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Figure 1: SG-Tailor for scene graph manipulation. SG-Tailor manipulates a given scene graph
in two modes: (a) Node Addition, SG-Tailor autoregressively reasons commonsense relationships
between a new node and existing nodes (e.g., The wardrobe should be near the bed and to the left of
the chair.). (b) Edge Change, it maintains the desired edge while resolving conflicts (e.g., naively
moving the chair to the left of the bed causes a conflict. SG-Tailor resolves this by replacing the
conflicting edge to maintain coherence).
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ABSTRACT

Scene graphs capture complex relationships among objects, serving as strong priors
for 3D scene generation and manipulation. However, reasonable manipulation of
scene graphs remains a challenging and untouched task. The reasoning about a
node’s relationships with all other nodes is computationally intractable, as even
a single edge modification can trigger conflicts due to the intricate relationship
interdependencies within the graph. We introduce SG-Tailor, an autoregressive
model that predicts the conflict-free relationships in a scene graph. SG-Tailor infers
inter-object relationships, including generating commonsense edges for newly
added nodes, and resolves conflicts arising from edge modifications to produce
coherent, manipulated graphs for downstream tasks. When a new node is added,
SG-Tailor queries the target node and forms node pairs with other nodes in the
graph to predict the appropriate pairwise relationships. When an edge is modified,
SG-Tailor employs a Cut-And-Stitch strategy to solve the conflicts and globally
adjust the graph. Extensive experiments demonstrate that SG-Tailor outperforms
competing methods by a large margin and can be seamlessly integrated as a plug-in
module for scene generation and robotic manipulation tasks. The code will be
released upon acceptance.

1 INTRODUCTION

Scene graphs effectively capture semantic relationships among objects by representing them as nodes
and their interactions as edges (Li et al., 2024; Chang et al., 2021). This structured, interpretable
representation is widely used in computer vision tasks, such as image captioning (Krishna et al.,
2017), scene understanding (Zhang et al., 2021; Gu et al., 2024), and robotics applications (Hughes
et al., 2022; Werby et al., 2024; Maggio et al., 2024; Jiang et al., 2024). Building on this foundation,



Under review as a conference paper at ICLR 2026

a highly flexible pipeline is envisioned for 3D data creation and manipulation using scene graphs.
(i) extract a scene graph from visual data, (ii) manipulate it to enforce user-specified edits while
preserving commonsense, and (iii) synthesize realistic outputs for downstream tasks. This streamlined
approach significantly enhances flexibility and precision in interactive data generation conditioned on
the large amount of 3D scene content (Jia et al., 2024; Wald et al., 2020; Ramakrishnan et al., 2021).

While extensive work has focused on extracting scene graphs from images or 3D data (Wu et al.,
2021; Rosinol et al., 2021; Johnson et al., 2015; Im et al., 2024) and on synthesizing scenes from
graphs (Johnson et al., 2018; Zhai et al., 2023; Yang et al., 2025), the intermediate task of manipulating
scene graphs has received far less attention. A handful of methods embed graph edits into their
pipelines (Zhai et al., 2023; Dhamo et al., 2021; Chen et al., 2020a; Hu et al., 2022), but none
explicitly handle the semantic conflicts that can arise during editing. However, even a simple change,
such as a new object addition, requires more than naively inserting a node: one must also infer its
plausible relationships with every existing node to avoid breaking commonsense or spatial consistency
( Figure 1(a)). Likewise, modifying a single edge can ripple through the graph, invalidating inter-
object dependencies and yielding illogical configurations ( Figure 1(b)). However, methods for
detecting and resolving these inconsistencies remain under-explored.

In this work, we propose SG-Tailor, an autoregressive model designed to tackle the intricacies
of scene graph manipulation. SG-Tailor operates by predicting the relationship between any two
nodes in the context of the existing (partial) scene graph. This capability allows the model to infer
reasonable edges for newly added nodes while ensuring that edge modifications do not introduce
inconsistencies.

When introducing a new node, SG-Tailor queries the node alongside existing nodes of the partial
scene graph to infer their relationships, as depicted in Figure 1 (a). This ensures seamless integration
of new nodes into the current scene graph structure. For edge modification, the model employs a
novel Cut-And-Stitch strategy. First, SG-Tailor isolates the subject node from the graph by cutting off
all linked edges. Then it infers and "stitches" all relationships conditioned on the rest of the graph,
thereby removing all possible conflicts in the graph. In such a way, we bypass the computational
complexity of detecting and resolving relationship conflicts, particularly in densely connected graphs.

We validate SG-Tailor through extensive experiments across diverse benchmarks, where we outper-
form a traditional message-passing baseline and the state-of-the-art open- and closed-source large
language models, with and without chain-of-thought prompting, as well as a finetuned LLM baseline.
Results demonstrate the robustness of SG-Tailor and its flexibility as a plug-in module for downstream
tasks, such as scene generation and robotic manipulation.

Our contributions are summarized as follows:

1. We reveal the overlooked problems of scene graph manipulation, highlighting the importance of
maintaining semantic coherence during node and edge modifications.

2. We propose SG-Tailor, an autoregressive model for robust scene graph manipulation capable of
commonsense-aware relationship reasoning and conflict solving.

3. We demonstrate that SG-Tailor significantly outperforms existing competitors on diverse bench-
marks and proves its practical effectiveness as a plug-in module for downstream application tasks.

2 RELATED WORK

Scene Graphs. Scene graphs, as symbolic and semantic representations (Johnson et al., 2015; Kr-
ishna et al., 2017; Armeni et al., 2019), can be obtained from texts (Zhao et al., 2023), 2D images (Xu
et al., 2017; Zellers et al., 2018; Qi et al., 2019; Herzig et al., 2018), 3D geometry (Koch et al., 2024;
Rosinol et al., 2021) and 4D data (Yang et al., 2023) for spatial and temporal understanding. Scene
graphs can facilitate various tasks, including retrieval (Johnson et al., 2015), generation (Johnson
et al., 2018), and VQA (Teney et al., 2017). More embodied applications include robotic manipula-
tion (Zhai et al., 2024a; Jiang et al., 2024), and mobile navigation (Rana et al., 2023). While most
works focus on how to embed information into the graphs and how to generate concrete content from
scene graphs, to the best of our knowledge, two works (Chen et al., 2020a; Hu et al., 2022) explicitly
focused on scene graph manipulation. (Chen et al., 2020a) formulates graph editing as an RL problem,
where actions add/remove triplets to minimize graph edit distance to a target. Demonstrated on 2D
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image graphs, but suffers from high action-space complexity. (Hu et al., 2022) grows a scene graph
by iteratively adding nodes and edges via learned expansion rules. This approach is effective for
graph completion, but does not explicitly handle semantic conflicts arising from edits. The closest
work to ours is SGNet (Zhou et al., 2019), which predicts objects taking the contextual scene graph
into account through message passing, but it also uses object location information. In contrast, our
framework focuses on reasoning inter-object relationships based on textual information without
explicit geometric cues.

Autoregressive Models and Their Use on Graphs. Autoregressive models sequentially predict
the next component based on previous inputs. In earlier years, they have shown the possibility of
generating images in a row-by-row, raster-scan manner (Van den Oord et al., 2016; Chen et al.,
2020b). Recently, autoregressive models have dominated natural language processing (NLP), serving
as a crucial component of Large Language Models (LLMs) (Touvron et al., 2023; Brown et al., 2020;
Alayrac et al., 2022; Guo et al., 2025; Liu et al., 2023).

Beyond text generation, autoregressive models are used in graph structure data to capture the graph
context (Dai et al., 2020; Liao et al., 2020). Since scene graphs can be easily represented by natural
textual information, we use autoregressive models to treat scene graph manipulation as a next-token
prediction task inspired by LLMs.

3 PROBLEM FORMULATION

The scene graph manipulation problem exemplifies the physical rearrangements of scenes. How-
ever, naively inserting or changing nodes often breaks commonsense or spatial consistency. In this
section, we (1) define a class of “reasonable” scene graphs constrained by learned commonsense
and spatial constraints, and (2) show how all typical graph edits — adding, removing, or changing
relationships — can be reduced to Cut and Stitch procedures.

3.1 SCENE GRAPH AND ITS TRIPLET DESCRIPTION

The scene graph used in this work is officially defined as the triplet description of a visual scene
similar to (Li et al., 2024). Given a visual scene S € S, such as an image or a 3D mesh, its scene
graph is a set of triplets Gg C Og x Pg x Og, where Og is the object set, and Pg is the relation
set. Each object 05, € Og has a semantic label Is ;, € Lo (Lo is the semantic label set), where
ke {1,...,|Og|}. Each relation

Dsis; €EPs CP

is the core form of a visual relationship triplet

ts,imj = (08, PSii—j» 055) € Gs, (1
with ¢ #£ j.
In the terms used in graph theory, a scene graph is a directed graph with two types of nodes: object
and relation. However, for the convenience of semantic expression, we conventionally refer to a node

of a scene graph as an object with its semantic label, while the relation is called an edge.
Definition. A scene graph is a directed, labeled multigraph

G=(V,E), 2

where each node v € V is an object in the scene with its semantic label, and each edge e € E is the

relation with the start node, end node, and its semantic label. We use Q to denote the set of all scene
graphs.

3.2 REASONABLE SCENE GRAPH

Based on the definition of the set of scene graph G, we denote the set of Reasonable Scene Graphs, or
the set of scene graphs that do not violate human intuitions, as G. We summarize some empirically

observed rules for G here: (1) Reasonable scene graphs respect commonsense constraints. This
group of constraints captures human intuition in object placement (e.g., a nightstand typically appears
beside a bed, not beside a kitchen table). (2) Reasonable scene graphs respect spatial constraints. This
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group of constraints forbids logically impossible arrangements (e.g., a chair cannot be simultaneously
at the left and right of the same table).

In this work, we consider the scene graphs that do not satisfy these two rules as not reasonable and
containing conflicting information.

Optimal Substructure. In real-life observation, moving an object of interest would intuitively not
affect the rest of the scene composition. We summarize this intuition as the following property that

supports our Cut—and-Stitch method. For any reasonable graph G = (V, E) € G and any subset
S C V, the induced subgraph

G[S] = (S,Es), where Es = {e;,; € E|i,j € S} 3)
is also reasonable and lies in G

This property holds for all relationship types of all datasets used in the experiments. Please refer to
the appendix for the complete list of those relations.

3.3 SCENE GRAPH MANIPULATION

We formally define scene graph manipulation, the process of modifying G € G to G’ € G, as
a series of graph-level operations that mirror a user’s adjustments on a scene. These graph-level
operations include: Node Addition, Node Removal, and Edge Change. Although these fundamental
operations—adding objects, removing objects, and modifying relationships—are conceptually simple,
each may result in conflicts and requires precise management. We define the three graph-level
operations as follows.

Node Addition.We denote a new node as v. Define € C {e,_,,, : v; € V } as the set of edges
between v and each v;. Node addition is then formulated as constructing a new graph

G’:(Vu{v},Eue)eé. 4)

Node Removal. Let the node to be removed be v € V, and the associated edges are € C { e,_y, :
v; € V\ {v} }, where v; are the connected nodes. Thus, it is formulated as constructing a new graph

G’:(V\{v},E\é) eg. (5)

Edge Change. Let the node of interest be v € V. Denote by & C E the set of edges originally
incident to v and by € C { ey, : v; € V'\ {v} } the set of predicted edges connecting v to the other
nodes. The edge change operation is formulated as constructing a new graph

G = (V, (E\ &) ue) eg. )

4 SG-TAILOR METHODOLOGY

4.1 THE CUT-AND-STITCH STRATEGY

To address the above-mentioned three graph-level operations of scene graph manipulation, we
introduce the novel Cut-And-Stitch strategy, which consists of the Cut-Step and the Stitch-Step: the
Cut-Step involves the search and deletion of all edges related to the node of interest, effectively
isolating the node. The Stitch-Step involves accurate inter-object reasoning and the establishment of
relationships between the new node and all existing nodes, which is crucial for the resulting graph to

follow the constraints in G.

With these two steps, the graph-level operations can be modelled as:
1. Node Addition: a Stitch-Step for the target node.

2. Node Removal: a Cut-Step for the target node.
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Figure 2: Training and Inference. Starting from A. Scene Graph in its triplet form G g, we convert
N = |E| triplets into a set of B. Quintuple Tokens (), resulting in 5N tokens. Each token ¢; € Q is

then combined with special tokens to form extended quintuple tokens @, with 8N + 1 tokens in total.
During C. Training, the model ¢ learns to perform next-token prediction on the extended quintuple
tokens with the mask attention mechanism. This process runs until it reaches the sequence-end

token [EOS]. During D. Inference, ¢ accepts tokens from the existing graph {@1, @ N} from the

given graph and query tokens @}‘V .1 containing each two of the nodes and special tokens to perform
next-relationship prediction. The predicted relationship is integrated into Q7 ;, forming Qn 1.

3. Edge Change: a Cut-Step for the target node followed by the introduction of the target relation, as
well as a Stitch-Step. This is also referred to as Cut-And-Stitch.

4.2 FROM TRIPLETS TO TOKENS

We formulate inter-object relationship reasoning as an autoregressive sequence generation task. To
enable autoregressive modeling based on a transformer architecture, we first convert every subject,
object, and predicate, as defined in Equation 1, into tokens. Specifically, to distinguish nodes of the
same category, we decompose each of the subjects and objects into two tokens, each representing the
class label and instance ID. Together with the token that represents the predicate, there are 5 tokens
per triplet, forming the quintuple @) = ¢<I5 ¢ind ¢cls yind tp, where s, o, p denote subject, object, and
predicate, respectively; cls and ind denote class category name and instance index, respectively. We
augment these tokens with three special tokens to form an extended representation of each triplet.

Q = [BOQJ b ¢ind ¢l 4ind [SEP] ¢ [EOQ)] (extended quintuple tokens)

where the special tokens, [BOQ)] (Begin of Quintuple),[SEP] (Separation),[EOQ] (End of Quintu-
ple), clearly mark the boundaries between subject, object, and relation segments. We concatenate
all quintuples of the scene graph G and form the token sequence ¢ with an End-of-Sequence token
[EOS] at the end (see Figure 2.C). This tokenization strategy preserves categorical information,
relation types, and instance information for each relationship.

4.3 TRAINING: NEXT-TOKEN LEARNING

We propose SG-Tailor to address challenges of scene graph manipulation.

At the core of SG-Tailor lies a decoder-only transformer ¢ that is trained to generate the scene graph
token sequence tg one token at a time. During training, ¢ is supervised by every token inside of
t to learn in diverse domains, including subjects, objects, and their predicates. Hence, masking is
applied at the individual token level rather than at the level of the entire triplet sequence, as shown
in Figure 2.C. In the ablation study subsection 5.5, we demonstrate that it improves performance by
providing diverse supervision rather than only focusing on the supervision of relationships.
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Modeling. Spec1ﬁcally, 10) processes input sequences comprlslng tokens from prev1ous extended
qumtuple tokens {Ql, QQ, ol Q } and the incomplete tokens Ql+1[ ] 0<ec< |Q1+1\ where

|Ql+1| denotes the length of the token sequence, to predict the next token Q,+1 [¢ + 1]. Formally, at
each prediction step, we have:

P(@i+1[0+ 1@, Qi Qia]0: d) = ¢(Q\1a s Qi Qina [0 d)- @)

This autoregressive modeling enables ¢ to capture intricate dependencies at both the entity level and
predicate level across the entire sequence, thus enhancing the reasoning capability on inter-object
relationships.

Training Objective. We adopt a categorical cross-entropy loss across the entire vocabulary to train
the model:

o Zl exp(2t,y, ) ®
D wey &P (2tw)’
where T’ is the total number of tokens in the sequence, V represents the token vocabulary, y; denotes
the ground-truth token at step ¢, and 2; ,, indicates the logit (unnormalized score) assigned by the
model to token w at step ¢. This loss guides the model to accurately predict each token, ensuring the
effective autoregressive modeling of scene graph structures.

4.4 INFERENCE: NEXT-RELATIONSHIP REASONING

During inference, SG-Tailor performs autoregressive reasoning to predict the inter-object relationship
between a query node and another node, conditioning each prediction on the previously established
graph connections. Given token sequences (Q1.; representing all the complete quintuples in the graph,
and the tokens of the subject and object of the quintuple of interest given by the incomplete quintuple:
~ 1 ind 1 ind
Qi = (IBOQY 18, 12, ¢, 42, [SEP]). ©)

The model computes the conditional probability of the 7 4 1th predicate token
P( Pi+1 | Concat(Ql R Q;—l) = (b(Ql:ia Q;+1)~ (10)

This formulation enables the model to capture the intricate interdependencies among objects, ensuring
that each new prediction respects the existing graph structure.

During every inference step, the subject and object tokens are queried as described in Figure 2.D. By
the end of the inference, the scene graph G’ € G is built from the tokens.

5 EXPERIMENTS

5.1 DATASETS

We evaluate our method quantitatively and qualitatively on three datasets, 3RScan (Wald et al.,
2019), 3D-FRONT (Fu et al., 2021), and SceneVerse (Jia et al., 2024) with different motivations.
Both 3RScan and 3D-FRONT are widely used as benchmarks for scene-graph-based 3D scene
generation (Dhamo et al., 2021; Zhai et al., 2023), which allows evaluation of our method on the
3D scene manipulation downstream task in section 6. Experiments on SceneVerse37K show the
scalability of our method in large-scale scenarios. We also report the user preference ranking of our
method as a user perceptual study in the appendix.

5.2 IMPLEMENTATION DETAILS

We use Llama (Touvron et al., 2023) layers as the autoregressive transformer in our model, with a
hidden size of 768 and 12 attention heads. We pad the scene graph sequence to the context length
1024 and use a cosine learning rate scheduler with an initial learning rate of 5 x 10~* and a weight
decay of 1 x 10~2. The batch size is set to 16 in all our experiments, and we train our models for 50
epochs, employing early stopping. We predict all relationships using nucleus sampling (Holtzman
et al., 2020) with a p-value of 0.7. We augment our data by randomly shuffling each scene graph
three times.
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5.3 EVALUATION METRICS

Ranking-based Evaluation Metrics. In the evaluation of scene graphs, there may be multiple valid
ground truth labels that differ from the predicted label. However, since it is logical to assume the label
present in the dataset should appear high in the probability distribution predicted by a well-trained
model, we adopt ranking-based metrics (Bordes et al., 2013). This enables evaluation of our method
without additional labeling.

Mean Rank (MR) calculates the average ranking position of correct predictions, where lower ranks
indicate better performance. Mean Reciprocal Rank (MRR) averages the reciprocal rank of the first
correct prediction, emphasizing early correct answers and penalizing lower-ranked, delayed correct
predictions. Hit@K computes the proportion of queries where the correct answer appears within the
top K predictions. Please refer to the appendix for the equations for these metrics.

Cycle Rates. Taking the intuition that the presence of a cycle signifies a spatial contradiction within
the scene graph, we identify spatial conflicts through Algorithm 1 in the appendix, a simple graph
loop detection algorithm based on depth-first search. This experiment is conducted among the naive
approach, Llama-3.3-70B-Instruct, MPNN baseline, and our approach by modifying spatial relations
(left, right, front, behind) to generate new scene graphs.

5.4 BASELINES

Since we introduce scene graph manipulation as a novel task, we construct three types of baselines,
each representing the naive evaluation procedure, traditional approaches for learning graph data, and
content generation with modern LLMs.

Naive Manipulation Baseline (Naive). Following (Zhai et al., 2023; 2024b), we compare our
method to this naive baseline where no reasoning is performed. Message-Passing Neural Network
(MPNN) Baseline. Inspired by (Zhou et al., 2019), we built an MPNN baseline for the scene
graph manipulation task. SGNet is a method that employs the message-passing mechanism for the
prediction of the likelihood over classes at a query location. We modified the architecture of SGNet
to encode class labels and use them for message-passing, and built two MLP decoders for the node
addition and edge change tasks, respectively. LLM baselines. We compare our approach with
state-of-the-art large-language models, including open-source and proprietary models. The model
specifications and results are summarized in Table 1, 2, and 5. As a practical compromise under
our limited budget, we use the open-source Llama-3.3-70B-Instruct (Grattafiori et al., 2024) for
experiments on the scene-graph consistency metrics. In addition, we finetuned Gemini-2.5 (Google
DeepMind, 2025) on the 3D-FRONT dataset. All prompt templates and details on the exact finetuning
procedure are provided in the appendix.

5.5 ABLATION STUDY

We also evaluate our method against two other variants based on the same dataset and evaluation
metrics in Table 1. Specifically, we test the following variants: (1) SG-Tailor (GPT-2). We train the
GPT-2 layers (Radford et al., 2019) of the same depth and width on the same next token prediction
task. (2) SG-Tailor (Next-Rel) We train SG-tailor with loss label masks on all subjects and objects,
effectively guiding the model to only learn to predict the predicates. Our method outperforms all
these variants.

5.6 QUANTITATIVE RESULTS

We summarize the performance of our method and the baselines in the following table. Please refer
to the appendix for more results:

On 3RScan, our method achieves notable improvements over the MPNN baseline. These results
show that our method is capable of capturing the details in relatively easier scenes.

On SceneVerse37K, our full SG-Tailor model performs better than the baseline on this large-scale
and challenging dataset on all metrics with a 5.52% relative increase on Hit@ 1, demonstrating better
generalizability. We argue that MPNN’s have less generalization ability.
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Method Dataset MR, MRR{ Hit@l] Hit@3] Hit@101
MPNN o 3987 0572 0398 0.683 0941
Ours 3RScan (Wald et al., 2019) 3764 0624 0451  0.681 0.953
MPNN - - 5922 0367 0199 0426 0882
Ours SceneVerse37K (Jiaetal, 2024) 553 0374 0210  0.507 0.92
GPT-4.1-nano (OpenAl, 2025a) 8.010  0.226 0.076 0.197 0.664
GPT-4.1 (OpenAL 20254) 5697 0389 0235 0402 0834
od-mini (w/ CoT) (OpenAl 2025b) 4948 0384 0203 0420 0949
Gemini-2.5 (Google DeepMind, 2025) . 4.646 0.360 0.152 0.392 0.975
Gemini-2.5-finetuned (Google DeepMind, 2025) PTRONT (Fuetal,2021) - y's33 (3¢ 0210 0435 0981
MPNN 4103 0486 0271 0593 0943
Ours (GPT-2) 4113 0472 0273 0604 0947
Ours (Next-Rel) 4113 0476 0282 0603  0.95]
Ours 3613 0498 0305 0591 0983

Table 1: Performance metrics across models and datasets. Best results are in bold.

On 3D-FRONT, our final configuration delivers an 11.9% reduction in MR (from 4.103 to 3.613)
and achieves superior Hit@1 (0.305 vs. 0.271) and Hit@ 10 (0.983 vs. 0.943) scores compared to
MPNN. Our method outperforms the MPNN baseline as well as the latest LLMs, demonstrating the
ability to deal with complex scene relationships. Notably, our method also achieves better overall
results than the finetuned version of Gemini-2.5.

Cycle Rates. As shown in Table 2, Method

right cycle |  front cycle |  total |
more than 30% of the scene graphs

. Naive 19.19% 19.73% 38.92%

generated by the naive approach con- | jama-3.3 (Grattafiori et al., 2024) 34.48% 31.03% 62.07%
tain significant contradictions, while =~ MPNN 7.37% 0.0 7.31%
SG-Tailor (Ours) 1.05% 0.0 1.05%

our method effectively mitigates these

inconsistencies, achieving a remark-
ably low total cycle rate of just 1%. Table 2: Cycle rate. The percentage of scene graphs that

We infer that the exceptionally high have either a right or front cycle. Best in bold.

cycle rate observed for the Llama-3.3
baseline is likely due to LLMs being prone to noise (Kim et al., 2024).

Overall, these quantitative results demonstrate that conditioning on the entire scene graph context
improves the ranking accuracy of relationship predictions, and yields more coherent scene graphs.
The consistent performance gains across different datasets and metrics underscore the robustness and
effectiveness of our approach.

6 DOWNSTREAM APPLICATIONS AND FURTHER QUANTITATIVE RESULTS

We show the ease of use of SG-Tailor in the scene manipulation settings. A further application case
in robotics can be found in the appendix.

Operating entirely at the scene graph level, our model integrates seamlessly with existing scene-graph-
based 3D scene generation frameworks (Dhamo et al., 2021; Zhai et al., 2023; 2024b). We train
SG-Tailor on the 3D-FRONT dataset, the same dataset used for the downstream module Graph-to-3D,
and perform scene graph manipulation before feeding the graph into Graph-to-3D for 3D rendering.
We compare the rendered manipulation results of our method with those of the MPNN baseline,
GPT-4.1, and Llama-3. See Figure 3.

Our method effectively captures the global context, resulting in scene graphs that are both accurate
and coherent. In contrast, alternative methods struggle to enforce object constraints and predict
accurate relationships. In addition, we conducted a user study to qualitatively evaluate the scene
graph after manipulation and addition. More results are available in the appendix.

6.1 SCENE GRAPH CONSTRAINTS

Following (Zhai et al., 2023; 2024b), we measure the spatial accuracy of the manipulated scenes,
with the results summarized in Table 3.
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Original Llama-3.3-70B-instruct GPT-4.1 SGNet S6G-Tailor (Ours)
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Figure 3: Qualitative comparison. We assess the quality of scene graph manipulation by generating
the corresponding scenes using the Graph-to-3D model (Dhamo et al., 2021). The blue arrow indicates
the front direction of the scene.

Method left/right front/behind bigger/smaller taller/shorter close by
Naive 0.93 0.93 0.97 0.95 0.67
Llama-3.3 0.92 0.93 0.98 0.97 0.68
MPNN 0.97 0.97 0.98 0.97 0.55
SG-Tailor (Ours) 0.98 0.97 0.96 0.97 0.68

Table 3: Comparison of Methods on Different Relation Types. The total accuracy is computed as the
mean over the individual edge class.

7 LIMITATIONS

Our current pipeline leverages Graph-to-3D (Dhamo et al., 2021) for downstream scene synthesis.
This introduces two main limitations: Limitation on relationship types. For compatibility with
Graph-to-3D, SG-Tailor’s relationship vocabulary must match the fixed set of predicates supported by
Graph-to-3D. Other relation types are not to be visualized. But the effectiveness of SG-tailor is demon-
strated in other experiments. Imperfect graph-render consistency. Due to modeling and rendering
constraints in Graph-to-3D, generated 3D outputs can occasionally violate the input scene graph
(e.g., slight misplacements or missing objects). As future work, one could integrate reinforcement-
learning—based fine-tuning of SG-Tailor (e.g., optimizing a renderer-in-the-loop reward) to better
bridge the gap between predicted graphs and final 3D fidelity.

8 CONCLUSION

We have introduced SG-Tailor, a decoder-only autoregressive model for scene graph editing. By
framing every manipulation (addition, removal, or modification of edges) as next-token prediction
over a vocabulary, SG-Tailor reasons holistically about global context and commonsense constraints.
In experiments on the scene graph manipulation task, SG-Tailor consistently outperforms state-of-
the-art open- and closed-source large language models, both with and without chain-of-thought
prompting, as well as a message passing network baseline. This work opens new directions for
intelligent and context-aware scene generation, with promising applications in diverse 3D content
creation, interactive editing tools, and goal-driven robotic manipulation.
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LLM USAGE

ChatGPT was used exclusively as a tool for grammar checking and language polishing. The research
ideas, experimental design, analyses, and conclusions were fully developed and carried out by
the authors. At no stage were ChatGPT or other LLMs employed for ideation, technical content
generation, or methodological purposes.

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, lain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716-23736,
2022.

Iro Armeni, Zhi-Yang He, JunYoung Gwak, Amir R Zamir, Martin Fischer, Jitendra Malik, and Silvio
Savarese. 3d scene graph: A structure for unified semantics, 3d space, and camera. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 5664-5673, 2019.

Antoine Bordes, Nicolas Usunier, A. Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translat-
ing embeddings for modeling multi-relational data. In Neural Information Processing Systems,
2013.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Xiaojun Chang, Pengzhen Ren, Pengfei Xu, Zhihui Li, Xiaojiang Chen, and Alex Hauptmann. A
comprehensive survey of scene graphs: Generation and application. /EEE Transactions on Pattern
Analysis and Machine Intelligence, 45(1):1-26, 2021.

Lichang Chen, Guosheng Lin, Shijie Wang, and Qingyao Wu. Graph edit distance reward: Learning
to edit scene graph, 2020a. URL https://arxiv.org/abs/2008.06651.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever.
Generative pretraining from pixels. In International conference on machine learning, pp. 1691—
1703. PMLR, 2020b.

Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, and Dale Schuurmans. Scalable deep generative
modeling for sparse graphs. In Proceedings of the 37th International Conference on Machine
Learning, Proceedings of Machine Learning Research, pp. 2302-2312. PMLR, 2020. URL
https://proceedings.mlr.press/v119/dai20b.html.

Helisa Dhamo, Fabian Manhardt, Nassir Navab, and Federico Tombari. Graph-to-3d: End-to-end
generation and manipulation of 3d scenes using scene graphs. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 16352-16361, 2021.

Huan Fu, Bowen Cai, Lin Gao, Lingxiao Zhang, Jiaming Wang Cao Li, Zengqi Xun, Chengyue
Sun, Rongfei Jia, Bingiang Zhao, and Hao Zhang. 3d-front: 3d furnished rooms with layouts and
semantics, 2021. URL https://arxiv.org/abs/2011.09127.

Google DeepMind. Gemini 2.5. https://blog.google/technology/
google—deepmind/gemini-model-thinking-updates-march-2025/, March
2025. Accessed: 2025-05-16.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Qiao Gu, Ali Kuwajerwala, Sacha Morin, Krishna Murthy Jatavallabhula, Bipasha Sen, Aditya
Agarwal, Corban Rivera, William Paul, Kirsty Ellis, Rama Chellappa, et al. Conceptgraphs: Open-
vocabulary 3d scene graphs for perception and planning. In 2024 IEEE International Conference
on Robotics and Automation (ICRA), pp. 5021-5028. IEEE, 2024.

10


https://arxiv.org/abs/2008.06651
https://proceedings.mlr.press/v119/dai20b.html
https://arxiv.org/abs/2011.09127
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Roei Herzig, Moshiko Raboh, Gal Chechik, Jonathan Berant, and Amir Globerson. Mapping images
to scene graphs with permutation-invariant structured prediction. Advances in Neural Information
Processing Systems, 31, 2018.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration, 2020. URL https://arxiv.org/abs/1904.09751.

Xuming Hu, Zhijiang Guo, Yu Fu, Lijie Wen, and Philip S. Yu. Scene graph modification as
incremental structure expanding, 2022. URL https://arxiv.org/abs/2209.09093.

Nathan Hughes, Yun Chang, and Luca Carlone. Hydra: A real-time spatial perception system for 3d
scene graph construction and optimization. arXiv preprint arXiv:2201.13360, 2022.

Jinbae Im, JeongYeon Nam, Nokyung Park, Hyungmin Lee, and Seunghyun Park. Egtr: Extracting
graph from transformer for scene graph generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 24229-24238, 2024.

Baoxiong Jia, Yixin Chen, Huangyue Yu, Yan Wang, Xuesong Niu, Tengyu Liu, Qing Li, and Siyuan
Huang. Sceneverse: Scaling 3d vision-language learning for grounded scene understanding. In
European Conference on Computer Vision (ECCV), 2024.

Hanxiao Jiang, Binghao Huang, Ruihai Wu, Zhuoran Li, Shubham Garg, Hooshang Nayyeri, Shen-
long Wang, and Yunzhu Li. Roboexp: Action-conditioned scene graph via interactive exploration
for robotic manipulation. arXiv preprint arXiv:2402.15487, 2024.

Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma, Michael Bernstein, and
Li Fei-Fei. Image retrieval using scene graphs. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 3668-3678, 2015.

Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene graphs. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 1219-1228, 2018.

Taehyeon Kim, Joonkee Kim, Gihun Lee, and Se-Young Yun. Instructive decoding: Instruction-tuned
large language models are self-refiner from noisy instructions, 2024. URL https://arxiv.
org/abs/2311.00233.

Sebastian Koch, Pedro Hermosilla, Narunas Vaskevicius, Mirco Colosi, and Timo Ropinski. Sgrec3d:
Self-supervised 3d scene graph learning via object-level scene reconstruction. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3404-3414, 2024.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language
and vision using crowdsourced dense image annotations. International journal of computer vision,
123:32-73,2017.

Hongsheng Li, Guangming Zhu, Liang Zhang, Youliang Jiang, Yixuan Dang, Haoran Hou, Peiyi
Shen, Xia Zhao, Syed Afaq Ali Shah, and Mohammed Bennamoun. Scene graph generation: A
comprehensive survey. Neurocomputing, 566:127052, 2024.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash, William L. Hamilton, David
Duvenaud, Raquel Urtasun, and Richard S. Zemel. Efficient graph generation with graph recurrent
attention networks, 2020. URL https://arxiv.org/abs/1910.00760.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36:34892-34916, 2023.

Dominic Maggio, Yun Chang, Nathan Hughes, Matthew Trang, Dan Griffith, Carlyn Dougherty,
Eric Cristofalo, Lukas Schmid, and Luca Carlone. Clio: Real-time task-driven open-set 3d scene
graphs. IEEE Robotics and Automation Letters, 2024.

11


https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/2209.09093
https://arxiv.org/abs/2311.00233
https://arxiv.org/abs/2311.00233
https://arxiv.org/abs/1910.00760

Under review as a conference paper at ICLR 2026

OpenAl. GPT-4.1. https://platform.openai.com/docs/models/gpt—4-1, April
2025a. Accessed: 2025-05-16.

OpenAl. o4-mini. https://platform.openai.com/docs/models/o4-mini, April
2025b. Accessed: 2025-05-16.

Mengshi Qi, Weijian Li, Zhengyuan Yang, Yunhong Wang, and Jiebo Luo. Attentive relational
networks for mapping images to scene graphs. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 3957-3966, 2019.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAl, 2019.

Santhosh Kumar Ramakrishnan, Aaron Gokaslan, Erik Wijmans, Oleksandr Maksymets, Alexan-
der Clegg, John M Turner, Eric Undersander, Wojciech Galuba, Andrew Westbury, Angel X
Chang, Manolis Savva, Yili Zhao, and Dhruv Batra. Habitat-matterport 3d dataset (HM3d): 1000
large-scale 3d environments for embodied Al In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2021. URL https://arxiv.org/abs/
2109.08238.

Krishan Rana, Jesse Haviland, Sourav Garg, Jad Abou-Chakra, Ian Reid, and Niko Suenderhauf.
Sayplan: Grounding large language models using 3d scene graphs for scalable robot task planning.
arXiv preprint arXiv:2307.06135, 2023.

Antoni Rosinol, Andrew Violette, Marcus Abate, Nathan Hughes, Yun Chang, Jingnan Shi, Arjun
Gupta, and Luca Carlone. Kimera: From slam to spatial perception with 3d dynamic scene graphs.
The International Journal of Robotics Research, 40(12-14):1510-1546, 2021.

Damien Teney, Linggiao Liu, and Anton van Den Hengel. Graph-structured representations for
visual question answering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1-9, 2017.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023. URL https://arxiv.org/abs/2302.13971.

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al. Conditional
image generation with pixelcnn decoders. Advances in neural information processing systems, 29,
2016.

Johanna Wald, Armen Avetisyan, Nassir Navab, Federico Tombari, and Matthias Niessner. Rio: 3d
object instance re-localization in changing indoor environments. In Proceedings IEEE International
Conference on Computer Vision (ICCV), 2019.

Johanna Wald, Helisa Dhamo, Nassir Navab, and Federico Tombari. Learning 3d semantic scene
graphs from 3d indoor reconstructions. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3961-3970, 2020.

Abdelrhman Werby, Chenguang Huang, Martin Biichner, Abhinav Valada, and Wolfram Burgard.
Hierarchical open-vocabulary 3d scene graphs for language-grounded robot navigation. In First
Workshop on Vision-Language Models for Navigation and Manipulation at ICRA 2024, 2024.

Shun-Cheng Wu, Johanna Wald, Keisuke Tateno, Nassir Navab, and Federico Tombari. Scene-
graphfusion: Incremental 3d scene graph prediction from rgb-d sequences. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7515-7525, 2021.

Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei. Scene graph generation by iterative mes-
sage passing. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 5410-5419, 2017.

Jingkang Yang, Jun Cen, Wenxuan Peng, Shuai Liu, Fangzhou Hong, Xiangtai Li, Kaiyang Zhou,
Qifeng Chen, and Ziwei Liu. 4d panoptic scene graph generation. Advances in Neural Information
Processing Systems, 36:69692-69705, 2023.

12


https://platform.openai.com/docs/models/gpt-4-1
https://platform.openai.com/docs/models/o4-mini
https://arxiv.org/abs/2109.08238
https://arxiv.org/abs/2109.08238
https://arxiv.org/abs/2302.13971

Under review as a conference paper at ICLR 2026

Zhifei Yang, Keyang Lu, Chao Zhang, Jiaxing Qi, Hanqi Jiang, Ruifei Ma, Shenglin Yin, Yifan Xu,
Mingzhe Xing, Zhen Xiao, et al. Mmgdreamer: Mixed-modality graph for geometry-controllable
3d indoor scene generation. arXiv preprint arXiv:2502.05874, 2025.

Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin Choi. Neural motifs: Scene graph parsing
with global context. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 5831-5840, 2018.

Guangyao Zhai, Evin Pmar Ornek, Shun-Cheng Wu, Yan Di, Federico Tombari, Nassir Navab, and
Benjamin Busam. Commonscenes: Generating commonsense 3d indoor scenes with scene graph
diffusion. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=1SF2tiopYd.

Guangyao Zhai, Xiaoni Cai, Dianye Huang, Yan Di, Fabian Manhardt, Federico Tombari, Nassir
Navab, and Benjamin Busam. Sg-bot: Object rearrangement via coarse-to-fine robotic imagination
on scene graphs. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp.
4303—4310. IEEE, 2024a.

Guangyao Zhai, Evin Pinar Ornek, Dave Zhenyu Chen, Ruotong Liao, Yan Di, Nassir Navab, Federico
Tombari, and Benjamin Busam. Echoscene: Indoor scene generation via information echo over
scene graph diffusion. In European Conference on Computer Vision, pp. 167-184. Springer, 2024b.

Cheng Zhang, Zhaopeng Cui, Yinda Zhang, Bing Zeng, Marc Pollefeys, and Shuaicheng Liu. Holistic
3d scene understanding from a single image with implicit representation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8833—-8842, 2021.

Chengyang Zhao, Yikang Shen, Zhenfang Chen, Mingyu Ding, and Chuang Gan. Textpsg: Panoptic
scene graph generation from textual descriptions. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 2839-2850, 2023.

Yang Zhou, Zachary While, and Evangelos Kalogerakis. Scenegraphnet: Neural message passing for
3d indoor scene augmentation. In IEEE Conference on Computer Vision (ICCV), 2019.

APPENDIX

A ROBOTIC MANIPULATION

To further show the flexibility and plug-and-play of SG-Tailor, we bring SG-Tailor to tabletop
environments for robotic manipulation tasks. We train our method on the SG-Bot dataset (Zhai
et al., 2024a) to evaluate how our method facilitates scene-graph-based robotic manipulation. While
SG-Bot excels at generating precise target configurations, it often encounters difficulties rearranging
objects when conflicts emerge in the scene graph following relationship updates. As illustrated
in Figure 4. This integration produces more coherent and context-aware scene representations,
significantly enhancing SG-Bot’s planning accuracy and execution efficiency. Additional qualitative
results are presented in the appendix.

Move the kettle to the left of the - Move the to the right of The-. Move the behind of the kettle.
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Figure 4: Qualitative comparison of SG-Bot w/ and w/o SG-Tailor. We show three examples of
SG-Tailor facilitating the robotic manipulation tasks. More examples can be found in the appendix.
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B RANKING METRICS

As discussed in the main paper, we evaluate our method with ranking-based metrics: mean rank,
mean reciprocal rank, and Hits@k. The detailed definition is as follows:

Mean Rank (MR)
N
1
MR = NZ;ranki. (1)
Mean Reciprocal Rank (MRR)
1L 1
MRR = — . 12
N ; rank; (12)
Hit@k
| X
HitQk = ¥ ; 1{rank; < k}. (13)

where 1 is the indicator function that returns 1 if the ground truth label for the i-th query appears
within the top k predictions, and 0 otherwise.

C CYCLE DETECT ALGORITHM

We identify spatial conflicts through Algorithm 1, which is a graph loop detection algorithm based on
depth-first search (DFS). Specifically, we convert left and behind triplets into their right and front
counterparts and then detect cycles in the right and front relationships.

Algorithm 1 DFS-based Cycle Detection in a Directed Graph

procedure DETECTCYCLE(G)

1:

2 visited < ()

3 recStack + ()

4 for each vertex v in G do

5: if v ¢ visited then

6: if DFS(v, visited, recStack, G) then

7 return true > Cycle detected
8: end if

9: end if
10: end for
11: return false > No cycle found

12: end procedure
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D TABLE 1 IN FULL: ADDITIONAL LLLM EVALUATION RESULTS ON 3RSCAN

AND SCENEVERSE

This section presents an extended version of Table 1, where large language model baselines are also
included for the datasets 3RScan and SceneVerse100. Due to the budget limit, the comparison on
SceneVerse is conducted on this small subset of size 100 to demonstrate our method’s generalization

ability to this dataset.

Method Dataset MR| MRR! Hit@l{ Hit@31 Hit@I0]
GPT-4.1-nano (OpenAl, 20252) 7240 0305 0122 0257 078
GPT-4.1 (OpenAl 2025a) 5672 0336 0245 0399 0834
od-mini (OpenAl, 2025b) (w/ CoT) o 4525 0354 0201 0430 0944
Gemini-2.5-flash (Google DeepMind, 2025) 3RScan (Wald et al., 2019) 4610 0350  0.171 0.502 0.961
MPNN 3987 0572 0398 0683 0941
Ours 3764 0624 0451 0681 0953
MPNN ] - 5922 0367 0199 0426 0882
Ours SceneVerse37K (Jiactal, 2024) S>3 9374 0210 0507 0921
GPT-4.1-nano (OpenAl, 20252) 8711 0196 0066  0.182  0.651
oA mint (OnenAL, 20250 (w/ CoT) S8 030 0a o 05l
o4-mini (OpenAl, 2025b) (w/ Co’ N . S y .3 . . .3 .
Gemini-2.5-flash (Google DeepMind, 2025) SceneVersel00 (Jiaetal, 2024) 5747 0208 0126 0319 0873
Ours 5819 0371 0207 0521 0899
GPT-4.1-nano (OpenAl, 20252) 8010 0226 0076 0.197  0.664
GPT-4.1 (OpenAl 2023a) 5697 0389 0235 0402 0834
od-mini (OpenAl, 2025b) (w/ CoT) 4948 0384 0203 0420 0949
Gemini-2.5-flash (Google DeepMind, 2025) ) 4646 0360 0152 0392 0975
Gemini-2.5-finetuned (Google DeepMind, 2025) -D-FRONT (Fu etal,, 2021) 4533 0382 0210 0435 0981
MPNN 6253 0332 0201 0417 0859
MPNN 4103 0486 0271 0593 0943
Ours (GPT-2) 4113 0472 0273 0.604 0947
Ours (Next-Rel) 4113 0476 0282 0603 0951
Ours 3613 0498 0305 0591 0983

Table 4: Performance metrics across models and datasets. Best results are in bold.

E SCENE GRAPH EXAMPLES USED IN SEC. 6.1
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Figure 5: The corresponding scene graphs of the scenes visualized in Fig. 3.
the desired new relationships. SG-Tailor first removes all existing edges connected to the target object
(red line is an example of edges to be cut) and then infers its new relationships with other objects.
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F LLM RANKING METRICS PROMPT

We provide the prompts used to calculate the performance metrics on the 3DFront (Fu et al., 2021)
dataset reported in Table 1. Note that the relationship types are limited to the possible relationships in
the 3DFront (Fu et al., 2021) dataset. Similar prompts are used in the evaluation of the other datasets
(Wald et al., 2019; Jia et al., 2024).

You are given a partial scene-graph triplet and must predict the missing
spatial relationship code.

Input:
One triplet per line in the form:
<subject> <object> <relationship>

On all but the last line, <relationship> is one of the codes from 1 to 15
(see mapping below) .

On the final line, only <subject> and <object> appear; your Jjob is to
rank all 15 codes for that pair.

Relationship mapping:
left

right

front

behind

close_by

above

standing_on
bigger_than
smaller_than

10 taller_than

11 shorter_than

12 symmetrical_to

13 same_style_as

14 same_super_category_as
15 same_material_as

O Jo Ul W

NeJ

Output:

A single line containing 15 index numbers, from 1 to 15, ordered from
most to least likely for the missing relationship, separated by
spaces. Conform to spatial common sense and constraints.

Do not include any additional text.

Example:

Input:

chair_1 floor_1 standing_on
desk_1 floor_1 standing_on
chair_1 desk_1 left

chair_2 desk_1 right
chair_2 floor_1

Output:
7651234910 13 15 14 8 11 12
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G LLM MANIPULATION PROMPT

We provide the prompts that we use for the edge change task with the model Llama-3.3-70B-Instruct
(Touvron et al., 2023). Note that the types of relationships used in this experiment are limited to those
available in Graph-to-3D (Dhamo et al., 2021).

[Context]

You are a helpful assistant whose task is
to manipulate a node in a scene graph.
The scene graph is represented as
triplets in the following format:

subject object relationship

Possible relationships are:
left

right

front

behind

standing_on

bigger_than

smaller_than

Input Format:
First line: The incomplete triplet of the node to be set.

Subsequent lines: Existing scene
graph triplets (one per line).

Instructions:

Output Requirements:

Respond only with the complete scene
graph triplets after adding new triplets.

Do not include any explanation or commentary in your output.

Removing Triplets:

Skip the first triplet, and remove any
triplets that contain the subject

of the first triplet.

Adding Triplets:

Use the subject node of the first triplet
as the subject, and select at most

4 other nodes as objects,

and one of the possible relationships,
form at most one triplet for each of the
selected object, and add it to the list.

Only add consistent triplets with the spatial constraints of the existing
scene graph.

Do not add triplets that are

already present in the scene graph.

Do not add triplets that are contradictory

to the existing scene graph.

Do not add triplets that are redundant.

Spatial Relationships:

Ensure that the updated scene graph

has no contradictions in

spatial relationships.

(A contradiction is defined as two or more
triplets that imply mutually exclusive
spatial configurations.)

Output Format:
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Your response should include the

entire updated scene graph,

in the exact order specified

by the input plus any new valid triplets.
Do not include any extra text, formatting,
or explanations.

Respond one triplet per line.

Example:

Example Input:

chair_1 desk_1 right
chair_1 floor_1 standing_on
desk_1 floor_1 standing_on
chair_1 desk_1 left

chair_2 desk_1 right
chair_2 floor_1 standing_on

Example Output:

desk_1 floor_1 standing_on
chair_2 floor_1 standing_on
chair_1 desk_1 right
chair_1 floor_1 standing_on
chair_1 chair_2 left
[/Context]

H STATISTICS OF THE PERCEPTUAL USER STUDY

To compensate for the lack of ground-truth 3D scenes for comparison, we conducted a perceptual
study with 30 randomly selected participants. In the edge change task, participants are presented
with the original scene and scenes generated by four different methods: naive, MPNN, Llama-3.3,
and SG-Tailor. In the node addition part, only the results from Llama-3.3, MPNN, and SG-Tailor
are compared. Participants were asked to rank the scenes according to how well the changes in the
scenes reflect the perceptual similarity to the provided task description.

The summarized results in Table 5 demonstrate that our method outperforms all others in both node
addition and edge change tasks. We show that across two tasks, there is a clear trend favoring our
method. Our method, combined with the downstream 3D scene generation module (Dhamo et al.,
2021; Zhai et al., 2023; 2024b), provides a solid framework for 3D scene manipulation.

Method manipulation?  addition?
Naive 1.72% -
Llama-3.3 (Grattafiori et al., 2024) 9.48% 18.97%
MPNN 18.10% 33.33%
SG-Tailor (Ours) 70.69 % 47.70 %

Table 5: Top-1 rate. The percentage of participants who
consider each method across different tasks. Best in bold.
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I ADDITIONAL ROBOTIC MANIPULATION RESULTS

We show additional performance when combining SG-Bot(Zhai et al., 2024a) with SG-Tailor in Fig-
ure 8, further showcasing the conflict-resolving ability of SG-Tailor. The stream in the first line
marked in red shows that the original SG-Bot can pick up the box, but due to the conflicts in the scene
graph, the generation model fails, so the target location is still around the starting pose. In contrast,
SG-Tailor can help by resolving the conflicts in the scene graph, so the generative model works again,
thereby enabling the rearrangement of objects (see the stream marked in green).

on the plate .

—_
Move the box behind

Before

After

=
'@

{’E?>’

SG-Bot

Figure 8: More qualitative comparison of SG-Bot w/ and w/o SG-Tailor.
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J  USER STUDY INTERFACE

In this section, we show the interface of the user study in section 6.1, which is conducted to evaluate
participants’ perceptions of the rendered 3D scene image rankings. The study was structured into
two parts, focusing on the node addition and edge change tasks. In each part, participants provided
conceptual evaluations of the rankings based on their interpretations. To ensure unbiased responses,
the images were presented in a completely randomized order with only minimal instructions provided,
as shown in Figure 9.

Action: move cabinet 1 to the behind of double bed 1

Manipulation

This section displays four images of indoor scene layouts. Please rank them from best to
worst based on how well they match the provided action description. You are welcome to
zoom in for details and interpret the description in your own way.

1. Original Layout

Layout 1

Layout 3 Layout 4

Please rank the four layouts in order of how well they match the action
description, with 1 being the best match and 4 being the worst.

1 2 3 4
Layout 1 ] [m] O O
Layout2 O O O |
Layout 3 (] O O O
Layout 4 ] (m] O O

Figure 9: User interface for the perceptual user study.

K FAILURE CASES IN FINAL RENDERING WITH GRAPH-TO-3D, AND
ECHOSCENE

In this section, we list rendering examples to show that each of the downstream 3D scene generation
modules has its limitations and all suffer from overlap issues. The choice of model is therefore
irrelevant for our qualitative evaluation, and we have focused on qualitative evaluation with one of
them, Graph-to-3D.
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%

b g

\

Figure 10: EchoScene (Zhai et al., 2024b) suffers from overlap issues even if the input scene graph is

correct.

Figure 11: Graph-to-3D (Dhamo et al., 2021) suffers from overlap issues even if the input scene

graph is correct.

L EXAMPLE OF RELATIONSHIP CONFLICT GENERATED BY GPT-4.1

We present an example result of GPT-4.1 in the scene graph manipulation task in Sec. 6.1. Despite
being the currently "smartest model" of the GPT family, GPT-4.1 shows an unsatisfactory ability to
reason without spatial conflicts.

bookshelf_1 pendant_lamp_1 front
(all other triplets skipped for brevity)

nightstand_1
nightstand_1
nightstand_1
nightstand_1
nightstand_1
nightstand_1
nightstand_1
nightstand_1

tv_stand_1 front (desired manipulation relationship)
floor_1 standing_on

double_bed_1 right <<—-— contradiction
double_bed_1 left <<-- contradiction
bookshelf 1 behind

bookshelf_ 2 behind

pendant_lamp_1 below

nightstand_2 same_super_category_as

M RELATIONS PRESENT IN DIFFERENT DATASETS

The types of relations vary across datasets and are summarized in Table 6.
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Relation Type 3RScan 3DFront Sceneverse73k SG-Bot
left of * * *
right of
front of
behind of
higher than
lower than
smaller than
bigger than
same as
close by
above
standing on *
taller than

shorter than

symmetrical to *
same style as

same super category as
same material as
support

embedded in

* *
% k
* *

KKk K K KX X X ¥
* K X ¥ ¥ X X ¥

* ¥ ¥ ¥ ¥
*
*

* K ¥ ¥ ¥

Table 6: List of All Relation Types (* indicates presence)

N FINE-TUNING THE LARGE LANGUAGE MODEL BASELINE

To better evaluate our method against modern large language models, we finetune Gemini-2.5, the
best-performing LLLM baseline, on a subset of 3DFront through the parameter-efficient finetuning
service provided by Google and Vertex Al

Following the official guidance for fine-tuning, we list the details about dataset construction: for
the addition task and the manipulation task, we take 100 randomly selected scene graphs and call
them the addition dataset and the manipulation dataset, respectively. Each data sample consists of the
system prompt, the user prompt, and the model response. These can be viewed as the instruction, the
input, and the expected model output.

The addition dataset is constructed by randomly selecting one node and removing its associated
edges in the triplets representation. We construct the expected model response to be this node and its
associated edges.

The manipulation dataset is constructed by randomly selecting one node and removing this node, and
only keeping one of its associated edges in the triplets representation. The idea is to treat this edge as
the desired edge after manipulation. We construct the expected model response to be this node and
its associated edges.

System prompts follow the examples provided by Vertex Al, we construct the system prompts:
Addition: You are given a scene object and a scene graph represented as triplets in the order [subject,
object, relationship]. You should add the scene object by predicting its relationships with other
objects represented by scene graph triplets and respond with the added triplets.

Manipulation: You are given an incomplete scene graph represented as triplets in the order [subject,
object, relationship. You should complete the scene graph triplets by predicting all the other triplets
associated with the subject.

Training procedure: We randomly took 90 data samples from both datasets and shuffled them together
as the training set. We shuffled the other 10 samples from both data sets as the test set.

Inference procedure: To ensure a fair assessment with the other models, it stays the same as the other
baseline LLM reported in Sect. 6.1.
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