. Subsequently, we evaluate the performance
enhancement offered by distilled models across four evalu-
ated datasets. Throughout these experiments, we investigate
two configurations: (LLaMA-160M draft, Vicuna-7B tar-
get) and (TinyLLaMA-1.1B draft, Vicuna-33B target). We
conduct the experiments with llamacpp (Gerganov, 2023)
on a single A100-80G.

As illustrated in Table 2, for an identical token acceptance
rate, the combination of TinyLLaMA-1.1B and Vicuna-
33B outperforms the LLaMA-160M and Vicuna-7B pair
in terms of speedup. This enhanced performance is at-
tributable to a greater latency difference between the draft
and target models in the first pair (denoted by ¢ = 0.08 for
TinyLLaMA-1.1B and Vicuna-33B, compared to ¢ = 0.13
for LLaMA-160M and Vicuna-7B). In simpler terms, the
draft model incurs relatively lower costs, leading to a more
pronounced speedup with equivalent speculation accuracy.
Overall, OSD can achieve a maximum speedup of 2.63 x
when the token acceptance rate exceeds 0.9. Lastly, we
evaluate the speedup achieved by OSD’s distilled model on
four evaluated datasets. For the draft model, as discussed
in Section 4.1, we employ teacher sampling with forward
KD as the distillation method, as detailed in Table 3. The
results indicate that our OSD can yield a speedup ranging
from 1.42x to 2.17 x across the four evaluated datasets.

5.5. Qualitative Analysis

In this section, we analyze how OSD enhances the token
acceptance rate, and which tokens the draft model acquires
across varying query distributions.

Table 3. Measured intern token latency (ms) and speedup on four
datasets. 1.1B: TinyLLaMA-1.1B. 33B: Vicuna-33B. 160M:
Vicuna-160M. 7B: Vicuna-7B.

Dataset Spider Gsm8k Alpaca- Code- Chatbot-
Finance Python Arena
(1.1B, 33B) 23.53 27.40 26.53 30.12 3352
Time (Speedup) (2.17 x) (1.89 x) (1.92 x) (1.69 x) (1.51x)
(160M, 7B) 8.12 8.83 10.41 11.44 1.9
Time (Speedup) (1.63x) (1.60x) (1.47x) (1.42x) (1.36x)

High-frequency tokens precision and recall. In the exper-
iment on the Spider dataset, (LLaMA-160M draft, Vicuna-
7B target). We identify the top 100 tokens most frequently
generated by the target model, which account for 72.2% of
all appearances, following a power-law distribution. Fig-
ure 7 shows a marked improvement in both accuracy and
recall of these tokens after distillation.

Tokens learned across different datasets We analyze the
top 10 tokens with the most pronounced accuracy and recall
improvements across various datasets, focusing on the 100
most frequent tokens to understand the draft model’s learn-
ing trends. As detailed in Table 6, the improved tokens align
with the underlying data distribution. For example, in the
Spider SQL dataset, tokens like SELECT and WHERE have
notably higher acceptance rates post-distillation. These pat-
terns highlight the draft model’s ability to adapt and predict
tokens consistent with the data distribution.

5.6. OSD and Medusa

Next, we demonstrate the application of OSD to Medusa.
By frequently updating the weights of the linear layer dur-
ing non-peak hours, OSD can further improve the token
acceptance rate on the given dataset and achieve further
speedup.

Medusa (Cai et al., 2024) differs from standard specula-
tive decoding in two key ways: (1) Standard speculative
decoding proposes a single token for each position, whereas
Medusa proposes multiple token candidates for each posi-
tion. (2) Standard speculative decoding uses a small, in-
dependent draft model to propose tokens, while Medusa
employs additional heads—Tlinear layers that take the last
hidden states as input and output the token probability dis-
tribution for each position.

In Table 4, we compare the performance of Medusa-v1 com-
bined with OSD. By fine-tuning the additional heads in
Medusa on the Spider dataset, this combination achieves
a 2.01x speedup, compared to the 1.34x improvement
observed with Medusa alone. Notably, when standard
speculative decoding with online updates is applied to the
Spider dataset, it delivers even greater performance gains,
achieving a 2.17x speedup compared to the 2.01 x enhance-
ment provided by Medusa with OSD. On the Arena dataset,
Medusa-v1 generally performs well on the chat dataset since

Online Speculative Decoding

_ —— Chinese —— Spanish —— Russian _

0.74 Japanese —— Portuguese]
0.6+ A PN AN ¥ AN
2 VA%
S o5 P ALY
=0 QYRINPOR
0.4
Language
0.3 guag
0.0 0.5 1.0 1.5

of Records (K)

—— Business —— Computer —— Game __

[Eduation ~—— Social
0.91- : : W
s
S o.7 N
0.6
Topic
0.5 P
0 1 2 3 4 5

of Records (K)

Figure 5. Chatbot Arena Conversations clustered by language and topic.

Business_Corporate Computers and Technology

Education

Games Social Networking and Messaging

0.9 0.9 0.9

0.8 4 0.8

0.9 0.9

0.8

: j - o .} : Ty Y § 0.8 4 . 0.8 ad th \ fia g .
Eor PIUNIRREN | o Lol . LRI o7 AW ff“**‘“MMNW‘&‘

0.6 ~ Single Draft Model 0.6 - Single Draft Model | 0.6
Separate Draft Models Separate Drat Models
0.5 0.5 05

I

- Single Draft Model 0.6
Separate Draft Models

- Single Draft Model 0.6
Separate Draft Models

+ single Draft Model
Separate Draft Models

4 4

2 3 3
of Records (K) # of Records (K)

2 3
of Records (K)

0.5 0.5

4 4 4

3 3
of Records (K) # of Records (K)

Figure 6. For the single draft model, we send all queries to the same draft model and measure the token acceptance rate based on query
topics. For multiple draft models, we employ a customized draft model for each query based on the topic.

Original A Distilled Original

A Distilled
A

10{A A A AALTA 1.0 “ 'Y AK A
A
A

cool A AL Mg g 0s A&?ﬂ AAA:*‘AAA“A‘ T
2 0s AL * AL AAA T o6 Iy 'y A A adak
2 A § S ‘MM

g 04 A A, &oa A Ao M
PP A AL 02 y A 4 AX A

0.0 A A K 0.0 A A A

0 20 a0 60 80 100 0 20 a0 60 80 100

Top 100 frequent tokens Top 100 frequent tokens

Figure 7. Precision and recall of high-frequency tokens. The x-axis
shows token ratings based on occurrence. For instance, token 1
appears most frequently in answers. Precision = # of times token ¢
is accepted / # of times token ¢ is proposed. Recall = # of times
token ¢ is accepted / # of times token ¢ appears in the final answer.

the extra heads are originally trained on the ShareGPT (sha,
2023) dataset, showcasing a 2.03x speedup without any
updates. In contrast, the combination of standard specula-
tive decoding with OSD yields worse results than vanilla
Medusa-v1, with only a 1.51 x speedup. Nevertheless, OSD
still manages to enhance the performance of Medusa-v1 by
0.35x. This underscores OSD’s potential in further optimiz-
ing the tree-style speculative decoding method.

Table 4. OSD and Medusa

‘ Spider ‘ Chatbot Arena ‘ Extra Parameters (B)

Dataset

Medusa-7B 1.34x 2.03x 0.44
Medusa-7B + OSD | 2.01x 2.38x 0.44
Draft model + OSD | 2.17x 1.51x 0.16

6. Conclusion

Speculative decoding’s efficiently hinges on the draft
model’s approximation to the target model. We introduce
an online speculative method that continuously enhances
the draft model based on varying data distributions. Ex-
periments on both synthetic and real data demonstrate that
online speculative decoding swiftly adapts to new data dis-
tributions, significantly enhancing token acceptance rate.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgments

Z.J. Deng was supported by NSF of China (No.
62306176), Natural Science Foundation of Shanghai
(No. 23ZR1428700), Key R&D Program of Shandong
Province, China (2023CXGC010112), and CCF-Baichuan-
Ebtech Foundation Model Fund. This work is sup-
ported in part by the National Science Foundation through
grants CCF-2238346, IIS-1955488, 11S-2027575, ARO
WO11INF2110339, ONR N00014-21-1-2724, and DOE
award DE-SC0016260, DE-SC0021982.

References

Huggingface transformers, 2023. URL https:
//huggingface.co/docs/transformers/
en/index.

Sharegpt, 2023. URL https://huggingface.
co/datasets/Aeala/ShareGPT_Vicuna_
unfiltered.

Agarwal, R., Vieillard, N., Stanczyk, P., Ramos, S., Geist,
M., and Bachem, O. Gkd: Generalized knowledge distilla-
tion for auto-regressive sequence models. arXiv preprint
arXiv:2306.13649, 2023.

Bharti, G. gbharti/finance-alpaca, 2023. URL

https://huggingface.co/datasets/

gbharti/finance—alpaca. Accessed: 2023-

09-17.

https://huggingface.co/docs/transformers/en/index
https://huggingface.co/docs/transformers/en/index
https://huggingface.co/docs/transformers/en/index
https://huggingface.co/datasets/Aeala/ShareGPT_ Vicuna_unfiltered
https://huggingface.co/datasets/Aeala/ShareGPT_ Vicuna_unfiltered
https://huggingface.co/datasets/Aeala/ShareGPT_ Vicuna_unfiltered
https://huggingface.co/datasets/gbharti/finance-alpaca
https://huggingface.co/datasets/gbharti/finance-alpaca

Online Speculative Decoding

Cai, T., Li, Y., Geng, Z., Peng, H., and Dao, T. Medusa:
Simple framework for accelerating 1lm generation with
multiple decoding heads. https://github.com/
FasterDecoding/Medusa, 2023.

Cai, T., Li, Y., Geng, Z., Peng, H., Lee, J. D., Chen, D.,
and Dao, T. Medusa: Simple llm inference acceleration
framework with multiple decoding heads. arXiv preprint
arXiv:2401.10774, 2024.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre,
L., and Jumper, J. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023a.

Chen, Z., Yang, X., Lin, J., Sun, C., Huang, J., and Chang,
K. C.-C. Cascade speculative drafting for even faster llm
inference. arXiv preprint arXiv:2312.11462, 2023b.

Chiang, W.-L., Li, Z., Lin, Z., Sheng, Y., Wu, Z., Zhang,
H., Zheng, L., Zhuang, S., Zhuang, Y., Gonzalez, J. E.,
Stoica, I., and Xing, E. P. Vicuna: An open-source
chatbot impressing gpt-4 with 90%* chatgpt quality,
March 2023. URL https://lmsys.org/blog/
2023-03-30-vicuna/.

Chung, H. W.,, Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, E., Wang, X., Dehghani, M., Brahma,
S., et al. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416, 2022.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

Gerganov, G. llama.cpp, 2023. URL https://github.

com/ggerganov/1llama.cpp. Accessed: 2023-11-
22.

Gu, Y., Dong, L., Wei, F., and Huang, M. Knowledge
distillation of large language models. arXiv preprint
arXiv:2306.08543, 2023.

He, R., Sun, S., Yang, J., Bai, S., and Qi, X. Knowledge
distillation as efficient pre-training: Faster convergence,
higher data-efficiency, and better transferability. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 9161-9171, 2022.

He, Z., Zhong, Z., Cai, T., Lee, J. D., and He, D. Rest:
Retrieval-based speculative decoding. arXiv preprint
arXiv:2311.08252, 2023.

Hinton, G., Vinyals, O., and Dean, J.
the knowledge in a neural network.
arXiv:1503.02531, 2015.

Distilling
arXiv preprint

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., and
Brockschmidt, M. CodeSearchNet challenge: Evalu-
ating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274—
19286. PMLR, 2023.

Lin, F, Yi, H., Li, H., Yang, Y., Yu, X., Lu, G., and Xiao,
R. Bita: Bi-directional tuning for lossless acceleration in
large language models. arXiv preprint arXiv:2401.12522,
2024.

Lugmani, A. M. distilled bert topic, 2023. URL
https://huggingface.co/alimazhar-110/
website_classification. Accessed: 2023-10-
07.

Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang, Z., Wong,
R. Y. Y., Chen, Z., Arfeen, D., Abhyankar, R., and Jia,
Z. Specinfer: Accelerating generative llm serving with
speculative inference and token tree verification, 2023.

OpenAl, R. Gpt-4 technical report. arXiv, pp. 2303-08774,
2023.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer, 2020.

Spector, B. and Re, C. Accelerating llm inference
with staged speculative decoding. arXiv preprint
arXiv:2308.04623, 2023.

Stern, M., Shazeer, N., and Uszkoreit, J. Blockwise parallel
decoding for deep autoregressive models. Advances in
Neural Information Processing Systems, 31, 2018.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Roziere, B., Goyal, N., Hambro, E.,
Azhar, F,, et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almabhairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

https://github.com/FasterDecoding/Medusa
https://github.com/FasterDecoding/Medusa
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/ggerganov/llama.cpp
https://github.com/ggerganov/llama.cpp
https://huggingface.co/alimazhar-110/website_classification
https://huggingface.co/alimazhar-110/website_classification

Online Speculative Decoding

Yang, S., Huang, S., Dai, X., and Chen, J. Multi-candidate
speculative decoding. arXiv preprint arXiv:2401.06706,
2024.

Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li,
Z., Ma, J., Li, L., Yao, Q., Roman, S., et al. Spider:
A large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task. arXiv
preprint arXiv:1809.08887, 2018.

Zhang, J., Wang, J., Li, H., Shou, L., Chen, K., Chen, G.,
and Mehrotra, S. Draft & verify: Lossless large language
model acceleration via self-speculative decoding. arXiv
preprint arXiv:2309.08168, 2023.

Zheng, L., Chiang, W.-L., Sheng, Y., Li, T., Zhuang, S., Wu,
Z.,7Zhuang, Y., Li, Z., Lin, Z., Xing, E., et al. Lmsys-chat-
Im: A large-scale real-world llm conversation dataset.
arXiv preprint arXiv:2309.11998, 2023a.

Zheng, L., Chiang, W.-L., Sheng, Y., Li, T., Zhuang, S., Wu,
Z.,Zhuang, Y., Li, Z., Lin, Z., Xing, E. P,, Gonzalez, J. E.,
Stoica, 1., and Zhang, H. Lmsys-chat-1m: A large-scale
real-world Ilm conversation dataset, 2023b.

Zhou, Y., Lyu, K., Rawat, A. S., Menon, A. K., Ros-
tamizadeh, A., Kumar, S., Kagy, J.-F., and Agarwal, R.
Distillspec: Improving speculative decoding via knowl-
edge distillation. arXiv preprint arXiv:2310.08461, 2023.

11

Online Speculative Decoding

A. Appendix
A.1. Speculative Decoding Sampling

With ¢ rising from 1 to k, speculative decoding accepts the proposal y; if u < p(y; |, y<i)/qe (yi|x, y<;) where u ~ U[0, 1];
otherwise exits. Let a denote the number of accepted tokens, which takes values in {0, . .., k}. We can sample an additional
token y, 41 from the following distribution

p(y|£c, y<a+l) ifa=k
p'(y) = { norm(max(0, (5)
P(Y|T, Y<at1) — qo(y|T, Y<at1))) otherwise

where norm(-) makes the probabilities over the vocabulary sum to 1.

Prior work has shown that the resulting samples § = {y1, ..., ¥a11} strictly follow the distribution of the target LLM
p(-|x) (Leviathan et al., 2023). We concatenate y to « and repeat the above process until meeting (EOS). Each run of the
target LLM generates a + 1 tokens with @ > 0. This ensures that at least one new token is generated even in the worst case.
The generation process can be significantly accelerated if the draft LLM better approximates the target one, particularly a is
larger for each target LLM run.

A.2. Speculative Decoding Speedup

3.5

o — k=3 (c=0.1) / a — ¢=0.01(k=5)
3 3.01 k=5 (c=0.1) 24 €=0.05(k=5)
ja} —— k=7 (c=0.1) @ — ¢=0.1(k=5)
32.57 —— k=9 (c=0.1) / o 34— c=0.2(k=5)
0) T 7
5 2.0 e | ;
9] / 5 ; !
*g 1.5 g : /
£1.0 = £ —
w w —

0.5t —— :

0.2 04 06 0.8 0.2 04 06 0.8
Alpha Alpha

Figure 8. Speculative decoding speedups for different as. c: time ratio for a single run between the draft and target model. k: propose
length. For small «, speculative decoding may slow down inference (speedup < 1). The connection between speedup and « is superlinear;
doubling the acceptance yields over 2 x speedup.

As proved in (Leviathan et al., 2023), compared with standard decoding, the expected improvement factor for offline
speculative decoding is m Let the time taken for a single run of M,, be T'. Define c, the cost coefficient, as
the ratio of the time taken for a single run of M, to that of M,,. Each execution of lines 7 to 8 takes T'ck + T and, on

average, yields 1=2

%T In contrast, the time to produce a single token using standard decoding is 7". Hence, the wallclock time

1—aFt?
(1—a)(ck+1)"

1
tokens. As a result, the average time to produce one token using speculative decoding is given by

reduction of offline speculative decoding can be described as

A.3. Latency Analysis

Suppose OSD can improve the token acceptance rate from «; to ag and 7' is the generation time for standard decoding.
Based on Equation 1, this improvement leads to a decrease in the average generation time for each token, transitioning

l—as™ 1o, _ ltostad+..taob

from (CkH)(l)7 o ((Hl)(l 22) 7 Consequently, this results in a speedup factor of =T 2 2
a1+a1+...+o¢1

1- O‘ — k+1 1—ao
compared to ‘standard speculatwe decoding.

In the aforementioned analysis, we omitted the additional latency due to updating the smaller model for the following
reasons: (1) As illustrated subsequently, the additional computational cost (FLOPs) from the update remains marginal
when juxtaposed with the computational demands of running the larger model. (2) Updates are periodic, during times of
moderate request loads, the latency for serving individual requests remains largely unaffected. Additionally, given that the
update operation for the smaller model is considerably less resource-intensive than inference, the associated latency might
be seamlessly masked, rendering it virtually imperceptible. Lastly, the processes of updating and inference can even be
executed concurrently on separate devices.

12

Online Speculative Decoding

A.4. Flops Analysis

The FLOPs required to update the draft model are significantly fewer than those needed for inference on a large model.
Denote L as the average length of the generated sequence. For each verification, the draft model suggests k& tokens. The
expected length for a single run of the target LLM, denoted as a, can be calculated using Equation 1. Therefore, OSD
undergoes the verification process % times, with each time verifying k + 1 tokens. We use F; f,,q4 to represent the arithmetic
operations required by a singular forward run of the draft model for each token, and F}, r,,q stands for the FLOPs needed for
a single forward run of the target model per token. Therefore, the computational demand (in FLOPs) for the draft and teacher
models to handle one request can be expressed as: FLOPs(draft) = £ xkx F t,,q, FLOPs(target) = £ x (k+1) x F}, ywa-
Let’s consider the FLOPs required to update the student model per token as Fiy,,q. The cumulative FLOPs necessary to
process I requests is given by:
LI

- X [k X Fypwa + (k+1) X Fypyal +1 X L X Foppa-

Based on the findings of (Kaplan et al., 2020), training is approximately three times costlier than inference. This translates
to roughly 6 FLOPs per parameter for training on a single token and 2 FLOPs per parameter for inferring on one token.
Thus, we can simplify the total FLOPs expression to:

LI

o [(k+3a) X Fypwa + (k+1) X Fyua - 6)

The proportion of FLOPs needed to run the target model to that of the draft model is given by:

(k' + 1) X prwd
(k + 3(1) X quwd.

For the two model pairs evaluated, assuming an average of 5 proposed tokens per run: (1) (LLaMA-160M, Vicuna7B) with

an average acceptance rate of 0.71, the ratio is approximately % = 18.75. (2) (T5-small 80M, Flan-T5-XL 3B),

with an average acceptance rate of 0.76, the ratio is roughly % =12.6.

In practical systems, the FLOPs required for inference are significantly below the machine’s capacity. Consider the
LMSYS-Chat-1M (Zheng et al., 2023b). It comprises traces spanning 125 days with 1000,000 requests, averaging less
than 2,000 tokens per request (including both prompts and responses). When serving a 30B model with 8 A100 GPUs, the
FLOPs consumed per second can be estimated as (Still, we estimate 2 FLOPs per token per parameter):

2000 x 1000, 000 y

125 x 24 x 3600
On the other hand, 8 A100 GPUs offer a combined capacity of 8 x 312 TFLOPs, and the computational utilization is notably
low. While Arena (the platform that generates LMSYS-Chat-1M) may not be the most efficient and might lack substantial

traffic, it’s the only publicly accessible LLM service trace. Even after amplifying the load multiple times, based on the above
calculations, the computation efficiency remains limited.

30 x 10° x 2 = 5.5 x 10° FLOPs or 5.5 GFLOPs

A.5. Bandwidth Analysis

LLM inference is memory bandwidth bound. When the input/output length is short, the memory operations are dominated by
loading model parameters from GPU HBM to SRAM. We analyze the memory loading requirements of different inference
techniques below (batch_size = 1). We first introduce the notations used in the analysis. M/m: The total bytes of the
target/draft model. L: inference length. a;/as: The expected generation length for a single run of the target LLM of Vanilla
speculative decoding(VSD)/OSD. I: the interval to update the draft model. On a high level, % * M represents the bytes
required to load the target model, while L * m indicates the bytes needed for loading the draft model. For OSD, m % £

T
denotes the bytes necessary to load the draft model for updates.

We applied Formula 1 from our paper to calculate a1, as, using the token acceptance rates for standard vanilla speculative
decoding and OSD on the Spider dataset with the LLaMA-160M and Vicuna-7B models as the draft and target models,
respectively. This resulted in a; = 1.4 and ay = 3.4. The memory sizes are M = 14GB for the target model and m =
0.32GB for the draft model. For OSD, the draft model is updated every 8 iterations (/=8). Using these values, we have
estimated the memory loading bytes, presented in the right column.

13

Online Speculative Decoding

Table 5. Bandwidth analysis. Original means inference without speculative decoding. VSD, vanilla Speculative Decoding. OSD, online
speculative decoding.

Memory Loading in bytes of

Memory Loading Formula | ; ;..\ ra_160M, Vicuna-7B) pair, L=128, a1=1.4, =34

Original LxM 1792 GB
VSD LsM+Lxm 1320 GB
OSD | LsxM+Lsxm+mxk 573 GB

—— Alpha on gsm8k Alpha on Alpaca-finance
0.80
Update with Update with
0.754 Gsm8K Alpaca-finance
© 0.70
=3
<€ 0.651
0.60 4
Mix of two
0.55+— T T T r
0 1 2 3 4

of Records (K)

Figure 9. Mix of distributions.

A.6. Data Mix

Moreover, there is a question of whether the draft model, once adapted to the new distribution, might lose its prior knowledge.
To probe this, we conducted an experiment mixing 2k prompts each from the Gsm8k and Alpaca-finance datasets. During
online serving, for the initial 2k requests, we only update the model based on data from the Gsm8k dataset. For the
subsequent half of the requests, we restrict updates solely to data from the Alpaca-finance dataset. We then provide the
average token acceptance rates for all requests, segmented by their data source (Gsm8k versus Alpaca-finance). As depicted
in Figure 9, the token acceptance rate for Gsm8k increases as the draft model is exposed to more data. Conversely, the
acceptance rate («) for the Alpaca-finance dataset remains consistent. This is anticipated since we only update the draft
model using Gsm8k data. In the latter half of the dataset, the token acceptance rate for the Alpaca-finance dataset also
shows an uptrend. Intriguingly, the rate for Gsm8k remains consistent, suggesting that the draft model retains its learned
knowledge without showing signs of forgetting.

A.7. Real Workloads

Arena Dataset For expedited experimental evaluation, we randomly sample a subset with 10K records from LMSYS-Chat-
IM (Zheng et al., 2023b), a comprehensive real-world LLM conversation dataset. This dataset encompasses interactions
with 25 models spanning from April to August 2023 and features conversations in over 150 languages. For all experiments,
we only pick conversations for Vicuna models.

A.8. Various Degrees of Distribution Shifts

In this section, we experimented to evaluate if OSD can maintain a high token acceptance rate amidst varying degrees
of distribution shifts. We conduct simulations to replicate both abrupt and gradual distribution changes. In the abrupt
shift scenario, we merge the Gsm8k and Spider datasets, each containing 2,000 records, without any transitional phase.
Conversely, for gradual distribution shift, we introduce a probabilistic blend of the two datasets. Here, the likelihood of a
record originating from the Gsm8k dataset decreases linearly from 100% to 0% as we progress from the first to the 4,000th
record, while the probability of it coming from the Spider dataset increases correspondingly. This results in a smooth
transition from Gsm8k to Spider data.

We measure the token acceptance rate by averaging it over the most recent 100 records. Our findings show a notable dip in
the token acceptance rate at the juncture of the two datasets (around the 2,000th record) for the abrupt shift case. However,
the acceptance rate quickly recovers. In the case of the gradual shift, the decline in the token acceptance rate is much less

14

Online Speculative Decoding

—8— Portuguese Japanese —&— Spanish —8— Computer =—@=— Social Education
—8— Chinese —@— Russian —8— Business —8— Game
o 9751 o
o = 0.50 4
< 0.501 =
5 5
.25 1
£ 0.25 g 025
a W o %s._.__gd
T T T T T 0.00 T T T T

0 2 4 6 8 6 2 4 6 8
Normalized Timestamp Normalized Timestamp
Figure 10. We divided the time into ten equal segments. For each segment, the percentage indicates the share of queries relative to the
total within that specific interval. The left image graphically represents the evolution of query distribution among various languages over
these periods. In contrast, the right image categorizes these queries by topic, showcasing their topical distribution varying over time.
discernible, indicating that OSD can indeed effectively adapt to progressive changes in the data distribution by consistently
maintaining a high token acceptance rate.

Gsm8k Spider
0.8
—— smooth sharp
M
g ey S
b
2
2 0.6
<
0.5
0.4
0 1 2 3 4

of Records (K)

Figure 11. Vary degrees of distribution shift.

Table 6. Top 15 tokens with the most recall/precision improvement across datasets. We ignore _ before tokens, which represents space in
the LLaMA tokenizer.

Dataset | Spider

AV, SELECT, first, (EOS),

| Gsm8k | Alpaca-Finance

Code-Python

Tokens with the great- (EOS), >>, +, To, <<, 1, Here, (, : provide, ”*, (, Here, python, ’, how,

est precision increase template, SUM, G, COUNT,
\n, city, WHERE, ’;, (, IST,

id

this, =, %, know, are, We, cal-
culate, be, The, have

depends, However, goals,
amount, 3, there, The, \n,
personal, will

doc, snippet, import, based,
{, Python, This, :, you

Tokens with the great-
est recall increase

SELECT, ¥, FROM, (, IST,
*), \n, COUNT, G, first,
WHERE, (EOS), IN, ;,

start, >>, <<, +, find, how,
we, =, fore, To, so, \, (EOS),
then, let

general, 1, several, This, de-
pends, Here, provide, How-
ever, goals, over, (, If,

Here, This, snippet, ™, °,
how, python, (, takes, Python,
you, doc, an, import, def

MAX, ’; amount, it, can

Table 7. Measured execution time/speedup and theoretical execution time/speedup. Original means inference without speculative decoding.
The numbers are measured on a single A100-80G with batch size = 1 and draft token length k& = 8.

| Original | OSD,a =05 | OSD, a =06 | OSD,a=0.7 | OSD,a =038 | OSD, a=0.9
Vicuna-33B + TinyLLaMA-1.1B (¢ = 0.08)
Measured time in ms/token (speedup) | 51.09 | 39.90 (1.28 x) | 35.48 (1.44 x) | 30.96 (1.65 x) | 2542 (2.01 x) | 19.43 (2.63 x)
Theoretical time in ms/token (speedup) | 51.09 | 39.00 (1.31 x) | 32.12(1.59 x) | 26.07 (1.96 x) | 20.77 (2.46 x) | 1638 (3.12 x)
Vicuna-7B + LLaMA-160M (c = 0.13)
Measured time in ms/token (speedup) | 13.21 | 13.85 (0.95x) | 11.39 (1.17x) | 10.20 (1.3x) | 7.84 (1.68%) | 5.17 (2.55x%)
Theoretical time in ms/token (speedup) | 13.21 | 13.48(0.98 x) | 10,92 (1.21 x) | 8.41(1.57x) | 623 (2.12x) | 4.40 (3.00%)

A.9. Theoretical and Measured Latency

In this section, we compare the theoretical speedup calculated with Formula 5 and measured speedup. As shown in Table 7,
the observed speedup closely aligns with the theoretical expectations. Slow sampling can be the reason for the discrepancies.
Speculative decoding necessitates additional sampling steps, as the draft model generates preliminary tokens. For optimal
performance, the sampling process must be expedited. Moreover, to attain significant speedup, the execution time ratio
(denoted as c) between the draft and target models should be minimized. However, in practical implementations, the overall
execution time for the draft model is disproportionately affected by kernel launch overheads and Python-related delays,
resulting in slower-than-anticipated performance.

15

Online Speculative Decoding

A.9.1. GENERATION LENGTH AND SPEEDUP

Generation length ‘ a=05]a=06 | a=07]|a=08| a=09

16 1.22 1.37 1.52 2.01 2.40
32 1.23 1.41 1.52 2.05 242
64 1.23 1.41 1.53 2.05 243
128 1.24 1.42 1.53 2.05 243
256 1.25 1.45 1.54 2.07 2.46
512 1.25 1.48 1.61 2.12 2.57
1024 1.27 1.52 1.66 2.17 2.56
2048 1.29 1.55 1.73 2.24 2.70

Table 8. Generation length and measure speedup across different token acceptance rates.

In this section, we test the effect of generation length on measured speedup, we conduct the following experiments in
Ilama.cpp. With our implementation of OSD, we fix the batch size at 1, prefix length at 512, draft token length at 5. We
vary the generation length from 16 to 2048, and evaluate speedup at different token acceptance rate alpha. The teacher and
student models used are Vicuna-7B-v1.5 and Llama-160M respectively.

From the Table 9, we see that the measured speedup does increase at each token acceptance rate as generation length
increases from 16 to 2048. This is because, at greater generation lengths, each decoding step executed by the teacher model
becomes increasingly more memory-intensive. Employing a student model can thus reduce the time ratio c in equation (1),
representing a single run comparison between the teacher and student models, thereby achieving a greater speedup. However,
the data presented in the table reveals that the impact of extending generation length on speedup is not as pronounced as the
effect of enhancing the token acceptance rate. This suggests that improvements in token acceptance rate are more effective
in achieving significant speedups than simply increasing generation length.

A.9.2. DRAFT MODEL EXECUTION TIME

To verify that when the draft model is small, updating the draft model (including the forward and backward pass) is much less
expensive than inference on the target model, we measure the execution time of updating the draft model and the large model
inference time (prompt_len=64, generation_len=128) on a single A100-80G with Huggingface Transformer library (hft,
2023). Assuming we update the draft model every eight iterations (k=8), the forward execution time is 24.96/0.12 = 208
times longer than the time spent updating the draft model for the (160M, 7B) pair, and 55.12/0.67 = 82.3 times longer for
the (1.1B, 33B) pair.

Draft forward +

Model Pairs backward + update time (s) Target forward time (s) of | Target forward time (s) of k iterations (k=8) ‘ Draft model update time (s) every k iterations (k=8) ‘
(160M, 7B) 0.12 3.12 24.96 0.12
(1.1B, 33B) 0.67 6.89 55.12 0.67

Table 9. Generation length and measure speedup across different token acceptance rates.

16

