
Wait-Less Offline Tuning and Re-solving for Online Decision Making

Jingruo Sun 1 Wenzhi Gao 2 Ellen Vitercik 1 3 Yinyu Ye 1 4 5

Abstract
Online linear programming (OLP) has found
broad applications in revenue management and
resource allocation. State-of-the-art OLP algo-
rithms achieve low regret by repeatedly solving
linear programming (LP) subproblems that in-
corporate updated resource information. How-
ever, LP-based methods are computationally ex-
pensive and often inefficient for large-scale ap-
plications. By contrast, recent first-order OLP al-
gorithms are more computationally efficient but
typically suffer from weaker regret guarantees.
To address these shortcomings, we propose a
new algorithm that combines the strengths of LP-
based and first-order OLP algorithms. Our algo-
rithm re-solves the LP subproblems periodically
at a predefined frequency f and uses the latest
dual prices to guide online decision-making. In
parallel, a first-order method runs during each
interval between LP re-solves and smooths re-
source consumption. Our algorithm achieves
O(log(T/f) +

√
f) regret and delivers a “wait-

less” online decision-making process that bal-
ances computational efficiency and regret guar-
antees. Extensive experiments demonstrate at
least 10-fold improvements in regret over first-
order methods and 100-fold improvements in
runtime over LP-based methods.

1. Introduction
Sequential decision-making has garnered significant atten-
tion for its utility in guiding optimal strategies in dynamic
environments. The goal is to identify effective decisions
and policies in environments where knowledge of the sys-

1Department of Management Science & Engineering, Stanford
University 2Institute for Computational and Mathematical Engi-
neering, Stanford University 3Department of Computer Science,
Stanford University 4Chinese University of Hong Kong (Shen
Zhen) 5Hong Kong University of Science and Technology. Cor-
respondence to: Jingruo Sun <jingruo@stanford.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

tem continuously accumulates and evolves. Online Linear
Programming (OLP) (Agrawal et al., 2014) offers a power-
ful framework that encapsulates the core principles of se-
quential decision-making and has been extensively applied
to different domains, including resource allocation (Bal-
seiro et al., 2022a), online advertising (Mehta et al., 2007),
and inventory management (Talluri et al., 2004).

We study an OLP problem where customers arrive sequen-
tially, each requesting a combination of resources and of-
fering a bidding price. The objective is to determine which
resource requests to fulfill to maximize revenue while re-
specting resource constraints. The challenge is that deci-
sions must be made immediately and irrevocably, relying
solely on historical data without knowledge of future ar-
rivals. The goal is to minimize regret with respect to the
optimal hindsight linear programming (LP) solution.

To guide real-time decision-making, state-of-the-art OLP
algorithms estimate optimal dual prices and use them to
make decisions. These algorithms fall into two main cat-
egories: LP-based and first-order methods. Specifically,
LP-based methods update dual prices by repeatedly solv-
ing linear programs at each time step with all available in-
formation so far. However, the substantial computational
demands limit their application in time-sensitive settings.
First-order methods offer quick, incremental updates to
dual prices using gradient information, but generally fall
short of achieving the strong regret guarantee of LP-based
methods. These trade-offs motivate an open question at the
intersection of online learning and decision-making:

Can we simultaneously achieve

low regret and computational efficiency?

Our contributions. We answer this question in the affir-
mative. We summarize our contributions as follows:

• Parallel Multi-Stage Framework: We separate online
learning and decision-making into distinct processes that
interact via a feedback loop. We re-solve the LP sub-
problems periodically at a fixed frequency and feed the
updated dual price to guide decision-making until the
next time that the LP is re-solved. To further enhance ef-
ficiency, we apply a first-order method during the initial
and final stages, restarting with the most recent learn-
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ing outcomes. By integrating the LP-based and first-
order techniques, our approach leverages their respective
strengths and achieves a balance between regret perfor-
mance and computational costs.

• Regret Analysis: We unify the analysis of LP-based and
first-order methods by deriving a new performance met-
ric to account for their inter-dependency. Our analysis
yields a “spectrum theorem” that bounds regret for any
feasible choice of the re-solving frequency:

Theorem 1.1 (Informal version of Theorem 3.2). If we
re-solve the LPs every f time steps within horizon T and
apply a first-order method in the initial and final f steps,
we achieve a worst-case regret of O

(
log(T/f) +

√
f
)
.

In particular, f = 1 yields a pure LP-based method with
O(log T ) regret, while f = T reduces to a pure first-
order method with O(

√
T ) regret. By choosing an “op-

timal” f , one can achieve the best possible regret based
on available computational resources and enable a “wait-
less” decision-making system across all time steps.

• Experiments: Through experiments across diverse dis-
tributions, we demonstrate that our algorithm achieves
over a 10-fold improvement in regret compared to first-
order methods and over a 100-fold improvement in run-
time with comparable regret to LP-based methods.

Key Challenges. OLP methods face a fundamental chal-
lenge in balancing efficient real-time decision-making and
accurate dual-price learning. Specifically, LP-based meth-
ods ensure high-quality decisions with O(log T ) regret, but
their computational costs increase quadratically with prob-
lem size. A natural alternative—batching customers and
solving the LP once every f arrivals—reduces this cost,
but leaves customers waiting until the batch concludes. In
contrast, first-order methods update dual prices via gradi-
ent information, allowing for faster computation. However,
these methods require small step sizes to maintain decision
quality, which slows their adaptation to new data. Even
using different step sizes for learning and decision-making
only achieves O(T 1/3) regret when the distribution of cus-
tomers has continuous support. Our parallel framework
addresses these issues: an LP-based method periodically
refines dual prices, while a first-order method immediately
processes arriving customers using the most recent dual up-
dates, thereby eliminating delays.

A second challenge emerges when analyzing the regret
of this hybrid approach. LP-based methods rely on a
stopping-time analysis (halting when resources are de-
pleted), whereas first-order methods track constraint viola-
tions as part of the regret. Since these two formulations are
fundamentally different, existing regret bounds cannot be

naively combined. We overcome this challenge by intro-
ducing a unified performance metric that decomposes re-
gret into three components: dual convergence, constraint
violation, and leftover resources. This approach yields the
first integrated analysis of LP-based and first-order OLP,
culminating in our O(log(T/f) +

√
f) regret bound.

1.1. Related Literature

Online resource allocation and OLP problems have been
widely studied under two predominant models: the
stochastic input (Goel & Mehta, 2008; Devanur et al.,
2019) and stochastic permutation models (Agrawal et al.,
2014; Gupta & Molinaro, 2016). We study the former,
where each customer’s resource request and bidding price
are drawn i.i.d. from an unknown distribution. We use ex-
pected regret and constraint violation as the performance
metric. We summarize some recent works in Table 1.

LP-based Methods. These methods solve the OLP dual
repeatedly to update dual prices and make decisions. Early
approaches enforced a fixed average resource constraint
(Agrawal et al., 2014), whereas recent work dynamically
tracks remaining resources and enables LP-based methods
to achieve O(log T ) regret under continuous support and
non-degeneracy assumptions (Li & Ye, 2022). Variants in-
clude multi-secretary problems (Bray, 2022), regularized
resource constraints (Ma et al., 2024), and finite-support
distributions yielding constant regret (Chen et al., 2024).

First-order Methods. These methods generate decisions
using gradient updates without solving LPs, enabling effi-
cient computation. They achieve O(

√
T ) regret with mirror

descent (Li et al., 2020; Balseiro et al., 2022a) and O(T 3/8)
under finite support and non-degeneracy assumptions (Sun
et al., 2020). Variants include proximal updates (Gao et al.,
2023), momentum-based mirror descent (Balseiro et al.,
2022b), resource adjustments (Ma et al., 2024), and restart
strategies yielding O(T 1/3) regret (Gao et al., 2024).

Delay in Decision-making. Delays arise from the time-
consuming process of solving the large-scale, up-to-date
LP subproblems for each customer. Golrezaei & Yao
(2021) study a mix of impatient and partially patient cus-
tomers, while Xie et al. (2023) show that batching re-
quests can reduce regret. Concurrent work (Xu et al.,
2024) reduces delay by solving LPs in batches but as-
sumes a lower bound on resource requests and still re-
quires waiting in initial and final batches. To achieve delay-
free decisions, we shift the re-solving process offline and
only fine-tune the solution online. Compared with previ-
ous works, our framework imposes standard assumptions,
achieves O(log(T/f)+

√
f) regret, and ensures “wait-less”

decision-making throughout the entire horizon.
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Table 1: Performances of Dual Algorithms in Recent OLP Literature

Paper Setting Algorithm Regret Decision-Making

(Li & Ye, 2022) Bounded, continuous support, non-degeneracy LP-based O(log T log log T ) Delay
(Bray, 2022) Bounded, continuous support, non-degeneracy LP-based O(log T ) Delay

(Chen et al., 2024) Bounded, finite support, non-degeneracy LP-based O(1) Delay
(Li et al., 2024) Bounded, finite support, non-degeneracy LP-based O(1) Delay
(Xu et al., 2024) Bounded, continuous support, non-degeneracy LP-based O(log(T/f)) Delay

This paper Bounded, continuous support, non-degeneracy LP-based & First-order O(log(T/f) +
√
f) No Delay

(Li et al., 2020) Bounded First-order O(
√
T ) No Delay

(Balseiro et al., 2022a) Bounded First-order O(
√
T ) No Delay

(Gao et al., 2023) Bounded First-order O(
√
T ) No Delay

(Sun et al., 2020) Bounded, finite support, non-degeneracy First-order O(T 3/8) No Delay
(Gao et al., 2024) Bounded, continuous support, non-degeneracy First-order O(T 1/3) No Delay

Paper organization. The rest of the paper is organized as
follows. Section 2 introduces the problem formulation and
assumptions. Section 3 proposes our algorithms and main
theoretical guarantee: a O(log(T/f) +

√
f) regret bound.

Section 4 presents experiments to validate our theory.

2. Problem Setup
We use ∥ · ∥ to denote the Euclidean norm and ⟨·⟩ to de-
note Euclidean inner product. Bold letters A and a de-
note matrices and vectors, respectively. Subscript (·)it de-
notes the index for resource type i at time t. The notation
(·)+ = max{·, 0} denotes the element-wise positive part
function, and I(·) denotes the 0-1 indicator function.

2.1. OLP Formulation

We study an online resource allocation problem over the
time horizon T under a stochastic input model. Initially,
we have an inventory vector b ∈ Rm, representing m
resource types. At each time step t, a customer arrives
with a request sampled i.i.d. as (rt,at) ∼ P , where
r = (r1, . . . , rT )

⊤ ∈ RT is the offered payment (bid),
A = (a1, . . . ,aT ) ∈ Rm×T is the matrix of customers’
resource demands, and P is a fixed, unknown distribution.
We must decide whether to accept or reject each request,
represented by the decision variables x = (x1, . . . , xT ) ∈
{0, 1}T . The goal is to maximize the cumulative reward.
This problem can be formulated as the following OLP, re-
ferred to as the primal linear program (PLP):

max
0≤x≤1

⟨r,x⟩ s.t. Ax ≤ b. (PLP)

The dual problem of (PLP) is given by

min
(p,y)≥0

⟨b,p⟩+ ⟨1,y⟩ s.t. A⊤p+ y ≥ r (DLP)

where p is the vector of dual prices. Let d = b/T ∈ Rm

denote the initial average resource. As demonstrated by (Li

et al., 2020), (DLP) can be written as

min
p≥0

fT (p) :=
1
T

∑T
t=1 [⟨d,p⟩+ (rt − ⟨at,p⟩)+] (1)

This formulation can be written as a T -sample approxima-
tion of the following stochastic program:

min
p≥0

f(p) := E[fT (p)] = d⊤p+ E[(r − a⊤p)+] (2)

where the expectation is taken with respect to (r,a) ∼ P .

We define optimal solutions to the T -sample approximation
problem (1) and stochastic program (2) respectively as

p∗
T = argmin

p≥0
fT (p) and p∗ = argmin

p≥0
f(p).

The decision variable x∗
t can be established from the com-

plementary slackness condition as

x∗
t =

{
0, rt < a⊤

t p
∗
T ,

1, rt > a⊤
t p

∗
T

(3)

and x∗
t ∈ [0, 1] if rt = a⊤

t p
∗
T .

This connection between primal and dual solutions inspires
OLP algorithms that make decisions based on dual prices:

xt = I(rt ≥ a⊤
t pt). (4)

2.2. Algorithms for OLP

We summarize two main dual-based OLP algorithms.

LP-based Method. The LP-based method (Li & Ye,
2022) calculates dual prices by re-solving the online LP
problem at each time step. Specifically, define dit =
bit/(T − t) as the average remaining resource for type
i at time t. The resulting optimization problem can be
viewed as a t-sample approximation to the stochastic pro-
gram specified by dt = (dit, ..., dmt)

⊤ as

min
p≥0

fdt(p) := d⊤
t p+ E[(r − a⊤p)+] (5)
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By updating dt, this method incorporates past decisions
when computing pt. If resources are over-utilized in ear-
lier periods, the supply decreases, prompting us to raise the
dual price and be more selective with future orders. We
outline this method in Algorithm 3 of Appendix A.2.

First-order Method. The first-order method (Li et al.,
2020) calculates dual prices via online subgradient updates.
We maintain a static average resource d = b/T , compute
xt as per (4), and update the dual price as

pt+1 = (pt − αt(d− atxt))
+

where the subgradient term evaluated at pt is

d− atxt ∈ ∂p=pt

(
d⊤p+ (rt − a⊤

t p)
+
)
.

This process can be interpreted as a projected stochastic
subgradient method for solving (1). It reduces computa-
tional cost by requiring only a single pass through the data
and eliminates solving LPs explicitly. A restart strategy
improves the first-order method to have O(T 1/3) regret
(Gao et al., 2024). Algorithm 4 and Algorithm 5 in Ap-
pendix A.3 summarizes this method.

2.3. Performance Metrics

We aim to design algorithms that optimize a bi-objective
performance measure involving regret and constraint vio-
lation. The regret measures the difference between the ob-
jective value of the algorithm’s output and that of the true
optimal solution, while the constraint violation measures
the degree to which the algorithm’s output fails to meet the
given constraints. We denote the offline optimal solution
to (PLP) by x∗ = (x∗

1, . . . , x
∗
T ), and the online algorithm

output by x = (x1, . . . , xT ). Then, we define the regret
r(x) and resource violation v(x) as

r(x) := ⟨r,x∗⟩ − ⟨r,x⟩, (6)

v(x) := ∥(Ax− b)+∥. (7)

Therefore, we define the following bi-objectives for evalu-
ating an algorithm’s worst-case performance:

∆T = sup
P∈Ξ

EP [r(x) + v(x)] (8)

where Ξ denotes a family of distributions satisfying regu-
larity assumptions specified later.

This metric is commonly used for first-order OLP algo-
rithms (Gao et al., 2023; Li et al., 2020) and is also aligned
with the literature on online convex optimization with con-
straints (Mahdavi et al., 2012; Yu et al., 2017). Integrating
r(x) and v(x) into a single performance measure promotes
balanced resource consumption over the decision horizon.
In Section 3, we derive a decomposition of (8) that unifies
the regret analysis for all OLP methods.

2.4. Assumptions and Auxiliary Results

We adopt the following assumptions regarding the stochas-
tic inputs. These assumptions are standard in the online
learning literature (Li & Ye, 2022; Jiang et al., 2022; Xu
et al., 2024). In particular, we require the input data to be
bounded, follow a linear growth, and be non-degenerate.

Assumption 2.1 (Boundedness). We assume

(a) The order inputs {(rt,at)}Tt=1 are generated i.i.d from
an unknown distribution P .

(b) There exist constants r̄, ā > 0 such that |rt| ≤ r̄ and
∥at∥∞ ≤ ā almost surely for t = 1, ..., T .

(c) The average resource capacity d = b/T satisfies di ∈
[d, d̄] for some d̄ > d > 0 for any i = 1, ...,m.

In this assumption, (a) states that {(rt,at)}Tt=1 are inde-
pendent of each other, but we allow dependencies between
their components. Part (b) introduces the bounds r̄, ā solely
for analytical purposes. This is a minimal requirement on
(rt,at) compared to previous work (Agrawal et al., 2014;
Li & Ye, 2022; Xu et al., 2024). Part (c) requires the aver-
age resource to grow linearly with T , ensuring that a con-
stant fraction of xt values can be set to 1. Consequently,
the number of fulfillable orders is proportional to T , facili-
tating a stable service level over time.

Assumption 2.2 (Uniform Non-degeneracy). We assume

(a) The second-moment matrix E[aa⊤] is positive defi-
nite with minimum eigenvalue λ.

(b) There are constants µ, ν such that for any (r,a) ∼ P ,

ν|a⊤(p− p∗)|
≤
∣∣P(r ≥ a⊤p | a)− P(r ≥ a⊤p∗ | a)

∣∣
≤ µ|a⊤(p− p∗)|

holds for all

p ∈ Vp :=

{
p ∈ Rm : p ≥ 0, ∥p∥ ≤ r̄

d

}
and d ∈ Vd := [d, d̄]m.

(c) The optimal p∗ satisfies p∗i = 0 if and only if di −
E[aiI(r > a⊤p∗)] > 0 for all d ∈ Vd and i ∈ [m].

In this assumption, part (b) ensures that the cumulative dis-
tribution of the reward given the resource consumption re-
quest r|a is continuous and exhibits a stable growth rate.
Part (c) requires strict complementarity for the optimal so-
lutions of the stochastic program in (2), which is a non-
degeneracy condition for both the primal and dual LPs.

4



Wait-Less Offline Tuning and Re-solving for Online Decision Making

According to stochastic program (2), we define the binding
and non-binding index sets as:

IB = {i : di − E[aiI(r > a⊤p∗)] = 0},
IN = {i : di − E[aiI(r > a⊤p∗)] > 0}. (9)

By Assumption 2.2(c), these sets are complements, as IB∩
IN = ∅ and IB ∪ IN = {1, ...,m}.

3. Parallel Multi-Phase OLP Algorithm
We now present our algorithm for parallel multi-phase on-
line learning and decision-making. Our approach is mo-
tivated by the challenges of existing methods. Specifi-
cally, the LP-based method has a strong worst-case re-
gret bound of O(log T ), but its high computational costs
lead to decision-making delays. Meanwhile, the first-order
method updates decisions efficiently but suffers a high re-
gret of O(

√
T ). By combining the strengths of these two

methods, our new framework balances decision-making
quality and computational efficiency.

3.1. Algorithm Design

We establish our framework with the following design:

1. We maintain two parallel paths of online learning and
online decision-making. The online learning results are
periodically sent to the decision-making path as a re-start
point to guide subsequent updates.

2. In the online learning path, we employ a streamlined LP-
based method, which only re-solves the updated OLP
problem according to a predefined frequency, reducing
the computational overhead.

3. In the online decision-making path, we apply the first-
order method during the initial and final batches. The
learning rate is optimally tuned for these two intervals.

Figure 1 illustrates our framework, which generates two
parallel sequences of dual prices: {pD

t }Tt=1 from the first-
order method and {pL

t }Tt=1 from the LP-based method. The
algorithm proceeds in batches of length f . In the first batch,
it uses the first-order method to iteratively update the dual
prices, thereby guiding decision-making. At the end of this
batch, it applies the LP-based method to obtain a refined
dual price and passes it to the decision-making path. The
LP re-solving occurs only once per batch, making the ap-
proach computationally efficient. Formally, we re-solve the
OLP at every time t satisfying t ≤ kf and t mod f = 0,
where k = ⌊T/f⌋ is the number of batches.

During intermediate batches, decisions are made based on
the most recent dual prices computed from the LP at the end

Algorithm 1 Parallel Multi-Phase OLP Algorithm
Input: total resource b, time horizon T , average resource

d = b/T , initial dual price p1 = 0, re-solving fre-
quency f , and number of batches k = ⌊T/f⌋

for t = 1 to T do
Observe (rt,at) and make decision xt as rule (4)
Update constraint for i = 1, ...,m:

remaining resource bit = bi,t−1 − aitxt

average remaining resource dit =
bit
T−t

if t ≤ f or t ≥ kf then

Update learning rate αt =

{
O(1/f1/2) t ≤ f

O(1/f2/3) t ≥ kf

Compute subgradient and update dual price pt+1:

pt+1 = (pt − αt(d− atxt))
+

end
if t mod f = 0 and constraints are not violated then

Solve OLP and update dual price pt+1:

pt+1 = argmin
p≥0

d⊤
t p+ 1

t

∑t
j=1(rj − a⊤

j p)
+

end
else

Update dual price pt+1 to be the most recent solu-
tion pt+1 = pt.

end
end

of the previous batch. The algorithm restarts the subgradi-
ent updates only in the final batch to guide the remaining
decisions. Algorithm 1 summarizes this approach.

Algorithm 1 balances online learning and efficient
decision-making. It is responsive to dynamic environ-
ments, adapts to the latest information, and reduces com-
putational cost by periodic re-solving. We thus establish a
“wait-less” online decision-making framework where each
customer’s order is processed immediately without delays
from earlier requests or large-scale LP computations.

3.2. Algorithm Analysis

We decompose the performance metric of Algorithm 1 into
three key components. All proofs (including essential prop-
erties of the dual price pt) are in Appendix B and C.
Theorem 3.1 (Performance Metric). Under Assumptions
2.1 and 2.2, the performance ∆T of Algorithm 1 satisfies

∆T ≤ µā2
∑T

t=1 E
[
∥pt − p∗∥2

]
+ E [∥(Ax− b)+∥]

+ ∥p∗∥ · E
[
∥(b−Ax)B+∥

]
. (10)

where (·)B+ indicates the projection of binding terms onto
the positive orthant.

Based on the definition of ∆T (8), we derive the perfor-
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Figure 1: Algorithm 1 illustration of parallel paths and the interactions between online learning and decision-making.
Decisions are generated based on 1) the LP-based method (blue) with frequency f , 2) the first-order method (red) for the
initial and final phases (with a warm start), and 3) employing the latest dual price (yellow) during intermediate phases.

mance metric as the sum of three key components: dual
convergence, remaining resources, and binding constraint
violation. This bound demonstrates that our algorithm en-
courages 1) smooth and balanced resource utilization, and
2) full resource consumption by the end of the time hori-
zon. Building on Theorem 3.1, we provide a “spectrum
theorem” for the algorithm’s performance.

Theorem 3.2. Under Assumptions 2.1 and 2.2, the worst-
case performance ∆T of Algorithm 1 is bounded by

∆T ∈ O
(
log
(

T
f

)
+
√
f
)

(11)

where T/f represents the number of re-solving batches and
f is the length of each batch.

Remark 3.3 (Spectrum Theorem). We elucidate the trade-
offs in total regret induced by using LP-based methods
with O(log T ) regret and first-order methods with O(

√
T )

regret. Our algorithm introduces a re-solving frequency
f ∈ [1, T ] and achieves O(log(T/f) +

√
f) regret, which

recovers previous results with extreme cases of f = 1 and
f = T . Specifically, the first-order method gives us the re-
gret of

√
f for the first batch and f1/3 for the last batch, and

the LP-based method contributes the regret of log(T/f).

Remark 3.4 (Warm Start). We can obtain a tighter regret
bound of O(log(T/f) + f1/3) given a warm start of the
initial dual price satisfying ∥p0−p∗∥ ≤ f−1/3 or if we use
the LP-based method at each time step for the first batch.

Remark 3.5 (Learning Rate Selection). We select the best
learning rate to minimize the regret upper bound consist-
ing of (6) and (7). For the first batch, the regret grows lin-
early with αt while the constraint violation is inversely pro-
portional to αt. To achieve the tightest bound, we balance
this trade-off by selecting the learning rate that minimizes
the overall expression, which yields the optimal choice
αt = 1/

√
f as derived in Theorem B.7. A similar anal-

ysis for the final batch leads to the choice αt = 1/f2/3 as
shown in Theorem B.9.

Technical Intuitions. Theorem 3.1 decomposes the per-
formance metrics to make the regret analysis compatible
between the LP-based and first-order methods.

• LP-based Method: As Theorem 3.1 suggests, achiev-
ing small regret requires Ax− b to be close to zero. To
enforce this, we impose a stronger condition to track the
average remaining resource—if dt exceeds the allowed
limit, we manually set the dual prices to zero to accept
all subsequent orders. This approach enables us to elimi-
nate the “stopping time” argument and make the analysis
compatible with our new framework.

• First-order Method: The regret improvement comes
from the final batch since it starts with the LP-derived
learning result pkf , which lies within a O(1/

√
kf)-sized

neighborhood around p∗. Using the subgradient method,
we bound the three components in Theorem 3.1 in terms
of ∥pt − p∗∥ and express them in terms of f, k, T, and
αt. Optimizing the learning rate to αt = f−2/3 yields
an improved regret of O(f1/3) in the final batch.

3.3. Algorithm Extension

We propose an enhanced version of Algorithm 1 that em-
ploys the first-order method for decision-making between
two consecutive LP resolves. Rather than making decisions
solely with the most recently solved dual price from the
learning path, Algorithm 2 treats it as a new starting point
for each re-solving interval and adopts a smaller step size
for subgradient updates to avoid deviating too far from the
LP-guided solutions. Figure 2 illustrates this framework.
Specifically, for each interval [jf, (j + 1)f ], we attain the
new start pjf from the learning path at time jf and con-
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Figure 2: Algorithm 2 illustration of parallel paths with multi-time restart. Decisions are generated based on 1) the LP-
based method (blue) with frequency f and 2) the first-order method (red) during re-solving intervals with a warm start.

Algorithm 2 Enhanced Multi-Start OLP Algorithm
Input: total resource b, horizon T , average resource d =

b/T , initial dual p1 = 0, re-solving frequency f
for t = 1 to T do

Observe (rt,at) and make decision xt as rule (4)
Update constraint for i = 1, ...,m:

remaining resource constraint bit = bi,t−1 − aitxt

average resource capacity dit =
bit
T−t

if t mod f ̸= 0 then
Update learning rate αt = O(1/t)
Compute subgradient and update dual price pt+1:

pt+1 = (pt − αt(d− atxt))
+

end
if t mod f = 0 and constraints are not violated then

Solve OLP and update dual price pt+1:

pt+1 = argmin
p≥0

d⊤
t p+ 1

t

∑t
j=1(rj − a⊤

j p)
+

end
end

tinue to fine-tune the dual price {pt}(j+1)f
t=jf using the first-

order method with a learning rate αt = O(1/t). Algorithm
2 summarizes this approach.

As we illustrate in our experiments (Section 4), the in-
corporation of an intermediate first-order method improves
the algorithm’s stability and ensures smooth resource con-
sumption. Therefore, the multi-restart mechanism results
in better performance during the final batch and improves
the algorithm’s total performance.

3.4. Algorithm Application

Our motivation in designing Algorithm 1 is to effectively
balance computational efficiency and decision optimality.

Building on the Spectrum Theorem 3.2, this section aims to
translate our theoretical results into practical applications.

We formulate a new optimization problem to find the opti-
mal re-solving frequency that minimizes the regret in Theo-
rem 3.2, taking into account computational resource capac-
ities. Denote c1(·), c2(·) as computational cost functions
for LP-based and first-order methods, and R as the total
computational resource capacity. The optimal value of f is
determined by solving the following optimization problem:

min
f∈{1,...,T}

log
(

T
f

)
+
√
f

s.t. c1(k) + 2c2(f) ≤ R. (12)

Specifically, if we use the interior-point method or the sim-
plex method as the LP solver, the computational cost is
m2(m + t) for any time t. The first-order method updates
gradients in constant time. The following proposition pro-
vides a concrete example in practice.
Proposition 3.6 (Optimal Re-solving Frequency). Given
a fixed computation resource capacity R, if we use the
interior-point or simplex method as the LP solver in Al-
gorithm 1, we can instantiate Constraint (12) as∑k

j=1(m
2(m+ jf)) + 2mf ≤ R.

This proposition enables users to determine the optimal re-
solving frequency that balances regret and computational
cost based on available computational resources.

4. Numerical Experiments
We conduct extensive experiments to evaluate our algo-
rithm’s performance and validate our theoretical results.
This section is divided into two parts. In the first part (Sec-
tion 4.1), we evaluate Algorithms 1 and 2 across different
choices of re-solving frequency. In the second part (Sec-
tion 4.2), we compare our algorithm with LP-based and

7
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Table 3: Algorithms comparison.

T Regret Algorithm Compute Time (s)

104

115.32 O(T 1/2) First-Order 0.008
60.39 O(T 1/3) First-Order 0.013

3.50 LP-based 123.497
9.12 Algorithm 1 1.8
5.09 Algorithm 2 1.8

105

203.20 O(T 1/2) First-Order 0.118
73.07 O(T 1/3) First-Order 0.108

3.88 LP-based > 3600
9.41 Algorithm 1 56.9
6.36 Algorithm 2 56.8

106

351.91 O(T 1/2) First-Order 1.211
115.39 O(T 1/3) First-Order 1.577

5.50 LP-based > 100000
11.65 Algorithm 1 2155.9

7.09 Algorithm 2 2242.1

Figure 4: Regret for various algorithms.

102 103 104 105 106

Horizon

101

102

R
eg

re
t

(T1/2) First-Order
Algorithm 1

(T1/3) First-order
Algorithm 2

LP-based

first-order methods in terms of regret and running time. All
implementations can be found at GitHub Link.

We consider the following distributions:

Input I: ait ∼ Unif[0, 2], rt ∼ Unif[0, 10]
Input II: ait ∼ N (0.5, 1), rt ∼ N (0.5m,m)

Learning rates are selected as specified in Section 3:

Algorithm 1: αt =

{
O(1/f1/2) t ≤ f

O(1/f2/3) t ≥ kf

Algorithm 2: αt = O(1/t)

4.1. Regret under Varying Re-solving Frequencies

We choose m = 1 and generate the sequence {(rt,at)}Tt=1

randomly from the uniform (Input I) and normal (Input
II) distributions, and include more complex distributions
in Appendix E.1. The time horizon T spans evenly over
[102, 106], the initial average resource is sampled as di ∼
Uniform[1/3, 2/3], and f ∈ {T 1/3, T 1/2, T 2/3} represent-
ing high, medium, and low re-solving frequencies. We re-
port the average result over 100 trials for each experiment.
We use the classic first-order method with O(T 1/2) regret
(Li et al., 2020) as a baseline. Results are summarized in
Table 2 and Figure 3 on a logarithmic scale.

We analyze the absolute value of regret and its growth rate
over time. We observe that regret decreases as the re-
solving frequency increases. This trend holds consistently
across both algorithms and input types. In addition, while
regret accumulates over longer time horizons, the increas-
ing rate remains stable for algorithms employing higher re-
solving frequencies. These findings are consistent with the
guarantees of Theorem 3.2, as more frequent updates en-
able better adaptation to dynamic environments.

4.2. Comparative Analysis with Baseline Methods

We next compare our algorithm’s regret and computation
time with a classic LP-based (Li & Ye, 2022) and two first-
order methods with O(T 1/2) (Li et al., 2020) and O(T 1/3)
regrets (Gao et al., 2024). We generate {(rt,at)}Tt=1 from
a uniform distribution (Input I). We set the resource types to
m = 5, time T to range evenly over [102, 106], average re-
source di ∼ Uniform[1/3, 2/3], and re-solving frequency
to f = T 1/3 from Section 4.1. Each result is averaged over
100 trial runs. We summarize the findings in Table 3 and
Figure 4, and we include more comparisons with an infre-
quent re-solving method (Li et al., 2024) in Appendix E.2.
We observe the effectiveness of Algorithm 1 and 2:

1. Our algorithms exhibit strong performance in terms of
decision optimality. They achieve over a 20-fold and
10-fold improvement in regret compared to the O(T 1/2)
first-order method and the O(T 1/3) first-order method
respectively. These numerical results also corroborate
the theoretical bounds in Theorem 3.2.

2. Our algorithms are computationally efficient. Their run-
times exhibit over 100-fold improvement compared to
the LP-based method with only a minimal increase (less
than 2-fold) in regret.

Therefore, we achieve a balance between effective
decision-making and efficient computation. Our algo-
rithms demonstrate better regret than the first-order method
and obtain substantial computational speed-ups compared
to the LP-based method. They exhibit strong scalability
and adaptability across various re-solving frequencies and
stochastic input models, consistently delivering superior
performance as the problem size grows.

8
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Table 2: Regret of algorithms with various re-solving frequencies.

T First-Order Low freq Mid freq High freq

Input I

103 12.13 7.76 5.77 4.86
104 38.50 10.96 7.55 5.67
105 122.44 23.90 9.92 8.36
106 404.59 56.70 21.90 8.99

Input II

103 11.44 6.28 4.86 3.95
104 36.50 10.21 7.34 3.81
105 115.57 14.61 11.78 4.66
106 365.99 35.20 15.68 6.26

(a) Algorithm 1

T First-Order Low freq Mid freq High freq

Input I

103 12.13 6.78 5.20 4.50
104 38.50 10.37 8.03 5.99
105 122.44 22.33 11.57 6.36
106 404.59 48.21 22.44 7.09

Input II

103 11.44 3.20 2.56 1.75
104 36.50 5.48 4.30 2.52
105 115.57 12.35 4.48 3.86
106 365.99 30.48 13.20 4.77

(b) Algorithm 2

102 103 104 105 106

Horizon

101

102

R
eg

re
t

Input I

102 103 104 105 106

Horizon

Input II

102 103 104 105 106

Horizon

Input I

102 103 104 105 106

Horizon

Input II

First-Order Algorithm 1 Algorithm 2 Low freq Mid freq High freq

Figure 3: Evaluations of Algorithm 1 and 2 across various horizons, re-solving frequencies, and stochastic inputs, validating
the positive relationship between regret and frequency stated in Theorem 3.2.

5. Conclusion and Discussion
This paper presents a new approach to online linear pro-
gramming for dynamic resource allocation, addressing the
inherent trade-offs between decision-making optimality
and computational efficiency. Recognizing the limitations
of existing methods, we propose a parallel framework that
decouples online learning and decision-making into inde-
pendent yet complementary processes. By integrating LP-
based and first-order methods, our framework effectively
balances total regret and computational cost.

We establish rigorous theoretical guarantees, proving that
our algorithm achieves a worst-case regret bound of
O(log(T/f) +

√
f) under continuous support. This re-

sult highlights our method’s ability to interpolate between
LP-based and first-order methods based on computational
capability. Furthermore, extensive experiments validate
the effectiveness of our approach, demonstrating improve-
ments in both regret minimization and runtime efficiency
over competitive baselines.

Beyond these contributions, our work opens avenues for
further research in adaptive online decision-making. Future
directions include refining the re-solving frequency based
on real-time computational constraints and extending our

framework to broader classes of online optimization prob-
lems. Overall, our results underscore the potential of hy-
brid algorithms in high-dimensional, large-scale environ-
ments, offering practical insights for applications in opera-
tions research, machine learning, and beyond.

Discussion of Unknown Horizon

In this paper, we consider decision-making under a fi-
nite horizon, since the average resource Assumption 2.1(c)
widely used in OLP literature relies on a fixed horizon to be
well-defined. When the horizon is unknown, this assump-
tion becomes ill-posed, and prior work (Balseiro et al.,
2023) shows that it may not be possible to achieve sub-
linear regret. Addressing these challenges would likely re-
quire first adapting LP-based and first-order OLP methods
to uncertain horizons before tackling a hybrid approach.

In practice, it is often possible to make a prior prediction
of the horizon using data-driven approaches or based on
the resources available. For example, in online advertising,
the number of customers can be predicted from historical
statistics. Besides, in retail or event-based sales, the selling
horizon may be externally decided by upper-level decision-
makers. These practical applications suggest a reasonable
modeling choice for finite time horizons.

9
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Structure of the Appendix We organize the appendix as follows. In Section A, we present some primary results for
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the performance metrics to unify all the OLP methods; Section C demonstrates the outline of Algorithm 2, combines all
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A. Primary Results and Properties
In this section, we present some primary results for the problem and OLP dual algorithms which will help present our main
results. We also include basic properties and convergence of the LP-based and first-order methods. All the analyses are
stated under Assumption 2.1 and 2.2.

A.1. Preliminary results

We propose the following lemma as directed results from Assumptions. Let Ξ denote the family of distributions satisfying
Assumption 2.1 and 2.2. We propose the following lemma.
Lemma A.1 (Dimension Stability). Under Assumptions 2.1 and 2.2, there exists a constant δ > 0 such that

∀dt ∈ D := [di − δ, di + δ]m, stochastic programs (5) specified by dt share the same IB and IN sets.

This lemma is a consequence of Lemmas 12 and 13 in (Li & Ye, 2022). The existence of δ comes from the continuity of
fdt(p). Thus, δ is only associated with stochastic program (5), and it is independent of T . Note that D ⊂ Vd. We will
analyze our feasible dual solutions derived from the online algorithm with dt ∈ D.
Lemma A.2 (Quadratic Regularity, Proposition 2 in (Li & Ye, 2022)). Under Assumptions 2.1 and 2.2, for any p ∈ Vp,

f(p) ≤ f(p∗) +∇f(p∗)⊤(p− p∗) +
µā2

2
∥p− p∗∥2,

f(p) ≥ f(p∗) +∇f(p∗)⊤(p− p∗) +
νλ

2
∥p− p∗∥2.

Moreover, p∗ is the unique optimal solution to (2).

This lemma establishes a local form of semi-strong convexity and smoothness at p∗, which is guaranteed by our assump-
tions on the distribution P ∈ Ξ. By focusing on these local properties rather than insisting on strong convexity and global
smoothness, we relax the classical requirements typically imposed in such settings. In later sections, we will leverage this
result to derive our regret bound.

A.2. LP-based analysis

We state the LP-based method in Algorithm 3 and its properties of boundedness and dual convergence results.

Algorithm 3 LP-based method
Input: total resource b, time horizon T , average resource d = b/T , and initial dual price p1 = 0.
for t = 1 to T do

Observe (rt,at) and make decision xt based on rule (4) if constraints are not violated.
Update constraint for i = 1, ...,m:

remaining resource constraint bit = bi,t−1 − aitxt

average resource capacity dit =
bit
T−t

Solve the updated dual problem and obtain dual price pt+1:

pt+1 = argmin
p≥0

d⊤
t p+

1

t

t∑
j=1

(rj − a⊤
j p)

+

end

LP-based method incorporates the past decisions into the optimization of pt. If resources were over-utilized in earlier
periods, the remaining supply decreases, prompting the algorithm to raise the dual price and become more selective with
future orders. Conversely, if ample resources remain, the future dual price will be lowered, allowing more consumer
requests to be accepted. This adaptive mechanism accounts for past actions by adjusting the available resource capacity.
Lemma A.3 (Boundedness of LP result). The online dual price pt from Algorithm 3 and the optimal dual price p∗ of
stochastic program (2) are bounded as

∥p∗∥ ≤ r̄

d
, ∥pt∥ ≤ r̄

d− δ
.
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Lemma A.4 (Dual Convergence of LP-based algorithm). Under Assumptions 2.1 and 2.2, pt represents the online solution
from LP-based method, there exists a constant Clp > 0 depending on r̄, ā, d,m, ν, and λ such that

E
[
∥pt − p∗

t ∥2
]
≤ Clp

t
. (13)

In addition, the difference between p∗
t and p∗ satisfies

∥p∗
t − p∗∥2 ≤ 1

ν2λ2
∥dt − d∥2. (14)

This lemma establishes that the LP-based online AHDL algorithm (Jiang et al., 2022) produces dual solutions pt that
converge to p∗

t . This convergence highlights the stability of the online dual variables during the intermediate stages of
decision-making and ensures a warm start for the first-order method in the last re-solving batch. Moreover, we bound the
distance between p∗

t and p∗ by relating their respective average resource capacities, dt and d, in the associated stochastic
programs (Li & Ye, 2022). These results provide the foundation for analyzing ∥pt − p∗∥ in our final result.

Proof of Lemma A.3. By the optimality of p∗ and boundedness of d, we have

d∥p∗∥1 ≤ d⊤p∗ ≤ E[r] ≤ r̄.

This holds because if otherwise, p∗ can not be the optimal solution due to f(p∗) > f(0). Given the non-negativeness of
p∗ and p∗ ∈ Vd, we obtain ∥p∗∥ ≤ ∥p∗∥1, and thus ∥p∗∥ ≤ r̄

d .

Similarly, by the optimality of p∗
t and its associated dt ∈ D in Lemma A.1, we know

(d− δ)∥pt∥1 ≤ d⊤
t pt ≤ E[r] ≤ r̄,

so we get the bound as ∥pt∥ ≤ r̄
d−δ .

Proof of Lemma A.4. According to the latest results in (Jiang et al., 2022), the online dual price pt achieves a sublinear
convergence O( 1√

t
) to p∗

t . Since

p∗ ∈ argmin
p≥0

f(p) := d⊤p+ E
[
(r − a⊤p)+

]
,

p∗
t ∈ arg min

pt≥0
fdt(pt) := d⊤

t pt + E
[
(r − a⊤pt)

+
]
,

By Lemma 12 in (Li & Ye, 2022), we have ∥p∗
t − p∗∥22 ≤ 1

ν2λ2 ∥dt − d∥22.

A.3. First-order Analysis

We present the classic first-order method (Li et al., 2020) in Algorithm 4 and the first-order method with restart strategy
(Gao et al., 2024) in Algorithm 5. We also show their properties of boundedness and dual convergence results.

Algorithm 4 First-Order Online algorithm
Input: total resource b, time horizon T , average resource d = b/T , and initial dual price p1 = 0.
for t = 1 to T do

Observe (rt,at) and make decision xt based on rule (3).
Update learning rate αt = O(1/

√
T ).

Compute subgradient and obtain dual price pt+1:

pt+1 = argmin
p≥0

(d− atxt)
⊤p+

1

2αt
∥p− pt∥2

end
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Algorithm 5 First-Order Restart algorithm
Input: total resource b, time horizon T , average resource d = b/T , and initial dual price p1 = 0,pL

1 = 0
for t = 1 to T do

Observe (rt,at) and make decision xt based on rule (4)

Update learning rate αt =

{
O(1/T 1/3) t ≤ T 2/3

O(1/T 2/3) t > T 2/3

Compute subgradient and obtain dual price pt+1:

pt+1 = argmin
p≥0

(d− atxt)
⊤p+

1

2αt
∥p− pt∥2

Run subgradient method with stepsize αt = O(1/t) and update {pL
t }. At t = T 2/3, restart pT 2/3 = pL

T 2/3 .
end

Lemma A.5 (Boundedness of first-order result). The online dual price pt from Algorithm 4 is bounded as

∥pt∥ ≤ 2r̄ +m(ā+ d̄)2

d
+m(ā+ d̄).

Lemma A.6 (Dual convergence of First-order algorithm). Under Assumptions 2.1 and 2.2, pt represents the online solution
from first-order method, if αt < νλ, the subgradient updates satisfy the following recursion rule:

E
[
∥pt+1 − p∗∥2

]
≤ (1− αtνλ)∥pt − p∗∥2 + α2

tm(ā+ d̄)2. (15)

Case 1. if αt ≡ α < 1
νλ , then there exists a constant Cfo = p̄2+m(ā+d̄)2

νλ such that

E
[
∥pt − p∗∥2

]
≤ Cfo

(
1

αt
+ α

)
. (16)

Case 2. if αt =
2

νλ(t+1) , then there exists a constant Cfo = 4m(ā+d̄)2

ν2λ2 such that

E
[
∥pt − p∗∥2

]
≤ Cfo

t
. (17)

This lemma shows that the first-order method (Gao et al., 2024) guarantees the convergence of pt to p∗. It also highlights
a key trade-off in choosing the learning rate αt, an aspect that will be central to our later optimality analysis. It also
highlights a key trade-off in choosing the learning rate αt, an aspect that will be central to our later optimality analysis.
With this groundwork in place, we now move on to bounding the total regret of our algorithm.

Proof of Lemma A.5. As our initial choice p1 = 0, according to Lemma 1 in (Li et al., 2020), we get the above result.
In addition, by Lemma B.1 in (Gao et al., 2024), we have

∥pt∥ ≤ r̄

d
+

m(ā+ d̄)2αt

2d
+ αt

√
m(ā+ d̄).

Proof of Lemma A.6. Based on the updated rule in Algorithm 4, we derive:

∥pt+1 − p∗∥2 ≤ ∥pt − αt(d− atxt)− p∗∥2

= ∥pt − p∗∥2 − 2αt⟨d− atxt,pt − p∗⟩+ α2
t ∥d− atxt∥2

≤ ∥pt − p∗∥2 − 2αt⟨d− atxt,pt − p∗⟩+ α2
tm(ā+ d̄)2.

1) With convexity of f and E[d− atxt] ∈ ∂f(pt), we have:

f(p∗) ≥ f(pt) + ⟨d− atxt,pt − p∗⟩.
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2) With quadratic regularity of f as in Lemma A.2, we have:

f(pt) ≥ f(p∗) +∇f(p∗)⊤(pt − p∗) +
νλ

2
∥pt − p∗∥2,

which indicates f(pt)− f(p∗) ≥ νλ

2
∥pt − p∗∥2.

Combine the above results and take expectation conditioned on history information {(rj ,aj), j ≤ t}, we obtain:

E∥pt+1 − p∗∥2 ≤ ∥pt − p∗∥2 − 2αtE[⟨d− atxt,pt − p∗⟩] + α2
tm(ā+ d̄)2

≤ ∥pt − p∗∥2 − 2αt(f(pt)− f(p∗)) + α2
tm(ā+ d̄)2

≤ ∥pt − p∗∥2 − αtνλ∥pt − p∗∥2 + α2
tm(ā+ d̄)2

= (1− αtνλ)∥pt − p∗∥2 + α2
tm(ā+ d̄)2.

This proves (15) with the general case of learning rate αt.

Case 1. When αt = α < 1
νλ is a constant, we take recursion of (15). Note that (1− νλα)t < 1/νλαt, we get:

E∥pt+1 − p∗∥2 ≤ (1− ανλ)t∥p1 − p∗∥2 +
t−1∑
j=0

α2m(ā+ d̄)2(1− ανλ)j

≤ ∥p1 − p∗∥2

νλαt
+

m(ā+ d̄)2

νλ
α.

Since all feasible p ∈ Vp is bounded, let Cfo = p̄2+m(ā+d̄)2

νλ , we are able to obtain (16).

Case 2. When αt =
2

νλ(t+1) , for any j ≤ t, Lemma A.6 gives us

E∥pj+1 − p∗∥2 ≤ j − 1

j + 1
∥pj − p∗∥2 + 4m(ā+ d̄)2

ν2λ2(j + 1)2
.

Re-arranging the above inequality, we have

(j + 1)2E∥pj+1 − p∗∥2 ≤ (j2 − 1)∥pj − p∗∥2 + 4m(ā+ d̄)2

ν2λ2
,

then (j + 1)2E∥pj+1 − p∗∥2 − j2∥pj − p∗∥2 ≤ 4m(ā+ d̄)2

ν2λ2
.

Then by telescoping from j = 2 to t, we have

t∑
j=1

(j + 1)2E∥pj+1 − p∗∥2 − j2∥pj − p∗∥2 = (t+ 1)2E∥pt+1 − p∗∥2 − ∥p1 − p∗∥2 ≤ 4m(ā+ d̄)2t

ν2λ2

which then gives us

E∥pt+1 − p∗∥2 ≤ ∥p1 − p∗∥2

(t+ 1)2
+

4m(ā+ d̄)2t

ν2λ2(t+ 1)2
,

thus E∥pt − p∗∥2 ≤ ∥p1 − p∗∥2

t2
+

4m(ā+ d̄)2

ν2λ2t
.

As p1 = 0 and p∗ is bounded, taking Cfo = 4m(ā+d̄)2

ν2λ2 completes the proof for (17).
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B. Algorithm Design and Analysis
In this section, we present a cohesive mathematical framework to integrate the LP-based method and first-order method
by developing a new performance metric. We also provide some unique properties for our algorithm design of parallel
multi-phase structure.

As stated in Algorithm 1, we construct independent paths for online learning and online decision-making conducted si-
multaneously. Specifically, for the online learning path, we use the LP-based method to resolve updated linear programs
at a fixed frequency and send this result to the decision-making path; For the online decision-making path, we apply the
first-order method in the initial and final batches, and use the latest dual price for decision-making in the intermediate
resolving intervals. This process is illustrated in Figure 1.

B.1. Regret Analysis

First, we construct an upper bound for the offline optimal objective value. The challenge comes from the intractable
dependency of constraints on objective value under the online setting. We tackle this issue by introducing a Lagrangian
function to integrate constraints into the objective and balance revenue maximization with constraint satisfaction. The
formulation is stated as follows.

Lemma B.1 (Lagrangian Upper Bound). Under Assumptions (2.1) and (2.2), define the deterministic Lagrangian dual
function as

ℓ(p) := E
[
rI(r > a⊤p) + (d− aI(r > a⊤p))⊤p∗] .

Then for any feasible p ∈ Vp, we have:

(a) E
[ T∑

t=1

rtx
∗
t

]
≤ Tℓ(p∗),

(b) ℓ(p∗)− ℓ(p) ≤ µā2∥p− p∗∥2. (18)

Lemma B.2 (Dual Price Boundedness). Under Assumption 2.1, the online and offline optimal dual prices are bounded
respectively by ∥p∗∥ ≤ r̄

d and

∥pt∥ ≤ p̄ := max

(
r̄

d− δ
,
2r̄ +m(ā+ d̄)2

d
+m(ā+ d̄)

)
.

This lemma establishes that the optimal dual prices remain bounded. Our algorithm maintains these bounds because if pt

grows large, the algorithm responds by accepting more orders, which in turn reduces pt+1. This self-correcting mechanism
keeps the dual prices within these limits. With this groundwork in place, we now move on to derive the upper bound for
the total performance of Algorithm 1.

Theorem B.3 (Decomposition of Regret). Under Assumptions (2.1) and (2.2), let Cr = max{ r̄
d ,

νλā2

2 }, we derive an
upper bound for the regret r(x) as:

r(x) ≤ Cr

[
E
∥∥∥(b− T∑

t=1

atxt

)B+∥∥∥+ T∑
t=1

E∥pt − p∗∥2
]
. (19)

Proof of Lemma B.1. This lemma is proved as Lemma 3 in (Li & Ye, 2022) by strong duality and optimality of p∗
T .

Proof of Lemma B.2. By the boundedness results in Lemma A.3 and Lemma A.5, define

p̄ := max

(
r̄

d− δ
,
2r̄ +m(ā+ d̄)2

d
+m(ā+ d̄)

)
,

then we complete the proof.
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Proof of Theorem B.3. By the definition of ℓ(p), we derive the online objective as

E
[ T∑

t=1

rtxt

]
=

T∑
t=1

E[E[rtxt|pt]]

=

T∑
t=1

E[ℓ(pt)− (d− atxt)
⊤p∗].

Then by Lemma B.1, we derive the upper bound for the regret r(x) as defined in (6) to be:

r(x) = E
[ T∑

t=1

rtx
∗
t − rtxt

]

≤ Tℓ(p∗)−
T∑

t=1

E[ℓ(pt)− (d− atxt)
⊤p∗]

=

T∑
t=1

E[(d− atxt)
⊤p∗] +

T∑
t=1

E[ℓ(p∗)− ℓ(pt)]

≤ E
[(

b−
T∑

t=1

atxt

)⊤
p∗
]
+

µā2

2

T∑
t=1

E∥pt − p∗∥2

≤ ∥p∗∥ · E
∥∥∥∥(b− T∑

t=1

atxt

)B+∥∥∥∥+ µā2

2

T∑
t=1

E∥pt − p∗∥2

where (·)B+ denotes the positive part only for binding constraints.

As ∥p∗∥ ≤ r̄
d is bounded, taking the constant Cr = max{ r̄

d ,
µā2

2 } completes the proof.

B.2. Total Performance Analysis

We consider the constraint violation as v(x) = ∥(Ax − b)+∥ in (7). Then the total performance is the combination of
regret and constraint violation. Since Theorem B.3 holds for any unknown distribution P ∈ Ξ, we have:

∆T = sup
P∈Ξ

EP [r(x) + v(x)]

≤ Cr

[
E
∥∥∥(b− T∑

t=1

atxt

)B+∥∥∥+ T∑
t=1

E∥pt − p∗∥2
]
+ E

∥∥∥( T∑
t=1

atxt − b
)+∥∥∥

≤ Cr

[ T∑
t=1

E∥pt − p∗∥2 + E
∥∥(b−Ax)B

+∥∥+ E
∥∥(Ax− b)+

∥∥]. (20)

This new framework is adaptive to all OLP methods. We proceed with this structure to analyze various OLP methods.

Theorem B.4 (Horizon Division). Based on the change of methods, we separate the horizon into three intervals T1, T2,
and T3, and reorganize the total performance for analysis to be

∆T ≤ Cr

[
∆T1

+∆T2
+∆T3

]
. (21)

where ∆T1 ,∆T2 , and ∆T3 are the performances for each interval.

Proof of Theorem B.4. We split the total horizon into three intervals of initial batch T1 = [0, f ], intermediate process
T2 = [f, kf ], and final batch T3 = [kf, T ]. We use the first-order method for the first and final batches and the LP-based
method for intermediate processes. Notice that for the initial resolving batch, we maintain the classical analysis for the

18
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first-order method since it has not reached the mixture with the LP-based method. Then based on (20), we define

∆T1
:=

f∑
t=1

E[rtx∗
t − rtxt] + E

∥∥∥( f∑
t=1

atxt − fd
)+∥∥∥

∆T2
:=

kf∑
t=f

E∥pt − p∗∥2 + E
∥∥∥((k − 1)fd−

kf∑
t=f

atxt

)B+∥∥∥+ E
∥∥∥( kf∑

t=f

atxt − (k − 1)fd
)+∥∥∥ (22)

∆T3
:=

T∑
t=kf

E∥pt − p∗∥2 + E
∥∥∥((T − kf)d−

T∑
t=kf

atxt

)B+∥∥∥+ E
∥∥∥( T∑

t=kf

atxt − (T − kf)d
)+∥∥∥

Then we have

∆T ≤ Cr

[
∆T1 +∆T2 +∆T3

]
since ∥(a+ b)+∥ ≤ ∥a+∥+ ∥b+∥ for any a, b.

B.3. Regret for LP-based Method

In this section, we are going to bound ∆T2
for the regret from LP-based method. To provide a tighter analysis, we examine

the real-time average resource capacity dt instead of the original process bt. Specifically, by Lemma A.1, we constraint
dt within a feasible range D. If dt /∈ D, we set the dual price to zero to accept all subsequent orders. We analyze the
remaining resources and constraint violation due to this strategy. Note that this is required solely for rigor analysis purposes
and is not necessary when running the algorithm.

Lemma B.5 (Dynamics of Resource Usage). Under Assumption 2.1 and 2.2, there exists a constant C > 0 depending on
d̄, ā,m, ν, λ1, µ, and Clp such that

kf∑
t=f

E[(di,t − di)
2] ≤ C log(k). (23)

Theorem B.6 (Regret of Intermediate Process). Under Assumption 2.1 and 2.2, following the result in (22), we prove the
regret satisfies

∆T2 ≤ log
(T
f

)
= O(log(k)). (24)

Proof of Lemma B.5. During the re-solving process, we denote each interval to be [jf, (j + 1)f ] where j = 1, 2, ..., k.
As the resource usage follows bt+1 = bt − at+1I(rt+1 > aT

t+1pt+1), normalizing both sides, we derive the update of
average resource consumption to be:

di,(j+1)f = di,jf +

∑(j+1)f
ℓ=jf+1 di,jf − ai,ℓI(rℓ > a⊤

ℓ p(k+1)f )

T − (j + 1)f
.

Subtracting di on both sides, it becomes

di,(j+1)f − di = di,jf − di +

∑(j+1)f
ℓ=jf+1 di,jf − ai,ℓI(rℓ > a⊤

ℓ p(j+1)f )

T − (j + 1)f

= di,jf − di +

∑(j+1)f
ℓ=jf+1 di,jf − ai,ℓI(rℓ > a⊤

ℓ p
∗
jf )

T − (j + 1)f

+

∑(j+1)f
ℓ=jf+1 ai,ℓI(rℓ > a⊤

ℓ p
∗
jf )− ai,ℓI(rℓ > a⊤

ℓ p(j+1)f )

T − (j + 1)f
.
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Taking expectations of squares, we have

E(di,(j+1)f − di)
2 =E(di,jf − di)

2 + E

[
(
∑(j+1)f

ℓ=jf+1 di,jf − ai,ℓI(rℓ > a⊤
ℓ p

∗
jf ))

2

(T − (j + 1)f)2

]

+E

[
(
∑(j+1)f

ℓ=jf+1 ai,ℓI(rℓ > a⊤
ℓ p

∗
jf )− ai,ℓI(rℓ > a⊤

ℓ p(j+1)f ))
2

(T − (j + 1)f)2

]

+2E

[
(di,jf − di)

(∑(j+1)f
ℓ=jf+1 di,jf − ai,ℓI(rℓ > a⊤

ℓ p
∗
jf )

T − (j + 1)f

)]

+2E

[
(di,jf − di)

(∑(j+1)f
ℓ=jf+1 ai,ℓI(rℓ > a⊤

ℓ p
∗
jf )− ai,ℓI(rℓ > a⊤

ℓ p(j+1)f )

T − (j + 1)f

)]

+2E

[∑(j+1)f
ℓ=jf+1 di,jf − ai,ℓI(rℓ > a⊤

ℓ p
∗
jf )

T − (j + 1)f
·
∑(j+1)f

ℓ=jf+1 ai,ℓI(rℓ > a⊤
ℓ p

∗
jf )− ai,ℓI(rℓ > a⊤

ℓ p(j+1)f )

T − (j + 1)f

]
.

(25)

By Lemma D.1, we obtain the recursion relation as

E(di,(j+1)f − di)
2 ≤ E(di,jf − di)

2 +
Crec

(k − j − 1)2f
+

4µā2
√
Clp

(k − j − 1)
√
(j + 1)f

√
E[(di,jf − di)2] (26)

where Crec > 0 is a constant defined in Lemma D.1.

Then according to Lemma D.2, take C = 12max{Crec, 16µ
2ā4Clp}, we solve recursion (26) and obtain the upper bound

of total deviation from original di in the re-solving process to be:

k∑
j=1

E
[
(di,jf − di)

2
]
≤ C

f
log(k). (27)

Therefore, we sum the whole re-solving process and obtain:

kf∑
t=f

E[(di,t − di)
2] =

k∑
j=1

(j+1)f∑
ℓ=jf

E[(di,ℓ − di)
2]

= f · C
f
log(k) (by result in (27)

≤ C log(k). (28)

This completes the proof.

Proof of Theorem B.6. We analyze the three terms in (22) respectively.

1. For dual convergence, by Lemma A.4, we have

kf∑
t=f

E∥pt − p∗∥2 = E

k−1∑
j=1

(j+1)f∑
t=jf+1

∥pt − p∗∥22


=

k−1∑
j=1

f E
[
∥p(j+1)f − p∗∥22

]

≤
k−1∑
j=1

f E
[
∥p(j+1)f − p∗

jf∥22 + ∥p∗
jf − p∗∥22

]
20
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≤
k−1∑
j=1

f
[Clp

jf
+

1

ν2λ2
E
[
(djf − d)2

]]
(by Lemma A.4)

≤ Clp log(k) +
mC

ν2λ2
log(k). (by Lemma B.5). (29)

2. For the constraint violation, by Chebyshev’s inequality, we bound the probability as

kf∑
t=f

P(|di,t − di| ≤ δ) ≤
kf∑
t=f

E[(di,t − di)
2]

δ2

≤ C

δ2
log(k). (by Lemma B.5) (30)

Since our strategy is to automatically set pt = 0 once dt /∈ D, we will accept all the subsequent orders according
to our decision condition (3). Denote R as the total number of orders processed specifically due to this rule, then we
have:

E[R] ≤
kf∑
t=f

P(|di,t − di| ≤ δ) ≤ C

δ2
log(k) (31)

which indicates that the resource violation is at most

E
∥∥∥( kf∑

t=f

atxt − (k − 1)fd
)+∥∥∥ ≤ E[āR] ≤ Cā

δ2
log(k). (32)

3. For the remaining resource, we derive its upper bound by considering the opposite extreme case of our strategy. If
we reject all those R orders, then no resource is used on them. Thus, by (31), the positive projection of remaining
resource at t = kf is at most:

E
∥∥∥((k − 1)fd−

kf∑
t=f

atxt

)B+∥∥∥ ≤ E[(di + δ)R] ≤ C(d̄+ δ)

δ2
log(k). (33)

Combining the results of (29), (32), and (33), we derive the final result as

∆T2 ≤
(
Clp +

mC

ν2λ2
+ (ā+ d̄+ δ)

C

δ2

)
log(k). (34)

This completes the proof.

B.4. Regret for First-Order Method

In this section, we are going to bound ∆T1
and ∆T3

for the regret from the first-order method. The key point is to analyze
the connection between dual prices based on the gradient-updated rule. Here pt = pfo

t .

Theorem B.7 (Regret of Initial Batch). Under Assumption 2.1 and 2.2, we have

∆T1
≤
(
m(ā+ d̄)2

2
+

2r̄ +m(ā+ d̄)2

d
+m(ā+ d̄)

)√
f. (35)

Lemma B.8 (Constraint Violation). Under Assumption 2.1 and 2.2, take the learning rate αt = α, we bound the constraint
violation for the last batch as

E
∥∥∥( T∑

t=kf

atxt − (T − kf)d
)+∥∥∥ ≤

( Clp√
kf

+
Cb

T 2

)
· 1
α
+

Cb√
(T − kf)kf

· 1

α
√
α
+

Cb√
α
. (36)
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Theorem B.9 (Regret of Final Batch). Under Assumption 2.1 and 2.2, we have

∆T3
≤
(
m(ā+ d̄)2

νλ
+

2Clp√
k

+
Clp log(f)

νλk
+

4Cb√
k

+ 2Cb

)
· f1/3. (37)

Lemma B.10 (Warm-Start First-Order Regret). Assume that we have a warm start for the initial dual price p0 in the first
batch, which satisfies ∥p0 − p∗∥ ≤ f−1/3. Then the regret of the first batch follows

∆T1warm ≤
(m(ā+ d̄)2

νλ
+ 4Cw

)
· f1/3 + log(f). (38)

Proof of Theorem B.7. We analyze ∆T1
in (22) by parts. By Lemma B.3, B.4 in (Gao et al., 2024), we have

f∑
t=1

E[rtx∗
t − rtxt] ≤

m(ā+ d̄)2

2
αf,

E
∥∥∥( f∑

t=1

atxt − fd
)+∥∥∥ ≤ 1

α

[
2r̄ +m(ā+ d̄)2

d
+m(ā+ d̄)

]
.

To achieve the tight upper bound, we select the optimal step size α = 1√
f

, which then gives us the desired result.

Proof of Lemma B.8. With the update rule of first-order method in Algorithm 4, we have

pt+1 = [pt − α(d− atxt)]
+ ≥ pt − α(d− atxt),

which gives us atxt − d ≤ 1

α
(pt+1 − pt).

Summarizing on both sides and applying the telescoping, we derive

T∑
t=kf

(atxt − d) ≤ 1

α

T∑
t=kf

(pt+1 − pt) =
1

α
(pT+1 − pkf ).

By Lemma D.3, take Cb = max{ Clp√
νλ

, m(ā+d̄)√
νλ

, p̄}, we have

E∥pT+1 − p∗∥ ≤ Cb

[ 1√
(T − kf)kf

· 1√
α
+

√
α+

1

T 2

]
. (39)

Thus, according to Lemma A.4 and (39), the expectation of constraint violation satisfies

E
∥∥∥( T∑

t=kf

(atxt − d)
)+∥∥∥ ≤ E

∥∥∥ T∑
t=kf

(atxt − d)
∥∥∥

≤ 1

α
E∥pT+1 − pkf∥

≤ 1

α
E
[
∥pkf − p∗∥+ ∥pT+1 − p∗∥

]
≤ 1

α

( Clp√
kf

+ Cb

[ 1√
(T − kf)kf

· 1√
α
+

√
α+

1

T 2

])
≤ Clp√

kf
· 1
α
+

Cb√
(T − kf)kf

· 1

α
√
α
+ Cb ·

1√
α
+

Cb

T 2
· 1
α
. (40)

This completes the proof.
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Proof of Theorem B.9. We decompose ∆T3
into three parts according to (22) and analyze each term respectively. Since

the first-order method re-starts from pkf , by Lemma A.4, we have:

T∑
t=kf

E∥pt − p∗∥2 ≤
T∑

t=kf

[∥pkf − p∗∥2

νλαt
+

m(ā+ d̄)2

νλ
α
]

≤ ∥pkf − p∗∥2

νλα
log(T − kf) +

m(ā+ d̄)2

νλ
(T − kf)α

≤ ∥pkf − p∗∥2

νλα
log(f) +

m(ā+ d̄)2

νλ
fα

≤ Clp log(f)

νλkf
· 1
α
+

m(ā+ d̄)2

νλ
fα. (41)

Since t ∈ [kf, T ], by Proposition 3.3 in (Gao et al., 2024), the dual price is far from the origin and thus the positive
projection still equals itself. This indicates that:

pt+1 = [pt − α(d− atxt)]
+ = pt − α(d− atxt),

which then gives us d− atxt =
1

α
(pt − pt+1).

Summarizing on both sides and applying the telescoping, we derive
T∑

t=kf

(d− atxt) ≤
1

α

T∑
t=kf

(pt − pt+1) =
1

α
(pkf − pT+1).

Then for the positive binding terms, by Lemma A.4 and (39), we have

E
∥∥∥( T∑

t=kf

(d− atxt)
)B+∥∥∥ ≤ E

∥∥∥ T∑
t=kf

(d− atxt)
∥∥∥

≤ 1

α
E∥pkf − pT+1∥

≤ 1

α
E
[
∥pkf − p∗∥+ ∥pT+1 − p∗∥

]
≤ Clp√

kf
· 1
α
+

Cb√
(T − kf)kf

· 1

α
√
α
+ Cb ·

1√
α
+

Cb

T 2
· 1
α
. (42)

Combining the results of (41), Lemma B.8, and (42) together, we obtain the final result as:

∆T3
≤ m(ā+ d̄)2

νλ
fα+

(2Clp√
kf

+
2Cb

T 2
+

Clp log(f)

νλkf

)
· 1
α
+

2Cb√
(T − kf)kf

· 2

α
√
α
+

2Cb√
α
. (43)

We select the optimal learning rate α = f−2/3 to minimize ∆T3 in (43). We prove this result in cases.

1. If T − kf ≤ f1/3, the regret must be smaller than the length of the batch, so ∆T3
≤ T − kf ≤ f1/3.

2. If T − kf > f1/3, then we use this property to bound the term 2Cb√
(T−kf)kf

· 2
α
√
α

. We derive

∆T3
≤ m(ā+ d̄)2

νλ
f · f−2/3 +

(2Clp√
kf

+
2Cb

T 2
+

Clp log(f)

νλkf

)
· f2/3 +

4Cb√
f1/3 · kf

· f + 2Cb · f1/3

=
m(ā+ d̄)2

νλ
f1/3 +

2Clp√
k
f1/6 +

2Cb

T
+

Clp log(f)

νλk
f1/3 +

4Cb√
k

· f1/3 + 2Cb · f1/3

≤
(m(ā+ d̄)2

νλ
+

2Clp√
k

+
Clp log(f)

νλk
+

4Cb√
k

+ 2Cb

)
· f1/3. (44)

This completes the proof.
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Proof of Lemma B.10. According to Lemma D.3, with ∥p0 − p∗∥ ≤ f−1/3 and α < 1
νλ , we have

E
[
∥pf+1 − p∗∥2 | p0

]
≤ ∥p0 − p∗∥2

νλαf
+

αm(ā+ d̄)2

νλ
,

E∥pf+1 − p∗∥ ≤ 1

f1/3
√
νλf

· 1√
α
+

m(ā+ d̄)√
νλ

·
√
α+

p̄

T 2
. (45)

Then according to Lemma B.8, take Cw = max{ 1
νλ ,

m(ā+d̄)√
νλ

, p̄}, we derive the constraint violation follows

E
∥∥∥( f∑

t=0

(atxt − d)
)+∥∥∥ ≤ E

∥∥∥ f∑
t=0

(atxt − d)
∥∥∥

≤ 1

α
E∥pf+1 − p0∥

≤ 1

α
E
[
∥p0 − p∗∥+ ∥pf+1 − p∗∥

]
≤ 1

α

( 1

f1/3
+ Cw

[ 1

f1/3
√
f
· 1√

α
+
√
α+

1

T 2

])
≤ 1

f1/3
· 1
α
+

Cw

f5/6
· 1

α
√
α
+ Cw · 1√

α
+

Cw

T 2
· 1
α
. (46)

Similar to (41) in Theorem B.9, we derive the dual distance as
f∑

t=0

E∥pt − p∗∥2 ≤
f∑

t=0

[∥p0 − p∗∥2

νλαt
+

m(ā+ d̄)2

νλ
α
]

≤ ∥p0 − p∗∥2

νλα
log(f) +

m(ā+ d̄)2

νλ
fα

≤ log(f)

νλf2/3
· 1
α
+

m(ā+ d̄)2

νλ
fα. (47)

Similar to (42) in Theorem B.9, we derive the positive projection for binding terms as

E
∥∥∥( f∑

t=0

(d− atxt)
)B+∥∥∥ ≤ E

∥∥∥ f∑
t=0

(d− atxt)
∥∥∥

≤ 1

α
E∥p0 − pf+1∥

≤ 1

α
E
[
∥p0 − p∗∥+ ∥pf+1 − p∗∥

]
≤ 1

f1/3
· 1
α
+

Cw

f1/3
√
f
· 1

α
√
α
+ Cw · 1√

α
+

Cw

T 2
· 1
α
. (48)

Therefore, combining the results in (46), (47), and (48) together, we have

∆T1warm ≤ log(f)

νλf2/3
· 1
α
+

m(ā+ d̄)2

νλ
fα

+
2

f1/3
· 1
α
+

2Cw

f1/3
√
f
· 1

α
√
α
+ 2Cw · 1√

α
+

2Cw

T 2
· 1
α

≤ m(ā+ d̄)2

νλ
fα+

( log(f)

νλf2/3
+

2

f1/3
+

2Cw

T 2

)
· 1
α
+

2Cw

f1/3
√
f
· 1

α
√
α
+ 2Cw · 1√

α
. (49)

Thus, taking the optimal learning rate α = f−2/3, we obtain the regret for the first batch with a warm start as:

∆T1warm ≤ m(ā+ d̄)2

νλ
f1/3 +

( log(f)

νλf2/3
+

2

f1/3
+

2Cw

T 2

)
· f2/3 +

2Cw

f1/3
√
f
· f + 2Cw · f1/3
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≤ m(ā+ d̄)2

νλ
f1/3 +

log(f)

νλ
+ 2f1/3 +

2Cw

T
+ 2Cwf

1/6 + 2Cw · f1/3

≤
(m(ā+ d̄)2

νλ
+ 4Cw

)
· f1/3 + log(f). (50)

This completes the proof.

C. Main Results
In this section, we demonstrate the proof for all theoretical results that we proposed in the main body of the paper. We
instate Assumption 2.1 and 2.2 are satisfied.

C.1. Proof of Theorem 3.1.

By Theorem B.3, we obtain

∆T = E[r(x) + v(x)]

≤ ∥p∗∥ · E
∥∥∥∥(b− T∑

t=1

atxt

)B+∥∥∥∥+ µā2

2

T∑
t=1

E∥pt − p∗∥2 + E
∥∥∥( T∑

t=1

atxt − b
)+∥∥∥

≤ ∥p∗∥ · E
[
∥(b−Ax)B+∥

]
+ µā2

T∑
t=1

E
[
∥pt − p∗∥2

]
+ E

[
∥(Ax− b)+∥

]
.

This completes the proof.

C.2. Proof of Theorem 3.2.

Combining the results of Theorem B.6, Theorem B.7, and Theorem B.9, for some constant Creg > 0, we obtain:

∆T = ∆T1
+∆T2

+∆T3

≤
(
m(ā+ d̄)2

2
+

2r̄ +m(ā+ d̄)2

d
+m(ā+ d̄)

)√
f

+
(
Clp +

mC

ν2λ2
+ (ā+ d̄+ δ)

C

δ2

)
log(k)

+
(m(ā+ d̄)2

νλ
+

2Clp√
k

+
Clp log(f)

νλk
+

4Cb√
k

+ 2Cb

)
· f1/3. (51)

Therefore, we achieve the worst-case regret of:

∆T = O(log(k) +
√
f + f1/3). (52)

For special cases,

1. If we use LP-based method on the first batch, then we will have ∆T1
≤ log(f). Total performance follows

∆T ≤ log(max{f, k}) + f1/3) ≤ log(
√
T ) + f1/3 ∈ O(log(T ) + f1/3). (53)

2. If we have a warm start for the first batch, with the initialization ∥p0 − p∗∥ ≤ f−1/3, then the first batch regret
achieves ∆T1

∈ O(f1/3 + log(f)) by Lemma B.10. Thus, total performance follows

∆T ≤ log(max{f, k}) + 2f1/3) ∈ O(log(T ) + f1/3). (54)

This completes our proof.
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D. Auxiliary Results
In this section, we provide auxiliary results to support the proof in the previous three sections. These lemmas focus on pure
mathematical derivations.

D.1. Technical Support for LP-based Analysis

Lemma D.1. Denote di,(j+1)f , di,jf as the average consumption of i-th type resource at time (j + 1)f and jf . There
exists a constant Crec depending on d̄, ā,m, ν, λ, µ, and Clp such that:

E(di,(j+1)f − di)
2 ≤ E(di,jf − di)

2 +
Crec

(k − j − 1)2f
+

4µā2
√
Clp

(k − j − 1)
√

(j + 1)f

√
E[(di,jf − di)2].

Lemma D.2. With the recursion relation in (26), there exists a constant C > 0 depending on d̄, ā,m, ν, λ, µ, and Clp such
that the summation of the total deviation of dt with the original d satisfies:

k∑
j=1

E
[
(di,jf − di)

2
]
≤ C

f
log(k).

Proof of Lemma D.1. We analyze each term in (25). The key technique we use is to take conditional expectations and
simplify the double summations.

(a) Term 1.

E

[
(
∑(j+1)f

ℓ=jf+1 di,jf − ai,ℓI(rℓ > a⊤
ℓ p

∗
jf ))

2

(T − (j + 1)f)2

]

=
1

(T − (j + 1)f)2
E

 (j+1)f∑
ℓ=jf+1

(j+1)f∑
s=jf+1

E
[
(di,jf − ai,ℓI(rℓ > a⊤

ℓ p
∗
jf ))(di,jf − ai,sI(rs > a⊤

s p
∗
jf )) | djf

]
=

1

(T − (j + 1)f)2
E

 (j+1)f∑
ℓ=jf+1

E
[
(di,jf − ai,ℓI(rℓ > a⊤

ℓ p
∗
jf ))

2 | djf

]
+

1

(T − (j + 1)f)2
E

 (j+1)f∑
ℓ ̸=j,ℓ=jf+1

E
[
(di,jf − ai,ℓI(rℓ > a⊤

ℓ p
∗
jf ))(di,jf − ai,jI(rj > a⊤

j p
∗
jf )) | djf

]
≤ f(ā+ d̄)2

(T − (j + 1)f)2
+

E
[∑(j+1)f

ℓ ̸=j,ℓ=jf+1 E
[
di,jf − ai,ℓI(rℓ > a⊤

ℓ p
∗
jf )|djf

]
E
[
di,jf − ai,jI(rj > a⊤

j p
∗
jf )|djf

]]
(T − (j + 1)f)2

=
f(ā+ d̄)2

(T − (j + 1)f)2
(since E

[
di,jf − ai,ℓI(rℓ > a⊤

ℓ p
∗
jf )|djf

]
= 0 for binding terms)

≤ (ā+ d̄)2

(k − j − 1)2f
. (since ⌊T ⌋ = k · f)

(b) Term 2.

E

[
(
∑(j+1)f

ℓ=jf+1 ai,ℓI(rℓ > a⊤
ℓ p

∗
jf )− ai,ℓI(rℓ > a⊤

ℓ p(j+1)f ))
2

(T − (j + 1)f)2

]

=

E

[∑jk+1)f
ℓ,s=jf+1 E

[
(ai,ℓ(I(rℓ > a⊤

ℓ p
∗
jf )− I(rℓ > a⊤

ℓ p(j+1)f ))) · (ai,s(I(rs > a⊤
s p

∗
jf )− I(rs > a⊤

s p(j+1)f )))
∣∣∣djf

]]
(T − (j + 1)f)2

.
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When ℓ = s,

E
[
(ai,ℓ(I(rℓ > a⊤

ℓ p
∗
jf )− I(rℓ > a⊤

ℓ p(j+1)f )))
2 | djf

]
≤ ā2.

When ℓ ̸= s, by Assumption 2.2,

E
[
(ai,ℓ(I(rℓ > a⊤

ℓ p
∗
jf )− I(rℓ > a⊤

ℓ p(j+1)f )))(ai,s(I(rs > a⊤
s p

∗
jf )− I(rs > a⊤

s p(j+1)f ))) | djf

]
= E

[
E
[
(ai,ℓ(I(rℓ > a⊤

ℓ p
∗
jf )− I(rℓ > a⊤

ℓ p(j+1)f )))(ai,s(I(rs > a⊤
s p

∗
jf )− I(rs > a⊤

s p(j+1)f ))) | ai,as

]
| djf

]

= E

[
ai,ℓE

[
I(rℓ > a⊤

ℓ p
∗
jf )− I(rℓ > a⊤

ℓ p(j+1)f ) | aℓ

]
· ai,sE

[
I(rs > a⊤

s p
∗
jf )− I(rs > a⊤

s p(j+1)f ) | as

]
| djf

]

= E

[
ai,ℓ(P (rℓ > a⊤

ℓ p
∗
jf | aℓ)− P (rℓ > a⊤

ℓ p(j+1)f | aℓ)) · ai,s(P (rs > a⊤
s p

∗
jf | as)− P (rs > a⊤

s p(j+1)f | as)) | djf

]

≤ E

[
µai,ℓa

⊤
ℓ (p(j+1)f − p∗

jf ) · µai,sa⊤
s (p(j+1)f − p∗

jf ) | djf

]
(using Assumption here)

≤ µ2ā4 E
[
(p(j+1)f − p∗

jf )
2 | djf

]
.

Combining these two cases together and by the convergence of LP-based method, we obtain the bound for Term 2 as

E

[
(
∑(j+1)f

ℓ=jf+1 ai,ℓI(rℓ > a⊤
ℓ p

∗
jf )− ai,ℓI(rℓ > a⊤

ℓ p(j+1)f ))
2

(T − (j + 1)f)2

]

≤ 1

(T − (j + 1)f)2
E

 (j+1)f∑
ℓ=jf+1

ā2 +

(j+1)f∑
ℓ ̸=s,ℓ=jf+1

µ2ā4 E
[
(p(j+1)f − p∗

jf )
2
∣∣djf

]∣∣∣djf


≤ 1

(T − (j + 1)f)2

(
fā2 + f2µ2ā4E[(p(j+1)f − p∗

jf )
2
∣∣djf ]

)
≤ 1

(T − (j + 1)f)2

(
fā2 + f2µ2ā4

Clp

jf

)
(by Lemma A.4)

≤
ā2 + 1

jµ
2ā4Clp

(k − j − 1)2f
.

(c) Term 3.

2E

[
(di,jf − di)

(∑(j+1)f
ℓ=jf+1 di,jf − ai,ℓI(rℓ > a⊤

ℓ p
∗
jf )

T − (j + 1)f

)]

=
2

T − (j + 1)f
E

 (j+1)f∑
ℓ=jf+1

E
[
di,jf − ai,ℓI(rℓ > a⊤

ℓ p
∗
jf ) | djf

]
· (di,jf − di)


= 0. (by the definition of binding terms)

(d) Term 4.

2E

[
(di,jf − di)

(∑(j+1)f
ℓ=jf+1 ai,ℓI(rℓ > a⊤

ℓ p
∗
jf )− ai,ℓI(rℓ > a⊤

ℓ p(j+1)f )

T − (j + 1)f

)]

=
2

T − (j + 1)f
E

[
(j+1)f∑
ℓ=jf+1

(di,jf − di)ai,ℓ E
[
I(rℓ > a⊤

ℓ p
∗
jf )− I(rℓ > a⊤

ℓ p(j+1)f ) | aℓ

]]
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≤ 2

T − (j + 1)f

(j+1)f∑
ℓ=jf+1

E

[
(di,jf − di)ai,ℓ

[
P (rℓ > a⊤

ℓ p
∗
jf | aℓ)− P (rℓ > a⊤

ℓ p(j+1)f | aℓ)
]]

≤ 2

T − (j + 1)f

(j+1)f∑
ℓ=jf+1

E

[
(di,jf − di)µai,ℓa

⊤
ℓ (p(j+1)f − p∗

jf )

]
(by Assumption 2.2)

≤ 2µā2

T − (j + 1)f

(j+1)f∑
ℓ=jf+1

√
E[(di,jf − di)2] ·

√
E[(p(j+1)f − p∗

jf )
2] (by Cauchy’s inequality)

≤ 2µā2

T − (j + 1)f
·
√

Clpf√
jf

√
E[(di,jf − di)2]

=
4µā2

√
Clp

(k − j − 1)
√
(j + 1)f

√
E[(di,jf − di)2].

(e) Term 5.

2E

(∑(j+1)f
ℓ=jf+1 di,jf − ai,ℓI(rℓ > a⊤

ℓ p
∗
jf )

T − (j + 1)f
·
∑(j+1)f

ℓ=jf+1 ai,ℓI(rℓ > a⊤
ℓ p

∗
jf )− ai,ℓI(rℓ > a⊤

ℓ p(j+1)f )

T − (j + 1)f
I(jf < τ)

)

≤ 2

√√√√E

(∑(j+1)f
ℓ=jf+1 di,jf − aℓI(rℓ > a⊤

ℓ p
∗
jf )

T − (j + 1)f

)2
√√√√E

(∑(j+1)f
ℓ=jf+1 ai,ℓI(rℓ > a⊤

ℓ p
∗
jf )− ai,ℓI(rℓ > a⊤

ℓ p(j+1)f )

T − (j + 1)f

)2

≤ 2

√
(ā+ d̄)2

(k − j − 1)2f
·

√
ā2 + 1

jµ
2ā4Clp

(k − j − 1)2f
(by results of Term 1 and Term 2)

=
2ā(ā+ d̄)

√
1 + 1

jµ
2ā2Clp

(k − j − 1)2f
.

Combining all the terms, we obtain the upper bound as:

E
[
(di,(j+1)f − di)

2
]
≤ E(di,jf − di)

2 +
(ā+ d̄)2

(k − j − 1)2f
+

ā2 + 1
jµ

2ā4Clp

(k − j − 1)2f

+
2ā(ā+ d̄)

√
1 + 1

jµ
2ā2Clp

(k − j − 1)2f
+

4µā2
√
Clp

(k − j − 1)
√

(j + 1)f

√
E[(di,jf − di)2].

Taking Crec = (ā+ d̄)2 + ā2 + µ2ā4Clp + 2ā(ā+ d̄)
√
1 + µ2ā2Clp completes the proof.

Proof of Lemma D.2. We consider a general sequence {zj}kj=1 with

zj+1 ≤ zj +
R

(k − j − 1)2f
+

√
R
√
zj

(k − j − 1)
√
(j + 1)f

where R > 0 is a constant.

Taking sum on both sides of the inequality and re-arranging, we have

k∑
j=1

(k − j + 1)(zj+1 − zj) ≤
k∑

j=1

16R

(k − j + 1)f
+

√
16R

f

k∑
j=1

√
zj√

j + 1

≤ 16R

f
log(k) +

√
16R

f

k∑
j=1

√
zj√

j + 1
.
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Noticing that
∑k

j=1(k − j + 1)(zj+1 − zj) =
∑k

j=1 zj , we have

16R

f

( k∑
j=1

1

j + 1

)
·
( k∑

j=1

zj

)
≥

√16R

f

k∑
j=1

√
zj√

j + 1

2

≥
( k∑

j=1

zj −
4R

f
log(k)

)2

.

We treat
∑k

j=1 zj as the variable, then solve and get

k∑
j=1

zj ≤
12R

f
log(k).

With this result, consider our recursion in (26), take the constant C = 12max{Crec, 16µ
2ā4Clp} > 0, we obtain:

k∑
j=1

E
[
(di,jf − di)

2
]
≤ C

f
log(k).

D.2. Technical Support for First-order Analysis

Lemma D.3. Following the updated rule of first-order method, we derive the last dual price satisfies:

E∥pT+1 − p∗∥ ≤ Clp√
νλ(T − kf)kf

· 1√
α
+

m(ā+ d̄)√
νλ

·
√
α+

p̄

T 2
.

Proof of Lemma D.3. According to Lemma A.6, take αt = α < 1
νλ , we derive the conditional expectation as

E
[
∥pT+1 − p∗∥2 | pkf

]
≤ (1− νλα)E

[
∥pT − p∗∥2 | pkf

]
+ α2m(ā+ d̄)2

≤ (1− νλα)T−kf∥pkf − p∗∥2 +
T−kf−1∑

j=0

α2m(ā+ d̄)2(1− νλα)j

≤ (1− νλα)T−kf∥pkf − p∗∥2 + α2m(ā+ d̄)2

νλα

≤ 1

νλα(T − kf)
∥pkf − p∗∥2 + αm(ā+ d̄)2

νλ
(55)

where we use the technique of
∑T−kf−1

j=0 α2m(ā + d̄)2(1 − νλα)j ≤ 1−(1−νλα)T−kf

νλα ≤ 1
νλα and (1 − νλα)T−kf ≤

1
1+νλα(T−kf) ≤

1
νλα(T−kf) .

By LP-convergence result in Lemma A.4, we know E∥pkf − p∗∥ ≤ Clp√
kf

. By Proposition 3.3 in (Gao et al., 2024), we

know the event E := ∥pkf − p∗∥ ≤ Clp√
kf

with probability P ≥ 1− 1
T 4 . By Lemma B.2, we know ∥pt∥ ≤ p̄.

Thus, we have

E∥pT+1 − p∗∥2 ≤ E
[
∥pT+1 − p∗∥2|E

]
· P(E) + E

[
∥pT+1 − p∗∥2|Ē

]
· P(Ē)

≤ Clp

νλ(T − kf)kf
· 1
α
+

m(ā+ d̄)2

νλ
· α+

p̄

T 4
. (56)
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Thus, as
√
a+ b ≤

√
a+

√
b for any a, b > 0, by (56), we have

E∥pT+1 − p∗∥ ≤ Clp√
νλ(T − kf)kf

· 1√
α
+

m(ā+ d̄)√
νλ

·
√
α+

p̄

T 2
.

This completes the proof.

E. Supplementary Experiments
In this section, we provide more experiments to further evaluate the performance of our algorithms. We consider a more
general and complex input distribution and include additional comparisons with recent methods.

E.1. New Distribution

As an extension of Section 4.1, our goal is to evaluate the main algorithms with different choices of re-solving frequency
f ∈ {T 1/3, T 1/2, T 2/3}. We consider a more complex distribution for reward and resource consumption requests and
guarantee that Assumptions 2.1 and 2.2 are still satisfied.

Consider

Input III: ait ∼ min(1,max(0, 1 + z)), rt ∼ Unif[0, 1]
where z ∼ t(1) : Student’s t-distribution with 1 degree of freedom.

We generate {rt,at}Tt=1 from Input III and keep other parameters T ∈ [102, 106] and di ∼ Uniform[1/3, 2/3] the same
in Section 4.1. We report the average result over 100 trials for each experiment and use the classic first-order method with
O(T 1/2) regret (Algorithm 4) as a baseline.

Table 4: Algorithms under New Distribution.

T First-Order Low freq Mid freq High freq

Algorithm 1

102 3.78 1.68 1.26 1.20
103 10.69 2.60 2.10 1.54
104 36.79 4.79 3.67 2.54
105 117.13 10.45 6.17 3.56
106 377.84 34.54 14.30 5.48

Algorithm 2

102 3.78 1.24 1.17 1.13
103 10.69 2.30 1.96 1.52
104 36.79 4.12 2.99 2.15
105 117.13 9.78 4.88 3.05
106 377.84 25.96 8.90 4.86

Figure 5: Regret for various re-solving frequencies.
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Under the new distribution, our algorithms still exhibit a strong regret performance. As shown in Table 4 and Figure 5, we
observe that regret decreases as the re-solving frequency increases. This trend holds consistently across both algorithms
and is consistent with the guarantees of Theorem 3.2.

E.2. More Comparison

Building on the comparison of baseline methods in Section 4.2, we evaluate our algorithms against recent works. As a
reminder, our algorithms employ frequent LP-solving to learn online dual price under continuous support. Li et al. (2024)
considers a similar problem using infrequent LP-solving to update the dual variable but under finite support.

To compare them, we adapt our algorithms to finite support and take the re-solving frequency f = T 1/3 from Section
4.1; We take the best-performed parameters for the infrequent method where the number of customer types n = 50 and
α = β = 0.95 which control the solving times near start and end. We take the horizon over T ∈ [102, 106] and report the
average result over 100 trials for each experiment. We still use the first-order method in Algorithm 4 as a baseline.
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Table 5: Algorithms comparison.

T Regret Algorithm Compute Time (s)

103

11.92 First-Order 0.002
11.12 Infrequent LP-based 0.724

3.77 Algorithm 1 0.790
3.69 Algorithm 2 0.782

104

36.37 First-Order 0.01
14.20 Infrequent LP-based 0.827

6.69 Algorithm 1 3.015
6.35 Algorithm 2 3.112

105

110.22 First-Order 0.109
20.90 Infrequent LP-based 1.028
16.41 Algorithm 1 52.95
10.84 Algorithm 2 52.39

106

312.26 First-Order 1.106
28.80 Infrequent LP-based 4.929
20.58 Algorithm 1 1261.0
14.30 Algorithm 2 1305.4

Figure 6: Regret for various algorithms.
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Table 5 and Figure 6 demonstrate the algorithm regret and computation time across different horizons. While the infre-
quent LP-based method has faster computation, our algorithms show a competitive performance in decision optimality and
achieve lower regret under finite support.
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