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Summary
This paper studies the safe reinforcement learning problem formulated as an episodic finite-

horizon tabular constrained Markov decision process with an unknown transition kernel and
stochastic reward and cost functions. We propose a model-based algorithm based on novel
cost and reward function estimators that provide tighter cost pessimism and reward optimism.
While guaranteeing no constraint violation in every episode, our algorithm achieves a regret
upper bound of Õ((C̄ − C̄b)

−1H2.5S
√
AK) where C̄ is the cost budget for an episode, C̄b

is the expected cost under a safe baseline policy over an episode, H is the horizon, and S, A
and K are the number of states, actions, and episodes, respectively. This improves upon the
best-known regret upper bound, and when C̄ − C̄b = Ω(H), the gap from the regret lower
bound of Ω(H1.5

√
SAK) is Õ(

√
S). We deduce our cost and reward function estimators via a

Bellman-type law of total variance to obtain tight bounds on the expected sum of the variances
of value function estimates. This leads to a tighter dependence on the horizon in the function
estimators. We also present numerical results to demonstrate the computational effectiveness
of our proposed framework.

Contribution(s)
1. This paper presents an algorithm for episodic finite-horizon tabular constrained Markov

decision processes with an improved regret upper bound of Õ((C̄ − C̄b)
−1H2.5S

√
AK).

Context: The best-known regret upper bound is Õ((C̄ − C̄b)
−1H3S

√
AK) due to Bura

et al. (2022), and our result improves it by a factor of Õ(
√
H).

2. Our algorithm ensures zero constraint violation for each episode, given the knowledge of a
safe baseline policy.
Context: The guarantee is stronger than zero cumulative constraint violation, for which
error cancellations are permitted across episodes. Hence, under our algorithm, there is no
episode in which the constraint is violated. A safe baseline policy is necessary to enforce
zero constraint violation, especially in the early stage (Liu et al., 2021; Bura et al., 2022).

3. When C̄− C̄b = Ω(H), the gap from the regret lower bound of Ω(H1.5
√
SAK) is Õ(

√
S),

and our result nearly matches the lower bound in terms of H .
Context: The lower bound is originally derived for the unconstrained case (Jin et al., 2020;
Domingues et al., 2021), and it also works for the constrained case as we can take trivial
cost functions.

4. The reduction in the regret upper bound is a consequence of our novel reward and cost
function estimators. The key is to control the error of estimating the unknown transition
kernel over each episode. In particular, we provide a tighter bound on the estimation error
for each episode, based on a Bellman-type law of total variance. The bound is given by a
function of the estimated transition kernel, whose choice can be optimized by the algorithm.
Context: Our Bellman-type law of total variance technique refines the analysis of Bura et al.
(2022). The technique is inspired by Chen & Luo (2021), while they gave only a cumulative
error bound across all episodes, and at the same time, the bound is expressed as a function
of the true transition kernel which is unknown to the algorithm.
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Abstract
This paper studies the safe reinforcement learning problem formulated as an episodic1
finite-horizon tabular constrained Markov decision process with an unknown transition2
kernel and stochastic reward and cost functions. We propose a model-based algorithm3
based on novel cost and reward function estimators that provide tighter cost pessimism4
and reward optimism. While guaranteeing no constraint violation in every episode, our5
algorithm achieves a regret upper bound of Õ((C̄ − C̄b)

−1H2.5S
√
AK) where C̄ is6

the cost budget for an episode, C̄b is the expected cost under a safe baseline policy over7
an episode, H is the horizon, and S, A and K are the number of states, actions, and8
episodes, respectively. This improves upon the best-known regret upper bound, and9
when C̄ − C̄b = Ω(H), the gap from the regret lower bound of Ω(H1.5

√
SAK) is10

Õ(
√
S). The reduction in the regret upper bound is a consequence of our novel reward11

and cost function estimators. The key is to control the error of estimating the unknown12
transition kernel over each episode. In particular, we provide a tighter bound on the13
estimation error for each episode, based on a Bellman-type law of total variance to ana-14
lyze the expected sum of the variances of value function estimates. The bound is given15
by a function of the estimated transition kernel, whose choice can be optimized by the16
algorithm. This leads to a tighter dependence on the horizon in the function estimators.17
We also present numerical results to demonstrate the computational effectiveness of our18
proposed framework.19

1 Introduction20

Safe reinforcement learning (RL) aims to learn a policy that maximizes the cumulative reward and, at21
the same time, ensures that some safety requirements are satisfied during the learning process. Safe22
RL provides modeling frameworks for many practical scenarios where violating a safety constraint23
results in a critical situation. For example, it is crucial to enforce collision avoidance for autonomous24
driving (Isele et al., 2018; Krasowski et al., 2020) and robotics (Fisac et al., 2018; García & Shafie,25
2020). For financial planning, there exist legal and business regulations (Abe et al., 2010). For26
healthcare systems, service providers consider restrictions due to patients’ conditions (Coronato27
et al., 2020).28

The standard approach is to formulate a safe RL problem as a constrained Markov decision process29
(CMDP), where the objective is to maximize the expected reward over a time horizon while there30
is a constraint that the expected cost should be under budget (Altman, 1999). The presence of con-31
straints, however, brings about challenges in developing solution methods for CMDPs. The Bellman32
optimality principle does not hold for CMDPs, and as a consequence, backward induction and the33
greedy operator cannot be directly applied to CMDPs (Altman, 1999). This makes online learning34
of CMDPs difficult, and we need significantly different frameworks and algorithms compared to the35
unconstrained setting (García et al., 2015; Efroni et al., 2020; Gu et al., 2024).36
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The first direction for online reinforcement learning of CMDPs is to consider cumulative (or soft)37
constraint violation, which sums up the constraint violations across episodes (Efroni et al., 2020).38
Here, the constraint violation in an episode is defined as the expected cost minus the budget. Then a39
policy can have a negative constraint violation, which means that a positive violation in one episode40
can be canceled out by a negative violation in another episode in the sum. This cancellation effect41
allows oscillating between such two cases, while still achieving zero cumulative constraint violation.42
This phenomenon can indeed be observed in practice (Stooke et al., 2020; Moskovitz et al., 2023).43

The second direction attempts to remedy the issue of error cancellation with the notion of hard44
constraint violation (Efroni et al., 2020). It ignores episodes with a negative violation and takes45
the sum of only the positive constraint violations. Efroni et al. (2020) developed OptCMDP and its46
efficient variant, OptCMDP-bonus, that attain a regret upper bound and a hard constraint violation47
of Õ(H2

√
S2AK). Recently, Ghosh et al. (2024) proposed a model-free algorithm with the same48

asymptotic guarantees. However, as in the first setting, the algorithms cannot avoid episodes in49
which the constraint is violated. Thus, they are still not suitable for the aforementioned applications,50
where even a single incidence of violation can cause substantial problems.51

The third approach seeks zero (hard) constraint violation, requiring that the constraint is satisfied52
in every episode (Simão et al., 2021). Satisfying constraints in the early stage is difficult when53
the model parameters, especially the transition kernel, are unknown. Simão et al. (2021) con-54
sidered some abstraction of the transition model under which they showed an algorithm with no55
constraint violation, but no regret upper bound was presented. Then Liu et al. (2021) came up56
with the first algorithm, OptPess-LP, that achieves a sublinear regret with no constraint violation,57
assuming the knowledge of a safe baseline policy. Here, a safe baseline policy is a policy under58
which the expected cost is lower than the budget. OptPess-LP guarantees a regret upper bound of59
Õ((C̄ − C̄b)

−1H3
√
S3AK) where C̄ is the budget, C̄b is the expected cost under the safe baseline60

policy, H is the length of the horizon, and S, A and K are the number of states, actions, and episodes,61
respectively. Bura et al. (2022) developed Doubly Optimistic Pessimistic Exploration (DOPE) with62
an improved regret upper bound of Õ((C̄ − C̄b)

−1H3
√
S2AK). DOPE is based on designing tight63

optimistic reward function estimators (reward optimism) and conservative cost function estimators64
(cost pessimism).65

While DOPE establishes a tight regret upper bound with no constraint violation, there is still room66
for improvement. The regret lower bound of Ω(H1.5

√
SAK) for the unconstrained case (Jin et al.,67

2018; Domingues et al., 2021) also works as a lower bound for the constrained setting because we68
may take trivial cost functions. However, even when C̄ − C̄b = Ω(H), the regret upper bound69
of DOPE is as low as Õ(H2

√
S2AK) which has a gap of Õ(

√
HS) from the lower bound. This70

naturally motivates the following question.71

Is there an algorithm for learning CMDPs that guarantees no constraint violation during learning72
and achieves an improved regret upper bound?73

Our Contributions We answer this question affirmatively with an algorithm that improves upon74
DOPE via tighter reward optimism and cost pessimism. Our results are summarized in Table 1 and75
as follows.76

• Our algorithm, DOPE+, achieves a regret upper bound of Õ((C̄ − C̄b)
−1H2.5

√
S2AK) and en-77

sures no constraint violation in every episode, with the knowledge of a safe baseline policy. This78
improves upon the best-known regret upper bound Õ((C̄−C̄b)

−1H3
√
S2AK) attained by DOPE.79

• When the gap C̄ − C̄b between the budget and the expected cost under the safe baseline policy80
satisfies C̄ − C̄b = Ω(H), the regret upper bound becomes Õ(H1.5

√
S2AK). Then the gap from81

the regret lower bound of Ω(H1.5
√
SAK) is Õ(

√
S), which shows that the regret upper bound82

achieves the optimal dependence on the horizon H .83

• The improvement comes from our novel reward and cost function estimators with tighter reward84
optimism and cost pessimism. We deduce the function estimators by providing a tighter upper85
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bound on the estimation error for each episode, based on a Bellman-type law of total variance to86
analyze the expected sum of the variances of value function estimates. The bound is given by a87
function of the estimated transition kernel, whose choice can be optimized by the algorithm. This88
leads to a tighter dependence on the horizon in the function estimators.89

Table 1: Comparison of Safe RL algorithms for the Hard Constraint Violation Setting: OptCMDP,
OptCMDP-bonus (Efroni et al., 2020), AlwaysSafe (Simão et al., 2021), OptPess-LP (Liu et al.,
2021), DOPE (Bura et al., 2022), and DOPE+ (Algorithm 1).

Algorithms Regret Hard Constraint Violation

OptCMDP, OptCMDP-bonus Õ(H2
√
S2AK) Õ(H2

√
S2AK)

AlwaysSafe Unknown 0
OptPess-LP Õ((C̄ − C̄b)

−1H3
√
S3AK) 0

DOPE Õ((C̄ − C̄b)
−1H3

√
S2AK) 0

DOPE+ Õ((C̄ − C̄b)
−1H2.5

√
S2AK) 0

A more comprehensive literature review on online reinforcement learning of CMDPs is given in the90
supplementary material.91

2 Preliminary92

In this section, we introduce the problem setting and necessary definitions. In Section 2.1, we93
describe the episodic finite-horizon tabular CMDPs and its performance metrics. In Section 2.2, we94
define the confidence set for the transition kernel, and the confidence interval for the reward and cost95
functions, which are necessary for deriving our theoretical results.96

2.1 Problem Setting97

A finite-horizon tabular MDP is defined by a tuple (S,A, H, {Ph}H−1
h=1 , p) where S is the finite98

state space with |S| = S, A is the finite action space with |A| = A, H is the finite-horizon,99
Ph : S × A × S → [0, 1] is the transition kernel at step h ∈ [H − 1], and p is the known initial100
distribution of the states. Here, Ph(s

′ | s, a) is the probability of transitioning to state s′ from state101
s when the chosen action is a at step h ∈ [H − 1]. Equivalently, we may define a single non-102
stationary transition kernel P : S × A × S × [H]→ [0, 1] with P (s′ | s, a, h) = Ph(s

′ | s, a) and103
P (s′ | s, a,H) = p(s′) for (s, a, s′, h) ∈ S ×A×S × [H − 1]. We assume that {Ph}H−1

h=1 and thus104
P are unknown.105

Before an episode begins, the agent prepares a stochastic policy π : S × [H] × A → [0, 1] where106
π(a | s, h) is the probability of taking action a ∈ A in state s ∈ S at step h. Here, π can be viewed107
as a non-stationary policy as it may change over the horizon, and this is due to the non-stationarity108
of P over steps h ∈ [H]. Given a policy πk for episode k ∈ [K], the MDP proceeds with trajectory109
{sP,πk

h , aP,πk

h }h∈[H] generated by P .110

The reward and cost functions are given by f, g : S × A × [H] → [0, 1], i.e., choosing action111
a ∈ A at state s ∈ S and step h ∈ [H] generates a reward f(s, a, h) and cost g(s, a, h). Here,112
functions f and g are non-stationary over h ∈ [H]. However, the agent observes the noisy reward113
and cost. We denote the observed noisy reward and cost for episode k ∈ [K] by fk(s, a, h) and114
gk(s, a, h), respectively. As in Liu et al. (2021), we assume that fk(s, a, h) and gk(s, a, h) are115
determined by independent1 noisy random variables ζfk (s, a, h) and ζgk(s, a, h) following a zero-116
mean 1/2-sub-Gaussian distribution, i.e., fk(s, a, h) = f(s, a, h) + ζfk (s, a, h) and gk(s, a, h) =117

1We may impose conditional independence.
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g(s, a, h)+ζgk(s, a, h). We note that 1/2−sub-Gaussian random variables ζ with zero mean satisfies118
E[ζ] = 0 and E[exp(λζ)] ≤ exp(λ2/4). Then Hoeffding’s inequality implies the following.119

Lemma 1. For any δ > 0, with probability at least 1−4δ, it holds that for any (s, a, h) ∈ S×A×[H]
and k ∈ [K],

|fk(s, a, h)| , |gk(s, a, h)| ≤ 1 +
√
ln(HSAK/δ).

We define the value function V π
h (s; ℓ, P ) at state s ∈ S and step h ∈ [H] for a given policy π,120

function ℓ, and transition kernel P as121

V π
h (s; ℓ, P ) = E

 H∑
j=h

ℓ(sP,π
j , aP,π

j , j) | ℓ, π, P, sP,π
h = s

 .

Moreover, let V π
1 (ℓ, P ) = Es∼p [V

π
1 (s; ℓ, P ) | ℓ, π, P ] where p is the known distribution of the122

initial state.123

The goal of the constrained Markov decision process is to learn an optimal policy π∗ defined as124

π∗ ∈ argmax
π∈Π

V π
1 (f, P ) s.t. V π

1 (g, P ) ≤ C̄

where C̄ is the budget on the expected cost over the horizon, and Π is the set of all policies. As the
model parameters f, g, P are unknown, we develop a learning algorithm that computes policies over
multiple episodes. For K episodes, we deduce policies π1, . . . , πK with the safety requirement that

V πk
1 (g, P ) ≤ C̄ ∀k ∈ [K]

holds with high probability. The safety requirement is equivalent to enforcing zero hard constraint
violation where the hard constraint violation is defined as

Violation(π⃗) :=

K∑
k=1

max
{
0, V πk

1 (g, P )− C̄
}

and π⃗ = (π1, . . . , πK) is a shorthand notation for the K policies. As a performance metric for a125
learning algorithm, we use the following notion of regret.126

Regret (π⃗) :=

K∑
k=1

(
V π∗

1 (f, P )− V πk
1 (f, P )

)
.

To satisfy the safety constraint, we assume that a strictly safe baseline policy πb is given to the agent.127

Assumption 1. The agent knows a policy πb and its expected cost C̄b = V πb
1 (g, P ). We further128

assume that πb is strictly feasible, i.e., C̄b < C̄.129

This assumption is necessary because the learning agent has no information about the underlying130
MDP at the beginning. Without a safe baseline policy, it is difficult to satisfy the constraint in the131
initial phase of learning. It is a commonly assumed condition for learning CMDPs (Simão et al.,132
2021; Liu et al., 2021; Bura et al., 2022). We also remark that strict feasibility of πb is related to133
Slater’s condition in constrained optimization.134

Lastly, we assume that the budget C̄ satisfies C̄ ∈ (0, H). If C̄ ≥ H , then as V π
1 (g, P ) ≤ H for135

any policy π, the safety requirement is trivially satisfied. Moreover, we have C̄ is strictly positive136
because Assumption 1 imposes that C̄ > C̄b and C̄b = V πb

1 (g, P ) ≥ 0.137

2.2 Confidence Sets and Intervals138

We follow the standard Bernstein inequality-based confidence set construction for estimating the139
true transition kernel and use confidence intervals based on Hoeffding’s inequality for estimating140
reward and cost functions (Jin et al., 2020; Cohen et al., 2020).141
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As in Efroni et al. (2020); Bura et al. (2022), we maintain counters to keep track of the number of142
visits to each tuple (s, a, h) and tuple (s, a, s′, h). For each k ∈ [K], we define Nk(s, a, h) and143
Mk(s, a, s

′, h) as the number of visits to tuple (s, a, h) and the number of visits to tuple (s, a, s′, h)144
up to the first k − 1 episodes, respectively, for (s, a, s′, h) ∈ S × A × S × [H]. Given Nk(s, a, h)145
and Mk(s, a, s

′, h), we define the empirical transition kernel P̄k for episode k as146

P̄k(s
′ | s, a, h) = Mk(s, a, s

′, h)

max{1, Nk(s, a, h)}
.

Next, for some confidence parameter δ ∈ (0, 1), we define the confidence radius ϵk(s′ | s, a, h) for147
(s, a, s′, h) ∈ S ×A× S × [H] and k ∈ [K] as148

ϵk(s
′ | s, a, h) = 2

√
P̄k(s′ | s, a, h)(1− P̄k(s′ | s, a, h))Lδ

max{1, Nk(s, a, h)− 1}
+

14 ln(HSAK/δ)

3max{1, Nk(s, a, h)− 1}
(1)

where Lδ = ln(HSAK/δ). Based on the empirical transition kernel and the radius, we define the149
confidence set Pk for episode k as150

Pk =
{
P̂ :

∣∣∣P̂ (s′ | s, a, h)− P̄k(s
′ | s, a, h)

∣∣∣ ≤ ϵk(s
′ | s, a, h) ∀(s, a, s′, h)

}
. (2)

By the empirical Bernstein inequality due to Maurer & Pontil (2009), we can show the following.151

Lemma 2. For any δ > 0, with probability at least 1− 4δ, the true transition kernel P is contained152
in the confidence set Pk for every episode k ∈ [K].153

Next, for reward and cost functions, we define the confidence radius Rk(s, a, h) for (s, a, h) ∈
S ×A× [H], k ∈ [K] and δ ∈ (0, 1) as

Rk(s, a, h) =

√
ln(HSAK/δ)

max{1, Nk(s, a, h)}
.

We define empirical estimators f̄k and ḡk as154

f̄k(s, a, h) =

∑k−1
j=1 fj(s, a, h)nj(s, a, h)

max{1, Nk(s, a, h)}
, ḡk(s, a, h) =

∑k−1
j=1 gj(s, a, h)nj(s, a, h)

max{1, Nk(s, a, h)}

where fj(s, a, h), gj(s, a, h) are the instantaneous reward and cost for episode j ∈ [k − 1] and155
nj(s, a, h) is the indicator variable that returns 1 if the agent visited (s, a, h) in episode j and 0156
otherwise. Then we may deduce the following from Hoeffding’s inequality.157

Lemma 3. For any δ > 0, with probability at least 1−4δ, it holds that for any (s, a, h) ∈ S×A×[H]158
and k ∈ [K],159 ∣∣f̄k(s, a, h)− f(s, a, h)

∣∣ ≤ Rk(s, a, h), |ḡk(s, a, h)− g(s, a, h)| ≤ Rk(s, a, h).

3 Tighter Function Estimators160

In this section, we introduce the tighter function estimators, which are crucial for achieving our161
theoretical results: (i) zero constraint violation and (ii) an improved regret upper bound. First, we162
show how to design the tighter pessimistic cost estimator ĝk, focusing on zero constraint violation.163
Accordingly, we present the reward estimator f̂k with an extra optimism to compensate for the164
pessimism of ĝk, which directly affects the regret upper bound.165

Remark 1. The reason why we begin with designing ĝk is that a tighter ĝk can be translated to166
a tighter regret upper bound. To provide an intuition, let us consider the following optimization167
problem based on the estimated MDP: maxπ′,P ′∈Pk

V π′

1 (f̂k, P
′) s.t. V π′

1 (ĝk, P
′) ≤ C̄. Once we168

take a tighter ĝk, the set of feasible solutions becomes larger. Then it leads to increase the optimal169
value V πk

1 (f̂k, Pk), where (πk, Pk) is an optimal solution. Taking advantage of this, it allows us to170
have a tighter optimism for f̂k, which directly affects the regret upper bound.171
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Lemmas 2 and 3 motivate the following attempt to deduce feasible policies. For episode k ∈ [K], we172
take a transition kernel Pk from the confidence set Pk and ḡk+Rk as a pessimistic (or conservative)173
estimator of the cost function g. Then we may compute a policy πk that satisfies V πk

1 (ḡk+Rk, Pk) ≤174
C̄, which is an approximation of the constraint. However, even if ḡk +Rk provides an upper bound175
on g, the issue is that V πk

1 (g, P ) ̸≤ V πk
1 (ḡk + Rk, Pk). This is because the difference between the176

true transition kernel P and Pk can make V πk
1 (g, P ) greater than V πk

1 (ḡk +Rk, Pk). That said, πk177
does not necessarily satisfy the constraint, although it satisfies the approximate constraint.178

Inspired by the challenge, the next question is as to whether we can design an approximate con-179
straint, satisfying which guarantees that the true constraint is also satisfied. Liu et al. (2021); Bura180
et al. (2022) considered this, and their idea was to add an extra pessimism to cost function estimators.181
Basically, we take functions of the form182

ĝk(s, a, h) = ḡk(s, a, h) +Rk(s, a, h) + Uk(s, a, h) (3)

for (s, a, h) ∈ S × A × [H] and k ∈ [K] where Uk captures the error in estimating the true183
transition kernel P . In the above-discussed context, Uk considers the difference between P and184
Pk. Here, one needs to set Uk sufficiently large so that V πk

1 (g, P ) ≤ V πk
1 (ĝk, Pk), in which case185

satisfying the corresponding approximate constraint V πk
1 (ĝk, Pk) ≤ C̄ guarantees satisfaction of186

the true constraint.187

On the other hand, choosing the right magnitude of Uk is important to control the regret function.188
When Uk is too large, ĝk is too conservative, and it prevents from getting a high reward. Indeed,189
Bura et al. (2022) improved upon Liu et al. (2021) by making Uk tighter. Our main contribution is190
to develop an even tighter Uk function than Bura et al. (2022).191

Before we present our design of Uk, let us briefly discuss how to deduce the extra pessimism term Uk

in general. As explained before, we want to guarantee V πk
1 (g, P ) ≤ V πk

1 (ĝk, Pk) for any Pk ∈ Pk.
Then note that

V πk
1 (g, P ) ≤ V πk

1 (g, Pk) + |V πk
1 (g, P )− V πk

1 (g, Pk)|.

If the statement of Lemma 3 holds, then V πk
1 (g, Pk) is bounded above by V πk

1 (ḡk+Rk, Pk). There-
fore, once we come up with some Uk such that |V πk

1 (g, P )− V πk
1 (g, Pk)| ≤ V πk

1 (Uk, Pk), we get

V πk
1 (g, P ) ≤ V πk

1 (ḡk +Rk + Uk, Pk).

In this case, ĝk = ḡk +Rk + Uk gives rise to a valid function estimator.192

We devise our pessimism function Uk as follows.193

Theorem 1. Let πk be any policy for episode k. Take194

Uk(s, a, h) = 8
√
Hεk(s, a, h) + 4S

√
HA/K +

2 ln(HSAK/δ)
√
HK/A+ η

max{1, Nk(s, a, h)− 1}
(4)

for (s, a, h) ∈ S ×A× [H] and k ∈ [K] where195

εk(s, a, h) = 2

√
S ln(HSAK/δ)

max{1, Nk(s, a, h)− 1}
+

14S ln(HSAK/δ)

3max{1, Nk(s, a, h)− 1}
(5)

and η = (19HS + 2H1.5S + 104H2S2) ln(HSAK/δ)2. Then for any δ > 0, it holds with proba-
bility at least 1− 14δ that

|V πk
1 (g, P )− V πk

1 (g, Pk)| ≤ V πk
1 (Uk, Pk)

for any Pk ∈ Pk and g : S ×A× [H]→ [0, 1].196

In the following remark, we demonstrate that our Uk indeed improves upon Bura et al. (2022).197
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Remark 2. Bura et al. (2022) set Uk(s, a, h) as 2Hεk(s, a, h), which has coefficient 2H in front of198
εk

2. In contrast, our construction in Theorem 1 has an improved coefficient of 8
√
H . Although we199

have additional terms for Uk, the reduction of O(
√
H) in the coefficient translates to the improve-200

ment of Õ(
√
H) factor in the regret upper bound.201

Next, we present our optimistic reward function estimator f̂k. We define the optimistic reward202
function estimator f̂k as203

f̂k(s, a, h) = min

{
B, f̄k(s, a, h) +

3H

C̄ − C̄b
Rk(s, a, h) +

H

C̄ − C̄b
Uk(s, a, h)

}
(6)

where B = 1 +
√

ln(HSAK/δ). On top of f̄k + Rk, we take an additional optimistic term Uk204
for the reward function to compensate for Uk in ĝk, which reduces the search space of policies and205
hinders exploration. Furthermore, in f̂k, we multiply Rk and Uk by O(H/(C̄ − C̄b)) to guarantee206
the extra optimism in f̂k truly promotes exploration. Nevertheless, taking the extra optimism can207
cause a substantial overestimation of the reward function. To avoid this, we take a truncation to B208
as in (6).209

3.1 Proof Outline of Theorem 1210

The value difference lemma (Dann et al., 2017) implies211

V πk
1 (g, P )− V πk

1 (g, Pk) = E

[
H∑

h=1

ℓ(sPk,πk

h , aPk,πk

h , h) | πk, Pk

]

where ℓ(s, a, h) is given by212 ∑
s′∈S

(P − Pk)(s
′ | s, a, h)V πk

h+1(s
′; g, P ) (7)

with V πk

H+1 = 0 and (P − Pk)(s
′ | s, a, h) = P (s′ | s, a, h) − Pk(s

′ | s, a, h). Here, Bura et al.213
(2022) used that V πk

h+1 ≤ H and |P − Pk| ≤ |P − P̄k| + |P̄k − Pk| ≤ 2ϵk by Lemma 2. Then it214
follows that215

|V πk
1 (g, P )− V πk

1 (g, Pk)| ≤ E

[
H∑

h=1

2H
∑
s′∈S

ϵk(s
′ | sPk,πk

h , aPk,πk

h , h) | ϵk, πk, Pk

]

whose right-hand side equals V πk
1 (Uk, Pk) where Uk is given by 2Hεk. This explains how Bura216

et al. (2022) deduced their pessimistic cost estimators.217

To prove Theorem 1 that establishes the validity of our choice of tighter Uk in (4), we need a more218
refined analysis of the difference term |V πk

1 (g, P )−V πk
1 (g, Pk)|. Note that ℓ(s, a, h) in (7) satisfies219

|ℓ(s, a, h)| ≤

∣∣∣∣∣∑
s′∈S

(P − Pk)(s
′ | s, a, h)Wπk

h+1(s
′; g)

∣∣∣∣∣︸ ︷︷ ︸
I1

+

∣∣∣∣∣∑
s′∈S

(P − Pk)(s
′ | s, a, h)V πk

h+1(s
′; g, Pk)

∣∣∣∣∣︸ ︷︷ ︸
I2

where Wπk

h+1(s
′; g) = V πk

h+1(s
′; g, P ) − V πk

h+1(s
′; g, Pk). We prove the following lemma to provide220

an upper bound on term I1.221

2In fact, the original choice of Bura et al. (2022) was Uk(s, a, h) = 2H
∑

s′∈S ϵk(s
′ | s, a, h) where ϵk(s

′ | s, a, h)
is given in (1), but there is an issue with this choice. We need the property that Uk is nonincreasing in k to show Lemma 6
and (Proposition 4, Bura et al., 2022), but their Uk can increase as P̄k(s

′ | s, a, h)/Nk(s, a, h) can increase. As a fix, we
may take Uk(s, a, h) = 2Hεk(s, a, h) where εk is given in (5). Note that εk is nonincreasing in k. At the same time,
by the Cauchy-Schwarz inequality, εk(s, a, h) is an upper bound on

∑
s′∈S ϵk(s

′ | s, a, h). As a result, our construction
resolves the issue of Bura et al. (2022).
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Lemma 4. Let πk be any policy for episode k ∈ [K], and let g : S × A × [H] → [0, 1] be an222
arbitrary cost function. Then for any P, Pk ∈ Pk, we have223

E

[∣∣∣∣∣∑
s′∈S

(P − Pk)(s
′ | s, a, h)(V πk

h+1(s
′; g, P )− V πk

h+1(s
′; g, Pk))

∣∣∣∣∣ | πk, Pk

]
≤ V πk

1 (Uk,1, Pk)

where224

Uk,1(s, a, h) =
104H2S2 ln(HSAK/δ)2

max{1, Nk(s, a, h)}
.

The proof of this lemma is based on the value difference lemma to evaluate V πk

h+1(s
′; g, P ) −225

V πk

h+1(s
′; g, Pk). Here, the key part is to provide an upper bound that is represented as a value226

function of πk and Pk. Hence, we have227

E[I1 | πk, Pk] ≤ V πk
1 (Uk,1, Pk).

Next, we consider term I2, which turns out to be the dominant one. Since P and Pk both define228
transition functions, I2 equals229 ∣∣∣∣∣∑

s′∈S
(P − Pk)(s

′ | s, a, h)(V πk

h+1(s
′; g, Pk)− µ̂k(s, a, h))

∣∣∣∣∣
where µ̂k(s, a, h) = Es′∼Pk(·|s,a,h)[V

πk

h+1(s
′; g, Pk)]. Next, we observe that

|(P − Pk)(s
′ | s, a, h)| ≤ 2ϵk(s

′ | s, a, h) due to Lemma 2. Recall that ϵk(s
′ | s, a, h)

contains the term
√
P̄k(s′ | s, a, h). As Pk ∈ Pk we deduce that

√
P̄k(s′ | s, a, h) ≤√

Pk(s′ | s, a, h) + ϵk(s′ | s, a, h). As a result, by the Cauchy-Schwarz inequality, the anal-
ysis boils down to providing an upper bound on the term∑

s′∈S
Pk(s

′ | s, a, h)(V πk

h+1(s
′; g, Pk)− µ̂k(s, a, h))

2,

which equals
V̂k(s, a, h) := Var

s′∼Pk(·|s,a,h)
[V πk

h+1(s
′; g, Pk)].

Furthermore, our proof reveals that V πk
1 (V̂k, Pk) is the important quantity to control. Applying a230

naïve upper bound on value functions gives V̂k ≤ H2 and thus V πk
1 (V̂k, Pk) ≤ H3. However, this231

bound is not tight enough. Instead, we prove the following lemma based on a Bellman-type law of232
total variance (Azar et al., 2017; Chen & Luo, 2021).233

Lemma 5. Let πk be a policy for episode k. Then234

V πk
1 (V̂k, Pk) ≤ 2H2

for any Pk ∈ Pk and g : S ×A× [H]→ [0, 1].235

This improvement in the variance term leads to236

E[I2 | πk, Pk] ≤ V πk
1 (Uk,2, Pk)

where237

Uk,2(s, a, h) = 8
√
Hεk(s, a, h) + 4S

√
HA/K +

2L
√
HK/A+ (19HS + 2H1.5S)L2

δ

max{1, Nk(s, a, h)− 1}

where Lδ = ln(HSAK/δ). Putting the pieces together, we complete the proof of Theorem 1, as we238
have Uk(s, a, h) = Uk,1(s, a, h) + Uk,2(s, a, h). A complete proof is given in the supplementary239
material.240
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3.2 Comparison with Previous Works241

Our main technical contribution is to provide a tighter upper bound on the term242

|V πk
1 (g, P )− V πk

1 (g, Pk)| (8)

over each episode k ∈ [K]. This improves upon the analysis of Bura et al. (2022), thereby providing243
tighter cost and reward function estimators. Recall that our upper bound given in Theorem 1 is in the244
form of V πk

1 (Uk, Pk) and the main technique is a Bellman-type law of total variance. While Chen245
& Luo (2021) applied a similar technique to control the error of estimating the unknown transition246
kernel, their result does not immediately translate to a proper function estimator for our setting. We247
elaborate on this below.248

Chen & Luo (2021) gave an upper bound on the cumulative error given by249

K∑
k=1

|V πk
1 (g, P )− V πk

1 (g, Pk)| ≤ C1

K∑
k=1

V πk
1 (Uk, P ) + C2 (9)

where C1 = 16λS2A, C2 = C1Õ(H3
√
K) + 16 ln2(HSAK/δ)/λ + Õ(H3S2A) for any λ > 0,250

and Uk = Hg. However, the bound on the cumulative error does not lead to an upper bound on the251
error term (8) for each episode. Recall that to define f̂k, ĝk for each k, we need an upper bound on252
(8). Furthermore, the bound in (9) is written as a function of the true transition kernel P , which is253
not known to the agent. However, our algorithm as well as DOPE due to Bura et al. (2022) chooses254
an optimistic transition kernel, we require an upper bound on (8) that depends on the optimistic255
transition kernel to estimate the error caused by the choice.256

Theorem 1 addresses these issues by providing an upper bound for (8) in the form of V πk
1 (Uk, Pk),257

thereby leading to our novel reward and cost function estimators f̂k, ĝk.258

4 Algorithm259

DOPE+, given by Algorithm 1, is a variant of DOPE by Bura et al. (2022) with our novel reward260
and cost function estimators from Section 3. Recall that our pessimistic cost estimator ĝk is given261
by (3) with the extra pessimism term Uk given in (4) and our optimistic reward estimator f̂k is given262
in (6).263

As in Efroni et al. (2020); Bura et al. (2022), we compute our policy πk for episode k ∈ [K] by264
solving the following optimization problem.265

(πk, Pk) ∈ argmax
(π,Q)∈Π×Pk

{
V π
1 (f̂k, Q) : V π

1 (ĝk, Q) ≤ C̄
}

(10)

where Pk is the confidence set given by (2) and Π is the set of valid policies.266

To solve (10) efficiently, we take the standard approach of using occupancy measures (Altman,267
1999). An occupancy measure is essentially a joint probability for the event that we observe the268
state-action pair (s, a) at step h and state s′ at step h + 1. Introducing occupancy measure, we can269
reformulate (10) as an linear program in terms of an occupancy measure, which is referred to as the270
extended linear program (Altman, 1999; Efroni et al., 2020; Bura et al., 2022). By solving it, we271
obtain an optimal occupancy measure inducing an optimal solution to (10). We defer the formal272
description of the extended linear progam to the supplementary material.273

One issue, however, is that (10) can be infeasible at the beginning of the algorithm as ĝk can be274
too large to guarantee feasibility of (10). Hence, the algorithm executes the safe baseline policy πb275
for the first few episodes until sufficient information is gathered so that (10) becomes feasible. The276
following lemma characterizes a sufficient number of episodes running the safe baseline policy to277
guarantee feasibility of (10).278

9
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Algorithm 1 Doubly Optimistic Pessimistic Exploration with Tighter Function Estimators (DOPE+)

Input: Safe baseline policy πb and its expected cost for a single episode C̄b, and the number K0

of episodes for the initial phase
Initialize: N(s, a, h) = M(s, a, s′, h)← 0 for (s, a, s′, h) ∈ S ×A× S × [H].
for k = 1, . . . ,K do

Set counters Nk ← N and Mk ←M .
Compute P̄k, ϵk, and Pk (Section 2.2).
if k ≤ K0 then

Set πk = πb.
else

Compute estimators f̂k and ĝk (Section 3).
Deduce πk, Pk from (10).

end if
Sample state s1 from distribution p.
for h = 1, . . . ,H do

Sample ah from πk(· | sh, h).
Observe fk(sh, ah, h), gk(sh, ah, h), and sh+1 determined by P (· | sh, ah, h).
Update the counters N,M .

end for
end for

Lemma 6. With probability at least 1− 14δ, (πb, P ) is a feasible solution of (10) for any k > K0279
where280

K0 = Õ
(

H3S2A

(C̄ − C̄b)2

)
(11)

where Õ(·) hides factors polynomial in ln(HSAK/δ).281

5 Regret Analysis of DOPE+282

Let us state our theoretical guarantees for DOPE+.283

Theorem 2. Let π⃗ = (π1, . . . , πK) denote policies computed by DOPE+ with K0 given in (11).
Then

Violation(π⃗) = 0

with probability at least 1− 14δ.284

Hence, DOPE+ achieves no constraint violation. The next theorem shows a regret upper bound for285
DOPE+.286

Theorem 3. Let π⃗ = (π1, . . . , πK) denote policies computed by DOPE+ with K0 given in (11).287
Then, with probability at least 1− 16δ, we have288

Regret (π⃗) = Õ
(

H

C̄ − C̄b

(
H1.5S

√
AK +

H4S3A

C̄ − C̄b

))
where Õ(·) hides factors polynomial in ln(HSAK/δ).289

Remark 3. Note that there is a gap of Õ((C̄− C̄b)
−1H
√
S) factor between our regret upper bound290

and the lower bound Ω(H3/2
√
SAK) due to Jin et al. (2020); Domingues et al. (2021). In fact, the291

instance from Domingues et al. (2021) is an unconstrained MDP. We observe that the O(H/(C̄ −292
C̄b)) factor in our regret upper bound is due to the constraint, which becomes a constant if C̄− C̄b =293
Ω(H). Hence, our regret upper bound nearly matches the regret lower bound in terms of H when294
C̄ − C̄b = Ω(H).295
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5.1 Constraint Violation Analysis296

We prove Theorem 2 as follows. For episode k with k ≤ K0, DOPE+ takes the safe baseline policy297
πb, so no constraint violation is guaranteed. Then let us consider episode k with k > K0. As298
explained in Section 3, we argue that299

V πk
1 (g, P ) ≤ V πk

1 (g, Pk) + |V πk
1 (g, P )− V πk

1 (g, Pk)|
≤ V πk

1 (ḡk +Rk, Pk) + V πk
1 (Uk, Pk)

= V πk
1 (ĝk, Pk)

where the second inequality is due to Lemma 3 and Theorem 1. Since (πk, Pk) is a solution to (10),300
it holds that V πk

1 (ĝk, Pk) ≤ C̄. Therefore, it follows that V πk
1 (g, P ) ≤ C̄ and thus the constraint is301

satisfied.302

5.2 Regret Decomposition303

We provide an overview of the proof of Theorem 3. Since we execute the safe baseline policy πb for304
the first K0 episodes, we decompose the regret function as follows.305

Regret (π⃗) =

K0∑
k=1

(
V π∗

1 (f, P )− V πb
1 (f, P )

)
︸ ︷︷ ︸

(I)

+

K∑
k=K0+1

(
V π∗

1 (f, P )− V πk
1 (f̂k, Pk)

)
︸ ︷︷ ︸

(II)

+

K∑
k=K0+1

(
V πk
1 (f̂k, Pk)− V πk

1 (f̂k, P )
)

︸ ︷︷ ︸
(III)

+

K∑
k=K0+1

(
V πk
1 (f̂k, P )− V πk

1 (f, P )
)

︸ ︷︷ ︸
(IV)

.

Term (I) is due to executing πb for K0 episodes for feasibility. By Lemma 6, term (I) can be bounded306
by Õ((C̄ − C̄b)

−2(H4S2A)) as V π
1 ≤ H for any policy π.307

For term (II), we provide the following upper bound.308

Lemma 7. With probability at least 1− 14δ,309

K∑
k=K0+1

(
V π∗

1 (f, P )− V πk
1 (f̂k, Pk)

)
= Õ

(
H

C̄ − C̄b

(
H1.5S

√
AK +H3S3A

))

where Õ(·) hides factor polynomial in ln(HSAK/δ).310

To prove the lemma, we define a new policy παk

k for k ∈ [K], which is induced by a con-311
vex combination of the occupancy measures associated with (π∗, P ) and (πb, P ) with coeffi-312
cients αk, 1 − αk ∈ (0, 1). We choose the value of αk so that (παk

k , P ) is feasible to (10).313

Then the optimality of (πk, Pk) implies V
π
αk
k

1 (f̂k, P ) ≤ V πk
1 (f̂k, Pk), which lets us to analyze314

V π∗

1 (f, P )− V
π
αk
k

1 (f̂k, P ) with the same transition kernel P .315

Term (III) comes from learning the unknown transition kernel. We apply a Bellman-type law of total316
variance to provide an upper bound on term (III).317

Lemma 8. With probability at least 1− 16δ,318

K∑
k=K0+1

(
V πk
1 (f̂k, Pk)− V πk

1 (f̂k, P )
)
= Õ

(
H1.5S

√
AK +H3S3A

)
where Õ(·) hides factor polynomial in ln(HSAK/δ).319
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Term (IV) is due to the difference between f and our estimator f̂k.320

Lemma 9. With probability at least 1− 14δ,321

K∑
k=K0+1

(
V πk
1 (f̂k, P )− V πk

1 (f, P )
)
= Õ

(
H

C̄ − C̄b

(
H1.5S

√
AK +H3S3A

))

where Õ(·) hides factor polynomial in ln(HSAK/δ).322

6 Numerical Experiment323

We evaluate DOPE+ on the three-state CMDP instance of Zheng & Ratliff (2020); Simão et al.324
(2021); Bura et al. (2022) with a few modifications. In Figure 1, we compare regret and constraint325
violation under DOPE+ and DOPE for 200, 000 episodes when H = 30. We consider DOPE as a326
benchmark algorithm because it provides the best regret bound among the existing algorithms while327
ensuring zero constraint violation. Our results are averaged across 5 runs with different random328
seeds, and we display the 95% confidence interval with shaded regions. More details of the exper-329
iment setup can be found in the supplementary material including the MDP instance and algorithm330
parameters.331

In Figure 1a, DOPE+ outperforms DOPE in terms of regret. This result demonstrates that DOPE+332
improves upon DOPE computationally, in addition to our theoretical improvement. Figure 1b show333
that both algorithms achieve zero constraint violation.334

(a) Regret (b) Hard Constraint Violation

Figure 1: Comparison of DOPE+ and DOPE

7 Conclusion335

In this paper, we investigate safe RL formulated as an episodic finite-horizon tabular CMDP. We336
propose novel reward and cost function estimators with tighter reward optimism and cost pessimism.337
Based on them, we develop DOPE+, which is a variant of DOPE due to (Bura et al., 2022). We prove338
that DOPE+ achieves regret upper bound Õ((C̄ − C̄b)

−1H2.5S
√
AK) and zero hard constraint339

violation. The regret upper bound improves upon the best-known bound by a multiplicative factor of340
Õ(
√
H) factor. When C̄−C̄b = Ω(H), the gap from the regret lower bound of Ω(H1.5

√
SAK) (Jin341

et al., 2020; Domingues et al., 2021) is Õ(
√
S), and we would like to leave closing this gap as an342

open question in the zero hard constraint violation setting. We also present numerical results that343
demonstrate the computational effectiveness of DOPE+ compared to DOPE.344
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8 Related Work521

In this section, we provide a more detailed discussion of related work to online learning of con-522
strained Markov decision processes (CMDPs). As explained in the introduction, we review previous523
works for the three frameworks, cumulative constraint violation, hard constraint violation, and zero524
constraint violation.525

Cumulative Constraint Violation Starting with the work of Efroni et al. (2020), online learn-526
ing of CMDPs has been an active area of research in reinforcement learning, especially with the527
framework of cumulative (or soft) constraint violation (Brantley et al., 2020; Qiu et al., 2020; Zheng528
& Ratliff, 2020; Kalagarla et al., 2021; Ding et al., 2021; Chen et al., 2021; Yu et al., 2021; Liu529
et al., 2021; Wei et al., 2022a;b; Singh et al., 2023; Miryoosefi & Jin, 2022; Ghosh et al., 2022; Wei530
et al., 2023; Kalagarla et al., 2023). Among these works, Brantley et al. (2020) studied a knapsack531
constrained formulation, and Qiu et al. (2020) studied the setting where the reward functions are532
adversarially given and the cost functions are sampled from a fixed but unknown distribution. More-533
over, Zheng & Ratliff (2020) considered the case where the transition kernel is known to the agent,534
and Kalagarla et al. (2021) studied a PAC bound for learning CMDPs. Ding et al. (2021); Chen et al.535
(2021) developed model-free algorithms for CMDPs, although these approaches require access to536
simulators, while Yu et al. (2021) studied vector-valued Markov games for a variant of constrained537
MDPs. Liu et al. (2021) introduced the first algorithm that achieves zero cumulative constraint vio-538
lation. Wei et al. (2022a) and Singh et al. (2023) considered the infinite-horizon average-reward set-539
ting. Moreover, Wei et al. (2022b) came up with a model-free algorithm for finite-horizon episodic540
tabular CMDPs. Miryoosefi & Jin (2022) studied the reward-free setting, and Ghosh et al. (2022)541
proposed an algorithm for the linear MDP setting, which leads to a model-free algorithm for tabular542
CMDPs. Lastly, Wei et al. (2023) considered non-stationary CMDPs, while Kalagarla et al. (2023)543
developed a posterior sampling-based algorithm that guarantees a Bayesian regret upper bound.544

Wei et al. (2022b) introduced model-free and simulator-free algorithms to solve tabular CMDPs.545
These algorithms were analyzed under soft constraint violations, thus they do not guarantee safety546
in all episodes. In contrast, Müller et al. (2024); Ghosh et al. (2024) presented PD-based algorithms547
with hard constraint violations, though these suffer from high regret and constraint violations. On548
the other hand, Liu et al. (2021) proposed the LP-based algorithm OptPess-LP, which achieves549
zero hard constraint violations with sublinear regret by employing optimistic pessimism in the face550
of uncertainty (OPFU). The pessimism in the cost function estimator ensures safety but hampers551
exploration. To address this, Bura et al. (2022) recently proposed DOPE, incorporating optimism552
for the transition kernel to improve the regret bound.553

Hard Constraint Violation The notion of hard constraint violation was introduced by Efroni et al.554
(2020). Efroni et al. (2020) developed an LP-based algorithm for controlling hard constraint vio-555
lation and raised an open question of whether there exists a primal-dual algorithm for the setting.556
Recently, Ghosh et al. (2024) established an algorithm that guarantees a sublinear regret upper bound557
and a sublinear upper bound on hard constraint violation. Their algorithm is for the linear MDP set-558
ting, and it provides a model-free algorithm for the tabular setting. In fact, their analysis shows that559
for the tabular case, one may get a tighter performance guarantees. Müller et al. (2024) developed a560
simpler primal-dual algorithm that guarantees a sublinear regret upper bound and a sublinear upper561
bound on hard constraint violation, answering the question of Efroni et al. (2020).562

Zero Constraint Violation Simão et al. (2021) considered the importance of achieving no con-563
straint violation, which is equivalent to zero hard constraint violation. They showed an algorithm564

17



Under review for RLC 2025, to be published in RLJ 2025

that guarantees no constraint violation, but their result relies on the assumption of some abstrac-565
tion of the transition model, and moreover, there is no regret upper bound given for the algorithm.566
Liu et al. (2021) established the first algorithm that achieves a sublinear regret while guaranteeing567
zero hard constraint violation. After Liu et al. (2021), (Bura et al., 2022) proposed their algorithm,568
DOPE, which improves upon Liu et al. (2021) to show a smaller regret upper bound.569

9 Auxiliary Measures and Notations570

In this section, we first summarize notations in Table 2. Next, we define some auxiliary measures571
and notations that are useful for the analysis of DOPE+.572

Table 2: Summary of Notations

Notation Definition
K The number of episodes
H The finite horizon
[H] The set {1, 2, . . . ,H}
S, S The finite state space S and the number of states S = |S|
A, A The finite action space A and the number of actions A = |A|
P The true transition kernel P (s, a, s′, h) : S ×A× S × [H]→ [0, 1]
p The initial distribution of the states
Pk The confidence set of the transition kernel for episode k ∈ [K]
Pk The transition kernel obtained from DOPE+ for episode k ∈ [K], Pk ∈ Pk

f, g The reward and cost function
fk, gk The instantaneous reward and cost for episode k ∈ [K]
f̄k, ḡk The empirical estimators of f, g for episode k ∈ [K]

f̂k, ĝk The optimistic/pessimistic estimators of f, g for episode k ∈ [K]
Lδ ln(HSAK/δ) for some confidence parameter δ ∈ (0, 1)
V π
h (s; f, P ) The value function at state s and step h under f and P

Qπ
h(s, a; f, P ) The action-value function at state s and step h for action a under f and P

Nk(s, a, h) The number of visits (s, a, h) up to the first k − 1 episodes
Mk(s, a, s

′, h) The number of visits (s, a, s′, h) up to the first k − 1 episodes
nk(s, a, h) The indicator variable for visits (s, a, h) for episode k ∈ [K]
π∗ The benchmark policy
πk The policy obtained from DOPE+ for episode k ∈ [K]
πb The safe baseline policy
C̄b The expected cost of πb for a single episode
C̄ The budget on the expected cost
qP,π The occupancy measure with respect to policy π and transition kernel P
q∗ The occupancy measure qP,π∗

qb The occupancy measure qP,πb

qk The occupancy measure qP,πk

q̂k The occupancy measure qPk,πk

∆(P ) The set of occupancy measures inducing P
∆(P, k) The set of occupancy measures inducing Pk ∈ Pk

We define the state-action value function for (s, a) ∈ S × A at step h with a function ℓ : S × A ×573
[H]→ [0, 1] and transition kernel P as follows.574

Qπ
h(s, a; ℓ, P ) = E

 H∑
j=h

ℓ
(
sP,π
j , aP,π

j , j
)
| ℓ, π, P, sP,π

h = s, aP,π
h = a

 .
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Let QP,π,ℓ denote the (S × A × H)-dimensional vector whose coordinates are for (s, a, h) ∈
S ×A× [H],

(QP,π,ℓ)(s,a,h) = Qπ
h(s, a; ℓ, P ).

Given a policy π and transition kernel P , we define qP,π (s, a, h | s′,m) as for (s, a, s′) ∈ S×A×S575
and 1 ≤ m ≤ h ≤ H ,576

qP,π (s, a, h | s′,m) = P
[
sP,π
h = s, aP,π

h = a | π, P, sP,π
m = s′

]
.

Given two vectors u,v ∈ RS×A×H , let u ⊙ v, u ∧ v be defined as the vector obtained from
coordinate-wise products and coordinate-wise minimization of u and v, respectively, i.e., for
(s, a, h) ∈ S ×A× [H],

(u⊙ v)(s,a,h) = u(s,a,h) × v(s,a,h), (u ∧ v)(s,a,h) = min{u(s,a,h),v(s,a,h)}.

Let h⃗ and B⃗ be (S × A × H)-dimensional vectors all of whose coordinates are h and 1 +
√
Lδ ,

respectively, i.e., for (s, a, j) ∈ S ×A× [H],

h⃗(s,a,j) = j, B⃗(s,a,j) = 1 +
√
Lδ.

10 Extended Linear Program577

In this section, we provide a formal definition of occupancy measures for a finite-horizon MDP.578
Then we provide a reformulation of (10) using occupancy measures, which is called the extended579
linear program (Efroni et al., 2020; Bura et al., 2022).580

Given a policy π and a transition kernel P , let q̄P,π : S × A × S × [H] → [0, 1] be defined581
as q̄P,π(s, a, s′, h) = P[(sP,π

h , aP,π
h , sP,π

h+1) = (s, a, s′) | π, P ] for (s, a, s′, h) ∈ S × A ×582
S × [H]. Note that any q̄ defined as the above equation has the following properties. (C1)583 ∑

(s,a,s′)∈S×A×S q̄(s, a, s′, h) = 1, (C2)
∑

(s′,a)∈S×A q̄(s, a, s′, h) =
∑

(s′,a)∈S×A q̄(s′, a, s, h −584

1), s ∈ S, h = 2, . . . ,H . The occupancy measure qP,π : S × A × [H] → [0, 1] associated with585
policy π and transition kernel P is defined as (C3) qP,π(s, a, h) =

∑
s′∈S q̄P,π(s, a, s′, h). Then it586

follows that qP,π(s, a, h) = P[(sP,π
h , aP,π

h ) = (s, a) | π, P ]. Hence, if a policy π is chosen, then the587
occupancy measure for a finite-horizon MDP with transition kernel P is determined. Conversely,588
any q ∈ S × A × [H] → [0, 1] with q̄ : S × A × S × [H] → [0, 1] satisfying (C1), (C2), and (C3)589
induces a transition kernel P q and a policy πq given as follows.590

P q(s′ | s, a, h) = q̄(s, a, s′, h)∑
s′′∈S q̄(s, a, s′′, h)

,

πq(a | s, h) = q(s, a, h)∑
b∈A q(s, b, h)

.

(12)

Next, we provide a lemma that characterizes valid occupancy measures for a finite-horizon MDP.591

Lemma 10. Let q : S × A × [H] → [0, 1]. Then q is a valid occupancy measure that induces592
transition kernel P if and only if there exists q̄ : S ×A×S × [H]→ [0, 1] that satisfies (C1), (C2),593
(C3), and P q = P .594

Proof. Given the finite-horizon MDP associated with transition kernel P , we may define a
loop-free MDP as follows. We define its state space as S ′ := S × [H + 1], which can
be viewed as H + 1 layers S × {h} for h ∈ [H + 1]. Its transition kernel P ′ is given
by P ′((s′, h + 1) | (s, h), a) = P (s′ | s, a, h) for (s, a, s′, h) ∈ S × A × S × [H].
Next, given q̄, we may define an occupancy measure q′ for the loop-free MDP as
q′((s, h), a, (s′, h + 1)) = q̄(s, a, s′, h) for (s, a, s′, h) ∈ S × A × S × [H]. Then
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it follows from (Rosenberg & Mansour, 2019, Lemma 3.1) that q′ is a valid occu-
pancy measure for the loop-free MDP with transition kernel P ′ if and only if q′ satisfies∑

(s,a,s′)∈S×A×S

q′((s, h), a, (s′, h+ 1)) = 1 for h = 1, . . . ,H, (C1’)

∑
(s′,a)∈S×A

q′((s, h), a, (s′, h+ 1)) =
∑

(s′,a)∈S×A

q′((s′, h− 1), a, (s, h))
∀s ∈ S,
h ∈ {2, . . . ,H} (C2’)

and P q′ = P ′ where P q′ is given by

P q′((s′, h+ 1) | (s, h), a) = q′((s, h), a, (s′, h+ 1))∑
s′′∈S q′((s, h), a, (s′′, h+ 1))

=
q̄(s, a, s′, h)∑

s′′∈S q̄(s, a, s′′, h)
.

Here, the conditions are equivalent to (C1), (C2), and P q̄ = P . Moreover, q′ is a valid occupancy595
measure with P ′ if and only if q is a valid occupancy measure with P , as required.596

Therefore, there is a one-to-one correspondence between the set of policies and the set of occupancy
measures that give rise to transition kernel P . We define ∆(P ) as the set of occupancy measures
inducing the true transition kernel P .

∆(P ) = {q : ∃q̄ satisfying (C1),(C2),(C3), P q = P} .

Moreover, the value function for reward function f , policy πk, and transition kernel P can be writ-597
ten in terms of occupancy measure qP,πk as V πk

1 (f, P ) =
∑

(s,a,h) q
P,πk (s, a, h) f (s, a, h). Let598

qP,π,f denote (S × A × H)-dimensional vector representations for qP,π, f , respectively. Then599
it follows that V πk

1 (f, P ) = ⟨f , qP,πk⟩ where ⟨·, ·⟩ is the inner product. Consequently, (10) is600
equivalent to601

max
q∈∆(P,k)

{
⟨f̂k, q⟩ : ⟨ĝk, q⟩ ≤ C̄

}
(13)

where f̂k, ĝk are the vector representations of f̂k, ĝk, respectively, and

∆(P, k) = {q : ∃q̄ satisfying (C1),(C2),(C3), P q ∈ Pk} .

Next, we reformulate (10) as an extended linear program. Due to the definition of ∆(P, k), (13) is602
equivalent to the following linear program. Given f̂k(s, a, h), ĝk(s, a, h), P̄k(s

′ | s, a, h), ϵk(s′ |603
s, a, h), p(s) for (s, a, s′, h) ∈ S ×A× S × [H],604

max
∑

(s,a,s′,h)∈S×A×S×[H]

f̂k(s, a, h)q̄(s, a, s
′, h)

s.t.
∑

(s,a,s′,h)∈S×A×S×[H]

ĝk(s, a, h)q̄(s, a, s
′, h) ≤ C̄,

∑
(a,s′)∈A×S

q̄(s, a, s′, h) =
∑

(a,s′)∈A×S

q̄(s′, a, s, h− 1) ∀s ∈ S, h = 2, . . . ,H,

∑
(a,s′)∈A×S

q̄(s, a, s′, 1) = p(s) ∀s ∈ S,

q̄(s, a, s′, h) ≤
(
P̄k(s

′ | s, a, h) + ϵk(s
′ | s, a, h)

) ∑
s′∈S

q̄(s, a, s′, h) ∀(s, a, s′, h),

q̄(s, a, s′, h) ≥
(
P̄k(s

′ | s, a, h)− ϵk(s
′ | s, a, h)

) ∑
s′∈S

q̄(s, a, s′, h) ∀(s, a, s′, h),

0 ≤ q̄(s, a, s′, h) ∀(s, a, s′, h).

(14)

In fact, the constraint
∑

(s,a,s′) q̄(s, a, s
′, h) = 1 for h ∈ [H] corresponding to (C1) is not necessary,605

because we can derive it from other constraints. To be more specific, the third constraint implies606
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that
∑

(s,a,s′) q̄(s, a, s
′, 1) = 1 as

∑
s p(s) = 1. Then we can deduce from the second constraint607

that
∑

(s,a,s′) q̄(s, a, s
′, h) = 1 for h ∈ [H]. Additionally, we call the above linear program as an608

extended linear program due to the fifth and sixth constraints.609

One natural question to the extended LP defined in (14) is how hard it is to solve. Indeed, we can610
easily observe that the dimension of the decision variable q̄ is S2AH , and the number of constraints611
is O

(
S2AH

)
. Hence, the computational complexity for solving (14) is equivalent to solving an LP612

with a S2AH-dimensional decision variable and O
(
S2AH

)
constraints.613

11 Good Event614

In this section, we first prove Lemma 1 which ensures that all instantaneous reward and cost values615
are bounded. Then we prove Lemma 2 that describes important properties of the confidence sets616
estimating the true transition kernel. Next, we show Lemma 3 which delineates the accuracy of our617
estimators of the reward function f and the cost function g.618

Furthermore, we prove Lemma 11 that is useful to bound value functions with respect to estimated619
reward and cost functions. Then we define the notion of the good event E that the statements of620
Lemmas 1 to 3 and 11 hold. Taking the union bound, we deduce that the good event E holds with621
probability at least 1− 14δ (Lemma 12).622

Lastly, we prove Lemma 13 which considers the difference between the true transition kernel and623
any P̂ contained in the confidence set Pk.624

Proof of Lemma 1. It follows from Hoeffding’s inequality (Lemma 21) and the union bound that
for any (s, a, h) ∈ S ×A× [H] and k ∈ [K],

P
(
|fk(s, a, h)− f(s, a, h)| ≥

√
Lδ

)
≤ 2 · exp (−Lδ) =

2δ

HSAK
.

Likewise, for any (s, a, h) ∈ S ×A× [H] and k ∈ [K],

P
(
|gk(s, a, h)− g(s, a, h)| ≥

√
Lδ

)
≤ 2 · exp (−Lδ) =

2δ

HSAK
.

Taking the union bound, it follows that with probability at least 1− 4δ,

|fk(s, a, h)− f(s, a, h)| , |gk(s, a, h)− g(s, a, h)| ≤
√
Lδ

holds for all (s, a, h) ∈ S × A × [H] and k ∈ [K]. Since f(s, a, h), g(s, a, h) ∈ [0, 1] for any
(s, a, h) ∈ S ×A× [H], it holds with probability at least 1− 4δ that

|fk(s, a, h)| , |gk(s, a, h)| ≤ 1 +
√
Lδ,

as required.625

The following lemma is a modification of (Jin et al., 2020, Lemma 8) to our finite-horizon MDP626
setting.627

Proof of Lemma 2. We will show that with probability at least 1− 4δ,628 ∣∣P (s′ | s, a, h)− P̄k(s
′ | s, a, h)

∣∣ ≤ ϵk(s
′ | s, a, h) (15)

where629

ϵk(s
′ | s, a, h) = 2

√
P̄k(s′ | s, a, h)(1− P̄k(s′ | s, a, h))Lδ

max{1, Nk(s, a, h)− 1}
+

14Lδ

3max{1, Nk(s, a, h)− 1}
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holds for every (s, a, s′, h) ∈ S ×A× S × [H] and every episode k ∈ [K].630

Let us first consider the case Nk(s, a, h) ≤ 1. As we may assume that HSAK ≥ 2, it follows that

ϵk(s
′ | s, a, h) = 14Lδ

3max{1, Nk(s, a, h)− 1}
≥ 14

3
ln 2 > 1.

Then (15) holds because 0 ≤ P (s′ | s, a, h), P̄k(s
′ | s, a, h) ≤ 1.631

Assume that n = Nk(s, a, h) ≥ 2. Then we define Z1, . . . , Zn as follows.

Zj =

{
1, if the transition after the jth visit to (s, a, h) is s′,
0, otherwise.

Then Z1, . . . , Zn are i.i.d. with mean P (s′ | s, a, h), and we have

n∑
j=1

Zj = Mk(s, a, s
′, h).

Moreover, the sample variance Vn of Z1, . . . , Zn is given by632

Vn =
1

Nk(s, a, h)(Nk(s, a, h)− 1)
Mk(s, a, s

′, h) (Nk(s, a, h)−Mk(s, a, s
′, h))

=
Nk(s, a, h)

(Nk(s, a, h)− 1)
P̄k(s

′ | s, a, h)
(
1− P̄k(s

′ | s, a, h)
)
.

(16)

Then it follows from Lemma 22 that with probability at least 1− 2δ/(HS2AK),633

P (s′ | s, a, h)− P̄k(s
′ | s, a, h)

≤

√
2P̄k(s′ | s, a, h)

(
1− P̄k(s′ | s, a, h)

)
ln (HS2AK/δ)

Nk(s, a, h)− 1
+

7 ln
(
HS2AK/δ

)
3(Nk(s, a, h)− 1)

.
(17)

Here, as we assumed that Nk(s, a, h) ≥ 2, we have Nk(s, a, h) − 1 = max{1, Nk(s, a, h) − 1}.634
In addition, we know that ln

(
HS2AK/δ

)
≤ 2Lδ . Then (17) implies that with probability at least635

1− 2δ/(HS2AK),636

P (s′ | s, a, h)− P̄k(s
′ | s, a, h) ≤ ϵk(s

′ | s, a, h). (18)

Next, we apply Lemma 22 to variables 1−Z1, . . . , 1−Zn that are i.i.d. and have mean 1− P̄k(s
′ |637

s, a, h). Moreover, the sample variance of 1−Z1, . . . , 1−Zn is also equal to Vn defined as in (16).638
Therefore, based on the same argument, we deduce that with probability at least 1−2δ/(HS2AK),639

−P (s′ | s, a, h) + P̄k(s
′ | s, a, h) ≤ ϵk(s

′ | s, a, h). (19)

By applying union bound to (18) and (19), with probability at least 1 − 4δ/(HS2AK), (15) holds640
for (s, a, s′, h). Furthermore, by applying union bound over all (s, a, s′, h) ∈ S × A × S × [H], it641
follows that with probability at least 1 − 4δ, (15) holds for every (s, a, s′, h) ∈ S × A × S × [H],642
as required.643

Next, we state the proof of Lemma 3 based on Hoeffding’s inequality.644

Proof of Lemma 3. If Nk(s, a, h) =
∑k−1

j=1 nj(s, a, h) = 0, then f̄k(s, a, h) = ḡk(s, a, h) =645
0 while Rk(s, a, h) ≥ 1 when we may assume that HSAK ≥ 4. In this case, the statements646
trivially hold. Now we consider when

∑k−1
j=1 nj(s, a, h) ≥ 1. Note that fk(s, a, h) = f(s, a, h) +647

ζfk (s, a, h) and gk(s, a, h) = g(s, a, h)+ ζgk(s, a, h) where ζfk (s, a, h) and ζgk(s, a, h) are i.i.d. 1/2-648
sub-Gaussian random variables with zero mean for each (s, a, h) ∈ S × A × [H] and k ∈ [K].649
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Then it follows from the Hoeffding’s inequality provided in Lemma 21 that for a given (s, a, h) ∈650
S ×A× [H] and k ∈ [K],651 ∣∣f̄k(s, a, h)− f(s, a, h)

∣∣ ≤ Rk(s, a, h) (20)

with probability at least 1 − 2δ/(HSAK). By applying union bound, (20) holds with probability
at least 1 − 2δ for all (s, a, h) ∈ S × A × [H] and k ∈ [K]. Likewise, we deduce for g that with
probability at least 1− 2δ,

|ḡk(s, a, h)− g(s, a, h)| ≤ Rk(s, a, h)

for (s, a, h) ∈ S ×A× [H] and k ∈ [K] as desired.652

Next, using Lemma 23 that states the Bernstein-type concentration inequality for a martingale dif-653
ference sequence, we prove the following lemma that is useful for our analysis. Lemma 11 is a mod-654
ification of (Jin et al., 2020, Lemma 10) and (Chen & Luo, 2021, Lemma 8) to our finite-horizon655
MDP setting.656

Lemma 11. With probability at least 1− 2δ, we have657

K∑
k=1

∑
(s,a,h)

qk(s, a, h)

max {1, Nk(s, a, h)}
≤ 2HSA lnK + 2HSA+ 4H ln(H/δ) (21)

K∑
k=1

∑
(s,a,h)

qk(s, a, h)√
max {1, Nk(s, a, h)}

≤ 2H
√
SAK + 2HSA lnK + 3HSA+ 5H ln(H/δ) (22)

Proof. We define ξ1 as ξ1 = ∅ and for k ≥ 2, we define ξk as658 {
s
P,πk−1

h , a
P,πk−1

h , fk−1(s
P,πk−1

h , a
P,πk−1

h , h), gk−1(s
P,πk−1

h , a
P,πk−1

h , h)
}H

h=1

where πk−1 denotes the policy for episode k − 1 and(
s
P,πk−1

1 , a
P,πk−1

1 , . . . , s
P,πk−1

h , a
P,πk−1

h

)
is the trajectory generated under policy πk−1 and transition kernel P . Then for k ∈ [K], let Fk be659
defined as the σ-algebra generated by the random variables in ξ1 ∪ · · · ∪ ξk. Then it follows that660
F1, . . . ,Fk give rise to a filtration.661

Note that662

K∑
k=1

∑
(s,a)∈S×A

qk(s, a, h)

max {1, Nk(s, a, h)}
=

K∑
k=1

∑
(s,a)∈S×A

nk(s, a, h)

max {1, Nk(s, a, h)}
+

K∑
k=1

Yk (23)

where

Yk =
∑

(s,a)∈S×A

−nk(s, a, h) + qk(s, a, h)

max {1, Nk(s, a, h)}
.

As E [nk(s, a, h) | πk, P ] = qk(s, a, h) holds for every (s, a, h) ∈ S × A × [H], we know that663
Y1, . . . , YK is a martingale difference sequence. We know that Yk ≤ 1 for each k ∈ [K]. Let Ek [·]664
denote E [· | Fk, P ]. Since πk is Fk-measurable, we have Ek [nk(s, a, h)] = qk(s, a, h). Then we665
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deduce666

Ek

[
Y 2
k

]
=

∑
(s,a),(s′,a′)∈S×A

Ek [(nk(s, a, h)− qk(s, a, h))(nk(s
′, a′, h)− qk(s

′, a′, h))]

max {1, Nk(s, a, h)} ·max {1, Nk(s′, a′, h)}

=
∑

(s,a),(s′,a′)∈S×A

Ek [nk(s, a, h)nk(s
′, a′, h)− qk(s, a, h)qk(s

′, a′, h)]

max {1, Nk(s, a, h)} ·max {1, Nk(s′, a′, h)}

≤
∑

(s,a),(s′,a′)∈S×A

Ek [nk(s, a, h)nk(s
′, a′, h)]

max {1, Nk(s, a, h)} ·max {1, Nk(s′, a′, h)}

≤
∑

(s,a)∈S×A

Ek [nk(s, a, h)]

max {1, Nk(s, a, h)}

=
∑

(s,a)∈S×A

qk(s, a, h)

max {1, Nk(s, a, h)}

where the second equality holds because it follows from Ek [nk(s, a, h)] = qk(s, a, h) for (s, a, h) ∈
S ×A× [H] that

Ek [qk(s, a, h)nk(s
′, a′, h)] = Ek [qk(s

′, a′, h)nk(s, a, h)] = qk(s, a, h)qk(s
′, a′, h),

the second inequality holds because nk(s, a, h)nk(s
′, a′, h) = 0 if (s, a) ̸= (s′, a′), and the last

equality holds true because Ek [nk(s, a, h)] = qk(s, a, h) for any (s, a, h) ∈ S ×A× [H]. Then we
may apply Lemma 23 with λ = 1/2, and we deduce that with probability at least 1− δ/H ,

K∑
k=1

Yk ≤
1

2

K∑
k=1

∑
(s,a)∈S×A

qk(s, a, h)

max {1, Nk(s, a, h)}
+ 2 ln(H/δ).

Plugging this inequality to (23), it follows that

K∑
k=1

∑
(s,a)∈S×A

qk(s, a, h)

max {1, Nk(s, a, h)}
= 2

K∑
k=1

∑
(s,a)∈S×A

nk(s, a, h)

max {1, Nk(s, a, h)}
+ 4 ln(H/δ).

Here, the first term on the right-hand side can be bounded as follows. We have667

K∑
k=1

nk(s, a, h)

max {1, Nk(s, a, h)}

=

K∑
k=1

nk(s, a, h)

max {1, Nk+1(s, a, h)}
+

K∑
k=1

(
nk(s, a, h)

max {1, Nk(s, a, h)}
− nk(s, a, h)

max {1, Nk+1(s, a, h)}

)

≤
K∑

k=1

nk(s, a, h)

max {1, Nk+1(s, a, h)}
+

K∑
k=1

(
1

max {1, Nk(s, a, h)}
− 1

max {1, Nk+1(s, a, h)}

)

≤
K∑

k=1

nk(s, a, h)

max {1, Nk+1(s, a, h)}
+ 1

≤ lnK + 1.

where the first inequality is due to nk(s, a, h) ≤ 1 and the last inequality holds because

nk(s, a, h) = Nk+1(s, a, h)−Nk(s, a, h) and NK(s, a, h) + nK(s, a, h) ≤ K.

Therefore, it follows that668

K∑
k=1

∑
(s,a)∈S×A

nk(s, a, h)

max {1, Nk(s, a, h)}
=

∑
(s,a)∈S×A

K∑
k=1

nk(s, a, h)

max {1, Nk(s, a, h)}
= SA lnK + SA.
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As a result, for any fixed h ∈ [H],

K∑
k=1

∑
(s,a)∈S×A

qk(s, a, h)

max {1, Nk(s, a, h)}
≤ 2SA lnK + 2SA+ 4 ln (H/δ)

holds with probability at least 1− δ/H . By union bound, (21) holds with probability at least 1− δ.669

Next, we will show that (22) holds.670

K∑
k=1

∑
(s,a)∈S×A

qk(s, a, h)√
max {1, Nk(s, a, h)}

=

K∑
k=1

∑
(s,a)∈S×A

nk(s, a, h)√
max {1, Nk(s, a, h)}

+

K∑
k=1

Zk (24)

where

Zk =
∑

(s,a)∈S×A

−nk(s, a, h) + qk(s, a, h)√
max {1, Nk(s, a, h)}

.

As Ek [nk(s, a, h)] = qk(s, a, h) holds for every (s, a, h) ∈ S×A× [H], we know that Z1, . . . , ZK671
is a martingale difference sequence. We know that Zk ≤ 1 for each k ∈ [K]. Then we deduce672

Ek

[
Z2
k

]
≤

∑
(s,a),(s′,a′)∈S×A

Ek [nk(s, a, h)nk(s
′, a′, h)]√

max {1, Nk(s, a, h)} ·
√
max {1, Nk(s′, a′, h)}

=
∑

(s,a)∈S×A

Ek [nk(s, a, h)]

max {1, Nk(s, a, h)}

=
∑

(s,a)∈S×A

qk(s, a, h)

max {1, Nk(s, a, h)}

where the first inequality is derived by the same argument when bounding Ek[Y
2
k ], the first equality

holds because nk(s, a, h)nk(s
′, a′, h) = 0 if (s, a) ̸= (s′, a′), and the last equality holds true be-

cause Ek [nk(s, a, h)] = qk(s, a, h) for any (s, a, h) ∈ S×A× [H]. Then we may apply Lemma 23
with λ = 1, and we deduce that with probability at least 1− δ/H ,

K∑
k=1

Zk ≤
K∑

k=1

∑
(s,a)∈S×A

qk(s, a, h)

max {1, Nk(s, a, h)}
+ ln(H/δ).

Then with probability at least 1− δ, (21) holds and673

∑
h∈[H]

K∑
k=1

Zk ≤
K∑

k=1

∑
(s,a,h)∈S×A×[H]

qk(s, a, h)

max {1, Nk(s, a, h)}
+H ln(H/δ)

= 2HSA lnK + 2HSA+ 5H ln(H/δ).

(25)

holds. Moreover, we have674

K∑
k=1

nk(s, a, h)√
max {1, Nk(s, a, h)}

=

K∑
k=1

nk(s, a, h)√
max {1, Nk+1(s, a, h)}

+

K∑
k=1

(
nk(s, a, h)√

max {1, Nk(s, a, h)}
− nk(s, a, h)√

max {1, Nk+1(s, a, h)}

)

≤
K∑

k=1

nk(s, a, h)√
max {1, Nk+1(s, a, h)}

+

K∑
k=1

(
1√

max {1, Nk(s, a, h)}
− 1√

max {1, Nk+1(s, a, h)}

)

≤
K∑

k=1

nk(s, a, h)√
max {1, Nk+1(s, a, h)}

+ 1

≤ 2
√
NK+1(s, a, h) + 1.
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where the last equality holds because nk(s, a, h) = Nk+1(s, a, h)−Nk(s, a, h). Then675

K∑
k=1

∑
(s,a,h)∈S×A×[H]

nk(s, a, h)√
max {1, Nk(s, a, h)}

≤
∑

(s,a,h)∈S×A×[H]

2
√
NK+1(s, a, h) +HSA

≤ 2

√
HSA

∑
(s,a,h)

NK+1(s, a, h) +HSA

≤ 2H
√
SAK +HSA

where the second equality is due to the Cauchy-Schwarz inequality. Then it follows from (24)676
and (25) that (22) holds.677

Recall that the good event E is the event that the statements of Lemmas 1 to 3 and 11 hold.678

Lemma 12. The good event E holds with probability at least 1− 14δ, i.e., P [E ] ≥ 1− 14δ.679

Proof. The proof follows from the union bound.680

Lemma 2 bounds the difference between the true transition kernel P and the empirical transition681
kernel P̄k. Based on Lemma 2, the next lemma bounds the difference between the true transition682
kernel and any P̂ contained in the confidence set Pk. Lemma 13 is a modification of (Jin et al.,683
2020, Lemma 8) to our finite-horizon MDP setting.684

Lemma 13. Under the good event E , we have685 ∣∣∣P̂ (s′ | s, a, h)− P (s′ | s, a, h)
∣∣∣ ≤ ϵ⋆k(s

′ | s, a, h) (26)

where686

ϵ⋆k(s
′ | s, a, h) = 6

√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
+ 94

Lδ

max{1, Nk(s, a, h)}

for every P̂ ∈ Pk and every (s, a, s′, h) ∈ S ×A× S × [H].687

Proof. We follow the proof of (Cohen et al., 2020, Lemma B.13). Note that

max{1, Nk(s, a, h)− 1} ≥ 1

2
·max{1, Nk(s, a, h)}

holds for any value of Nk(s, a, h). We know that 1− P̄k(s
′ | s, a) ≤ 1. Furthermore, as we assumed

that P ∈ Pk, we have that

P̄k(s
′ | s, a, h) ≤ P (s′ | s, a, h) +

√
8P̄k(s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
+

28Lδ

3max{1, Nk(s, a, h)}
.

We may view this as a quadratic inequality in terms of x =
√
P̄k(s′ | s, a, h). Note that x2 ≤688

ax+ b+ c for any a, b, c ≥ 0 implies that x ≤ a+
√
b+
√
c. Therefore, we deduce that689

√
P̄k(s′ | s, a, h) ≤

√
P (s′ | s, a, h) +

(
2
√
2 +

√
28

3

)√
Lδ

max{1, Nk(s, a, h)}

≤
√
P (s′ | s, a, h) + 13

√
Lδ

max{1, Nk(s, a, h)}
.
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Using this bound on
√
P̄k(s′ | s, a, h), we obtain the following.690

ϵk(s
′ | s, a, h) ≤

√
8P̄k(s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
+

28Lδ

3max{1, Nk(s, a, h)}

≤

√
8P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
+

(
13
√
8 +

28

3

)
Lδ

max{1, Nk(s, a, h)}

≤ 3

√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
+ 47

Lδ

max{1, Nk(s, a, h)}

=
1

2
· ϵ⋆k(s′ | s, a, h)

(27)

Since we assumed that P ∈ Pk,

∣∣P (s′ | s, a, h)− P̄k(s
′ | s, a, h)

∣∣ ≤ 1

2
· ϵ⋆k(s′ | s, a, h).

Moreover, for any P̂ ∈ Pk, we have∣∣∣P̂ (s′ | s, a, h)− P̄k(s
′ | s, a, h)

∣∣∣ ≤ ϵk(s
′ | s, a, h) ≤ 1

2
· ϵ⋆k(s′ | s, a, h).

By the triangle inequality, it follows that∣∣∣P̂ (s′ | s, a, h)− P (s′ | s, a, h)
∣∣∣ ≤ ϵ⋆k(s

′ | s, a, h),

as required.691

We note that the above lemma holds when we replace P (s′ | s, a, h) of ϵ⋆k(s
′ | s, a, h) into P̂ (s′ |692

s, a, h) for any P̂ ∈ Pk. Specifically, under the good event E , we have for (s, a, s′, h) ∈ S × A ×693
S × [H],694

∣∣∣P̂ (s′ | s, a, h)− P (s′ | s, a, h)
∣∣∣ ≤ 6

√
P̂ (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
+ 94

Lδ

max{1, Nk(s, a, h)}
. (28)

It can be obtained by applying

P̄k(s
′ | s, a, h) ≤ P̂ (s′ | s, a, h) +

√
8P̄k(s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
+

28Lδ

3max{1, Nk(s, a, h)}

with the same argument for the remaining part of the proof.695

12 Missing Proofs for Section 3: Tighter Function Estimators696

Proof of Lemma 4. The proof is based on Lemma 10 of Chen & Luo (2021) with further so-697
phisticated evaluations. We consider an arbitrary cost function g : S × A × [H] → [−B,B]698
for some boundedness constant B > 0. Let qPk,πk

(s′,h+1)
, qP,πk

(s′,h+1)
, g be the vector representa-699

tions of qPk,πk(· | s′, h + 1), qP,πk(· | s′, h + 1) : S × A × {h + 1, . . . ,H} → [0, 1], and700
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g(h+1) : S ×A× {h+ 1, . . . ,H} → [−B,B] respectively. Note that701

∣∣∣∣∣∣
∑

(s,a,s′,h)

qk(s, a, h) ((P − Pk) (s
′ | s, a, h))

(
V πk

h+1(s
′; g, Pk)− V πk

h+1(s
′; g, P )

)∣∣∣∣∣∣
≤

∑
(s,a,s′,h)

qk(s, a, h)ϵ
⋆
k(s

′ | s, a, h)
∣∣(V πk

h+1(s
′; g, Pk)− V πk

h+1(s
′; g, P )

)∣∣
=

∑
(s,a,s′,h)

qk(s, a, h)ϵ
⋆
k(s

′ | s, a, h)
∣∣∣⟨qPk,πk

(s′,h+1)
− qP,πk

(s′,h+1)
, g(h+1)⟩

∣∣∣
≤ BH

∑
(s,a,s′,h)

qk(s, a, h)ϵ
⋆
k(s

′ | s, a, h)
∑

(s′′,a′′,s′′′),
m≥h+1

qk(s
′′, a′′,m | s′, h+ 1)ϵ⋆k(s

′′′ | s′′, a′′,m)

where the first inequality is from Lemma 13, the first equality holds because V πk

h+1(s
′; g, Pk) =

⟨qPk,πk

(s′,h+1)
, g(h+1)⟩ and V πk

h+1(s
′; g, P ) = ⟨qP,πk

(s′,h+1)
, g(h+1)⟩, the second inequality is due to

Lemma 18. Remember that the definition of ϵ⋆k is given by

ϵ⋆k(s
′ | s, a, h) = 6

√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
+ 94

Lδ

max{1, Nk(s, a, h)}
.

Then it follows that702

L−2
δ

∑
(s,a,s′,h)

qk(s, a, h)ϵ
⋆
k(s

′ | s, a, h)
∑

(s′′,a′′,s′′′),m≥h+1

qk(s
′′, a′′,m | s′, h+ 1)ϵ⋆k(s

′′′ | s′′, a′′,m)

≤ 36
∑

(s,a,s′,h),
(s′′,a′′,s′′′),

m≥h+1

√
qk(s, a, h)2P (s′ | s, a, h)
max{1, Nk(s, a, h)}

√
qk(s′′, a′′,m | s′, h+ 1)2P (s′′′ | s′′, a′′,m)

max{1, Nk(s′′, a′′,m)}

︸ ︷︷ ︸
Term 1

+ 564
∑

(s,a,s′,h),
(s′′,a′′,s′′′),

m≥h+1

√
qk(s, a, h)2P (s′ | s, a, h)
max{1, Nk(s, a, h)}

qk(s
′′, a′′,m | s′, h+ 1)

max{1, Nk(s′′, a′′,m)}

︸ ︷︷ ︸
Term 2

+ 564
∑

(s,a,s′,h),
(s′′,a′′,s′′′),

m≥h+1

qk(s, a, h)

max{1, Nk(s, a, h)}

√
qk(s′′, a′′,m | s′, h+ 1)2P (s′′′ | s′′, a′′,m)

max{1, Nk(s′′, a′′,m)}

︸ ︷︷ ︸
Term 3

+ 8836
∑

(s,a,s′,h),
(s′′,a′′,s′′′),

m≥h+1

qk(s, a, h)

max{1, Nk(s, a, h)}
qk(s

′′, a′′,m | s′, h+ 1)

max{1, Nk(s′′, a′′,m)}

︸ ︷︷ ︸
Term 4

.
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Term 1 can be bounded as follows.703

Term 1 ≤
√√√√√√

∑
(s,a,s′,h),

(s′′,a′′,s′′′),
m≥h+1

qk(s, a, h)P (s′′′ | s′′, a′′,m)qk(s′′, a′′,m | s′, h+ 1)

max{1, Nk(s, a, h)}

×
√√√√√√

∑
(s,a,s′,h),

(s′′,a′′,s′′′),
m≥h+1

qk(s′′, a′′,m | s′, h+ 1)P (s′ | s, a, h)qk(s, a, h)
max{1, Nk(s′′, a′′,m)}

≤

√√√√HS
∑

(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)}

√√√√HS
∑

(s′′,a′′,m)

qk(s′′, a′′,m)

max{1, Nk(s′′, a′′,m)}

= HS
∑

(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)}

where the first inequality is from the Cauchy-Schwarz inequality. We can bound Term 2 as the704
following argument.705

Term 2 ≤
√√√√√√

∑
(s,a,s′,h),

(s′′,a′′,s′′′),
m≥h+1

qk(s, a, h)qk(s′′, a′′,m | s′, h+ 1)

max{1, Nk(s, a, h)}max{1, Nk(s′′, a′′,m)}

×
√√√√√√

∑
(s,a,s′,h),

(s′′,a′′,s′′′),
m≥h+1

qk(s′′, a′′,m | s′, h+ 1)P (s′ | s, a, h)qk(s, a, h)
max{1, Nk(s′′, a′′,m)}

≤

√√√√HS2
∑

(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)}

√√√√HS
∑

(s′′,a′′,m)

qk(s′′, a′′,m)

max{1, Nk(s′′, a′′,m)}

= HS1.5
∑

(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)}
.

Similar to Term 2, we have an upper bound on Term 3 as follows.

Term 3 = HS1.5
∑

(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)}
.

Since 1/max{1, Nk(s, a, h)} ≤ 1, we bound Term 4 in the following way.706

Term 4 ≤HS2
∑

(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)}
.

Finally, we deduce that707 ∣∣∣∣∣∣
∑

(s,a,s′,h)

qk(s, a, h) (P − Pk) (s
′ | s, a, h)

(
V πk

h+1(s
′; g, Pk)− V πk

h+1(s
′; g, P )

)∣∣∣∣∣∣
≤ 104BH2S2L2

δ

∑
(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)}

as desired.708

709
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Proof of Lemma 5. Let πk be a policy for episode k. Moreover, let Pk ∈ Pk, and let g : S × A ×
[H]→ [0, 1] be an arbitrary cost function. Then we may define the occupancy measure q̂k = qPk,πk

associated with policy πk and transitional kernel Pk. Then we know that V πk
1 (V̂k, Pk) = ⟨q̂k, V̂k⟩.

Moreover, it follows from Lemma 19 that

⟨q̂k, V̂k⟩ ≤ Var [⟨n̂k, g⟩ | g, πk, Pk]

where n̂k is a vector representation of n̂k = nPk,πk . Furthermore, by Lemma 15 with B = 1, we710
have711

Var [⟨n̂k, g⟩ | g, πk, Pk] ≤ E[⟨n̂k, g⟩2 | g, πk, Pk]

≤ 2⟨q̂k, h⃗⊙ g⟩
≤ 2H2

as desired.712

Having proved Lemmas lemma 4 and 5, we are ready to prove Theorem 1 which is the crucial part713
of deducing our tighter function estimators.714

Proof of Theorem 1. We assume that the good event E holds, which holds with probability at least715
1 − 14δ according to Lemma 12. We observe that |V πk

1 (g, P )− V πk
1 (g, Pk)| can be rewritten by716

|⟨g, qk − q̂k⟩| using occupancy measures. By Lemma 17, it follows that717

|⟨g, qk − q̂k⟩|

=

∣∣∣∣∣∣
∑

(s,a,s′,h)∈S×A×S×[H]

q̂k(s, a, h) (P − Pk) (s
′ | s, a, h)V πk

h+1(s
′; g, P )

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

(s,a,s′,h)∈S×A×S×[H]

q̂k(s, a, h)(P − Pk)(s
′ | s, a, h)V πk

h+1(s
′; g, Pk)

∣∣∣∣∣∣︸ ︷︷ ︸
Term 1

+

∣∣∣∣∣∣
∑

(s,a,s′,h)∈S×A×S×[H]

q̂k(s, a, h)(P − Pk)(s
′ | s, a, h)

(
V πk

h+1(s
′; g, P )− V πk

h+1(s
′; g, Pk)

)∣∣∣∣∣∣︸ ︷︷ ︸
Term 2

where (P − Pk)(s
′ | s, a, h) = P (s′ | s, a, h)− Pk(s

′ | s, a, h).718

To bound Term 2, we use bound719

P (s′ | s, a, h)− Pk(s
′ | s, a, h) ≤ 6

√
Pk(s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
+ 94

Lδ

max{1, Nk(s, a, h)}

as explained in (28). This is because q̂k = qPk,πk is an occupancy measure with respect to Pk ∈ Pk,
not P . Then we can apply Lemma 4 and obtain

Term 2 ≤ 104H2S2L2
δ

∑
(s,a,h)

q̂k(s, a, h)

max{1, Nk(s, a, h)}
.
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Next, we bound Term 1. Note that
∑

s′ (P (s′ | s, a, h)− Pk(s
′ | s, a, h)) = 0. Then it follows that720

Term 1 =

∣∣∣∣∣∣
∑

(s,a,s′,h)

q̂k(s, a, h)(P − Pk)(s
′ | s, a, h)(V πk

h+1(g, Pk)− µ̂k(s, a, h))

∣∣∣∣∣∣
≤ 2

∑
(s,a,s′,h)

q̂k(s, a, h)ϵk(s
′ | s, a, h)

∣∣V πk

h+1(g, Pk)− µ̂k(s, a, h)
∣∣

= 4
∑

(s,a,s′,h)

q̂k(s, a, h)

√
P̄k(s′ | s, a, h)Lδ

max{1, Nk(s, a, h)− 1}
∣∣V πk

h+1(s
′; g, Pk)− µ̂k(s, a, h)

∣∣
︸ ︷︷ ︸

Term 3

+
28

3

∑
(s,a,s′,h)

q̂k(s, a, h)
Lδ

max{1, Nk(s, a, h)− 1}
∣∣V πk

h+1(s
′; g, P )− µ̂k(s, a, h)

∣∣
︸ ︷︷ ︸

Term 4

where µ̂k(s, a, h) = Es′∼Pk(·|s,a,h)[V
πk

h+1(s
′; g, Pk)]. The first inequality is from |(P − Pk)(s

′ |
s, a, h)| ≤ |(P−P̄k)(s

′ | s, a, h)|+|(P̄k−Pk)(s
′ | s, a, h)| ≤ 2ϵk(s

′ | s, a, h) for any (s, a, s′, h) ∈
S ×A× S × [H] under the good event E . We note that P̄k(s

′ | s, a, h) ≤ Pk(s
′ | s, a, h) + ϵk(s

′ |
s, a, h) and define

V̂k(s, a, h) =
∑
s′

Pk(s
′ | s, a, h)

∣∣V πk

h+1(s
′; g, Pk)− µ̂k(s, a, h)

∣∣2 .
Then we can bound Term 3 as the following.721

Term 3

≤
√
Lδ

∑
(s,a,s′,h)

q̂k(s, a, h)

√
(Pk + ϵk)(s′ | s, a, h)

max{1, Nk(s, a, h)− 1}
∣∣V πk

h+1(s
′; g, Pk)− µ̂k(s, a, h)

∣∣
≤
√
Lδ

√ ∑
(s,a,s′,h)

q̂k(s, a, h)(Pk + ϵk)(s′ | s, a, h)
∣∣V πk

h+1(s
′; g, Pk)− µ̂k(s, a, h)

∣∣2
×

√√√√ ∑
(s,a,s′,h)

q̂k(s, a, h)

max{1, Nk(s, a, h)− 1}

≤
√
Lδ

√ ∑
(s,a,h)

q̂k(s, a, h)V̂k(s, a, h) + 4H2
∑

(s,a,s′,h)

q̂k(s, a, h)ϵk(s′ | s, a, h)

×

√√√√ ∑
(s,a,s′,h)

q̂k(s, a, h)

max{1, Nk(s, a, h)− 1}

where the second inequality follows from the Cauchy-Schwarz inequality and the last inequality is722
due to

∣∣V πk

h+1(s
′; g, Pk)− µ̂k(s, a, h)

∣∣ ≤ 2H .723

By Lemma 5, we deduce that

∑
(s,a,h)

q̂k(s, a, h)V̂k(s, a, h) ≤ 2H2.
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Due to the AM-GM inequality, we have724

√
2H2 + 4H2

∑
(s,a,s′,h)

q̂k(s, a, h)ϵk(s′ | s, a, h)

√√√√ ∑
(s,a,s′,h)

q̂k(s, a, h)

max{1, Nk(s, a, h)− 1}

≤

√2H2 +

√
4H2

∑
(s,a,s′,h)

q̂k(s, a, h)ϵk(s′ | s, a, h)

√√√√ ∑
(s,a,s′,h)

q̂k(s, a, h)

max{1, Nk(s, a, h)− 1}

≤ H2

α1
+

2H2

α2

∑
(s,a,s′,h)

q̂k(s, a, h)ϵk(s
′ | s, a, h) + α1 + α2

2

∑
(s,a,h)

S · q̂k(s, a, h)
max{1, Nk(s, a, h)− 1}

for any α1, α2 > 0. By taking α1 =
√
HKLδ/(S

√
A), α2 =

√
H3Lδ , we obtain725

Term 3

≤
∑

(s,a,h)

q̂k(s, a, h)
(

S
√
HA√
K

+ 2
√
H
∑

s′ ϵk(s
′ | s, a, h) +

√
HK+

√
H3S2A

2
√
A

Lδ

max{1,Nk(s,a,h)−1}

)
≤
∑

(s,a,h)

q̂k(s, a, h)
(

S
√
HA√
K

+ 2
√
Hεk(s, a, h) +

√
HK+

√
H3S2A

2
√
A

Lδ

max{1,Nk(s,a,h)−1}

)
.

Note that the last inequality follows from726

∑
s′

ϵk(s
′ | s, a, h) =

∑
s′

(√
4P̄k(s′ | s, a, h)Lδ

max{1, Nk(s, a, h)− 1}
+

14Lδ

3max{1, Nk(s, a, h)− 1}

)

≤
√
S

√
4
∑

s′ P̄k(s′ | s, a, h)Lδ

max{1, Nk(s, a, h)− 1}
+

14SLδ

3max{1, Nk(s, a, h)− 1}

=

√
4SLδ

max{1, Nk(s, a, h)− 1}
+

14SLδ

3max{1, Nk(s, a, h)− 1}

= εk(s, a, h)

where the inequality is due to the Cauchy-Schwarz inequality and the second equality is due to727 ∑
s′ P̄k(s

′ | s, a, h) ≤ 1.728

Since
∣∣V πk

h+1(s
′; g, P )− µ̂k(s, a, h)

∣∣ ≤ 2H , Term 4 can be bounded as follows.

Term 4 ≤ 2HSLδ

∑
(s,a,h)

q̂k(s, a, h)

max{1, Nk(s, a, h)− 1}
.

Finally, we proved that729

|⟨g, qk − q̂k⟩|

≤ 4 · (Term 3) +
28

3
· (Term 4) + (Term 2)

≤
∑

(s,a,h)

q̂k(s, a, h)

(
4S
√
HA√
K

+ 8
√
Hεk(s, a, h) +

2
√
HKLδ√

Amax{1, Nk(s, a, h)− 1}

)

+

((
56

3
HS + 2H1.5S

)
Lδ + 104H2S2L2

δ

) ∑
(s,a,h)

q̂k(s, a, h)

max{1, Nk(s, a, h)− 1}

as required.730
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13 Missing Proofs for Section 4: Safe Exploration731

In this section, we prove Lemma 6 that provides an asymptotic upper bound on a sufficient number732
of episodes executing πb, which is denoted by K0, for feasibility of (10).733

Lemma 14. Assume that the good event E holds. Let πk be any policy for episode k, and let P be
the true transition kernel. Let qk denote the occupancy measure qP,πk associated with πk and P .
For Rk, Uk, we have

K∑
k=1

⟨Rk +Uk, qk⟩ = O
((

H1.5S
√
AK +H3S3A

)
L3
δ

)
.

Proof. Note that
∑K

k=1⟨Rk +Uk, qk⟩ can be rewritten as734

K∑
k=1

⟨Rk +Uk, qk⟩

=
K∑

k=1

∑
(s,a,h)

qk(s, a, h)

√
Lδ

max{1, Nk(s, a, h)}

+

K∑
k=1

∑
(s,a,h)

qk(s, a, h)

(
4S
√
HA√
K

+ 8
√
Hεk(s, a, h) +

2(
√
HK +

√
H3S2A)Lδ√

Amax{1, Nk(s, a, h)− 1}

)

+

(
56

3
HSLδ + 104H2S2L2

δ

) K∑
k=1

∑
(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)− 1}
.

Since
∑

(s,a,h) q̂k(s, a, h) = H , we have

K∑
k=1

∑
(s,a,h)

qk(s, a, h) ·
4S
√
HA√
K

= O(H1.5S
√
AK).

Furthermore, Lemma 11 implies that735

K∑
k=1

∑
(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)}
= O(HSA lnK +H ln(H/δ)),

K∑
k=1

∑
(s,a,h)

qk(s, a, h)√
max{1, Nk(s, a, h)}

= O(H
√
SAK +HSA lnK +H ln(H/δ)).

Then it follows that736

K∑
k=1

∑
(s,a,h)

qk(s, a, h)

√
Lδ

max{1, Nk(s, a, h)}
= O

(
(H
√
SAK +HSA)L2

δ

)
.

Since max{1, Nk(s, a, h)− 1} ≥ 1
2 max{1, Nk(s, a, h)}, we have737

K∑
k=1

∑
(s,a,h)

qk(s, a, h)
(
√
HK +

√
H3S2A)Lδ√

Amax{1, Nk(s, a, h)− 1}
= O

(
(H1.5S

√
AK +H2.5S2A)L2

δ

)
,

and moreover,738

(
HSLδ +H2S2L2

δ

) K∑
k=1

∑
(s,a,h)

qk(s, a, h)

max{1, Nk(s, a, h)− 1}
= O

(
H3S3AL3

δ

)
.
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Next, by Lemma 11,
∑K

k=1

∑
(s,a,h) qk(s, a, h)

(√
Hεk(s, a, h)

)
can be bounded as follows.739

K∑
k=1

∑
(s,a,h)

qk(s, a, h)
(√

Hεk(s, a, h)
)

=
√
H

K∑
k=1

∑
(s,a,h)

qk(s, a, h)

(√
4SLδ

max{1, Nk(s, a, h)− 1}
+

14SLδ

3max{1, Nk(s, a, h)− 1}

)

= O
((

H1.5S
√
AK +H1.5S2A

)
L2
δ

)
.

As a result, we have proved that

K∑
k=1

⟨Rk +Uk, qk⟩ = O
(
(H1.5S

√
AK +H3S3A)L3

δ

)
,

as required.740

We are ready to prove Lemma 6 based on Lemma 14.741

Proof of Lemma 6. We closely follow the proof of (Bura et al., 2022, Proposition 4). We assume742
that the good event E holds, which holds with probability at least 1 − 14δ. Let qb = qP,πb be the743
occupancy measure associated with the safe baseline policy πb and the true transition kernel P . Then744
qb is a feasible solution of (13) if ⟨ĝk, qb⟩ ≤ C̄ holds. To find a sufficient condition, we deduce that745

⟨ĝk, qb⟩ = ⟨ḡk +Rk +Uk, qb⟩
≤ ⟨g + 2Rk +Uk, qb⟩
= C̄b + ⟨2Rk +Uk, qb⟩

where the first equality is from the definition of ĝk, the inequality is from Lemma 3, and the last746
equality follows from ⟨g, qb⟩ = C̄b. This implies that a sufficient condition for ⟨ĝk, qb⟩ ≤ C̄ is747
given by748

⟨2Rk +Uk, qb⟩ < C̄ − C̄b. (29)

Note that ⟨2Rk +Uk, qb⟩ decreases as k increases because

1

max{1, Nk(s, a, h)}
,

1√
max{1, Nk(s, a, h)}

can only decrease as k increases. Then suppose that K0 is the last episode where (29) does not
hold. By definition, K0 + 1 is the first episode satisfying ⟨ĝk, qb⟩ < C̄. Due to the strict inequality,
occupancy measures other than qb can be potentially feasible to (13). This implies that DOPE+ can
sufficiently explore policies other than πb after K0 episodes. Then we have

K0(C̄ − C̄b) <

K0∑
k=1

⟨2Rk +Uk, qb⟩.

Since qb induces the true transition kernel, we can apply Lemma 14. Then the right-hand side is
bounded as follows.

K0∑
k=1

⟨2Rk +Uk, qb⟩ = Õ
(
H1.5S

√
AK0

)
.

Hence, K0 satisfies

K0 = Õ
(

H3S2A

(C̄ − C̄b)2

)
.
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Then we have

⟨2Rk +Uk, qb⟩ ≤ ⟨2RK0+1 +UK0+1, qb⟩ ≤ C̄ − C̄b ∀k = K0 + 1, . . . ,K.

This implies that (10) is feasible after episode K0 when (πb, P ) becomes a feasible solution in749
episode K0.750

14 Detailed Proofs for the Regret Analysis751

In this section, we prove Theorem 2 that guarantees zero constraint violation for DOPE+. Next, we752
provide the proofs of Lemmas 7, 8 and 9. Lastly, we show Theorem 3 that gives us the regret upper753
bound.754

14.1 Details of Constraint Violation Analysis755

Proof of Theorem 2. We assume that the good event E holds, which is the case with probability756
at least 1 − 14δ. Let πk, Pk denote the policy and the transition kernel obtained from DOPE+ for757
episode k, respectively. Let qk = qP,πk , q̂k = qPk,πk . We know that the constraint is satisfied if758
V πk
1 (g, P ) = ⟨g, qk⟩ ≤ C̄ for each k ∈ [K]. For k ≤ K0, there is no constraint violation because759

we take πk = πb. Now we consider the case when k > K0. We have760

⟨g, qk⟩ = ⟨g, q̂k⟩+ ⟨g, qk − q̂k⟩
≤ ⟨ḡk +Rk, q̂k⟩+ ⟨g, qk − q̂k⟩
≤ ⟨ḡk +Rk, q̂k⟩+ ⟨Uk, q̂k⟩
= ⟨ĝk, q̂k⟩
≤ C̄

where the first inequality follows from Lemma 3, the second inequality is from Theorem 1, and the761
last inequality is due to the update rule of DOPE+. This implies that πk holds ⟨g, qk⟩ ≤ C̄ for762
k > K0. Thus, we showed that Violation(π⃗) = 0 with probability at least 1− 14δ.763

14.2 Details of Regret Analysis764

Proof of Lemma 7. We closely follow the proof of (Bura et al., 2022, Lemma 18). We assume that
the good event E holds, which is the case with probability at least 1− 14δ. We observe that

K∑
k=K0+1

(
V π∗

1 (f, P )− V πk
1 (f̂k, Pk)

)
=

K∑
k=K0+1

⟨f , q∗⟩ −
K∑

k=K0+1

⟨f̂k, q̂k⟩.

By Lemma 10, there exist q̄b(s, a, s
′, h) and q̄∗(s, a, s′, h) such that qb(s, a, h) =765 ∑

s′∈S q̄b(s, a, s
′, h) and q∗(s, a, h) =

∑
s′∈S q̄∗(s, a, s′, h), respectively. Then we define the766

new occupancy measure qαk
(s, a, h) satisfying qαk

(s, a, h) =
∑

s′∈S q̄αk
(s, a, s′, h) where767

q̄αk
(s, a, s′, h) = (1− αk)q̄b(s, a, s

′, h) + αkq̄
∗(s, a, s′, h) (30)

for (s, a, s′, h) ∈ S×A×S× [H] and αk ∈ [0, 1]. Now we verify (C1),(C2) and (C3) in Lemma 10768
to say qαk

is a valid occupancy measure. Since q̄αk
is a convex combination of q̄b and q̄∗, (C1),(C2)769

hold. For (C3), we can show that qαk
induces the true transition kernel P as follows. Since we770

know qb and q∗ induce P , it follows that q̄b(s, a, s′, h) = P (s′ | s, a, h)
∑

s′′∈S q̄b(s, a, s
′′, h) and771

q̄∗(s, a, s′, h) = P (s′ | s, a, h)
∑

s′′∈S q̄∗(s, a, s′′, h) for (s, a, s′, h) ∈ S × A × S × [H]. Then772
q̄αk

(s, a, s′, h) = P (s′ | s, a, h)
∑

s′′∈S q̄αk
(s, a, s′′, h) can be derived from (30), which implies773

that qαk
induces the true transition kernel P . Hence, qαk

is a valid occupancy measure inducing the774
true transition kernel P .775
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To use the optimality of q̂k in our analysis, we expect that qαk
is a feasible solution for (13). Under776

the good event E , we know that qαk
∈ ∆(P, k) due to P ∈ Pk. Then it is sufficient to find a777

condition for αk satisfying ⟨ĝk, qαk⟩ ≤ C̄. We deduce that778

⟨ĝk, qαk⟩ = ⟨ḡk +Rk +Uk, qαk⟩
≤ ⟨g + 2Rk +Uk, qαk⟩
= (1− αk)⟨g + 2Rk +Uk, qb⟩+ αk⟨g + 2Rk +Uk, q

∗⟩
≤ (1− αk)(C̄b + ⟨2Rk +Uk, qb⟩) + αk(C̄ + ⟨2Rk +Uk, q

∗⟩)

where the first inequality is from Lemma 3 and the last inequality is from ⟨g, qb⟩ = C̄b and779
⟨g, q∗⟩ ≤ C̄. Furthermore, the second equality is true because (30) implies that qαk

(s, a, h) =780
(1− αk)qb(s, a, h) + αkq

∗(s, a, h). Hence, a sufficient condition of αk for ⟨ĝk, qαk⟩ ≤ C̄ is given781
by782

αk ≤
C̄ − C̄b − ⟨2Rk +Uk, qb⟩

C̄ − C̄b + ⟨2Rk +Uk, q∗⟩ − ⟨2Rk +Uk, qb⟩
.

Remember that, in the proof of Lemma 6, we defined K0 so that K0+1 is the first episode satisfying783
⟨2Rk +Uk, qb⟩ ≤ C̄ − C̄b. This guarantees that there exists some αk ∈ [0, 1] satisfying the above784
inequality for k > K0.785

Now, for some αk, we claim that786

⟨f , q∗⟩ ≤ ⟨f̄k +
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk, qαk⟩. (31)

To show (31), we first take for β ≥ 1,

fβ = f̄k + 3βRk + βUk.

Then we find αk, β satisfying ⟨f , q∗⟩ ≤ ⟨fβ, qαk⟩. By Lemma 3, we have787

⟨fβ, qαk⟩ = ⟨f̄k + 3βRk + βUk, qαk⟩
≥ ⟨f + 2βRk + βUk, qαk⟩
= (1− αk)⟨f + 2βRk + βUk, qb⟩+ αk⟨f + 2βRk + βUk, q

∗⟩.

We have ⟨f , q∗⟩ ≤ ⟨fβ, qαk⟩ if β satisfies788

β ≥ (1− αk)(⟨f , q∗⟩ − ⟨f , qb⟩)
(1− αk)⟨2Rk +Uk, qb⟩+ αk⟨2Rk +Uk, q∗⟩

.

By taking789

αk =
C̄ − C̄b − ⟨2Rk +Uk, qb⟩

C̄ − C̄b + ⟨2Rk +Uk, q∗⟩ − ⟨2Rk +Uk, qb⟩
, (32)

it follows that790

β ≥ ⟨f , q
∗⟩ − ⟨f , qb⟩
C̄ − C̄b

.

Since ⟨f , q∗⟩ − ⟨f , qb⟩ ≤ H , it is sufficient to take791

β =
H

C̄ − C̄b
. (33)

For αk satisfying (32), we showed that qαk
is a feasible solution for (13). Then it follows792

⟨f̂k, qαk⟩ ≤ ⟨f̂k, q̂k⟩ due to optimality of q̂k. Furthermore, for β satisfying (33), we have (31).793
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Hence, we deduce that794

⟨f , q∗⟩ − ⟨f̂k, q̂k⟩

≤ ⟨f , q∗⟩ − ⟨f̂k, qαk⟩

= ⟨f , q∗⟩ − ⟨f̄k +
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk, qαk⟩

+ ⟨f̄k +
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk, qαk⟩ − ⟨B⃗ ∧ (f̄k +

3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk), qαk⟩

≤ ⟨f̄k +
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk, qαk⟩ − ⟨B⃗ ∧ (f̄k +

3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk), qαk⟩

where the last inequality is from (31). Furthermore, under the good event E , we know that
fk(s, a, h) ≤ B for (s, a, h) ∈ S × A × [H] and k ∈ [K], where B = 1 +

√
Lδ . This implies that

f̄k(s, a, h) ≤ B. Thus, we have

⟨f̄k, qαk⟩ ≤ ⟨B⃗ ∧ (f̄k +
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk), qαk⟩.

Then it follows that795

⟨f̄k +
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk, qαk⟩ − ⟨B⃗ ∧ (f̄k +

3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk), qαk⟩

≤ ⟨f̄k +
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk, qαk⟩ − ⟨f̄k, qαk⟩

= ⟨ 3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk, qαk⟩.

Finally, we proved that796

⟨f , q∗⟩ − ⟨f̂k, q̂k⟩ ≤ ⟨
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk, qαk⟩.

By Lemma 14, we have797

K∑
k=K0+1

⟨f , q∗⟩ −
K∑

k=K0+1

⟨f̂k, q̂k⟩ ≤
K∑

k=K0+1

⟨ 3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk, qαk⟩

= O
((

H2.5

C̄ − C̄b
S
√
AK +

H4

C̄ − C̄b
S3A

)
L3
δ

)
as desired.798

Proof of Lemma 8. The lemma is a direct consequence of Lemma 20 with B = O(Lδ). Hence, we
have

K∑
k=K0+1

⟨f̂k, q̂k − qk⟩ = O
((

H1.5S
√
AK +H3S3A

)
L4
δ

)
with probability at least 1 − 2δ under the good event E . By taking the union bound, the statement799
holds with probability at least 1− 16δ.800

Proof of Lemma 9. We assume that the good event E holds, which is the case with probability at
least 1− 14δ. The left-hand side of Lemma 9 can be rewritten as

K∑
k=K0+1

⟨f̂k − f , qk⟩.
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Under the good event E , we have f̄k(s, a, h) ≤ f(s, a, h) +Rk(s, a, h) for (s, a, h) ∈ S ×A× [H]801
and k ∈ [K]. Furthermore, H/(C̄ − C̄b) ≥ 1 due to C̄ − C̄b ≤ H . Then it follows that802

K∑
k=K0+1

⟨f̂k − f , qk⟩ =
K∑

k=K0+1

⟨B⃗ ∧ (f̄k +
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk)− f , qk⟩

≤
K∑

k=K0+1

⟨f̄k +
3H

C̄ − C̄b
Rk +

H

C̄ − C̄b
Uk − f , qk⟩

≤ H

C̄ − C̄b

K∑
k=K0+1

⟨4Rk +Uk, qk⟩

= O
((

H2.5

C̄ − C̄b
S
√
AK +

H4

C̄ − C̄b
S3A

)
L3
δ

)
where the last equality is due to Lemma 14.803

Proof of Theorem 3. We assume that the good event E holds, which is the case with probability at804
least 1− 14δ. We decompose the regret as follows using occupancy measures.805

Regret (π⃗)

=

K0∑
k=1

⟨f , q∗⟩ −
K0∑
k=1

⟨f , qk⟩︸ ︷︷ ︸
(I)

+

K∑
k=K0+1

⟨f , q∗⟩ −
K∑

k=K0+1

⟨f̂k, q̂k⟩︸ ︷︷ ︸
(II)

+

K∑
k=K0+1

⟨f̂k, q̂k − qk⟩︸ ︷︷ ︸
(III)

+

K∑
k=K0+1

⟨f̂k − f , qk⟩︸ ︷︷ ︸
(IV)

.

As explained in Section 5.2, we can upper bound term (I) as806

Õ
(

H4S2A

(C̄ − C̄b)2

)
.

because K0 = Õ
(

H3S2A
(C̄−C̄b)2

)
due to Lemma 6 and ⟨f , q∗⟩ ≤ H .807

By Lemma 7, we have808

Term (II) = O
((

H2.5

C̄ − C̄b
S
√
AK +

H4

C̄ − C̄b
S3A

)
L3
δ

)
.

By Lemma 8, with probability at least 1− 2δ, it follows that809

Term (III) = O
((

H1.5S
√
AK +H3S3A

)
L4
δ

)
.

Moreover, it follows from Lemma 9 that810

Term (IV) = O
((

H2.5

C̄ − C̄b
S
√
AK +

H4

C̄ − C̄b
S3A

)
L3
δ

)
.

Hence, by taking the union bound,

Regret (π⃗) = Õ
(

H

C̄ − C̄b

(
H1.5S

√
AK +

H4S3A

C̄ − C̄b

))
with probability at least 1− 16δ.811
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15 Technical Lemmas812

In this section, we provide technical lemmas that are crucial for our regret and constraint violation813
analysis. The following lemma is from (Chen & Luo, 2021) with a few modifications, and it is useful814
to bound the variance of ⟨nk,fk⟩.815

Lemma 15. (Chen & Luo, 2021, Lemma 2) Let πk be any policy for episode k, and let qk denote
the occupancy measure qP,πk . Let ℓ : S × A× [H]→ [−B,B] be an arbitrary function, and let P
be an arbitrary transition kernel. Then

E
[
⟨nk, ℓ⟩2 | ℓ, πk, P

]
≤ 2B⟨qk, h⃗⊙ ℓ⟩

where qk,nk, ℓ are the vector representations of qk, nk, ℓ.816

Proof. For ease of notation, let Ek [·] denotes E [· | ℓ, πk, P ], and let sh and ah denote sP,πk

h and817
aP,πk

h , respectively for h ∈ [H]. Note that818

Ek

[
⟨nk, ℓ⟩2

]
= Ek


 H∑

h=1

∑
(s,a)∈S×A

nk(s, a, h)ℓ(s, a, h)

2


= Ek

( H∑
h=1

ℓ(sh, ah, h)

)2


≤ 2Ek

[
H∑

h=1

ℓ(sh, ah, h)

(
H∑

m=h

ℓ(sm, am,m)

)]

= 2Ek

[
H∑

h=1

Ek

[
ℓ(sh, ah, h)

(
H∑

m=h

ℓ(sm, am,m)

)
| sh, ah

]]

= 2Ek

[
H∑

h=1

ℓ(sh, ah, h)Ek

[
H∑

m=h

ℓ(sm, am,m) | sh, ah

]]

= 2Ek

[
H∑

h=1

ℓ(sh, ah, h)Q
πk

h (sh, ah; ℓ, P )

]

= 2Ek

 H∑
h=1

∑
(s,a)∈S×A

nk(s, a, h)ℓ(s, a, h)Q
πk

h (s, a; ℓ, P )


where the first inequality holds because (

∑H
h=1 xh)

2 ≤ 2
∑H

h=1 xh(
∑H

m=h xm). Moreover,819

Ek

 H∑
h=1

∑
(s,a)∈S×A

nk(s, a, h)ℓ(s, a, h)Q
πk

h (s, a; ℓ, P )


=

H∑
h=1

∑
(s,a)∈S×A

ℓ(s, a, h)Qπk

h (s, a; ℓ, P )Ek [nk(s, a, h)]

=

H∑
h=1

∑
(s,a)∈S×A

ℓ(s, a, h)Qπk

h (s, a; ℓ, P )qk(s, a, h)

= ⟨qk, ℓ⊙QP,πk,ℓ⟩.

Therefore, it follows that
Ek

[
⟨nk, ℓ⟩2

]
≤ 2⟨qk, ℓ⊙QP,πk,ℓ⟩.
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Next, observe that820

⟨qk, ℓ⊙QP,πk,ℓ⟩

≤ B

H∑
h=1

∑
(s,a)∈S×A

Qπk

h (s, a; ℓ, P )qk(s, a, h)

= B

H∑
h=1

∑
(s,a)∈S×A

πk(a | s, h)Qπk

h (s, a; ℓ, P )

(∑
a′∈A

qk(s, a
′, h)

)

= B

H∑
h=1

∑
s∈S

V πk

h (s; ℓ, P )

(∑
a′∈A

qk(s, a
′, h)

)

= B

H∑
h=1

∑
s∈S

 H∑
m=h

∑
(s′′,a′′)∈S×A

qk(s
′′, a′′,m | s, h)ℓ(s′′, a′′,m)

(∑
a′∈A

qk(s, a
′, h)

)

= B

H∑
h=1

H∑
m=h

∑
(s′′,a′′)∈S×A

∑
s∈S

qk(s
′′, a′′,m | s, h)

(∑
a′∈A

qk(s, a
′, h)

)
ℓ(s′′, a′′,m)

= B

H∑
h=1

H∑
m=h

∑
(s′′,a′′)∈S×A

qk(s
′′, a′′,m)ℓ(s′′, a′′,m)

= B

H∑
h=1

∑
(s,a)∈S×A

h · qk(s, a, h)ℓ(s, a, h)

= B⟨qk, h⃗⊙ ℓ⟩

where the first inequality holds because ℓ(s, a, h) ≤ B for any (s, a, h), the first equality holds
because

qk(s, a, h) = πk(a | s, h)
∑
a′∈A

qk(s, a
′, h),

the fifth equality follows from

∑
s∈S

qk(s
′′, a′′,m | s, h)

(∑
a′∈A

qk(s, a
′, h)

)
= qk(s

′′, a′′,m).

Therefore, we get that ⟨qk, ℓ⊙QP,πk,ℓ⟩ ≤ B⟨qk, h⃗⊙ ℓ⟩ as required.821

The following lemma is from the first statement of (Chen & Luo, 2021, Lemma 7) with a few822
modifications to adapt the proof to our setting.823

Lemma 16. (Chen & Luo, 2021, Lemma 7) Let π be a policy, and let P̃ , P̂ be two different transition824
kernels. We denote by q̃ the occupancy measure qP̃ ,π associated with P̃ and π, and we denote by q̂825
the occupancy measure qP̂ ,π associated with P̂ and π. Then826

q̂(s, a, h)− q̃(s, a, h)

=
∑

(s′,a′,s′′)

h−1∑
m=1

q̃(s′, a′,m)
(
P̂ (s′′ | s′, a′,m)− P̃ (s′′ | s′, a′,m)

)
q̂(s, a, h | s′′,m+ 1).

Proof. We prove the first statement by induction on h. When h = 1, note that

q̂(s, a, h) = q̃(s, a, h) = π(a | s, 1) · p(s).
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Hence, both the left-hand side and right-hand side are equal to 0. Next, assume that the equality827
holds with h− 1 ≥ 1. Then we consider h. By the definition of occupancy measure,828

q̂(s, a, h)− q̃(s, a, h)

= π(a | s, h)
∑

(s′,a′)

(P̂ (s | s′, a′, h− 1)q̂(s′, a′, h− 1)− P̃ (s | s′, a′, h− 1)q̃(s′, a′, h− 1))

= π(a | s, h)
∑

(s′,a′)

P̂ (s | s′, a′, h− 1)(q̂(s′, a′, h− 1)− q̃(s′, a′, h− 1))

︸ ︷︷ ︸
Term 1

+ π(a | s, h)
∑

(s′,a′)

q̃(s′, a′, h− 1)(P̂ (s | s′, a′, h− 1)− P̃ (s | s′, a′, h− 1))

︸ ︷︷ ︸
Term 2

.

To provide an upper bound on Term 1, we use the induction hypothesis for h− 1:829

q̂(s′, a′, h− 1)− q̃(s′, a′, h− 1)

=
∑

(s′′,a′′,s′′′)

h−2∑
m=1

q̃(s′′, a′′,m)
(
(P̂ − P̃ )(s′′′ | s′′, a′′,m)

)
q̂(s′, a′, h− 1 | s′′′,m+ 1)

where
(P̂ − P̃ )(s′′′ | s′′, a′′,m) = P̂ (s′′′ | s′′, a′′,m)− P̃ (s′′′ | s′′, a′′,m).

In addition, observe that

π(a | s, h)
∑

(s′,a′)

P̂ (s | s′, a′, h− 1)q̂(s′, a′, h− 1 | s′′′,m+ 1) = q̂(s, a, h | s′′′,m+ 1).

Therefore, it follows that Term 1 is equal to830

∑
(s′′,a′′,s′′′)

h−2∑
m=1

q̃(s′′, a′′,m)
(
(P̂ − P̃ )(s′′′ | s′′, a′′,m)

)
q̂(s, a, h | s′′′,m+ 1)

=
∑

(s′,a′,s′′)

h−2∑
m=1

q̃(s′, a′,m)
(
P̂ (s′′ | s′, a′,m)− P̃ (s′′ | s′, a′,m)

)
q̂(s, a, h | s′′,m+ 1).

Next, we upper bound Term 2. Note that

q̂(s, a, h | s′′, h) = π(a | s′′, h) · 1 [s′′ = s] .

Then it follows that831

π(a | s, h)(P̂ (s | s′, a′, h− 1)− P̃ (s | s′, a′, h− 1))

=
∑
s′′∈S

1 [s′′ = s] · π(a | s′′, h)(P̂ (s′′ | s′, a′, h− 1)− P̃ (s′′ | s′, a′, h− 1))

=
∑
s′′∈S

q̂(s, a, h | s′′, h)(P̂ (s′′ | s′, a′, h− 1)− P̃ (s′′ | s′, a′, h− 1)),

implying in turn that Term 2 equals∑
(s′,a′,s′′)∈S×A×S

q̃(s′, a′, h− 1)(P̂ (s′′ | s′, a′, h− 1)− P̃ (s′′ | s′, a′, h− 1))q̂(s, a, h | s′′, h).

Adding the equivalent expression of Term 1 and that of Term 2 that we have obtained, we get the832
right-hand side of the statement.833
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The following lemma is called value difference lemma (Dann et al., 2017). Based on Lemma 13834
and Lemma 16, we show the following lemma, which is a modification of (Chen & Luo, 2021,835
Lemma 7, the second statement).836

Lemma 17. Let π be a policy, and let P̃ , P̂ be two different transition kernels. We denote by q̃ the837
occupancy measure qP̃ ,π associated with P̂ and π, and we denote by q̂ the occupancy measure qP̂ ,π838
associated with P̂ and π. Let ℓ : S × A × [H]→ [−B,B] be an arbitrary function. If P̃ , P̂ ∈ Pk,839
then we have840

|⟨ℓ, q̂ − q̃⟩| =

∣∣∣∣∣∣
∑

(s,a,s′,h)∈S×A×S×[H]

q̃(s, a, h)
(
P̂ (s′ | s, a, h)− P̃ (s′ | s, a, h)

)
V π
h+1(s

′; ℓ, P̂ )

∣∣∣∣∣∣
≤ BH

∑
(s,a,s′,h)∈S×A×S×[H]

q̃(s, a, h)ϵ⋆k(s
′ | s, a, h)

where q̂, q̃, ℓ are the vector representations of q̂, q̃, ℓ.841

Proof. First, observe that842

⟨ℓ, q̂ − q̃⟩ =
∑

(s,a,h)∈S×A×[H]

(q̂(s, a, h)− q̃(s, a, h)) ℓ(s, a, h).

By Lemma 16, the right-hand side can be rewritten so that we obtain the following.843

⟨ℓ, q̂ − q̃⟩

=
∑

(s,a,h)

∑
(s′,a′,s′′)

h−1∑
m=1

q̃(s′, a′,m)
(
(P̂ − P̃ )(s′′ | s′, a′,m)

)
q̂(s, a, h | s′′,m+ 1)ℓ(s, a, h)

=

H∑
m=1

∑
(s′,a′,s′′)

q̃(s′, a′,m)
(
(P̂ − P̃ )(s′′ | s′, a′,m)

) ∑
(s,a,h),
h>m

q̂(s, a, h | s′′,m+ 1)ℓ(s, a, h)

=

H∑
m=1

∑
(s′,a′,s′′)

q̃(s′, a′,m)
(
(P̂ − P̃ )(s′′ | s′, a′,m)

)
V π
m+1(s

′′; ℓ, P̂ )

=

H∑
h=1

∑
(s′,a′,s′′)

q̃(s′, a′, h)
(
P̂ (s′′ | s′, a′, h)− P̃ (s′′ | s′, a′, h)

)
V π
h+1(s

′′; ℓ, P̂ ).

Since P̃ , P̂ ∈ Pk, Lemma 13 implies that844

|⟨ℓ, q̂ − q̃⟩| ≤
H∑

h=1

∑
(s′,a′,s′′)

q̃(s′, a′, h)
∣∣∣P̂ (s′′ | s′, a′, h)− P̃ (s′′ | s′, a′, h)

∣∣∣V π
h+1(s

′′; ℓ, P̂ )

≤
H∑

h=1

∑
(s′,a′,s′′)

q̃(s′, a′, h) (2ϵk(s
′′ | s′, a′, h))V π

h+1(s
′′; ℓ, P̂ )

≤
H∑

h=1

∑
(s′,a′,s′′)

q̃(s′, a′, h)ϵ⋆k(s
′′ | s′, a′, h)V π

h+1(s
′′; ℓ, P̂ )

≤ BH

H∑
h=1

∑
(s′,a′,s′′)

q̃(s′, a′, h)ϵ⋆k(s
′′ | s′, a′, h)

= BH
∑

(s,a,s′,h)∈S×A×S×[H]

q̃(s, a, h)ϵ⋆k(s
′ | s, a, h)

where the third inequality holds because V π
h+1(s

′′; ℓ, P̂ ) ≤ BH , as required.845
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Lemma 18. Let π be a policy, and let P̃ , P̂ be two different transition kernels. We denote by q̃ the
occupancy measure qP̃ ,π associated with P̃ and π, and we denote by q̂ the occupancy measure qP̂ ,π

associated with P̂ and π. Let (s, h) ∈ S × [H], and consider q̃(· | s, h), q̂(· | s, h) : S × A ×
{h, . . . ,H}. If P̃ , P̂ ∈ Pk, then we have∣∣⟨ℓ(h), q̂(s,h) − q̃(s,h)⟩

∣∣ ≤ BH
∑

(s′,a′,s′′,m)∈S×A×S×{h,...,H}

q̃(s′, a′,m | s, h)ϵ⋆k(s′′ | s′, a′,m)

where q̃(s,h), q̂(s,h), ℓ(h) are the vector representations of q̂(· | s, h), q̃(· | s, h) : S × A ×846
{h, . . . ,H} → [0, 1] and ℓ(h) : S ×A× [H]→ [−B,B].847

Proof. The proof follows the same argument used to prove Lemmas 16 and 17.848

The following lemma is called a Bellman-type law of total variance lemma (Azar et al., 2017; Chen849
& Luo, 2021). We follow the proof of (Chen & Luo, 2021, Lemma 4) after some changes to adapt850
to our setting.851

Lemma 19. (Chen & Luo, 2021, Lemma 4) Let πk be the policy for episode k, P be an arbitrary
transition kernel, and let qk denote the occupancy measure qP,πk . Let ℓ : S ×A× [H]→ [−B,B]
be an arbitrary reward function, and define Vk(s, a, h) = Vars′∼P (·|s,a,h)

[
V πk

h+1(s
′; ℓ, P )

]
. Then

⟨qk,Vk⟩ ≤ Var [⟨nk, ℓ⟩ | ℓ, πk, P ]

where qk,Vk,nk, ℓ are the vector representations of qk,Vk, nk, ℓ.852

Proof. For ease of notation, let sh and ah denote sP,πk

h and aP,πk

h , respectively for h ∈ [H]. More-853
over, let V (s, h) denote V π

h (s; ℓ, P ) for (s, h) ∈ S × [H]. Note that854

⟨nk, ℓ⟩ =
∑

(s,a,h)S×A×[H]

ℓ(s, a, h)nk(s, a, h) =

H∑
h=1

ℓ (sh, ah, h) .

For ease of notation, let Ek [·] and Vark [·] denote E [· | ℓ, πk, P ] and Var [· | ℓ, πk, P ], respectively.855
Then856

Ek [⟨nk, ℓ⟩] = Ek

[
H∑

h=1

ℓ (sh, ah, h)

]
= Ek

[
E

[
H∑

h=1

ℓ (sh, ah, h) | ℓ, πk, P, s1

]]
= Ek [V (s1, 1)] .

Moreover,857

Vark [⟨nk, ℓ⟩] = Ek

( H∑
h=1

ℓ (sh, ah, h)− Ek [V (s1, 1)]

)2


= Ek

( H∑
h=1

ℓ (sh, ah, h)− V (s1, 1) + V (s1, 1)− Ek [V (s1, 1)]

)2


= Ek

( H∑
h=1

ℓ (sh, ah, h)− V (s1, 1)

)2
+ Ek

[
(V (s1, 1)− Ek [V (s1, 1)])

2
]

+ 2Ek

[(
H∑

h=1

ℓ (sh, ah, h)− V (s1, 1)

)
(V (s1, 1)− Ek [V (s1, 1)])

]

≥ Ek

( H∑
h=1

ℓ (sh, ah, h)− V (s1, 1)

)2

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where the inequality is by Ek [V (s1, 1)− Ek [V (s1, 1)] | s1] = 0 and858
(V (s1, 1)− Ek [V (s1, 1)])

2 ≥ 0. Therefore,859

Vark [⟨nk, ℓ⟩] ≥ Ek

( H∑
h=2

ℓ (sh, ah, h)− V (s2, 2) + ℓ (s1, a1, 1) + V (s2, 2)− V (s1, 1)

)2
 .

Note that860

Ek

[
H∑

h=2

ℓ (sh, ah, h)− V (s2, 2) | s1, a1, s2

]
= Ek

[
H∑

h=2

ℓ (sh, ah, h) | s2

]
− V (s2, 2) = 0. (34)861

Then862

Vark [⟨nk, ℓ⟩]

≥ Ek

( H∑
h=2

ℓ (sh, ah, h)− V (s2, 2)

)2
+ Ek

[
(ℓ (s1, a1, 1) + V (s2, 2)− V (s1, 1))

2
]

+ 2Ek

[
Ek

[(
H∑

h=2

ℓ (sh, ah, h)− V (s2, 2)

)
(ℓ (s1, a1, 1) + V (s2, 2)− V (s1, 1)) | s1, a1, s2

]]

= Ek

( H∑
h=2

ℓ (sh, ah, h)− V (s2, 2)

)2
+ Ek

[
(ℓ (s1, a1, 1) + V (s2, 2)− V (s1, 1))

2
]

+ 2Ek

[
(ℓ (s1, a1, 1) + V (s2, 2)− V (s1, 1))Ek

[
H∑

h=2

ℓ (sh, ah, h)− V (s2, 2) | s1, a1, s2

]]

= Ek

( H∑
h=2

ℓ (sh, ah, h)− V (s2, 2)

)2
+ Ek

[
(ℓ (s1, a1, 1) + V (s2, 2)− V (s1, 1))

2
]

where the last equality follows from (34). Here, the second term from the right-most side can be863
bounded from below as follows.864

Ek

[
(ℓ (s1, a1, 1) + V (s2, 2)− V (s1, 1))

2
]

= Ek

(ℓ (s1, a1, 1) + ∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)− V (s1, 1) + V (s2, 2)−
∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)

)2


= Ek

(ℓ (s1, a1, 1) + ∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)− V (s1, 1)

)2


+ Ek

(V (s2, 2)−
∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)

)2


+ 2Ek

[(
ℓ (s1, a1, 1) +

∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)− V (s1, 1)

)(
V (s2, 2)−

∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)

)]

= Ek

(ℓ (s1, a1, 1) + ∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)− V (s1, 1)

)2


+ Ek

(V (s2, 2)−
∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)

)2


≥ Ek [Vk(s1, a1, 1)]

865

where third equality holds because866
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Ek

[(
ℓ (s1, a1, 1) +

∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)− V (s1, 1)

)(
V (s2, 2)−

∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)

)
| s1, a1

]

=

(
ℓ (s1, a1, 1) +

∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)− V (s1, 1)

)
Ek

[
V (s2, 2)−

∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2) | s1, a1

]

=

(
ℓ (s1, a1, 1) +

∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)− V (s1, 1)

)
× 0

867

and the last inequality holds because868

Ek

(V (s2, 2)−
∑
s′∈S

P (s′ | s1, a1, 1)V (s′, 2)

)2
 = Ek [Vk(s1, a1, 1)] .

Then it follows that869

Vark [⟨nk, ℓ⟩] ≥ Ek

( H∑
h=1

ℓ (sh, ah, h)− V (s1, 1)

)2


≥ Ek

( H∑
h=2

ℓ (sh, ah, h)− V (s2, 2)

)2
+ Ek [Vk(s1, a1, 1)] .

Repeating the same argument, we deduce that870

Vark [⟨nk, ℓ⟩] ≥
H∑

h=1

Ek [Vk(sh, ah, h)] =
∑

(s,a,h)∈S×A×[H]

qk(s, a, h)Vk(s, a, h) = ⟨qk,Vk⟩,

as required.871

Next, we provide Lemma 20, which is a modification of (Chen & Luo, 2021, Lemma 9) to our872
finite-horizon MDP setting.873

Lemma 20. Assume that the good event E holds. Let πk be any policy for episode k, let Pk be any874
transition kernel from Pk for episode k, and let P be the true transition kernel. Let qk, q̂k denote the875
occupancy measures qP,πk , qPk,πk , respectively. Let ℓk : S × A × [H] → [−B,B] be an arbitrary876
reward function for episode k. With probability at least 1− 2δ,877

K∑
k=1

|⟨ℓk, qk − q̂k⟩| = O
(
B
(
H1.5S

√
AK +H3S3A

)
L3
δ

)
.

where qk, q̂k, ℓk are the vector representations of qk, q̂k, ℓk.878

Proof. We define ξ1 as ξ1 = {ℓ1, π1} and for k ≥ 2, we define ξk as{
s
P,πk−1

1 , a
P,πk−1

1 , . . . , s
P,πk−1

h , a
P,πk−1

h , ℓk, πk

}
where πk−1 and πk denote the policies for episode k − 1 and episode k, respectively, and(

s
P,πk−1

1 , a
P,πk−1

1 , . . . , s
P,πk−1

h , a
P,πk−1

h

)
is the trajectory generated under policy πk−1 and transition kernel P . Then for k ∈ [K], let Hk be879
defined as the σ-algebra generated by the random variables in ξ1 ∪ · · · ∪ ξk. Then it follows that880
H1, . . . ,Hk give rise to a filtration.881
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Let us define
µk(s, a, h) = Es′∼P (·|s,a,h)

[
V πk

h+1(s
′; ℓk, P )

]
.

Note that882

K∑
k=1

|⟨ℓk, qk − q̂k⟩|

=

K∑
k=1

∣∣∣∣∣∣
∑

(s,a,s′,h)∈S×A×S×[H]

qk(s, a, h) (P (s′ | s, a, h)− Pk(s
′ | s, a, h))V πk

h+1(s
′; ℓk, Pk)

∣∣∣∣∣∣
≤

K∑
k=1

∣∣∣∣∣∣
∑

(s,a,s′,h)∈S×A×S×[H]

qk(s, a, h) (P (s′ | s, a, h)− Pk(s
′ | s, a, h))V πk

h+1(s
′; ℓk, P )

∣∣∣∣∣∣
+O

(
BH3S3AL3

δ

)
where the equality is due to Lemma 17 and the inequality is due to Lemmas 4 and 11.883

Moreover,884

K∑
k=1

∣∣∣∣∣∣
∑

(s,a,s′,h)∈S×A×S×[H]

qk(s, a, h) (P (s′ | s, a, h)− Pk(s
′ | s, a, h))V πk

h+1(s
′; ℓk, P )

∣∣∣∣∣∣
=

K∑
k=1

∣∣∣∣∣∣
∑

(s,a,s′,h)∈S×A×S×[H]

qk(s, a, h) ((P − Pk) (s
′ | s, a, h))

(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)∣∣∣∣∣∣
≤

K∑
k=1

∑
(s,a,s′,h)∈S×A×S×[H]

qk(s, a, h)ϵ
⋆
k(s

′ | s, a, h)
∣∣V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

∣∣

≤ O

 K∑
k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

qk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2


+O

BHS

K∑
k=1

∑
(s,a,h)∈S×A×[H]

qk(s, a, h)Lδ

max{1, Nk(s, a, h)}



≤ O

 K∑
k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

qk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2


+O
(
BH2S2AL2

δ

)
where the first equality holds because

∑
s′∈S (P − Pk) (s

′ | s, a, h) = 0 and µk(s, a, h)885
is independent of s′, the first inequality is due to Lemma 13, the second inequality is from886 ∣∣V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

∣∣ ≤ 2BH , and the last inequality is from Lemma 11. Recall that887
qk(s, a, h) = E [nk(s, a, h) | πk, P ], which implies that888

K∑
k=1

E [Xk | Hk, P ]

=

K∑
k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

qk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2
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where

Xk =
∑

(s,a,s′,h)∈
S×A×S×[H]

nk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2
.

Here, we have

0 ≤ Xk ≤ O

BHS
∑

(s,a,h)∈S×A×[H]

nk(s, a, h)
√
Lδ

 = O(BH2S
√
Lδ).

Then it follows from Lemma 26 that with probability at least 1− δ,889

K∑
k=1

E [Xk | Hk, P ]

≤ 2

K∑
k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2
+O

(
BH2SL1.5

δ

)
.

Note that890

K∑
k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2

≤
K∑

k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk+1(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2

+BH

K∑
k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)

(√
P (s′ | s, a, h)Lδ

max{1, Nk(s, a, h)}
−

√
P (s′ | s, a, h)Lδ

max{1, Nk+1(s, a, h)}

)

≤
K∑

k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk+1(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2

+BH
√
S

K∑
k=1

∑
(s,a,h)∈S×A×[H]

(√
Lδ

max{1, Nk(s, a, h)}
−

√
Lδ

max{1, Nk+1(s, a, h)}

)

≤
K∑

k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk+1(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2
+O

(
BH2S1.5A

√
Lδ

)
.

where the first inequality holds because
∣∣V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

∣∣ ≤ BH , the second inequal-
ity holds because nk(s, a, h) ≤ 1 and the Cauchy-Schwarz inequality implies that

∑
s′∈S

√
P (s′ | s, a, h) ≤

√
S
∑
s′∈S

P (s′ | s, a, h) =
√
S,
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and the third inequality follows from

K∑
k=1

(√
1

max{1, Nk(s, a, h)}
−

√
1

max{1, Nk+1(s, a, h)}

)
≤

√
1

max{1, N1(s, a, h)}
= 1.

Next, the Cauchy-Schwarz inequality implies the following.891

K∑
k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)

√
P (s′ | s, a, h)Lδ

max{1, Nk+1(s, a, h)}
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2

≤

√√√√√√
K∑

k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)P (s′ | s, a, h)
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2

×

√√√√√√
K∑

k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)
Lδ

max{1, Nk+1(s, a, h)}

Here, the second term can be bounded as follows.892

K∑
k=1

∑
(s,a,s′,h)

nk(s, a, h)
Lδ

max{1, Nk+1(s, a, h)}
= SLδ

K∑
k=1

∑
(s,a,h)

nk(s, a, h)

max{1, Nk+1(s, a, h)}

= SLδ

∑
(s,a,h)

K∑
k=1

nk(s, a, h)

max{1, Nk+1(s, a, h)}

= O
(
HS2AL2

δ

)
.

For (s, a, h) ∈ S ×A× [H], we define

Vk(s, a, h) = Var
s′∼P (·|s,a,h)

[
V πk

h+1(s
′; ℓk, P )

]
.

Then893

Vk(s, a, h) = Es′∼P (·|s,a,h)

[(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2]
=
∑
s′∈S

P (s′ | s, a, h)
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2
Furthermore, with probability at least 1− δ,894

K∑
k=1

∑
(s,a,s′,h)∈

S×A×S×[H]

nk(s, a, h)P (s′ | s, a, h)
(
V πk

h+1(s
′; ℓk, P )− µk(s, a, h)

)2

=

K∑
k=1

∑
(s,a,h)∈S×A×[H]

nk(s, a, h)Vk(s, a, h)

=

K∑
k=1

⟨qk,Vk⟩+
K∑

k=1

∑
(s,a,h)∈S×A×[H]

(nk(s, a, h)− qk(s, a, h))Vk(s, a, h)

≤
K∑

k=1

Var [⟨nk, ℓk⟩ | ℓk, πk, P ] +O
(
B2H3

√
K ln(1/δ)

)
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where Vk ∈ RSAH is the vector representation of Vk and the inequality follows from Lemma 19,895
Vk(s, a, h) ≤ B2H2,896 ∑

(s,a,h)∈S×A×[H]

(nk(s, a, h)− qk(s, a, h))Vk(s, a, h)

≤
∑

(s,a,h)∈S×A×[H]

(nk(s, a, h) + qk(s, a, h))B
2H2

≤ 2B2H3,

and Lemma 24. Therefore, we finally have proved that897

K∑
k=1

|⟨ℓk, qk − q̂k⟩| = O


√√√√HS2AL2

δ

(
K∑

k=1

Var [⟨nk, ℓk⟩ | ℓk, πk, P ] +B2H3

√
K ln

1

δ

)
+O

(
BH3S3AL3

δ

)
.

Moreover, we know from Lemma 15 that

Var [⟨nk, ℓk⟩ | ℓk, πk, P ] ≤ E
[
⟨nk, ℓk⟩2 | ℓk, πk, P

]
≤ 2B⟨qk, h⃗⊙ ℓk⟩,

and therefore, it follows that898

K∑
k=1

|⟨ℓk, qk − q̂k⟩| = O


√√√√HS2A

(
B

K∑
k=1

⟨qk, h⃗⊙ ℓk⟩+B2H3
√
K

)
+BH3S3A

L3
δ


= O

((√
B2H3S2AK +B2H4S2A

√
K +BH3S3A

)
L3
δ

)
= O

((√
B2H3S2AK +B2H3S2AK +B2H5S2A+BH3S3A

)
L3
δ

)
= O

(
B
(
H1.5S

√
AK +H3S3A

)
L3
δ

)
where the second equality holds because ⟨qk, h⃗ ⊙ ℓk⟩ = O(BH2) and the third equality holds899
because B2H4S2A

√
K = O

(
B2
(
H3S2AK +H5S2A

))
.900

16 Concentration Inequalities901

Lemma 21. (Hoeffding’s inequality) For i.i.d. random variables Z1, . . . , Zn following 1/2-sub-902
Gaussian with zero mean,903

P

 1

n

n∑
j=1

Zj ≥ ϵ

 ≤ exp
(
−nϵ2

)
,

P

 1

n

n∑
j=1

Zj ≤ −ϵ

 ≤ exp
(
−nϵ2

)
.

Lemma 22. (Maurer & Pontil, 2009, Theorem 4) Let Z1, . . . , Zn ∈ [0, 1] be i.i.d. random variables
with mean z, and let δ > 0. Then with probability at least 1− δ,

z − 1

n

n∑
j=1

Zj ≤
√

2Vn ln(2/δ)

n
+

7 ln(2/δ)

3(n− 1)

where Vn is the sample variance given by

Vn =
1

n(n− 1)

∑
1≤j<k≤n

(Zj − Zk)
2.
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Next, we need the following Bernstein-type concentration inequality for martingales due to Beygelz-904
imer et al. (2011). We take the version used in (Jin et al., 2020, Lemma 9).905

Lemma 23. (Beygelzimer et al., 2011, Theorem 1) Let Y1, . . . , Yn be a martingale difference se-
quence with respect to a filtration F1, . . . ,Fn. Assume that Yj ≤ R almost surely for all j ∈ [n].
Then for any δ ∈ (0, 1) and λ ∈ (0, 1/R], with probability at least 1− δ, we have

n∑
j=1

Yj ≤ λ

n∑
j=1

E
[
Y 2
j | Fj

]
+

ln(1/δ)

λ
.

Lemma 24 (Azuma’s inequality). Let Y1, . . . , Yn be a martingale difference sequence with respect
to a filtration F1, . . . ,Fn. Assume that |Yj | ≤ B for j ∈ [n]. Then with probability at least 1 − δ,
we have ∣∣∣∣∣∣

n∑
j=1

Yj

∣∣∣∣∣∣ ≤ B
√
2n ln(2/δ).

Next, we need the following concentration inequalities due to Cohen et al. (2020).906

Lemma 25. (Cohen et al., 2020, Theorem D.3) Let {Xn}∞n=1 be a sequence of i.i.d. random vari-907
ables with expectation µ. Suppose that 0 ≤ Xn ≤ B holds almost surely for all n. Then with908
probability at least 1− δ, the following holds for all n ≥ 1 simultaneously:909 ∣∣∣∣∣

n∑
i=1

(Xi − µ)

∣∣∣∣∣ ≤ 2

√
Bµn ln

2n

δ
+B ln

2n

δ
,

∣∣∣∣∣
n∑

i=1

(Xi − µ)

∣∣∣∣∣ ≤ 2

√√√√B

n∑
i=1

Xi ln
2n

δ
+ 7B ln

2n

δ
.

Lemma 26. (Cohen et al., 2020, Lemma D.4) Let {Xn}∞n=1 be a sequence of random variables
adapted to the filtration {Fn}∞n=1. Suppose that 0 ≤ Xn ≤ B holds almost surely for all n. Then
with probability at least 1− δ, the following holds for all n ≥ 1 simultaneously:

n∑
i=1

E [Xi | Fi] ≤ 2

n∑
i=1

Xi + 4B ln (2n/δ) .

17 Experimental Setup Details910

We evaluate DOPE+ via the following numerical experiment. We first explain the details of our911
CMDP setting, which is a modification of the three-state CMDP instances of Zheng & Ratliff (2020);912
Simão et al. (2021); Bura et al. (2022). We define the state space {s1, s2, s3} and the action space913
{a1, a2}. In Figure 2, we illustrate the transition probability. For taking a1 at s1, the agent remains914
in s1 with probability 0.8, and moves to s2 with probability 0.2. For taking a2 at s1, the agent moves915
to s2 with probability 0.8, and remains in s2 with probability 0.2. Furthermore, the same transition916
rule is applied to s2 and s3.917

Next, we present the reward function f and the cost function g. When the agent takes a1, no reward918
or cost occurs. Then it can be written as f(s, a1) = g(s, a1) = 0 for s = s1, s2, s3. When919
a2 is taken, the reward occurs depending on the current state. Specifically, we set f(s1, a2) =920
1/3, f(s2, a2) = 2/3, and f(s3, a2) = 1. On the other hand, for any state, the same amount of921
cost is incurred for a2, i.e, g(s1, a2) = g(s2, a2) = g(s3, a2) = 1. Hence, a2 is an action with a922
high reward and a high cost while a1 is an action with zero reward and zero cost. Furthermore, for923
taking action a at state s, the agent can observe the noisy reward f(s, a) + ζ1 and the noisy cost924
g(s, a)+ζ2, where ζ1, ζ2 are independently drawn from a zero-mean 1/2-sub-Gaussian distribution.925
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s1

s2s3
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(a) Taking a1
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0.20.2

(b) Taking a2

Figure 2: Transition probability for taking a1 and a2 at each state.

In Figure 1, we compare regret and constraint violation under DOPE+ and DOPE for 200, 000926
episodes when H = 30. We consider DOPE as a benchmark algorithm because it provides the best-927
known regret bound among the existing algorithms while ensuring zero hard constraint violation.928
For the parameters of the experiment, we use H = 30, K = 200, 000, C̄ = 18, C̄b = 15, δ = 0.01,929
and the uniform initial distribution of states. To obtain safe baseline policies, we sample a random930
policy whose expected cost is less than C̄b. Furthermore, we run the safe baseline policies until the931
LP becomes feasible for both DOPE+ and DOPE. In Figure 1, to observe the learning process easily,932
we consider the regret and constraint violations incurred after each LP becomes feasible. Our results933
are averaged across 5 runs with different random seeds, and we display the 95% confidence interval934
with shaded regions. The experiment was conducted on an Apple M2 Pro.935
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