
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NETARENA: DYNAMICALLY GENERATED LLM BENCH-
MARKS FOR NETWORK APPLICATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

As large language models (LLMs) expand into high-stakes domains like network
system operations, evaluating their real-world reliability becomes increasingly
critical. However, existing benchmarks risk contamination due to static design,
show high statistical variance from limited dataset size, and fail to reflect the
complexity of production environments. We introduce NETARENA, a dynamic
benchmark generation framework for network applications. NETARENA features a
novel abstraction and unified interface that generalizes across applications, effec-
tively addressing the challenges of dynamic benchmarking posed by the diversity
of network tasks. At runtime, users can generate unlimited queries on demand.
NETARENA integrates with network emulators to provide execution-time feedback
on correctness, safety, and latency. We demonstrate NETARENA on three repre-
sentative applications and find that (1) it significantly improve statistical reliability
among LLM agents (confidence interval overlap reduced from 85% to 0), (2) agents
achieve only 13–38% average performance (as low as 3%) for large-scale, realistic
queries, (3) it reveals finer-grained behaviors missed by static, correctness-only
benchmarks. NETARENA also enables use cases such as SFT and RL fine-tuning on
network system tasks. Code is available anonymously at https://anonymous.
4open.science/r/netarena_iclr2026-BE94/README.md.

1 INTRODUCTION

While LLMs (OpenAI, 2024; Google, 2024a; Meta, 2024; Yang et al., 2024) have rapidly advanced
agent capabilities across general tasks (OpenAI, 2025; Sager et al., 2025), many existing benchmarks
focus on simplified settings that do not fully capture the demands of real-world deployments. Network
and system applications offer a compelling alternative: they are high-stakes and require LLMs to
reason under constraints like partial observability and operational risk. From data center capacity
planning (Mani et al., 2023) to root cause analysis (Chen et al., 2024) and policy synthesis (Wang
et al., 2024a; Sharma & Yegneswaran, 2023), these tasks require not just correctness, but robustness
and efficiency, making them an ideal stress test for LLM agents.

Despite the growing interest and advancements, rigorously evaluating LLM agents in network and
systems remains an open challenge. These tasks often involve large-scale infrastructure with complex
domain-specific logic, but current benchmarks rely on manually curated queries and ground truths
by domain experts. This labor-intensive process has resulted in fewer than 300 queries in recent
benchmarks (Mani et al., 2023; Chen et al., 2025) even after months of effort. Such small, static
benchmarks introduce critical limitations: they are prone to statistical bias, vulnerable to data
contamination (Zhu et al., 2023), and raising concerns about generalizability. For instance, an agent
that succeeds on one task may fail entirely when the topology, location, or context shifts. Moreover,
static datasets struggle to surface rare but important edge cases, which are crucial for robust evaluation
yet infeasible to enumerate manually.

A natural way to address above challenges is to dynamically generate queries within the benchmark,
as explored in recent work (Zhu et al., 2023; Zhang et al., 2024c; Yu et al., 2024). These methods
typically construct symbolic graphs to synthesize diverse problem instances, focusing on domains
such as arithmetic, logic, and program synthesis. However, existing dynamic generation methods
do not generalize well to network and system applications. First, unlike well-defined mathematical
tasks, networking problems often lack a deterministic structure, making the traditional synthesis
of queries and ground truths inadequate (Zhu et al., 2023; Zhang et al., 2024c; Yu et al., 2024).

1

https://anonymous.4open.science/r/netarena_iclr2026-BE94/README.md
https://anonymous.4open.science/r/netarena_iclr2026-BE94/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Actions executed in emulation

LLM under
evaluation

⋯

Initial state (𝒔𝟎 ∈ 𝓢)

Action space (𝓐): Atomic
operations on states

Generated query: Natural
language task description

Next action
generated by LLM

𝑎"∗ ∈ 𝒜

Final state

Target state (𝒔𝑻 ∈ 𝓢):
Ground-truth for the task

𝑎!∗ 𝑎#∗ 𝑎$∗ 𝑎%	∗

Safety check: States are
checked against constraints

Ex.: “Host h4 cannot be
reached. Can you fix it?”

Ex.: “probing (ping, trace, …),
changing config, …”

Ex.: Faulty network state

Ex.: “existing links must not be disrupted,
no root privileges, ...”

Ex.: Healthy network state

Correct?
(𝒔𝒏 ≡ 𝒔𝑻)

𝑠&

Safe?

𝑠'𝑠(𝑠) 𝑠*𝑠+

Router

h2

h1

h4

h3

╳

Router

h2

h1

h4

h3

Execution
feedback

Query templates: Natural
language task templates

Ex.: “Host {{ host }} cannot be
reached. Can you fix it?”

Input configuration: User-
provided benchmark params.

Ex.: “task = unreachable host,
hosts = {h1, h2, h3, h4}, ...”

&

Figure 1: NETARENA introduces a unified state-action abstraction for network and system
applications, integrating with real-world emulators to generate dynamic queries and ground
truths, and enabling automated correctness and safety evaluation.

Troubleshooting routing misconfigurations, for instance, is rarely a linear, one-step process. Agents
must engage in multi-turn interaction, collecting diagnostics, identifying root causes, and issuing
fixes in context. Second, success in realistic network system tasks requires more than producing
correct outputs: agents must avoid harmful side effects. Solutions must respect domain-specific
constraints such as safety and latency, which synthetic data often fail to capture. For example, in a
network with thousands of hosts, a misconfigured command can disable healthy paths and nodes,
leading to cascading disruptions and service outages. Every command execution demands careful
reasoning, and changes are only acceptable when both necessary and precisely scoped.

In this paper, we present NETARENA, a novel framework for dynamic benchmark generation for
real-world network applications (Figure 1). NETARENA introduces a new evaluation paradigm,
deploying agents in interactive, executable system environments to assess their capabilities through
realistic, dynamically generated queries. Our key technical contributions are as follows:

• We define a unified interface for abstracting network applications based on explicit state and action
spaces. This formalism supports dynamic query and ground truth generation (through executable
state transitions), and enable controlled complexity scaling.

• By integrating with high-fidelity network emulators (e.g., Mininet (2022), Kubernetes (Google,
2024b)), NETARENA enables automatic, dynamic, and multi-turn verification on LLM-
generated actions, covering correctness, safety, and latency under deployment-like conditions.

• In NETARENA, users only need to specify high-level configurations (e.g., query count, complex-
ity, task type). NETARENA dynamically generates diverse evaluation sets through stochastic
sampling, which ensures broad coverage while reducing the risk of data contamination.

We instantiate NETARENA in three representative network applications: datacenter capacity planning,
routing misconfiguration, and microservice policy troubleshooting. We evaluate five agents based on
GPT-4o and QWen-72B models. Results on more LLMs and agents will appear on the leaderboard 1.
Our key findings are:

• Agent performance is strikingly low. Average correctness across tasks is only 24%, and even the
best model stays below 60%. Small benchmarks (<200 queries) show high variance (average cor-
rectness rises to 38%), making statistical comparisons unreliable. NETARENA enables automated

1This site shows a static, anonymized snapshot of the leaderboard for paper review: website link. The live
website is in active use and will be shared upon publication.

2

https://alphabetsoup628.github.io/netarena_leaderboard/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Benchmark Scale Correctness(95% CI) Safety/Latency Contamination Risk Generalizability
NeMoCopilot 33 94% [-] N/A High (Static) Low (Management)
AI4OpsLab 48 59% [-] N/A High (Static) Low (DevOps)
NetConfEval 3200 100% [-] N/A High (Static) Low (Configuration)

NETARENA
(Ours)

9,250
(unlimited)

44%
[0.01, 0.14]

35% / 18s Low (Dynamic) High (Management,
K8s, Routing, etc)

Table 1: NETARENA dynamically generate unlimited size of benchmarks for diverse network
applications, supports more scalable and robust evaluation than existing benchmarks.

large-scale evaluation (e.g., >4000 queries), reducing confidence interval overlap between agents
from as high as 85% to 0%, significantly improving evaluation reliability (§4.1).

• Correctness alone is insufficient. With metrics spanning correctness, safety, and latency,
NETARENA exposes tradeoffs in agents’ behavior. Some models produce correct answers that
violate system constraints and are unsafe, while others act conservatively, preserving safety but
failing to resolve issues within acceptable latency (§4.2).

• Supervised fine-tuning (SFT) behaves inconsistently. For correctness, SFT models often overfit
to the complexity of their training data, and only the model trained on data spanning all levels of
task difficulty generalizes well. For safety, the simplest-level SFT model surprisingly generalizes
best across all tasks, outperforming those trained on harder levels. With controlled variation of task
difficulty and multi-dimensional metrics, NETARENA enables such fine-grained analysis (§4.3).

Beyond evaluation, we discuss use cases for NETARENA: training reward models for on-policy
reinforcement learning, and generating targeted adversarial queries to probe model weaknesses (§5).

2 RELATED WORK

General Benchmarks for Evaluating LLMs. A growing body of work has focused on benchmarking
the reasoning and autonomy of LLM agents (Nathani et al., 2025; Chang et al., 2024; Gao et al.,
2023; Ribeiro & Lundberg, 2022; Kiela et al., 2021; Ma et al., 2021; Lambert et al., 2024; Li et al.,
2024a; 2023; Lei et al., 2023; Liang et al., 2022; Wang et al., 2024b; Yu et al., 2023; 2024; Zhong
et al., 2023; Huang et al., 2024; Hendrycks et al., 2020; 2021; Starace et al., 2025; Bogin et al.,
2024). For example, CORE-Bench (Siegel et al., 2024) aggregates reproducibility tasks from 90
papers to test agents’ ability to rerun experiments. RE-Bench (Wijk et al., 2024) compares agent
solutions on open-ended ML research tasks to those from expert engineers. MLE-Bench (Chan
et al., 2024) converts 75 Kaggle competitions into agent benchmarks for leaderboard-based ML
engineering. SWE-Bench (Jimenez et al., 2023) requires agents to resolve GitHub issues. Although
these benchmarks are valuable in their own domains, they do not capture realistic network tasks that
require deployment level reliability.

LLM Evaluation in Network and Other System Domains. In networking, LLMs have been used
to generate graph-based network code (Mani et al., 2023), synthesize configuration files (Wang et al.,
2024a), and support fault localization and remediation (Roy et al., 2024). LLMs have also been
applied to extract protocol specifications (Sharma & Yegneswaran, 2023), reproduce networking
experiments (Xiang et al., 2023; Kotaru, 2023), and evaluate system operations (Chen et al., 2025;
Jha et al., 2025). Beyond networking, AIOpsLab (Chen et al., 2025) introduces 48 tasks for assessing
agent performance in DevOps scenarios. WebVoyager (He et al., 2024) and WebArena (Zhou et al.,
2023b) benchmark LLM agents through real-world website interaction tasks, while OSWorld (Xie
et al., 2024) evaluates 369 operating system tasks. The Berkeley Function-Calling Leaderboard
(BFCL) (Berkeley, 2025) measures agents’ ability to correctly invoke APIs. Existing benchmarks in
these domains are static and rely on expert-driven manual curation, which constrains their scalability
and raises significant concerns regarding data contamination (detailed comparisons in Table 1).

Dynamic Benchmark Generation. A line of work aims to reduce benchmark contamination
risk (Balloccu et al., 2024; Bender et al., 2021; Chen et al., 2021; Deng et al., 2023; Dong et al., 2024;
Golchin & Surdeanu, 2023; Jacovi et al., 2023; Jiang et al., 2024; Li et al., 2024b; Li, 2023; Li &
Flanigan, 2024; Oren et al., 2023; Roberts et al., 2023; Sainz et al., 2023; Shi et al., 2023; Zhang
et al., 2024a; Zhou et al., 2023a; Li et al., 2025; Sun et al., 2024; Zhang et al., 2024c). DyVal (Zhu
et al., 2023) and DyVal-2 (Zhu et al., 2024) introduces agents to generate and judge cognitively
diverse variations of reasoning tasks. KIEval (Yu et al., 2024) dynamically conducts multi-turn

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Datacenter network topology

Add 2 new Switches and
determine their optimal
placement to balance
bandwidth across Chassis.

Here is the solution
to implement it.

Network engineer

– Does code have
any safety issues?
– How to verify the
results without
direct deployment?

LLM-based agent

?

Chassis

Switch

Port

Rack

(a) Constructive: datacenter capacity planning

Try this command:
Router

r0

Host h0

Host h1

Host h2

Host h3

Host h4

Host h5

Routing network topology

h1 cannot reach h4. Can you
help me fix the issue?

Network engineer

LLM-based agent

Sorry! Try this:

It didn’t work. Now h1 to h3
is broken.

It still doesn’t work.
How many more?

?

(b) Reactive: routing misconfiguration
Figure 2: Real-world network application examples.

knowledge-based interactions. LatestEval (Li et al., 2024b) constructs test sets from freshly published
material to avoid overlap with model pretraining. Dysca (Zhang et al., 2024b) dynamically evaluating
Vision LLMs by leveraging synthesis images. These dynamic benchmarks focus on general reasoning
tasks, but are difficult to adapt to networking, where ground truth depends on system execution and
cannot be reliably auto-generated.

3 NETARENA

In this section, we summarize two representative network tasks that can potentially be automated via
LLM-based agents, present a unified pipeline for dynamic query and ground truth generation, and
describe how NETARENA automatically verifies each step of an agent’s output (Figure 1).

3.1 LLM-BASED NETWORK APPLICATION TASKS

Real-world network applications require distinct forms of interaction between LLM agents and the
task environment. We highlight two representative classes of these tasks:

• Constructive tasks require structured solutions to well-specified queries. These resemble “white-
box” settings where the query expresses a clear intent, and agents must generate a policy update
that fulfills that intent. In such cases, the LLM agent modify the current network state into a target
state using interpretable operations. For example, in datacenter capacity planning (Figure 2a),
users may request to find the optimal placement for new switches. The agent must synthesize a
valid solution by composing various operations (e.g., add, rank, update). Although these tasks
have deterministic outcomes, verifying correctness is challenging. It requires operational checks
to ensure the solution adheres to policy constraints (e.g., the bandwidth must be over a minimum
threshold). Appendix B.3 describes a full example.

• Reactive tasks involve diagnosing faults and issuing repairs in under-specified, evolving envi-
ronments. These resemble “black-box” settings, where the query specifies the problem but it is
unclear how to fix it. In such cases, the LLM agent must iteratively observe, hypothesize, and act
to identify the correct solution. For example, in a routing misconfiguration task (Figure 2b), users
may state, “this link is down, help me fix it.” The agent must perform multiple steps of information
gathering and action, such as inspecting interface states, identifying missing routes, and applying
targeted fixes. Since these tasks involve multi-turn interaction, evaluation cannot rely on predefined
solutions but must assess whether the intended outcome (e.g., restored connectivity) is achieved
without introducing new risks at each turn. Appendix C.3 provides a detailed example.

3.2 A UNIFIED ABSTRACTION FOR GENERATING NETWORK BENCHMARKS

Above real-world network application tasks go beyond static input-output matching, making scalable
evaluation far more complex. Effective benchmarking requires principled task modeling that enables
systematic generation of queries and ground truths. To address this, we define a unified pipeline with
a general abstraction that consistently generates diverse queries and ground truths across applications
under a single evaluation strategy.

State Transition Process. While network applications differ in detailed objectives, they often share
a foundational structure: they operate over an underlying network/system topology (graph), and each

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

step of the interaction involves analyzing or modifying the state of this topology. Each application’s
task objective can be modeled as a finite state transition system (S,A, E), where S is the set of
system states, A the set of atomic action functions, and E the application-specific execution function.
Each action at ∈ A is parameterized by task-specific operands θt and represented as at(θt).

A benchmark query defines an execution episode that begins from an initial state s0 ∈ S and applies
a sequence of T such parameterized actions {a0(θ0), a1(θ1), . . . , aT−1(θT−1)}:

st+1 = E(st, at(θt)), for t = 0, . . . , T − 1 (1)
To instantiate a new application in NETARENA, developers only need to define the state space S
(e.g., a routing topology with connectivity status) and the action space A (e.g., IP(u) indicating a
link-level IP error, where u is the operand link).

Query and Ground Truth Generation. We distinguish between the two types of tasks based on
how queries and their corresponding ground truths are generated:

(1) Constructive tasks. These tasks start from a known initial state sinit, and the goal is to generate a
sequence of actions that deterministically transition the system to a specified target state sT . The
ground truth is given by a predefined action sequence A∗ = {a∗0, a∗1, . . . , a∗T−1}, which yields sT
under the execution function:

E(s0,A∗) ≜
(
E(·, a∗T−1(θ

∗
T−1)) ◦ · · · ◦ E(·, a∗1(θ∗1)) ◦ E(·, a∗0(θ∗0))

)
(s0) = sT (2)

Here, Ea(θ) denotes applying a parameterized action to a state, and ◦ represents functional composition.
This captures the cumulative transformation of the system through sequential actions.

When generating a new query, NETARENA samples an initial state s0 and a set of action A∗, with each
action’s operand dynamically drawn from a large space. By executing these actions on s0, NETARENA
produces the intended goal state sT . A natural language template then converts (s0,A∗, sT) into a
prompt for the LLM agent. The agent’s correctness is evaluated by comparing its resulting state to
sT , and, when available, its predicted action sequence to A∗ to assess the agent’s reasoning process.

(2) Reactive tasks. These tasks begin from a faulty network state sfaulty, generated by applying a
hidden fault injection sequence Ainj = {ainj

0 (θinj
0), . . . , ainj

K (θinj
K)} to an originally healthy state s0:

sfaulty = E(s0,Ainj) (3)
Here, the fault injection sequence Ainj is hidden from the LLM agent.

When generating a new query, NETARENA injects errors into the original healthy state s0, producing
a faulty state sT that serves as the query input. A natural language template then describes sT , and
the LLM agent is tasked with recovering the system to s0. Unlike constructive tasks, multiple valid
recovery paths may exist for a single faulty state. Correctness is therefore judged by whether the
agent restores the system to s0, rather than by matching the specific injected action sequence Ainj.

3.3 REALISTIC AGENT EVALUATION VIA EMULATOR INTEGRATION

A key challenge in deploying LLM agents for network applications is the uncertainty of their real-
world behavior, including side effects, security risks, and inefficiencies. Testing these behaviors in
real production environments is infeasible due to risk and cost (Chkirbene et al., 2024). To address
this, NETARENA integrates directly with high-fidelity network emulators, providing controlled and
reproducible evaluation under realistic conditions with diverse system metrics.

Comprehensive Performance Metrics from Emulator Integration. We embed agent evaluation in
high-fidelity network emulators, which provide the closest deployment-like environments without
the risks of production. These emulators are widely adopted in both academia and industry (e.g.,
Google, Alibaba, etc) for testing large-scale systems. Agent actions are executed end-to-end, and
their effects are validated through emulator feedback. For instance, in a routing task, Mininet (2022)
(Test-of-Time Award at SIGCOMM 2020) can verify whether connectivity is restored and whether
new risks emerge, such as inadvertently disabling functional links. This integration forms the basis
for evaluating agents across three core performance metrics.

• Correctness. We evaluate correctness by comparing the final network state produced by the LLM
agent ŝLLM to the ground-truth state sT , defined as sT for constructive tasks and s0 for reactive
tasks. Correctness is defined as:

CORRECT(Q) = I (ŝLLM ≡ s∗T) (4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Here, ŝLLM ≡ s∗T denotes application-specific state equivalence, where equivalence may be
syntactic (e.g., graph isomorphism) or functional (e.g., restored connectivity), depending on tasks.

• Safety. Safety evaluates whether LLM-generated actions satisfy task constraints CQ, including
structural invariants (e.g., no cross-layer violations) and operational guarantees (e.g., no unautho-
rized changes, no service disruption). For multi-turn execution with states s0, s1, . . . , sT , safety is
checked at each step:

SAFEall(Q) = I
(
∀t ∈ [1, T], st = E(st−1, ât−1(θ̂t−1)) ∧ st |= CQ

)
(5)

This formulation decouples final correctness from per-step safety, enabling fine-grained evaluation
of agent behavior throughout the execution.

• Efficiency. Efficiency captures how quickly and compactly an agent completes the task. We track
how many commands the agent issues and the end-to-end latency from query issuance to task
completion. Efficient agents solve tasks with fewer commands and minimal latency, which is
especially critical in time-sensitive scenarios like failure recovery.

With this design, NETARENA dynamically generates queries via randomized sampling in each
evaluation round, reducing the risk of data contamination and ensuring agents are consistently tested
on diverse, unseen tasks. Guidance on extending NETARENA to new applications is in Appendix §A.

4 EXPERIMENTS

Setup. We create five common LLM-based agents using two base models: GPT-4o (OpenAI, 2024)
and QWen2.5-72B (Yang et al., 2024). Each model is paired with two prompting strategies: Chain-of-
Thought (CoT) (Wei et al., 2022), Few-shot (Brown et al., 2020). We also evaluate a more advanced
agent with ReAct (Yao et al., 2023) on GPT-4o.

Representative Applications. To demonstrate generality, we implement three network applications:

• Capacity Planning (CP). Agents are evaluated on structured planning tasks over a realistic data-
center topology, based on Google’s multi-layer abstraction (Mogul et al., 2020). Tasks include
estimating bandwidth and modifying device configurations, spanning 12 action types (e.g., add,
update, rank). Safety is checked by enforcing structural constraints and ensuring bandwidth
meets minimum thresholds. Latency is measured as end-to-end solution time. (Details in §B)

• Routing Misconfiguration (Routing). Agents diagnose and repair dynamic faults (e.g., broken
links or invalid forwarding rules) in Mininet (2022). This involves issuing diagnostic commands,
interpreting outputs, and applying fixes to restore connectivity. Safety checks whether modifications
improve the state without introducing new issues, and latency is measured by the number of
iterations to resolution. (Details in §C)

• Microservice Policy Deployment (K8s). Agents troubleshoot misconfigured Kubernetes network
policies in Google’s open-source microservice demo (Google, 2024b), aiming to restore valid inter-
service communication. Tasks involve identifying incorrect ports or overly restrictive rules. Safety
metric follows the Routing definition, evaluating whether changes are necessary and effective,
while latency counts the steps required for resolution. (Details in §D)

4.1 REDUCING CONFIDENCE INTERVAL OVERLAP WITH LARGER QUERY SIZE

A key advantage of NETARENA’s dynamic generation is its ability to evaluate agents on large, diverse
query sets, improving the statistical reliability of comparisons. Since correctness and safety are binary
outcomes (i.e., pass/fail per query), we compute confidence intervals using the standard error of the

mean (SEM) for a Bernoulli distribution: SEM =
√

p̂(1−p̂)
N , where p̂ is the empirical success rate

and N is the number of queries. We report 95% confidence intervals as p̂± 1.96 · SEM.

As shown in Figure 3, small query sets (CP:100, Route:150, K8s:150) produce wide error bars and
overlapping intervals, making it difficult to distinguish agent performance. For example, on CP:100,
GPT+ReAct overlaps by more than 50% with both QWen+CoT and QWen+Fewshot. Scaling to
larger query sets with NETARENA (e.g., CP:5000) eliminates this overlap, revealing GPT+ReAct as
the clear winner. Beyond accuracy, larger benchmarks also expose agents to richer task variations,
reducing overfitting and enabling more robust generalization analysis.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

GPT+ReAct GPT+Fewshot QWen+CoT QWen+Fewshot GPT+CoT

0.0 0.2 0.4 0.6 0.8 1.0
Safety Rate

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
ct

ne
ss

 R
at

e

(a) CP:100

0.0 0.2 0.4 0.6 0.8 1.0
Safety Rate

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
ct

ne
ss

 R
at

e

(b) Routing:150

0.0 0.2 0.4 0.6 0.8 1.0
Safety Rate

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
ct

ne
ss

 R
at

e

(c) K8s:150

0.0 0.2 0.4 0.6 0.8 1.0
Safety Rate

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
ct

ne
ss

 R
at

e

(d) CP:5000

0.0 0.2 0.4 0.6 0.8 1.0
Safety Rate

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
ct

ne
ss

 R
at

e

(e) Routing:2250

0.0 0.2 0.4 0.6 0.8 1.0
Safety Rate

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
ct

ne
ss

 R
at

e

(f) K8s:2000
Figure 3: Increasing query size improve statistical confidence of comparisons.

Failure Type Capacity Planning Routing Microservice Policy
Safety
Violation

LLM adds a switch with 0
connection, violating data-
center constraints.

LLM assigns incorrect IPs,
breaking existing network
connectivity.

LLM deletes a running pod,
causing immediate service
disruption.

Control
Logic Error

LLM calculates capacity at
the wrong layer; it did not
traverse the topology.

LLM misorders commands,
assigning an IP before acti-
vating the interface.

LLM uses incorrect patch,
despite examples showing
alternatives.

Operational
Error

LLM hallucinates nonexis-
tent node attributes, trigger-
ing execution failures.

LLM uses incorrect
systemctl, trying to edit
full system services.

LLM omits the namespace
in a Kubernetes command,
causing it to fail.

Table 2: Example failure types per application. Even with complete prompt context, LLMs
frequently produce incorrect outputs.
The two-dimensional graph also highlights the importance of evaluating both correctness and safety,
especially when agents have similar correctness rates. For example, on K8s:150, GPT+ReAct and
QWen+Fewshot show comparable correctness. But on K8s:2000, GPT+ReAct exhibits a noticeably
lower safety rate, making it riskier in practice.

4.2 FINE-GRAINED EVALUATION VIA COMPLEXITY-AWARE BREAKDOWN

While aggregate metrics are useful, they often hide critical weaknesses. A model may appear strong
on simple queries but fail on compositional tasks or violate safety constraints in complex scenarios. To
surface these issues, NETARENA applies complexity control during benchmark generation, annotating
each query with action types and difficulty levels (Tables 4, 5, 6 in the Appendix), enabling fine-
grained analysis of correctness, safety, and latency.

As shown in Figure 4, this breakdown reveals clear differences across applications. In datacenter
capacity planning (CP), both correctness and safety drop sharply as complexity grows, particularly
for GPT-4o+Few-shot. This reflects higher variance in complex tasks, where retrieval-style pattern
matching fails to generalize and autonomous reasoning is required. We also find that all agents
consistently struggle with add operations, which demand strict structural constraint satisfaction
when introducing new nodes.

In routing and K8s tasks, GPT-4o+Few-shot shows stronger performance in multi-turn, stateful
diagnosis. Safety analysis, however, uncovers divergent behaviors. GPT-4o agents are often too
aggressive, issuing unsafe fixes such as removing ingress+change protocol (RI+CPR)” in the K8s

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

GPT+ReAct GPT+Fewshot QWen+CoT QWen+Fewshot GPT+CoT

L1
A

L1
LI

L1
R

L1
RM

L2
RM-C

L2
RM-LI

L2
RM-R

L3
A-C

L3
A-LI

L3
A-R

20%
40%

60%
80%

(a) CP: Correctness

L1
A

L1
LI

L1
R

L1
RM

L2
RM-C

L2
RM-LI

L2
RM-R

L3
A-C

L3
A-LI

L3
A-R

20%
40%

60%
80%

(b) CP: Safety

L1
A

L1
LI

L1
R

L1
RM

L2
RM-C

L2
RM-LI

L2
RM-R

L3
A-C

L3
A-LI

L3
A-R

0s
5s

10s
15s

(c) CP: Latency

L1
DI

L1
DR

L1
DT

L1
RI

L1
WRL2

DI+DT
L2

DR+DI

L2
DR+RI

L2
DR+WR

L2
DT+WR

L2
RI+WR L3

DI+RI
L3
DI+WR

L3
DR+DT

L3
RI+DT

20%
40%

60%
80%

(d) Routing: Correctness

L1
DI

L1
DR

L1
DT

L1
RI

L1
WRL2

DI+DT
L2

DR+DI

L2
DR+RI

L2
DR+WR

L2
DT+WR

L2
RI+WR L3

DI+RI
L3
DI+WR

L3
DR+DT

L3
RI+DT

60%

80%

(e) Routing: Safety

L1
DI

L1
DR

L1
DT

L1
RI

L1
WRL2

DI+DT
L2

DR+DI

L2
DR+RI

L2
DR+WR

L2
DT+WR

L2
RI+WR L3

DI+RI
L3
DI+WR

L3
DR+DT

L3
RI+DT

4
8

12

(f) Routing: Latency

L1
RI

L1
CPR

L1
CP

L1
AE

L1
AIL2

RI+AI
L2

AI+CP

L2
AI+CPR

L2
CP+CPR

L2
RI+CP

L2
RI+CPR L3

AI+AE
L3
RI+AE

L3
CPR+AE

L3
CP+AE

20%40%60%80%

(g) K8s: Correctness

L1
RI

L1
CPR

L1
CP

L1
AE

L1
AIL2

RI+AI
L2

AI+CP

L2
AI+CPR

L2
CP+CPR

L2
RI+CP

L2
RI+CPR L3

AI+AE
L3
RI+AE

L3
CPR+AE

L3
CP+AE

20%
40%

60%
80%

(h) K8s: Safety

L1
RI

L1
CPR

L1
CP

L1
AE

L1
AIL2

RI+AI
L2

AI+CP

L2
AI+CPR

L2
CP+CPR

L2
RI+CP

L2
RI+CPR L3

AI+AE
L3
RI+AE

L3
CPR+AE

L3
CP+AE

4
6

8

(i) K8s: Latency
Figure 4: Breakdown across complexity levels (L1–L3, gets harder counter-clockwise). Agent
strengths varies by application, metric, and task complexity.

environment. Other models lean too conservative, frequently failing to act even when safe resolutions
exist. Latency patterns vary as well: some agents resolve simple issues efficiently, while others
generate long, redundant command sequences even for basic ingress fixes.

By moving beyond single-number scores, NETARENA provides a deeper view of each agent’s
planning strategies, failure modes, and generalization boundaries. This analysis not only strength-
ens benchmarking reliability but also offers actionable insights for improving LLM’s deployment
readiness. Table 2 provides further failure examples of agents in each application.

4.3 EVALUATING ROBUSTNESS VIA SUPERVISED FINE-TUNING

For constructive tasks where intermediate solutions can be automatically generated, NETARENA
enables large-scale labeled data creation for supervised fine-tuning (SFT). To study generalization,
we fine-tune four Qwen-7B models on different subsets of datacenter capacity planning queries:
Level-1 (800), Level-2 (600), Level-3 (600), and a mixed dataset spanning all levels (2000). Each
model is then evaluated across all levels using correctness and safety metrics (Figure 5).

Correctness results reveal clear signs of overfitting: Models excel on their training level but collapse
on others; for instance, the SFT-Level-2 model achieves perfect correctness on Level-2 yet fails on
Level-3. Only the mixed-level model generalizes, maintaining over 0.96 correctness across all levels.
Interestingly, safety scores remain more stable. Even when correctness drops, models often preserve
structural validity, suggesting that safety constraints transfer more easily across task complexities.
For example, the SFT-Level-2 model fails on Level-3 correctness but still achieves reasonable safety,
reflecting partial generalization of constraint adherence.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Level 1 Level 2 Level 3
Testing Data Level

0.0

0.2

0.4

0.6

0.8

1.0
C

or
re

ct
ne

ss
 R

at
e

0.02 0.00 0.0

0.88

0.0 0.0

0.50

1.00

0.0

0.13

0.0

0.990.99
0.88

0.96

Base(Zero-shot)
SFT-Level 1

SFT-Level 2
SFT-Level 3

SFT-All

(a) Correctness generalization

Level 1 Level 2 Level 3
Testing Data Level

0.0

0.2

0.4

0.6

0.8

1.0

S
af

et
y

R
at

e

0.03 0.00 0.00

0.93

0.77

0.37

0.61
0.53

0.58

0.33

0.0

0.66

0.88

0.53

0.66

Base(Zero-shot)
SFT-Level 1

SFT-Level 2
SFT-Level 3

SFT-All

(b) Safety generalization
Figure 5: Supervised Fine-tuned (SFT) model performance at different complexity level.

Overall, NETARENA provides a practical framework for producing scalable SFT examples for
constructive type of network applications, which demonstrably boosts model performance. However,
it is crucial to rigorously evaluate the SFT model’s ability to generalize to unseen task types and
configurations to prevent drawing overconfident conclusions.

5 CONCLUSION AND OTHER USE CASES OF NETARENA

We present NETARENA, a unified pipeline for dynamic LLM evaluation in real-world network
applications. By abstracting tasks into state–action form, NETARENA enables controllable query
generation with automatic ground-truth derivation. Its integration with high-fidelity emulators
supports execution-time validation across correctness, safety, and latency. As such, NETARENA
offers a practical foundation for developing, evaluating, and debugging LLM agents in safety-critical
network domains. NETARENA also enables two prominent use cases below.

5.1 ENABLING POST-TRAINING RL IN NETARENA’S ENVIRONMENTS

Many reactive tasks lack step-level ground truth, making supervised fine-tuning infeasible and
positioning RL as a natural alternative. However, RL requires reliable environments that support
interactive execution and feedback for reward computation. NETARENA addresses this gap by
integrating emulators that automatically generate step-wise feedback in response to agent actions„
enabling structured RL training and evaluation.

To test this, we fine-tune a QWen2.5-0.5B model (the largest feasible with our GPUs) using GRPO
from TRL (HuggingFace, 2025) in a Mininet routing environment. Rewards include –100 for invalid
commands, +10 for valid diagnostics, and +100 for correct fixes. The RL-finetuned model does
not fully solve routing issues but consistently produces valid Mininet commands, outperforming its
zero-shot baseline. This shows RL can shape useful policies even at small scales, though model
capacity itself may limit its improvement in this experiment.

This experiment showcases that NETARENA can be used as a RL training environment. Beyond
post-training RL, NETARENA also enables closed-loop self-improvement: as agents refine their
reasoning traces and generate higher-quality action sequences, those traces can be incorporated into
future RL episodes to improve agents.

5.2 PROBING AGENTS WITH ADVERSARIAL EXAMPLES

Understanding agent failure modes is critical for deployment. Unlike static benchmarks that cover
a narrow task slice, NETARENA can dynamically generate adversarial test cases targeting specific
weaknesses. By analyzing error types, failure modes, and inconsistent reasoning traces, we can
identify task configurations that consistently degrade performance.

For instance, NETARENA exposes fine-grained control knobs (e.g., topology size, failure types,
task complexity) that can be tuned to explore the model’s capability boundaries. We propose RL
or heuristic-guided sampling to iteratively generate harder queries based on prior failures. Over
time, this adversarial loop reveals critical limitations, giving developers concrete insights into where
generalization breaks and where extra training or safeguards are required.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility statement. All experiments and results presented in this paper are fully repro-
ducible using the open-source NETARENA framework available at the annoymous link: https:
//anonymous.4open.science/r/netarena_iclr2026-BE94/README.md.

The complete codebase includes three network applications: Capacity Planning (MALT) for dat-
acenter topology management, Routing for network configuration in Mininet environments, and
Kubernetes (K8s) for microservices orchestration using Google’s Online Boutique demo.

A complete Docker environment (Dockerfile) with all dependencies pre-installed ensures consis-
tent reproduction across different systems, including GPU support via the NVIDIA Container Toolkit
for local model inference. The supplementary materials contain detailed parameter configurations,
prompt templates, evaluation metrics implementation, and statistical analysis code that generated the
confidence interval comparisons and performance breakdowns shown in our results figures.

Each application provides automated execution scripts under the experiments folder:
(run_app_malt.sh, run_app_route.sh, run_app_k8s.sh) that reproduce our exper-
imental configurations.

NETARENA supports multiple LLM agents, including GPT-4o, Qwen2.5-72B, Gemini-Pro, Claude-
4, and other open-source models. It offers prompt templates for Chain-of-Thought (CoT), Few-
shot learning, and ReAct strategies, enabling seamless integration with various LLMs. Detailed
integration instructions are provided in each application’s README (app-k8s/README.md,
app-malt/README.md, app-route/README.md).

REFERENCES

Simone Balloccu, Patrícia Schmidtová, Mateusz Lango, and Ondřej Dušek. Leak, cheat, repeat: Data
contamination and evaluation malpractices in closed-source llms. arXiv preprint arXiv:2402.03927,
2024.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency (FAccT), 2021.

UC Berkeley. Berkeley function-calling leaderboard. https://gorilla.cs.berkeley.
edu/leaderboard.html, 2025.

Ben Bogin, Kejuan Yang, Shashank Gupta, Kyle Richardson, Erin Bransom, Peter Clark, Ashish
Sabharwal, and Tushar Khot. Super: Evaluating agents on setting up and executing tasks from
research repositories. arXiv preprint arXiv:2409.07440, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learning
agents on machine learning engineering. arXiv preprint arXiv:2410.07095, 2024.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, 2021.

10

https://anonymous.4open.science/r/netarena_iclr2026-BE94/README.md
https://anonymous.4open.science/r/netarena_iclr2026-BE94/README.md
https://gorilla.cs.berkeley.edu/leaderboard.html
https://gorilla.cs.berkeley.edu/leaderboard.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang, Xin Gao, Liu Shi, Yunjie Cao, Xuedong
Gao, Hao Fan, Ming Wen, et al. Automatic root cause analysis via large language models for
cloud incidents. In Proceedings of the Nineteenth European Conference on Computer Systems,
pp. 674–688, 2024.

Yinfang Chen, Manish Shetty, Gagan Somashekar, Minghua Ma, Yogesh Simmhan, Jonathan Mace,
Chetan Bansal, Rujia Wang, and Saravan Rajmohan. Aiopslab: A holistic framework to evaluate
ai agents for enabling autonomous clouds. arXiv preprint arXiv:2501.06706, 2025.

Zina Chkirbene, Ridha Hamila, Ala Gouissem, and Unal Devrim. Large language models (llm) in
industry: A survey of applications, challenges, and trends. In 2024 IEEE 21st International
Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT
(HONET), pp. 229–234. IEEE, 2024.

Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Gerstein, and Arman Cohan. Investigating data
contamination in modern benchmarks for large language models. arXiv preprint arXiv:2311.09783,
2023.

Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, and Ge Li. Generalization or memorization: Data con-
tamination and trustworthy evaluation for large language models. arXiv preprint arXiv:2402.15938,
2024.

Irena Gao, Gabriel Ilharco, Scott Lundberg, and Marco Tulio Ribeiro. Adaptive testing of computer
vision models. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), 2023.

Sergiu Gatlan. Facebook: Outage caused by faulty routing configuration
changes. https://www.bleepingcomputer.com/news/technology/
facebook-outage-caused-by-faulty-routing-configuration-changes/,
2021.

Shahriar Golchin and Mihai Surdeanu. Time travel in llms: Tracing data contamination in large
language models. arXiv preprint arXiv:2308.08493, 2023.

Google. Introducing gemini, your new personal ai assistant. https://gemini.google/
assistant/?hl=en, 2024a.

Google. Microservices demo: Online boutique. https://github.com/
GoogleCloudPlatform/microservices-demo, 2024b.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In Advances
in Neural Information Processing Systems (NeurIPS), 2021.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Yao Fu, et al. C-eval: A multi-level multi-discipline chinese
evaluation suite for foundation models. In Advances in Neural Information Processing Systems,
2024.

HuggingFace. Trl - transformer reinforcement learning. https://github.com/
huggingface/trl, 2025.

Alon Jacovi, Avi Caciularu, Omer Goldman, and Yoav Goldberg. Stop uploading test data in plain text:
Practical strategies for mitigating data contamination by evaluation benchmarks. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2023.

11

https://www.bleepingcomputer.com/news/technology/facebook-outage-caused-by-faulty-routing-configuration-changes/
https://www.bleepingcomputer.com/news/technology/facebook-outage-caused-by-faulty-routing-configuration-changes/
https://gemini.google/assistant/?hl=en
https://gemini.google/assistant/?hl=en
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/huggingface/trl
https://github.com/huggingface/trl

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Saurabh Jha, Rohan Arora, Yuji Watanabe, Takumi Yanagawa, Yinfang Chen, Jackson Clark, Bhavya
Bhavya, Mudit Verma, Harshit Kumar, Hirokuni Kitahara, et al. Itbench: Evaluating ai agents
across diverse real-world it automation tasks. arXiv preprint arXiv:2502.05352, 2025.

Minhao Jiang, Ken Ziyu Liu, Ming Zhong, Rylan Schaeffer, Siru Ouyang, Jiawei Han, and Sanmi
Koyejo. Investigating data contamination for pre-training language models. arXiv preprint
arXiv:2401.06059, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie
Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, et al. Dynabench: Rethinking
benchmarking in nlp. In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT),
2021.

Manikanta Kotaru. Adapting foundation models for operator data analytics. In Proceedings of the
22nd ACM Workshop on Hot Topics in Networks, pp. 172–179, 2023.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward models
for language modeling. arXiv preprint arXiv:2403.13787, 2024.

Fangyu Lei, Qian Liu, Yiming Huang, Shizhu He, Jun Zhao, and Kang Liu. S3eval: A synthetic,
scalable, systematic evaluation suite for large language models. arXiv preprint arXiv:2310.15147,
2023.

Changmao Li and Jeffrey Flanigan. Task contamination: Language models may not be few-shot
anymore. In Proceedings of the AAAI Conference on Artificial Intelligence, 2024.

Xiang Li, Yunshi Lan, and Chao Yang. Treeeval: Benchmark-free evaluation of large language
models through tree planning. arXiv preprint arXiv:2402.13125, 2024a.

Xiang Li, Yunshi Lan, and Chao Yang. Treeeval: Benchmark-free evaluation of large language
models through tree planning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 24485–24493, 2025.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models, 2023.

Yucheng Li. Estimating contamination via perplexity: Quantifying memorisation in language model
evaluation. arXiv preprint arXiv:2309.10677, 2023.

Yucheng Li, Frank Guerin, and Chenghua Lin. Latesteval: Addressing data contamination in language
model evaluation through dynamic and time-sensitive test construction. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2024b.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110, 2022.

Zhiyi Ma, Kawin Ethayarajh, Tristan Thrush, Somya Jain, Ledell Yu Wu, Robin Jia, Christopher
Potts, Adina Williams, and Douwe Kiela. Dynaboard: An evaluation-as-a-service platform for
holistic next-generation benchmarking. In Advances in Neural Information Processing Systems,
2021.

Sathiya Kumaran Mani, Yajie Zhou, Kevin Hsieh, Santiago Segarra, Trevor Eberl, Eliran Azulai, Ido
Frizler, Ranveer Chandra, and Srikanth Kandula. Enhancing network management using code
generated by large language models. In Proceedings of the 22nd ACM Workshop on Hot Topics
in Networks, pp. 196–204, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Meta. Build the future of AI with Meta Llama 3. https://llama.meta.com/llama3, 2024.

Mininet. Mininet: An instant virtual network on your laptop (or other pc). https://mininet.
org/, 2022.

Jeffrey C Mogul, Drago Goricanec, Martin Pool, Anees Shaikh, Douglas Turk, Bikash Koley, and
Xiaoxue Zhao. Experiences with modeling network topologies at multiple levels of abstraction.
In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20), pp.
403–418, 2020.

Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vincent Moens,
Amar Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia, et al. Mlgym: A new
framework and benchmark for advancing ai research agents. arXiv preprint arXiv:2502.14499,
2025.

OpenAI. Hello gpt-4o. https://openai.com/index/hello-gpt-4o/, 2024.

OpenAI. Computer-using agent. https://openai.com/index/
computer-using-agent/, 2025.

Yonatan Oren, Nicole Meister, Niladri Chatterji, Faisal Ladhak, and Tatsunori B Hashimoto. Proving
test set contamination in black box language models. arXiv preprint arXiv:2310.17623, 2023.

Marco Tulio Ribeiro and Scott Lundberg. Adaptive testing and debugging of nlp models. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL),
2022.

Manley Roberts, Himanshu Thakur, Christine Herlihy, Colin White, and Samuel Dooley. To the
cutoff... and beyond? a longitudinal perspective on llm data contamination. In Proceedings of the
Twelfth International Conference on Learning Representations (ICLR), 2023.

Devjeet Roy, Xuchao Zhang, Rashi Bhave, Chetan Bansal, Pedro Las-Casas, Rodrigo Fonseca,
and Saravan Rajmohan. Exploring llm-based agents for root cause analysis. arXiv preprint
arXiv:2403.04123, 2024.

Pascal Sager, Benjamin Meyer, Peng Yan, Rebekka von Wartburg-Kottler, Layan Etaiwi, Aref
Enayati, Gabriel Nobel, Ahmed Abdulkadir, Benjamin F. Grewe, and Thilo Stadelmann. AI
agents for computer use: A review of instruction-based computer control, GUI automation, and
operator assistants. CoRR, abs/2501.16150, 2025. doi: 10.48550/ARXIV.2501.16150. URL
https://doi.org/10.48550/arXiv.2501.16150.

Oscar Sainz, Jon Campos, Iker García-Ferrero, Julen Etxaniz, Oier López de Lacalle, and Eneko
Agirre. Nlp evaluation in trouble: On the need to measure llm data contamination for each
benchmark. In Findings of the Association for Computational Linguistics (ACL), 2023.

Prakhar Sharma and Vinod Yegneswaran. Prosper: Extracting protocol specifications using large
language models. In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks, pp.
41–47, 2023.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi Chen,
and Luke Zettlemoyer. Detecting pretraining data from large language models. arXiv preprint
arXiv:2310.16789, 2023.

Zachary S Siegel, Sayash Kapoor, Nitya Nagdir, Benedikt Stroebl, and Arvind Narayanan. Core-
bench: Fostering the credibility of published research through a computational reproducibility
agent benchmark. arXiv preprint arXiv:2409.11363, 2024.

Giulio Starace, Oliver Jaffe, Dane Sherburn, James Aung, Jun Shern Chan, Leon Maksin, Rachel
Dias, Evan Mays, Benjamin Kinsella, Wyatt Thompson, et al. Paperbench: Evaluating ai’s ability
to replicate ai research. arXiv preprint arXiv:2504.01848, 2025.

Liangtai Sun, Yang Han, Zihan Zhao, Da Ma, Zhennan Shen, Baocai Chen, Lu Chen, and Kai
Yu. Scieval: A multi-level large language model evaluation benchmark for scientific research.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 19053–19061,
2024.

13

https://llama.meta.com/llama3
https://mininet.org/
https://mininet.org/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/computer-using-agent/
https://openai.com/index/computer-using-agent/
https://doi.org/10.48550/arXiv.2501.16150

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Changjie Wang, Mariano Scazzariello, Alireza Farshin, Simone Ferlin, Dejan Kostić, and Marco
Chiesa. Netconfeval: Can llms facilitate network configuration? Proceedings of the ACM on
Networking, 2(CoNEXT2):1–25, 2024a.

Siyuan Wang, Zhuohan Long, Zhihao Fan, Zhongyu Wei, and Xuanjing Huang. Benchmark self-
evolving: A multi-agent framework for dynamic llm evaluation. arXiv preprint arXiv:2402.11443,
2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Hjalmar Wijk, Tao Lin, Joel Becker, Sami Jawhar, Neev Parikh, Thomas Broadley, Lawrence Chan,
Michael Chen, Josh Clymer, Jai Dhyani, et al. Re-bench: Evaluating frontier ai r&d capabilities of
language model agents against human experts. arXiv preprint arXiv:2411.15114, 2024.

Qiao Xiang, Yuling Lin, Mingjun Fang, Bang Huang, Siyong Huang, Ridi Wen, Franck Le, Linghe
Kong, and Jiwu Shu. Toward reproducing network research results using large language models.
In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks, pp. 56–62, 2023.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. Advances in Neural Information Processing
Systems, 37:52040–52094, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Dingli Yu, Simran Kaur, Arushi Gupta, Jonah Brown-Cohen, Anirudh Goyal, and Sanjeev Arora.
Skill-mix: a flexible and expandable family of evaluations for ai models. In Proceedings of the
Twelfth International Conference on Learning Representations (ICLR), 2023.

Zhuohao Yu, Chang Gao, Wenjin Yao, Yidong Wang, Wei Ye, Jindong Wang, Xing Xie, Yue Zhang,
and Shikun Zhang. Kieval: A knowledge-grounded interactive evaluation framework for large
language models. arXiv preprint arXiv:2402.15043, 2024.

Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson, Catherine Wu, Will Song, Tiffany Zhao, Pranav
Raja, Dylan Slack, Qin Lyu, Sean Hendryx, Russell Kaplan, Michele Lunati, and Summer Yue. A
careful examination of large language model performance on grade school arithmetic, 2024a.

Jie Zhang, Zhongqi Wang, Mengqi Lei, Zheng Yuan, Bei Yan, Shiguang Shan, and Xilin Chen. Dysca:
A dynamic and scalable benchmark for evaluating perception ability of lvlms. arXiv preprint
arXiv:2406.18849, 2024b.

Zhehao Zhang, Jiaao Chen, and Diyi Yang. Darg: Dynamic evaluation of large language models via
adaptive reasoning graph. arXiv preprint arXiv:2406.17271, 2024c.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied, Weizhu
Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation models.
arXiv preprint arXiv:2304.06364, 2023.

Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen, Wayne Xin Zhao, Xu Chen, Yankai Lin,
Ji-Rong Wen, and Jiawei Han. Don’t make your llm an evaluation benchmark cheater. arXiv
preprint arXiv:2311.01964, 2023a.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang Gong, Diyi Yang, and Xing Xie. Dyval:
Dynamic evaluation of large language models for reasoning tasks. In The Twelfth International
Conference on Learning Representations, 2023.

Kaijie Zhu, Jindong Wang, Qinlin Zhao, Ruochen Xu, and Xing Xie. Dynamic evaluation of large
language models by meta probing agents. arXiv preprint arXiv:2402.14865, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

No. Step Description
1 Emulator Selection Select a high-fidelity emulator that matches the target network application.

Examples: Kubernetes (microservices), Mininet
(routing/switching).

2 Topology Generator Implement a topology creation function. Input parameters: number of
nodes, edge density, topology constraints (e.g., connectivity). Output: a
full topology object deployable in the emulator.

3 Task Type Selection Choose the task category: Constructive tasks – LLMs propose
configurations; Reactive tasks – LLMs respond to injected errors or alerts.

4 Operation Library
(Constructive)

Define basic operations representing atomic configuration steps. These
should be modular and composable, and parameterizable (e.g., AddNode,
LinkSwitch). Used to generate complex configuration queries.

5 Error Injection
(Reactive)

Define typical error types for reactive diagnosis tasks (e.g., link failure,
misconfiguration). These errors are injected into the environment to test
LLM diagnostic capabilities.

6 Evaluation Metrics Define evaluation criteria: Correctness – does the LLM achieve the
intended effect?; Safety – does it interrupt the existing service?; Latency –
how fast does the LLM generate valid responses?

Table 3: Construction steps for creating new applications in NETARENA.

A EXTEND NETARENA TO NEW APPLICATIONS

NETARENA is designed for easy extensibility across diverse network and system domains through a
standardized API. To add a new application, users define three key components: (1) the application’s
state and action spaces, (2) a backend emulator or simulator that connects to NETARENA’s evaluation
framework (such as Mininet or Kubernetes), and (3) three core metrics customized to the task.
Table 3 presents this process in a clear step-by-step format. By lowering the barrier to incorporating
realistic, execution-grounded tasks, NETARENA becomes a generalizable platform for benchmarking
LLM agents in real-world infrastructure reasoning scenarios. We encourage the community to
extend NETARENA to new protocols, topologies, and deployment settings, supporting robust and
reproducible agent evaluation at scale.

B DETAILS FOR DATACENTER CAPACITY PLANNING

The first application focuses on applying LLM agents for datacenter capacity planning—a critical as-
pect of network lifecycle management that optimizes resource utilization and minimizes provisioning
costs. Effective capacity planning depends on accurate network topology representations at different
abstraction levels. High-level abstractions help network operators evaluate overall bandwidth needs
between data centers, while detailed low-level views enable engineers to manage individual device
configurations and connections efficiently.

Based on Google’s multi-layer topology abstraction (Mogul et al., 2020) and publicly available
datasets, we build a simulation environment modeling a realistic datacenter topology with 5,493
nodes and 6,424 edges, encompassing 10 distinct device types such as packet switches, ports,
and chassis. Nodes have attributes like physical port capacity and are interconnected following
hierarchical constraints reflective of real datacenter structures. To enable dynamic interaction between
LLM agents and representative capacity-planning tasks, we define 12 operational types (e.g., ‘update,’
‘add,’ ‘count,’ ‘rank’), each supporting a wide range of diverse and detailed queries. For instance,
an ‘add’ operation may involve simple tasks, like attaching a new port to a switch, or complex
scenarios, such as integrating a new packet switch into an aggregation block. Each query instance is
generated dynamically and randomly via i.i.d. sampling, reducing data contamination risk. LLM
agents generate executable code for each query, which is evaluated against dynamically generated
ground-truth code execution results. A query is considered successfully resolved if the agent’s
generated code executes correctly, and without introducing any security vulnerabilities or violations
of the datacenter hierarchical constraints.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.1 APPLICATION ENVIRONMENT

To enable LLM agents to interact with data center capacity planning, we adopt Google’s multi-layer
topology abstraction (Mogul et al., 2020) and use their released datasets as the foundational topology.
We also develop a simulator to evaluate the performance of deployed capacity planning algorithms
across key metrics.

Topology. The capacity planning topology consists of 5,493 nodes and 6,424 edges. Each node
represents different device types within the data center (e.g., packet switch, port, chassis), with a
total of 10 distinct node types. Each node may also have attributes; for instance, a port may have a
physical capacity attribute, which specifies its capacity. These nodes are interconnected by edges,
where, for example, an edge between a packet switch and a port indicates that the switch contains the
corresponding port. To simulate the abstraction of a real data center, not all nodes can be arbitrarily
connected. Figure 8 illustrates the hierarchical dependencies between the nodes.

Figure 6: Hierarchical dependencies between nodes in the datacenter topology.

B.2 DYNAMIC BENCHMARK CREATION

Basic Operations and Operands. We implement six fundamental operations: add, count, update,
remove, list, and rank. Each operation defines a specific action, while the operands represent the
datacenter entities or elements the operations act upon. A user query is interpreted as a combination
of these operations applied to dynamically generated operands based on the query type. For example,
consider the query: “If we add a new packet switch to each chassis, what will be the new total
capacity on all chassis?" This query can be broken down into the following steps: (1) List all chassis
nodes. (2) Add a new packet switch node to each chassis node. (3) Count the total capacity on
updated chassis nodes.

Query Complexity Control. Using the basic operations, queries can be dynamically constructed by
combining them with appropriate operands. To manage complexity, we categorize queries based on
two factors: the number of operations involved and the type of control sequence utilized. Control
sequences can vary in structure, including sequential combinations of multiple actions, conditional If-
Else statements, loops such as For-loops followed by sequential actions, or For-loops combined with
If-Else statements. The operands associated with these basic operations are determined dynamically
for each query, allowing the framework to remain flexible and adaptable to diverse query types and
scenarios.

Ground Truth Generation. Dynamically generating ground truth algorithms is the most complex
process. To accomplish this, we first manually implement the algorithm for each basic operation,
supported by dynamic operands, as functional modules. These modules are then combined into
templates to generate more detailed queries and their corresponding ground truth. For instance,
when the randomly selected operation types are “add” and “count”, the system randomly selects
new node types and parent nodes. A unique node name is created, and a corresponding natural
language query is formed: “Add child_node_name to parent_node_name. Count the child_node
in parent_node_name in the updated graph.” The system subsequently generates a Python function

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

by combining the “add” and “count” algorithms into a new function, which represents the ground
truth. This function includes the steps of adding the selected node to the graph, linking it to its parent
node, and performing a counting query on the updated graph.

B.3 LLM-BASED AGENTS USAGE

Emulator. To emulate datacenter capacity planning tasks using large language model (LLM) agents,
we construct a comprehensive evaluation pipeline encapsulated in Python, which simulates real-world
decision-making by executing model-generated code against a dynamic infrastructure graph and
validating correctness and safety. The evaluator begins by initializing with a network graph and a
specified LLM agent, alongside the appropriate prompting strategy. When a user query is issued, the
LLM agent generates Python code intended to analyze or modify the network graph; this code is
executed to produce a structured result. A built-in safety checker then verifies that the updated graph
adheres to expected datacenter constraints, including valid node types, edge formats, topological
hierarchies, bandwidth configurations, and the presence of ports on switches. In parallel, a golden
(ground-truth) answer is executed and evaluated in the same manner. The framework compares LLM
and ground-truth outputs using type-specific strategies—such as structural isomorphism for graphs or
strict equality for lists and text—and logs detailed outcomes regarding correctness, safety violations,
and execution latency. Errors such as incorrect output types, faulty logic, or unsafe graph mutations
are captured and recorded in a structured JSON format for downstream analysis. This emulator not
only enables robust benchmarking of LLM agents under system-level constraints but also facilitates
the generation of diverse labeled data for supervised fine-tuning and safe deployment of AI agents in
real datacenter environments.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Prompts. We provide the initial prompt as below.

Generate the Python code needed to process the network graph to answer the user question
or request. The network graph data is stored as a networkx graph object. The Python
code you generate should be in the form of a function named process_graph that takes
a single input argument graph_data and returns a single object return_object. The
input argument graph_data will be a networkx graph object with nodes and edges.
The graph is directed, and each node has a name attribute to represent itself. Each node has a
type attribute, in the format of EK_TYPE. Each node can have other attributes depending
on its type. Each directed edge also has a type attribute, which can include RK_CONTAINS
or RK_CONTROL. You should check the relationships based on edges and check the name
based on node attributes.
The node types have the following hierarchy:

• EK_JUPITER contains EK_SPINE_BLOCK

• EK_SPINE_BLOCK contains EK_AGG_BLOCK

• EK_AGG_BLOCK contains EK_PACKET_SWITCH

• EK_CHASSIS contains EK_CONTROL_POINT

• EK_CONTROL_POINT contains EK_PACKET_SWITCH

• EK_RACK contains EK_CHASSIS

• EK_PACKET_SWITCH contains EK_PORT

• EK_SPINE_BLOCK contains EK_PACKET_SWITCH

• EK_CONTROL_DOMAIN contains EK_CONTROL_POINT

• EK_CHASSIS contains EK_PACKET_SWITCH

• EK_JUPITER contains EK_SUPER_BLOCK

• EK_SUPER_BLOCK contains EK_AGG_BLOCK

Adding new nodes requires considering the attributes of the new node. You should also
consider adding edges based on their relationships with existing nodes. The name to add on
each layer can be inferred from the new node’s name string. When adding new nodes, you
should also add edges based on their relationship with existing nodes.
Packet switch nodes have a switch location attribute switch_loc in the node. PORT nodes
have an attribute physical_capacity_bps. When calculating the capacity of a node,
you need to sum the physical_capacity_bps on the PORT nodes within the hierarchy
that contains this node.

B.4 EVALUATION METRICS

LLM agents are tasked with queries related to generating Python-based capacity planning algorithms.
These algorithms take the original network graph as input and produce outputs that depend on the
query, either direct answers or updated topologies. The simulator environment evaluates the following
metrics.

• Correctness: The output’s correctness is evaluated by comparing the LLM-generated results with
the ground truth. If the outputs match exactly, the LLM’s answer is labeled as correct.

• Safety: Safety ensures the structural and attribute integrity of the network graph by verifying
that the LLM’s output adheres to all defined constraints. This includes validating node types,
edge types, and hierarchical relationships, checking the presence of mandatory attributes (e.g.,
physical capacity for PORT nodes), ensuring no isolated nodes exist, and enforcing connectivity
rules between related components.

• Latency: Latency measures the execution time of the Python code generated by the LLM. This
metric excludes the time spent on LLM prompting and response, focusing solely on the effectiveness
and runtime performance of the generated solution.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C DETAILS FOR ROUTING MISCONFIGURATIONS

The second application focuses on applying LLM agents for network routing configuration trou-
bleshooting—an essential network management task that involves quickly identifying and resolving
routing-related issues such as misconfigured paths, link failures, and network congestion. Effective
troubleshooting is critical in practice, as unresolved routing problems can cause severe performance
degradation or outages. For instance, a major outage at Meta in October 2021 was caused by faulty
configuration changes to backbone routers. This misconfiguration disrupted communication between
data centers, leading to a global service outage and significant downtime (Gatlan, 2021).

To evaluate LLM agents on routing troubleshooting tasks, we construct a simulated network envi-
ronment using Mininet, featuring a router connected to multiple switches and hosts organized into
distinct subnets, enabling realistic network interactions. Within this environment, we dynamically
inject various routing misconfigurations—such as incorrect forwarding rules or broken links—that
disrupt connectivity and cause failures in the pingmesh (host-to-host connectivity) tests. LLM agents
is tasked to perform diagnostics by executing network commands (e.g., inspecting routing tables, in-
terface statuses, and error logs), analyzing the results, and proposing corrective actions. An evaluation
query is considered successfully resolved if, after the agent’s intervention, the network connectivity
is restored, verified by the successful execution of the ‘pingall()’ method, without introducing new
security issues.

C.1 APPLICATION ENVIRONMENT

To evaluate the network troubleshooting capabilities of LLMs, we designed an experimental setup
where LLM behaves like a network engineer to interact with a simulated network environment.
Among the different network simulation tools available, we selected Mininet for its lightweight
nature, ease of use, and support for custom dynamic topologies. Within Mininet, we created dynamic
network topologies and intentionally injected errors to simulate realistic network faults. The LLM
was then tasked with diagnosing and resolving these issues, demonstrating its ability to perform
automated troubleshooting in a controlled environment.

Topology. In Mininet, we will construct a network topology that includes a router, multiple switches,
and host computers. The router is connected to all the switches and is responsible for forwarding traffic
between different subnets. The switches, in turn, are connected to the hosts, enabling them to commu-
nicate within their respective subnets and interact with other devices on the network. To create various
network topologies, we use two variables, num_switches and num_hosts_per_subnet, to
control the setup. num_switches defines how many switches are present in the network, while
num_hosts_per_subnet specifies how many hosts are connected to each switch. In our envi-
ronment setup, the number of subnets and the number of hosts per subnet range from 2 to 4, making
the topology dynamic and complex.

Subnet 2:
192.168.2.0

Router r0

Host h0

Host h1

Host h2

Host h3

Host h4

Host h5

Subnet 1:
192.168.1.0

Figure 7: A simple version of routing network topology.

C.2 DYNAMIC BENCHMARK CREATION

Query Generation In the Topology section, we designed a network where all nodes are initially
able to connect with one another. In our benchmark, each query represents a network state with an

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

error, causing some nodes to be unable to communicate with certain others. We aim to have the LLM
handle these error states and attempt to resolve the issues, ensuring that the hosts in the network can
reconnect and communicate with each other.

To generate a problematic network, we start with a valid network configuration and apply a series of
erroneous configuration commands to introduce faults. These faulty commands are selected from
one of five basic categories of network errors, each with specific details that define the nature of the
error. Importantly, within each error category, the details of the error can vary, leading to different
manifestations of the same type of fault. This variability within error categories is what allows our
benchmark to generate a diverse range of dynamic, distinct network errors, ensuring that the LLM is
tested under various realistic fault conditions.

The five basic categories of network errors are as follows. We will describe each error type in detail,
along with how the details within each error category can vary, ensuring a diverse set of dynamic
network faults.

Error Type 1: Disable Routing

The error type disable_routing is designed to simulate a failure in IP forwarding, which is
crucial for routing packets between different subnets. In this error scenario, we disable IP forwarding
using one of several methods. These methods are varied to generate diverse network configurations,
making the benchmark dynamic and comprehensive.

There are four methods to disable IP forwarding. Method 1 uses sysctl to globally disable packet
forwarding across all routes, while Method 2 utilizes iptables to drop all forwarded packets,
affecting communication between subnets. Method 3 applies ip rule to prohibit forwarding based
on specific rules, offering finer control. Method 4, also using iptables, drops traffic from a
randomly selected subnet, creating a localized failure. These methods contribute to error diversity
allows the benchmark to simulate a wide range of network issues.

Error Type 2: Disable Interface

The error type disable_interface simulates a failure by interfering with a specific network
interface, which is crucial for communication between devices. In this error scenario, we have three
methods to destroy a healthy network by disabling some interfaces.

Method 1 uses ifconfig to bring the interface down, resulting in a complete loss of connectivity
through that interface. Method 2 utilizes ip link to achieve the same outcome of disabling
the interface, but with a different network management tool. Method 3 changes the Maximum
Transmission Unit (MTU) of the interface, which can cause packet fragmentation or loss if the MTU
is set too low, leading to communication problems. These methods contribute to error diversity by
offering various levels of disruption to simulate a wide range of interface failures.

Error Type 3: Remove IP

The error type remove_ip is designed to simulate a failure by modifying or removing the IP address
of a network interface. This can cause disruption in the network’s ability to route packets, particularly
if the interface’s IP is essential for communication. The error is injected by using one of four methods
to modify the IP address of the specified interface.

Method 1 flushes the IP using ip addr flush, making the interface unreachable. Method 2
assigns a random IP within the 10.0.0.0/24 subnet, which can cause conflicts or incorrect routing
if the IP is already in use. Method 3 assigns a wrong subnet mask (e.g., 8, 16, 30, 31, or 32),
preventing communication due to misconfigured subnetting. Method 4 assigns a duplicate IP from
another subnet, causing conflicts or routing issues, with a fallback IP used if no other subnets are
available.

Error Type 4: Drop Traffic to/From Subnet

The error type drop_traffic_to_from_subnet simulates a failure by manipulating the traffic
to or from a specific subnet. This can disrupt communication between the subnet and other network
components. The error is injected by using one of four methods to modify the flow of traffic to/from
the subnet.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Method 1 drops all incoming and outgoing traffic to/from the subnet using iptables. Method 2
actively rejects traffic to/from the subnet using iptables rules. Method 3 blocks ICMP traffic,
preventing ping communication with the subnet. Method 4 introduces network delay using tc
netem, adding latency to the traffic. These methods provide diverse ways to manipulate network
traffic, enabling the benchmark to simulate various types of network disruptions.

Error Type 5: Wrong Routing Table

The error type wrong_routing_table simulates a failure by misconfiguring the routing table,
which can disrupt the network’s ability to properly forward traffic between subnets. The error is
injected by modifying the routing table using one of four methods. Each method changes the routing
behavior differently, enabling the benchmark to simulate various types of routing issues.

Method 1 removes an existing route and adds a new route using a different interface. Method 2 adds
a route with an incorrect gateway, potentially causing traffic to be misdirected. Method 3 adds a route
with a very high metric, which makes it less preferred compared to other routes, possibly causing
traffic delays or incorrect routing. Method 4 creates a routing loop by adding a route that forwards
traffic to another subnet, which could lead to a loop of network traffic.

Increasing Error Complexity: Combining Basic Errors

The code above demonstrates the injection of basic network errors, but to generate more complex
network states, we combine multiple basic errors. Specifically, we pair two different categories of
errors and inject them sequentially into the network. This approach creates more intricate and realistic
network failures, providing a better test for the LLM’s diagnostic capabilities. By combining multiple
errors, the network’s behavior becomes more complex, leading to a more challenging scenario for
the LLM. The result of running the pingall command becomes more complicated, with more
nodes failing to communicate. The LLM is faced with greater challenges, as it must analyze multiple
potential causes, troubleshoot through various methods, and draw on a wider set of diagnostic skills.
This makes the task significantly more difficult than diagnosing single errors in isolation.

The process of injecting two errors works as follows:

1. Single Error Injection: If only one error is to be injected (i.e., errornumber equals 1), the code
only injects one single basic error. We use a function called process_single_error to handle
this error type and inject it into the network.

2. Multiple Error Injection: When injecting more than one error, errortype and errordetail
are lists containing the error types and their corresponding details. Our benchmark uses a loop to pair
elements from these lists and sequentially inject each error by calling process_single_error
function for each pair.

By combining different types of basic errors, the benchmark creates more complex network states
that better simulate real-world network failures, providing the LLM with a more challenging test
environment.

C.3 LLM-BASED AGENTS USAGE

Emulator. In the Mininet simulator, an LLM is allowed to execute commands to retrieve information
about network states and analyze the results of the pingall command. The pingall command
sends ICMP echo requests (ping) from every host to each other in the network and reports the
results. This is typically used to verify the connectivity between all nodes in a network, ensuring
that the network is running as expected. A successful pingall output indicates that all hosts can
communicate with each other, while failure may suggest network issues such as misconfigurations or
connectivity problems.

The LLM can also utilize several types of commands to gather information about the network,
diagnose issues, and propose solutions. To gather network information and diagnose issues, the
LLM can use various commands such as ifconfig, ip addr, ip link, ip route. These
commands allow the LLM to examine network configurations like IP address, network interfaces,
routing tables. By analyzing the output from these commands, the LLM can identify problems such
as incorrect configurations and suggest corrective actions to resolve the network issues.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Example Usage PingAll Results:
Command: PingAll
*** Fast Ping: testing ping reachability
h1 -> X X X X X r0
h2 -> X X X X X r0
h3 -> X X X X X X
h4 -> X X X X X r0
h5 -> X X X X X r0
h6 -> X X X X X r0
r0 -> h1 h2 X h4 h5 h6
*** Results: 76% dropped (10/42 received)
Example feedback from Mininet:
Command: ip route
192.168.1.0/24 dev r0-eth1 proto kernel scope link src 192.168.1.1
192.168.2.0/24 dev r0-eth2 proto kernel scope link src 192.168.2.1
192.168.3.0/24 dev r0-eth3 proto kernel scope link src 192.168.3.1
192.168.4.0/24 dev r0-eth4 proto kernel scope link src 192.168.4.1
192.168.5.0/24 dev r0-eth5 proto kernel scope link src 192.168.5.1
192.168.6.0/24 dev r0-eth6 proto kernel scope link src 192.168.6.1

Prompts. We provide the initial prompt as below.

You need to behave like a network engineer who finds the root cause of network issues and
fixes them in a routing application.
There is a Mininet network with problems in the router r0, causing the network to be partially
disconnected. Some nodes cannot successfully ping other nodes. Your task is to fix these
issues so that the pingall result shows all connections are successful.
I recommend using diagnostic commands to gather information about the router and network
to identify the cause of the problem. Once you have sufficient information and understand
the root cause, provide commands to fix the issue.
When implementing your solution, be careful not to disrupt existing connected edges - your
commands should not cause previously working connections to break.
Please provide your output in JSON format with the keys ’machine’ and ’command’. You
can only issue one command at a time as I can only execute commands sequentially.
Important notes:

• The router’s name may not be exactly r0. It may have a prefix (like p29_r0).
• The same applies to host names and interface names (e.g., p29_h1, p29_h2,
p29_r0-eth1, p29_r0-eth2).

• The prefix could be anything (p29, p30, p31, etc.).
• Do not include sudo in your commands.
• You are not permitted to use the vtysh command.
• Do not use ping commands as the ping results are already provided to you.

I will provide you with the latest PingAll() feedback from the network along with your
previous actions and their results to help you diagnose the problem.

C.4 EVALUATION METRIC

The performance evaluation of LLMs requires a comprehensive and diversified approach. A single
metric only reflects the final success or failure of a command, but overlooks the intermediate steps in
tasks such as network fault diagnosis, which often involve multiple iterations. For such tasks, it is
essential to consider not only the end result, but also the necessity and efficiency of each intermediate
step, which can be assessed through the number of iterations. Furthermore, evaluating whether these
intermediate actions affect overall performance or even cause potential damage to the network is
crucial as this represents a safety issue. By considering multiple dimensions of evaluation, we can
gain a more holistic understanding of LLMs’ capabilities, address their limitations, and ensure that

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

they are safe, reliable, and effective for real-world deployment. Here are the evaluation metrics we
considered.

• Correctness: This metric focuses on whether the final command execution results in a successful
outcome, such as whether a pingall command succeeds. It reflects the accuracy of the LLM’s
final action in diagnosing and resolving faults. A high correctness rate indicates that the LLM
reliably produces solutions that lead to successful outcomes without errors.

• Safety: Safety is assessed by examining the LLM’s ability to preserve network stability during
diagnosis and resolution. We expect the LLM to avoid issuing commands randomly, as arbitrary
configuration changes could disrupt the network. In a real-world scenario, such actions could result
in severe consequences, such as network downtime. Therefore, we aim to evaluate whether the
LLM issues commands responsibly, ensuring it gathers sufficient information before taking action.
If a command is issued to configure the network but fails to resolve the issue, the LLM will be
penalized with a lower score, reflecting the unsafe nature of its response.

• Latency: This metric measures the number of iterations the LLM requires to reach a successful
resolution. Fewer iterations to resolve the issue indicate that the LLM is more efficient in trou-
bleshooting, as it can pinpoint the root cause of the problem accurately and provide the appropriate
commands. An LLM with fewer iterations demonstrates higher efficiency in resolving network
issues, leading to quicker resolutions and reduced network downtime. This improved efficiency is
crucial for minimizing disruption, as it shows that the LLM is able to address network problems
with precision and speed, ensuring better overall performance and reliability.

D DETAILS FOR MICROSERVICE POLICY DEPLOYMENT TROUBLESHOOTING

The third application targets on troubleshooting tasks in Kubernetes and microservice policy configura-
tions. Kubernetes (K8s), as the dominant orchestration platform, efficiently manages microservices by
automating deployment, scaling, and orchestration, which significantly improves service scalability,
resilience, and agility. However, misconfigured policies or faulty service deployments in Kuber-
netes clusters can lead to significant operational issues, including service downtime, performance
bottlenecks, or critical security vulnerabilities.

To evaluate whether LLM agents can autonomously identify and resolve Kubernetes network policy
misconfigurations, we create a simulation environment based on Google’s publicly available mi-
croservice benchmark (Google, 2024b). Specifically, we leverage the Kubernetes-based microservice
application composed of 11 services (e.g., frontend, checkout, payment) communicating via gRPC,
secured by 13 distinct network policies that define permissible interactions among nodes and their
ports. We dynamically generate realistic troubleshooting scenarios by injecting various types of
network-policy misconfigurations. For each scenario, the LLM agent autonomously investigates the
system, diagnoses the root cause, and attempts corrections to restore intended network connectivity.
The LLM agent is deemed to have solved the query if it restores node communication, verified through
connectivity tests, demonstrating its ability to automate Kubernetes configuration troubleshooting.

D.1 APPLICATION ENVIRONMENT

To evaluate whether LLM agents can autonomously identify and resolve Kubernetes network policy
misconfigurations, we create a simulation environment based on Google’s publicly available mi-
croservice benchmark (Google, 2024b). This benchmark is based on Online Boutique, a cloud-first
microservices demo application. Online Boutique is a web-based e-commerce platform where users
can browse products, add them to their cart, and complete purchases. For our simulation, we use a
local Kubernetes cluster to emulate the Online Boutique environment, providing an ideal setup for
testing Kubernetes network policies in a real-world, cloud-native scenario.

The diagram above illustrates the architecture of the Online Boutique application, which consists of
several microservices. In the diagram, each service is represented by a node, and the arrows indicate
one-way communication between them. The one-way access is crucial for ensuring security and
maintaining the integrity of the system. By restricting communication to only one direction, we can
better control the flow of data and prevent unauthorized access or interactions between microservices,
which is important for preserving the confidentiality and reliability of each service.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 8: Structure of Google’s microservice benchmark.

Our benchmark is designed to intentionally disrupt this structure by causing failures in the commu-
nication between the microservices. We will inject network misconfigurations into the cluster to
simulate faults, which could lead to unauthorized access or prevent legitimate nodes from accessing
the required services. The faulty cluster will then be provided to an LLM, allowing it to autonomously
identify the root cause of the issues and take corrective actions, such as restoring proper access
controls or resolving connectivity problems. This process will test the LLM’s ability to handle
complex network policies and restore the system to its desired state.

D.2 DYNAMIC BENCHMARK CENERATION

In our benchmark design, we focus on error injection within a K8s cluster, specifically targeting the
network configuration layer. To emulate real-world misconfigurations and generate diagnostic queries,
we systematically inject faults by automatically modifying the network configuration YAML files.
Our methodology is grounded on five fundamental types of basic network errors, which can also be
added sequentially to increase complexity. These basic errors involve modifications to the ingress and
egress rules, protocols, and ports within the Kubernetes network policies. By introducing such errors,
we can observe how network disruptions manifest and how the LLM reacts to misconfigurations,
which are critical for evaluating LLM’s fault detection and correction abilities.

Basic Network Policy Errors. We generate examples of wrong policy deployed in the network as
below.

• Add Ingress Rule: This error type involves adding new ingress rules to the network
policy, which allows inbound traffic from external or unauthorized sources. In the YAML
configuration, this would involve adding a new from rule under the ingress section.

ingress:
- from:

- podSelector:
matchLabels:

app: frontend

Potential Impact: Adding an ingress rule with an external source could compromise the
security boundaries of the system, allowing unauthorized access to internal services, which
might lead to security breaches.

• Add Egress Rule: This error type adds a new egress rule to allow internal services to
communicate with external services or networks, potentially violating security protocols.
The YAML change typically involves adding a new to rule under the egress section.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

egress:
- to:

- podSelector:
matchLabels:

app: frontent

Potential Impact: Adding an egress rule might cause unauthorized data leaks or expose the
system to connections with external entities. It can allow sensitive data to flow out of the
network, risking privacy or system integrity.

• Remove Ingress Rule: Deleting an ingress rule can block necessary traffic from reaching
internal services. In the YAML configuration, this would involve removing an existing
ingress rule under the ingress section.

ingress:
Removed rule here
- from:

- podSelector:
matchLabels:

app: frontend

Potential Impact: By removing an ingress rule, valid traffic from authorized services may
be blocked, leading to service downtime or failure to respond to incoming requests. This
can reduce system availability and affect service reliability.

• Change Protocol: Changing the communication protocol (e.g., from TCP to UDP or vice
versa) can disrupt inter-service communication. The YAML configuration might be modified
by altering the protocol field under the ports section.

ports:
- port: 9555

protocol: UDP % Changed from TCP to UDP

Potential Impact: If services depend on a specific protocol for communication, changing it
can result in connectivity issues. Services may fail to establish connections, causing service
interruptions and degraded performance.

• Change Port: Modifying the port number used for communication between services
can lead to issues such as services becoming unreachable or port conflicts. This would
be represented by modifying the port value under the ports section of the YAML
configuration.

ports:
- port: 8080 % Changed from 9555 to 8080

protocol: TCP

Potential Impact: Changing the port configuration can make services unreachable if other
services still expect the old port. Port conflicts can arise if another service is already using
the new port, resulting in failed connections and network instability.

Increasing Complexity through Sequential Error Injection. To increase the difficulty and com-
plexity of network misconfigurations, we adopt a sequential error injection strategy. This approach
involves identifying and modifying two separate YAML files, each representing different aspects
of the network configuration. By injecting different types of errors into each file, we create a more
intricate and challenging scenario for the Kubernetes cluster. Sequential injection of multiple error
types forces LLMs to handle progressively more complex network misconfigurations, which can test
the LLM’s ability to diagnose and resolve issues more effectively.

D.3 LLM-BASED AGENTS USAGE

Emulator. In this section, we describe the setup of a emulation platform designed to facilitate
interactions between LLMs and a K8s cluster. The goal of this environment is to create a testing

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

ground where LLMs can be used to diagnose and resolve network misconfigurations within the
K8s cluster. The environment allows us to introduce various network issues, test LLM-based
troubleshooting techniques, and evaluate the efficiency and accuracy of LLM interventions.

For our simulation, we utilized the kind simulator, a tool designed for running local Kubernetes
clusters using Docker container "nodes". Using kind, we can simulate an entire Kubernetes cluster on
a single virtual machine (VM), which provides a lightweight and easy-to-manage environment for
our tests. In addition, we deploy Google’s microservices demo locally, benefiting from the compact
nature of the setup and the simplicity of management. Besides, the Kind simulator fully replicates
the behavior of a real Kubernetes cluster, ensuring that the environment that we provide to the LLM
is consistent with production-like conditions. This allows us to present the LLM with an environment
that mimics real-world Kubernetes clusters, enabling accurate and reliable testing of its fault detection
and resolution capabilities.

Once the local K8s cluster was successfully set up, we can inject errors to simulate network misconfig-
urations and connectivity issues. After the error injection, we have a function to collect connectivity
failures due to configuration errors between nodes. This information is then provided to the LLM,
which will help it analyze the current network state and generate a Kubernetes command to resolve
the identified issue. The command is executed within the environment, and the updated connectivity
status is subsequently fed back to the LLM. Equipped with this new information, the LLM interacts
with the system, refining its diagnosis, and issuing additional commands if necessary. This iterative
process continues until the network issues are resolved, enabling the LLM to effectively troubleshoot
and fix network problems. Through this approach, the benchmark assesses the diagnostic accuracy,
problem solving efficiency, and adaptability of the LLM in dynamic network environments, providing
a comprehensive assessment of its performance in real-world scenarios. The following provides the
implementation details for the network status check and the interaction with LLMs.

Network Status Check. We have implemented a function that automatically checks the network
connectivity between nodes in the K8s cluster to identify any discrepancies between the actual
communication and the expected connectivity.

At the beginning of the network status check, a debug container (which will be reused for the
entire benchmarking process) is created for each pod, containing basic network tools necessary for
connectivity testing. During the network status testing process, we access the debug container and
use the ‘nc‘ (Netcat) command to test whether a pod can communicate with other pods within the
cluster. The results of these tests are then provided to the LLM in the form of a mismatch report,
detailing which nodes have communication issues that differ from the expected connectivity.

Example Mismatch
Mismatch Summary:
frontend → adservice:9555 (Expected: True, Actual: False)
frontend → cartservice:7070 (Expected: False, Actual: True)
Explanation:
In the above mismatch results, the connectivity between pods is compared against the expected
behavior. The first mismatch indicates that the ‘frontend‘ pod was expected to communicate
with the ‘adservice‘ pod on port 9555, but the actual connectivity failed (Expected: True,
Actual: False). In contrast, the second mismatch shows that the ‘frontend‘ pod was expected
not to communicate with the ‘cartservice‘ pod on port 7070, but the actual connection was
established (Expected: False, Actual: True).

LLM Interaction. To enable effective interaction between the LLM and the K8s cluster, we allow
the LLM to use Kubernetes commands to troubleshoot and resolve network issues. When the LLM
analyzes the network status and identifies potential problems, it generates Kubernetes commands
as output. These commands are then extracted from the LLM’s response and executed on the K8s
cluster.

To run the generated Kubernetes commands, we use Python’s ‘subprocess‘ module, which allows us
to programmatically execute shell commands. The command’s output, including any errors or status
messages, is captured and stored for further analysis. This enables us to monitor the LLM’s actions
and track the results of the commands it issues.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

By interacting with the K8s cluster in this way, the LLM is able to perform network troubleshooting
tasks, such as diagnosing misconfigurations and resolving connectivity issues. The model uses the
output from each command to refine its diagnosis, iterating on its approach if necessary. Through this
process, the LLM can progressively identify the root causes of network problems and issue further
corrective commands until the issues are resolved, completing the troubleshooting process.

Prompts. We provide the initial prompt as below.

You need to behave like a network engineer who can find the root cause of network policy
deployment issues and fix them in the microservices architecture.
Our microservices architecture contains following services and desired communication
relationships:
- User and loadgenerator can access the frontend service via HTTP.
- frontend communicates with the following services: checkout, ad, recommendation, pro-
ductcatalog, cart, shipping, currency, payment and email.
- checkout further communicates with payment, shipping, email, and currency.
- recommendation communicates with productcatalog.
- cart communicates with the Redis cache for storing cart data.
Your task is to inspect the current network policies and verify if they meet the described
communication patterns. If there are any mismatches, you should fix them.
How the interaction works:
- Provide one command at a time to check connectivity or node accessibility.
- Each time, I will give you the previous commands and their corresponding outputs.
- I will also provide the current connectivity status, including any mismatches between the
expected and actual connectivity status.
- Use this information to identify and fix misconfigurations step-by-step.

D.4 EVALUATION METRIC.

The performance evaluation of LLMs in the K8s cluster troubleshooting requires a comprehensive and
multidimensional approach. A single metric only reflects the final success or failure of a command but
overlooks the intermediate steps in tasks like network fault diagnosis, which often involve multiple
iterations. For tasks in a K8s cluster, it’s important to evaluate not only the final result but also
the necessity and efficiency of each intermediate action, which can be assessed by the number of
iterations. Additionally, it’s crucial to evaluate whether these intermediate actions impact overall
performance or cause potential damage to the cluster, as this poses a safety risk. By considering these
different dimensions, we can gain a more thorough understanding of the LLM’s capabilities, identify
its limitations, and ensure that it is safe, reliable, and effective in real-world K8s deployments. The
evaluation metrics we considered are as follows:

• Correctness: This metric focuses on whether the final command execution results in a successful
outcome. We will use the network status check in the previous section to find if the K8s cluster
gets to the expected state with the LLM’s help. It reflects the accuracy of the LLM’s final action in
diagnosing and resolving network faults in a K8s environment. A high correctness rate indicates
that the LLM reliably produces solutions that lead to successful outcomes without errors.

• Safety: Safety is measured by evaluating the LLM’s ability to maintain the K8s cluster’s stability
during the diagnosis and resolution process. This includes monitoring network status during the
LLM troubleshooting process to see if the LLM’s command will destroy original connectivity.
For instance, an increase in pod failures or a loss of network connectivity could indicate that the
LLM’s commands are destabilizing the existing system state, potentially leading to larger failures
in production environments.

• Latency: This metric measures the number of iterations the LLM requires to reach a successful
resolution of the issue within a K8s cluster. Fewer iterations to resolve the issue indicate that the
LLM is more efficient in troubleshooting, as it can more accurately pinpoint the root cause of the
problem and generate the appropriate Kubernetes commands. An LLM that reaches a solution in
fewer iterations demonstrates higher efficiency in addressing K8s network issues, leading to quicker
resolutions and reduced downtime. This efficiency is essential in a production environment, where
minimizing network disruption is critical to maintaining service availability and system reliability.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Query Example Action Label

Level 1

Remove ju1.a4.m3.s2c8 from the graph. List the direct child nodes of ju1.a4.m3 in the updated graph. RM
Rank all child nodes of type EK_CONTROL_DOMAIN with name ju1.a2.dom based on the physical_capacity_bps attribute. R

List all the child nodes of ju1.a2.dom. Return a list of child node names. LI
Add a new PORT with new_EK_PORT_65 and type=EK_PORT to the node ju1.a3.m2.s2c1. A

Level 2
Remove ju1.a2.m2.s2c4.p13. Count the number of nodes with type=EK_PORT under ju1.a2.m2.s2c4 in the updated graph. RM-C

Remove ju1.a4.m4.s3c8 from the graph. List the direct child nodes of ju1.a4.m4. RM-LI
Remove ju1.a4.m2.s2c3. Rank the child nodes of ju1.a4.m2 based on the total bandwidth. RM-R

Level 3
Add new_EK_PACKET_SWITCH_13 to ju1.a3.m3. Count the number of type=EK_PACKET_SWITCH under ju1.a3.m3. A-C

Add new_EK_PACKET_SWITCH_61 to ju1.s4.dom. List the direct child nodes of ju1.s4.dom in the updated graph. A-LI
Add new_EK_PACKET_SWITCH_67 to ju1.a3.dom. Rank the child nodes of ju1.a3.dom based on the total bandwidth. A-R

Table 4: Action and complexity level details for queries in CP.

Error Details Error Label

Level 1

disable_routing DR
disable_interface DI

remove_ip RI
drop_traffic_to_from_subnet DT

wrong_routing_table WR

Level 2

disable_routing + disable_interface DR+DI
disable_routing + remove_ip DR+RI

disable_routing + drop_traffic_to_from_subnet DR+DT
disable_routing + wrong_routing_table DR+WR

remove_ip + wrong_routing_table RI+WR
drop_traffic_to_from_subnet + wrong_routing_table DT+WR

disable_interface + drop_traffic_to_from_subnet DI+DT

Level 3
disable_interface + wrong_routing_table DI+WR

remove_ip + drop_traffic_to_from_subnet RI+DT
disable_interface + remove_ip DI+RI

Table 5: Error and complexity level details for queries in Routing.

Error Details Error Label

Level 1

remove_ingress RI
add_ingress AI
change_port CP

change_protocol CPR
add_egress AE

Level 2

remove_ingress + add_ingress RI+AI
remove_ingress + change_port RI+CP

remove_ingress + change_protocol RI+CPR
add_ingress + change_port AI+CP

add_ingress + change_protocol AI+CPR
change_port + change_protocol CP+CPR

Level 3

change_port + add_egress CP+AE
change_protocol + add_egress CPR+AE
remove_ingress + add_egress RI+AE

add_ingress + add_egress AI+AE
Table 6: Error and complexity level details for queries in K8s.

29

	Introduction
	Related Work
	NetArena
	LLM-based Network Application Tasks
	A Unified Abstraction for Generating Network Benchmarks
	Realistic Agent Evaluation via Emulator Integration

	Experiments
	Reducing Confidence Interval Overlap with Larger Query Size
	Fine-Grained Evaluation via Complexity-Aware Breakdown
	Evaluating Robustness via Supervised Fine-Tuning

	Conclusion and Other Use Cases of NetArena
	Enabling Post-Training RL in NetArena's Environments
	Probing Agents with Adversarial Examples

	Extend NetArena to New Applications
	Details for Datacenter Capacity Planning
	Application environment
	Dynamic benchmark creation
	LLM-based agents usage
	Evaluation metrics

	Details for Routing Misconfigurations
	Application environment
	Dynamic benchmark creation
	LLM-based agents usage
	Evaluation metric

	Details for Microservice Policy Deployment Troubleshooting
	Application environment
	Dynamic benchmark ceneration
	LLM-based agents usage
	Evaluation Metric.

