
Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

AUTOMATED BENCHMARK GENERATION FOR
REPOSITORY-LEVEL CODING TASKS

Konstantinos Vergopoulos1∗, Mark Niklas Müller1∗, Martin Vechev1,2

1 LogicStar.ai 2ETH Zurich, Department of Computer Science

ABSTRACT

Code Agent development is an extremely active research area, where a reliable
performance metric is critical for tracking progress and guiding new developments.
This demand is underscored by the meteoric rise in popularity of SWE-Bench.
This benchmark challenges code agents to generate patches addressing GitHub
issues given the full repository as context. The correctness of generated patches is
then evaluated by executing a human-written test suite extracted from the repository
after the issue’s resolution. However, constructing benchmarks like SWE-Bench
requires substantial manual effort to set up historically accurate execution envi-
ronments for testing. Crucially, this severely limits the number of considered
repositories, e.g., just 12 for SWE-Bench. Considering so few repositories, se-
lected for their popularity runs the risk of leading to a distributional mismatch, i.e.,
the measured performance may not be representative of real-world scenarios poten-
tially misguiding development efforts. In this work, we address this challenge and
introduce SETUPAGENT, a fully automated system capable of historically accurate
dependency setup, test execution, and result parsing. Using SETUPAGENT, we
generate two new datasets: (i) SWEE-Bench an extended version of SWE-Bench
encompassing hundreds of repositories, and (ii) SWA-Bench a benchmark focusing
on applications rather than libraries. Comparing these datasets to SWE-Bench
with respect to their characteristics and code agent performance, we find significant
distributional differences, including lower issue description quality and detail level,
higher fix complexity, and most importantly up to 40% lower agent success rates.

1 INTRODUCTION

Code Agents are quickly becoming one of the most promising and actively researched applications
of Large Language Models (LLMs); partly due to their potential to revolutionize the 700 billion
dollar software industry (Statista, 2025). To measure progress and more importantly steer further
developments in this field, high-quality datasets and benchmarks are crucial. In particular, it is
essential that they are representative of real-world use cases, sufficiently large to allow meaningful
statistical analysis, and diverse and recent enough to avoid unintentional overfitting and contamination.

Existing Benchmarks However, function-level benchmarks like HumanEval (Chen et al., 2021),
popular for evaluating LLM’s coding performance, are unrepresentative of real-world use, lack
diversity, and are becoming saturated. To address these limitations, SWE-Bench (Jimenez et al.,
2024) was proposed as the first repository-level coding benchmark based on real-world tasks, i.e.,
resolving GitHub issues. Yet, it still suffers from several limitations. (i) It is limited to few repositories,
potentially leading to overfitting to these specific codebases. (ii) Its sole focus on libraries in contrast
to applications raises generalizability questions. (iii) Its focus on popular repositories not only
makes it less representative but also increases the chances of contamination with general codebase
knowledge. (iv) Its static nature leads to most or even all instances being created before recent models’
knowledge cutoff, allowing even the exact instances to be present in the training data.

Creating Repository-Level Benchmarks To address these challenges, we would like to create
more diverse benchmarks and update them frequently with new tasks. However, while the GitHub
Issues and Pull Requests (PRs), serving as task descriptions and reference solutions, respectively, for

∗ Equal contribution.

1

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

G
itH

ub
R

ep
os

ito
ry

Cmd. Extraction
Iterative Improvements Validation

Outputs
Context

Reference Commands

CI/CD Files

Text Files

Online Docs Links

Initial
Commands

Install
Cmds

Install
Exec

Test
Cmds

Test
Exec

Parse

Check
Results

Rejected
✗

Install
Cmds

Test
Cmds

Result
Parser

✓

Figure 1: Overview of SETUPAGENT where a -icon represents an LLM driven step and a -icon
represents execution feedback.

SWE-Bench-like benchmarks can be scraped automatically, evaluating the correctness of a solution,
requires the repository’s test suite to be executed. This, in turn, requires setting up historically
accurate execution environments, identifying the correct test commands, and parsing the results. Prior
work addressed this problem either manually (Jimenez et al., 2024) or by aggressively filtering out
instances where default commands were unsuccessful (Jain et al., 2024c). However, both approaches
yield limited diversity and don’t lend themselves to frequent updates.

This Work: SETUPAGENT To address this challenge, we propose SETUPAGENT, the first method
to automate this setup process, enabling us to create repository-level code benchmarks fully automati-
cally from a list of GitHub repositories. SETUPAGENT works in three phases (illustrated in Figure 1):
(1) Command Extraction (), (2) Iterative Testing and Improvement (), and (3) Validation (). In
the extraction phase, SETUPAGENT analyzes relevant context, such as README.md files, CI/CD
configurations, and referenced web pages, to propose installation and testing commands. During the
iterative improvement phase, SETUPAGENT then executes these commands in a clean environment
and leverages an LLM to systematically diagnose and resolve issues. Finally, in the validation phase,
SETUPAGENT ensures that the generated commands are reliable by verifying the correctness of the
setup based on test results, only accepting configurations that meet a predefined success threshold.

This Work: Generated Benchmarks We demonstrate SETUPAGENT’s capability to generate
coding benchmarks from a list of repositories by creating SWA- and SWEE-Bench, each addressing
specific shortcomings of SWE-Bench. Both are designed to be representative of real-world use cases,
consider many repositories leading to diverse benchmarks, and can be frequently updated without
manual effort to avoid contamination and overfitting. SWA-Bench focuses on software applications,
containing 44 projects while SWEE-Bench focuses on diversity and less popular projects containing
366 Python repositories. Comparing SWA- and SWEE-Bench to SWE-Bench, we find significant
distributional differences, including lower repository age and popularity at issue creation, a larger
focus on recent issues, and significantly more complex reference code fixes (2-4x more modified
files and lines). Evaluating popular code agents on these datasets, we find significant performance
differences for some models and statistically significant signs of contamination, highlighting the
importance of evaluating on representative benchmarks.

Key Contributions of this work are:
• We propose SETUPAGENT, the first method for autonomously creating historically accurate

execution environments.
• We leverage SETUPAGENT to create two datasets for repository-level code generation SWA-

and SWEE-Bench, focusing on applications and diverse codebases, respectively.
• We extensively analyze SWA- and SWEE-Bench in terms of their characteristics and

corresponding code agent performance.

2 RELATED WORK

Code Agents To fully leverage the potential of LLMs for code generation, they have been equipped
with tools to interact with their environment without additional user input, e.g., by searching, viewing,

2

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

and editing code, (Wang et al., 2024a). These so-called code agents have shown great promise on
complex tasks (Bouzenia et al., 2024a; OpenDevin, 2024; Zhang et al., 2024; Yang et al., 2024; Xia
et al., 2024; Aider, 2024; Ridnik et al., 2024; Wang et al., 2024b). In this work, we evaluate some of
the best-performing open-source agents.

Code Generation Benchmarks With the success of LLMs in the domain of code generation,
an increasing variety of function-level code generation benchmarks were proposed to assess their
capabilities (Chen et al., 2021; Hendrycks et al., 2021; Austin et al., 2021; Jain et al., 2024a; Huang
et al., 2024). However, not only were these increasingly saturated by state-of-the-art models but their
focus on interview-style function-level coding challenges makes them also unrepresentative of the
complexities of real-world codebases and software engineering tasks.

To address these limitations, a range of repository-level code-generation benchmarks have been
proposed recently (Liu et al., 2023; Jain et al., 2024b; Jimenez et al., 2024). However, a repository-
level context not only makes code generation more challenging but also dataset generation as it
requires a historically accurate execution environment to be set up, the project’s test suite to be run,
and detailed results to be extracted. The required manual effort led to existing datasets focusing on a
relatively small number of popular repositories. As a result, they are prone to overfitting, often lack
diversity, and can easily contaminate the training data.

Automatic Dataset Generation These challenges could be addressed via automatic dataset gen-
eration, which has been successfully applied to function-level benchmarks by scraping tasks from
coding challenge websites and doing varying levels of manual post-processing (Hendrycks et al.,
2021; Jain et al., 2024a; Huang et al., 2024).

Jimenez et al. (2024) transfer these ideas to repository-level benchmarks, automatically scraping
GitHub repositories, issues, and corresponding pull requests resolving these issues to create SWE-
Bench consisting of 12 repositories and 2294 instances. However, they still created the required
execution environments and test commands manually.

Jain et al. (2024b) create R2E, a function-level synthesis benchmark with repository context by
scraping GitHub repositories and masking out the function to be generated. They automated the
setup by applying a default approach for projects with a setup.py or pyproject.toml file,
automatically generating equivalence tests, and filtering out all instances where this approach fails.
However, this approach aggressively filters projects with more complex installation procedures, not
only introducing a selection bias but also yielding only 246 instances.

In this work, we combine the more interesting repository-level tasks with a fully automated bench-
mark generation process, by introducing and leveraging SETUPAGENT to automatically extract the
installation and testing procedures for every task instance, allowing us to create larger and more
diverse benchmarks efficiently.

Bouzenia & Pradel (2024), concurrently proposed EXECUTIONAGENT, a tool to automatically set up
and test repositories. However, it is 60 times slower than SETUPAGENT, does not support historical
states, and does not extract results at test-level granularity. Even if the latter two shortcomings were
addressed, it would remain infeasibly slow taking, e.g., over 4 months to generate SWEE-Bench*.

3 AUTONOMOUS ENVIRONMENT SETUP

In this Section, we first outline the requirements for a setup and testing agent to be used for benchmark
generation and then describe the agent we develop for this purpose.

3.1 NOTATION AND DEFINITIONS

We first introduce notation to describe repository-level coding tasks, adapted from Mündler et al.
(2024). Given a codebase R, we obtain R ◦X by applying the code patch X . We similarly denote
the test suite T with T ◦ S after applying the test patch S. A single test t ∈ T can either pass
(P) or fail (F) when executed against the codebase R in an execution environment E. We write:
execE(t, R) ∈ {P, F} and let the order P > F hold.

*Extrapolated from ∼150 repositories.

3

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

A repository-level coding task can be written as the tuple (R, T, I, E, S∗, X∗), where R and T are the
original codebase and test suite, respectively, I is the issue description, E the execution environment,
and S∗ and X∗ the reference test and code patch, respectively. By executing all tests ti ∈ T ◦ S∗ in
the execution environment E, first against the original (R) and then the patched codebase (R ◦X∗),
we obtain the reference test behavior b∗i = (execE(ti, R) → execE(ti, R ◦X∗)). We call ti with,
e.g., b∗i = F →P a fail-to-pass test as it fails before the reference fix is applied but passes afterward.
We let the partial order F→P > F →F and P →P > P→F hold. The task is now to generate a
patch X ′, given only (R, T, I, E), such that the test behavior b′i = execE(ti, R) → execE(ti, R◦X ′)
matches or improves on the reference result, i.e., b′i ≥ b∗i for all tests ti ∈ T ◦ S∗.

3.2 SETUP AGENT REQUIREMENTS

A generic setup agent targeting individual, up-to-date repositories only has to satisfy one main
requirement: Correctness – It must extract and run the installation and testing commands before
parsing the test results. However, benchmark generation imposes additional requirements: Historical
Accuracy – Benchmark instances are based on specific, often outdated versions of a codebase R. The
execution environment E must thus use historically accurate dependency versions to reproduce the
original issue faithfully and avoid version incompatibilities. Efficiency – To generate a dataset of
many hundreds of instances, the setup agent must be efficient enough to keep total runtime reasonable
(hours or at most few days). Granularity – Evaluating agent success requires test-level results to be
parsed from the test suite output.

3.3 SETUPAGENT

Overview SETUPAGENT works in three phases illustrated in Figure 1: (1) Extraction (in Figure 1),
(2) Iterative testing and imporvement (), and (3) Validation (). In the first phase, SETUPAGENT
extracts a first version of the installation and testing commands from all relevant files, referenced
webpages, and, if available, successful commands from similar versions of this repository. In the
second phase, SETUPAGENT iteratively executes first the installation and then testing commands,
analyses the results and updates the commands. Finally, in the third phase, SETUPAGENT validates
the resulting commands by executing them, extracting the test results, and rejecting the proposed
commands, if too few tests pass. Validated commands are then returned to the user and saved in a
reference database to facilitate installations of different versions of the same repository.

Input:
Please extract all commands required to install
<project_name> in a clean environment and run its
test suite from the context below.
’’’
README.md
<file_content>
CONTRIBUTING.md
<file_content>
’’’

LLM Response:
’’’bash
apt-get install -y graphviz # installation
pip install -r req.txt # installation
nox -e test # testing
’’’
Installation Commands:
apt-get install -y graphviz
uv pip install -r req.txt -exclude-newer 2022-04-11
Testing Commands:
nox -e test

Figure 2: Illustration of the extraction phase of SETUPA-
GENT. Please see App. C for the full-length prompts.

Extraction Phase The goal of the Ex-
traction Phase is to extract an initial ver-
sion of the installation and testing com-
mands. We illustrate it in Figure 2, us-
ing a significantly simplified prompt and
shortened response for illustration pur-
poses. In the first step, SETUPAGENT
reviews all relevant files to identify the
correct Python version. If available, it
is directly parsed from the setup.py
or pyproject.toml file, otherwise
version constraints are extracted from
different sources using an LLM and
then resolved while taking issue cre-
ation time into account to ensure His-
torical Accuracy. Next, SETUPAGENT
uses a heuristic to identify possibly
relevant context like README.md and
CONTRIBUTING.md files, CI/CD con-
figurations, and referenced webpages. It then reviews these sources and directly rejects those not
containing information relevant to installation or testing, thus keeping its context size small and
improving Efficiency. Finally, SETUPAGENT prompts an LLM to extract the installation and testing
commands from the chosen sources. To ensure Historical Accuracy, SETUPAGENT enforces the
use of the uv environment manager for Python dependencies, configuring it to exclude dependency
versions released after the issue creation.

4

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

2013−01 2019−01 2025−01
Issue Creation Date

SWE

SWA

SWEE

0 4000 8000
Repo Age [Days]

SWE

SWA

SWEE

0 40000 80000
GitHub Stars

0.0

0.5

1.0

SWE

SWA

SWEE

Figure 5: PDFs (left and middle) and CDF (right) of PR creation dates (left), repository age at PR
creation time (middle), and number of GitHub stars (right) for SWA, SWEE, and SWE-Bench.

Input:
You are trying to install and test <project_name>
using the following commands.
’’’bash
<commands>
’’’
Modify the commands to resolve the following error:
’’’
...
ModuleNotFoundError: No module named ’rustworkx’
’’’

LLM Response:
We have to install rustworks first:
’’’bash
pip install rustworkx
’’’
Updated Installation Commands:
apt-get install -y graphviz
uv pip install -r req.txt exclude-newer 2022-04-11
uv pip install rustworkx exclude-newer 2022-04-11

Figure 3: Iterative improvement phase of SETUPAGENT,
where the error message was obtained by executing the
commands from the previous iteration.

Iterative Improvement Phase SETU-
PAGENT now tries to install and test the
project in a clean Docker container us-
ing the extracted commands. If any of
the installation steps fail, i.e., exit with
a non-zero exit code, or the test com-
mands fail with an error, SETUPAGENT
selects the relevant sections of the error
messages and then prompts an LLM to
identify the issue and propose a mod-
ification of the installation commands
to fix it. We illustrate this in Figure 3,
where SETUPAGENT adds a missing de-
pendency. Now SETUPAGENT tries to
resolve issues apparent in the test re-
sults, analyzing the logs to determine
whether a failure is due to incorrect test
commands, an incorrect installation, or
a bug in the codebase. Depending on
the result, SETUPAGENT prompts an LLM to modify the installation or testing commands to fix the
issue or passes the repo on to the validation phase. This iterative improvement is repeated until all
errors are resolved or an iteration limit is reached. Using a moderate iteration limit of 4 steps, we
achieve significantly improved Correctness without sacrificing Efficiency.

Input:
Please assess whether <project_name> was installed
and its test suite executed correctly given the
resulting printout.
Answer YES or NO.
’’’
...
===== 2597 passed, 3 failed in 10.85s =====
’’’

LLM Response:
YES

Figure 4: First step in the Validation phase.

Validation Phase In the validation
phase, SETUPAGENT first queries an
LLM to assess whether the installation
and testing were successful, illustrated
in Figure 4. If the LLM judges the instal-
lation to be successful, SETUPAGENT
updates the test framework’s configu-
ration to return test-level results, e.g.,
by adding -rA to a pytest command,
thus ensuring Granularity. It then se-
lects the correct parser from a pre-defined set to extract test-level results and checks the number of
passing and failing tests. We consider the installation to be successful if at least 95% of tests pass.

4 CODE GENERATION BENCHMARKS

In this Section, we describe how we leverage SETUPAGENT to create SWA- and SWEE-Bench, two
new benchmarks addressing specific limitations of SWE-Bench. We compare these datasets with
SWE-Bench and provide insights into distributional differences.

Automatically Generated Benchmarks By creating execution environments automatically, we
address two core limitations of manually generated repository-level benchmarks: (i) we can consider
many more repositories, thus improving diversity and reducing the risk of overfitting and (ii) we
can easily update benchmarks by creating new tasks from recent PRs and issues, thus ensuring that
models are not contaminated with benchmark instances (see Figures 5 and 6).

5

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

SWA-Bench Many practitioners using Code Agents develop software applications that suffer from
different types of bugs compared to libraries due to architectural and structural differences. As
SWE-Bench only considers libraries, we design SWA-Bench to focus only on applications.

SWEE-Bench We observe that more popular repositories tend to have higher-quality codebases
and issue descriptions. This includes, e.g., a more consistent (file) structure and naming conventions,
better documentation including detailed docstrings for most functions, and issue descriptions fol-
lowing a precise template (see Figures 7 and 8). As SWE-Bench focuses on particularly popular
Python repositories, the resulting tasks can be unrepresentative of real-world use. Therefore, we
design SWEE-Bench with a focus on diverse and less popular (median of 365 vs 16k stars) Python
repositories (see Figure 5).

4.1 DATASET CREATION

Source Repositories For SWA-Bench, we combine a list of 468 popular Python applications
(Hashemi, 2024) with a list of 50 Python projects from Bouzenia et al. (2024b), leading to a total
of 475 candidate repositories after deduplication. For SWEE-Bench, we consider the 8000 most
downloaded PyPi projects at the time (van Kemenade et al., 2024) with between 100k and 1.5B
monthly downloads and 0 to 25k stars, leading to good diversity while focusing on relevant projects.

Dataset Creation with SETUPAGENT We combine the original PR filtering process from Jimenez
et al. (2024) with our SETUPAGENT as follows: For every project, we first locate the corresponding
repository, deduplicate the results, and filter out repositories that are not published under a permissive
license. We then scrape issues and pull requests for each repository until we find the most recent
PR that is merged, resolved an issue, and modified a test file. We call this a valid PR. We then
use SETUPAGENT to set up an execution environment E for the corresponding codebase R (see
Section 3). For repositories where this succeeds, we scrape additional PRs until we have nper_repo
valid ones or, for SWEE, reach a maximum of 500 PRs. We then use SETUPAGENT to create the
execution environment E for each corresponding codebase R in reverse chronological order per
repository, populating SETUPAGENT’s reference commands database to speed up the setup process.
Finally, we split every PR into a reference code patch X∗ and test patch S∗. We execute the full test
suite T ◦ S∗ before and after the code patch is applied, i.e., on R and R ◦X∗, respectively, to obtain
the reference test behaviors b∗i . We then filter out PRs, where test execution fails in one of these
settings or which have no F→P test, i.e. ∄t ∈ T ◦S∗ : execE(t, R) → execE(t, R◦X∗) = F→P .
The remaining PRs form the valid instances of the generated benchmark. We choose nper_repo = 50
for SWA-Bench and nper_repo = 10 for SWEE-Bench to obtain the desired number of tasks and
show the number of repositories and PRs this leads to in Table 8 in App. B.

Ease of Use To make benchmark generation and use as easy as possible, SETUPAGENT only
requires a list of repositories to generate a dataset in a format compatible with SWE-Bench along
with docker images with all dependencies installed.

4.2 BENCHMARK CHARACTERISTICS

Repository Proportion

SWE

SWA

SWEE

Figure 6: Repository distribtuions of SWEE-,
SWA-, and SWE-Bench across instances.

Diversity We compare the distribution of in-
stances over repositories in Figure 6 and observe
that while instances in SWE are heavily concen-
trated in only a few repositories, with over 50%
of instances belonging to only two out of 12 to-
tal repositories, SWA- and SWEE-Bench show much more diversity with 535 instances from 44
repositories and 885 from 366 repositories. See App. D for a full list.

Codebase Characteristics We compare benchmarks with respect to codebase characteristics in
Table 1 and Figure 5 and observe that SWEE-Bench, compared to, SWA- and SWE-Bench contains
significantly older and more popular (# GitHub stars) repositories and larger, more complex codebases
(# files and # lines of code).

6

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

0 500 1000
Words in Issue Desc.

0.0

0.5

1.0

SWE

SWA

SWEE

0 3 6
Codeblocks

0.0

0.5

1.0

SWE

SWA

SWEE

0 3 6
Error Messages

0.8

0.9

1.0

SWE

SWA

SWEE

0 3 6
File Name Contained

0.50

0.75

1.00

SWE

SWA

SWEE

0 20 40
Longest Overlapping String

0.0

0.5

1.0

SWE

SWA

SWEE

0 4 8
Fix Lines in Issue Desc.

0.70

0.85

1.00

SWE

SWA

SWEE

Figure 7: CDFs over issue description characteristics. Number of words (top left), number of code
blocks (top middle), number of error messages (top right), number of filenames contained in the
issue description and modified in the reference solution (bottom left), the overlap between the issue
description and the reference solution in terms of longest string match (bottom middle) and complete
lines (bottom right). A CDF further down and to the right indicates a higher value.

0 250 500
Lines in Fix

0.0

0.5

1.0

SWE

SWA

SWEE

0 8 16
Files in Fix

0.0

0.5

1.0

SWE

SWA

SWEE

0 10 20
Flipped Tests

0.0

0.5

1.0

SWE

SWA

SWEE

Figure 8: CDFs over fix-complexity characteristics. Number of edited lines (left), number of edited
files (top middle), number affected tests, i.e., F→P + P→F (right). A CDF further down and to
the right indicates higher characteristic values.

Table 1: Comparison of mean dataset characteristics.

SWA SWEE SWE

Codebase # Files 899 77 1491
Lines 112k 14.8k 321k

Issue Descriptions
Words 240.2 125.1 181.3
Error Messages 0.20 0.13 0.19
Code Blocks 1.53 1.19 1.06

Tests

P →P 564.2 226.6 120.1
F→P 38.8 38.1 13.5
F→F 3.7 1.4 3.4
P →F 0.11 0.03 0.04

Test Patches

Edited Files 1.89 2.05 1.52
Edited Lines 74.8 91.5 39.2
Added Tests 9.10 23.78 6.37
Removed Tests 16.77 2.49 0.54

Fix Patches # Edited Files 3.26 3.26 1.66
Edited Lines 104.3 169.9 41.0

Issue Description Quality To assess the is-
sue description quality, we measure the num-
ber of words, error messages, and code blocks
they contain as well as the overlap between
the files mentioned there and modified in the
reference fix and the overlap between the is-
sue description and the reference solution it-
self. We show cumulative distribution func-
tions (CDFs) of the aforementioned charac-
teristics in Figure 7. We observe that while
SWA-Bench has more detailed issue descrip-
tions (longer, more code blocks, and more
error messages), they do not seem to be of
higher quality (less overlap with the reference
solution and equal file mentions). Comparing
SWE-Bench and SWEE-Bench, we observe
longer issue descriptions and slightly more overlap with the reference solution in SWE-Bench but
otherwise similar characteristics.

Fix Complexity To assess the complexity of required fixes, we measure the number of lines and
files modified in the reference solution and the number of tests that flip from passing to failing (and
vice versa). We show CDFs in Figure 8 and observe that while SWEE- and SWA-Bench have similar
distributions across all these metrics, SWE-Bench fixes are significantly less complex by all metrics.

7

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

5 EXPERIMENTAL EVALUATION

5.1 EXPERIMENTAL SETUP

Models We consider a range of models across sizes, cost points, and model providers. For exact
versions, see Table 6 in App. A. Unless otherwise specified, we use GPT-4O-MINI as the underlying
model for all agents. For decoding, we use the default parameters for all Code Agents and greedy
decoding for SETUPAGENT.

Code Agents We evaluate two Code Agents from the top of the SWE-Bench leaderboard†

which most likely have been optimized for SWE-Bench (OpenHands (Wang et al., 2024b) and
AutoCodeRover-v2.0 (Zhang et al., 2024)), and ZeroShot (Jimenez et al., 2024) with oracle context
(files modified in the ground truth fix) which prompts LLMs directly without any optimization for
SWE-Bench. We report the portion of resolved instances as accuracy (Acc.) for all Code Agents.

Code Execution We run all code execution (both for SETUPAGENT and all Code Agents) in
separate Docker containers to improve reproducibility and security. For SETUPAGENT, we use an
Ubuntu 22.04 container as the base image and pre-install a range of common build dependencies but
do not provide any Python dependencies.

5.2 EFFECTIVENESS OF SETUPAGENT
Table 2: SETUPAGENT success rates at extract-
ing installation and test commands as well as
parsing the resulting test output.

Success

SWA Repos 28.6%
Instances 58.5%

SWEE Repos 21.6%
Instances 71.5%

We evaluate the effectiveness of SETUPAGENT in
creating SWA- and SWEE-Bench by analyzing the
frequency of fully successful environment and test-
ing setups in Table 2. We observe SETUPAGENT
is able to extract historically correct execution en-
vironments for 20-30% of repositories without ref-
erence commands and for 55-75% of instances for
these repositories. Without reference commands,
SETUPAGENT takes 76 minutes to attempt to install all 154 repositories considered for SWA after
deduplication and license checks and thus takes only about 30s on average per repository. When
creating SWEE-Bench, we deactivate the web browsing ability of SETUPAGENT.

Failure Analaysis To understand SETUPAGENT’s failure cases, we conduct a small case study,
manually inspecting five failed instances from SWA-Bench, and observe the following: In all
instances, errors in the build process cause the failure. For all but one instance, finding the installation
instructions requires following two or more links on web pages. In all but two instances, the only
described way to test the application requires running docker containers, which SETUPAGENT does
not support. In two instances, installation and/or testing requires the use of makefiles, referencing
multiple substeps. Finally, in one instance SETUPAGENT chooses the wrong requirement file and
then begins to install missing testing dependencies. We believe this points to exciting future work
improving SETUPAGENT’s web-browsing capabilities and docker support.

5.3 AGENT PERFORMANCE ACROSS DATASETS

Table 3: Issue resolution rates (accuracy) of various
agents on SWA-, SWEE-, and SWE-Bench.

Agent Model SWA SWEE SWE

ZeroShot(Oracle) GPT-4O-MINI
0.9% 2.2% 2.8%

Openhands 3.9% 4.4% 4.6%

AutoCodeRover v2
GPT-4O-MINI 8.4% 8.9% 8.2%
GPT-4O 10.2% 15.1% 16.6%
HAIKU-3.5 10.8% 12.9% 13.6%

We conduct all below experiments on the full
SWA and uniformly subsampled versions of
SWEE and SWE-Full of identical size (535
instances). We report Code Agent perfor-
mance in Table 3 and observe surprisingly
small differences in performance between
all three datasets when using GPT-4O-MINI.
However, when using GPT-4O or HAIKU-3.5
we observe a significant drop in performance from SWEE- and SWE-Bench to SWA.

†swebench.com accessed in November 2024

8

https://www.swebench.com/#verified

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

5.4 BENCHMARK ANALAYSIS

Table 4: Spearman’s rank correlation coefficients (ρ) and p-value be-
tween accuracy and instance characteristics. Statistically significant
(p < 1%) correlations are highlighted in bold.

Characteristic
SWA SWEE SWE

ρ p-value ρ p-value ρ p-value

Repo Age -0.06 2.0× 10−1 -0.02 5.8× 10−1 -0.02 7.0× 10−1

GitHub Stars -0.03 4.8× 10−1 -0.02 7.2× 10−1 0.07 1.3× 10−1

Words in Issue -0.06 1.8× 10−1 -0.00 9.6× 10−1 0.01 7.7× 10−1

Code Blocks in Issue -0.00 9.7× 10−1 0.04 3.4× 10−1 -0.06 1.7× 10−1

Error Messages in Issue 0.03 4.6× 10−1 0.09 3.7× 10−2 -0.04 3.5× 10−1

Fix File Names in Issue 0.12 4.5× 10−3 0.19 1.2× 10−5 0.18 2.5× 10−5

Longest Fix Substring in Issue -0.04 3.7× 10−1 -0.11 1.1× 10−2 0.04 3.1× 10−1

Fix Lines in Issue 0.09 3.7× 10−2 0.06 1.7× 10−1 0.17 1.1× 10−4

Lines in Fix -0.28 5.0× 10−11 -0.40 1.3× 10−21 -0.28 6.2× 10−11

Files in Fix -0.12 6.2× 10−3 -0.26 1.6× 10−9 -0.16 1.4× 10−4

Affected Tests -0.18 3.3× 10−5 -0.25 4.0× 10−9 -0.15 7.2× 10−4

In Section 4, we observe in-
teresting distributional dif-
ferences between the in-
stance characteristics of
SWA-, SWEE-, and SWE-
Bench. Now, we explore
how these characteristics
correlate with agent per-
formance, reporting Spear-
man’s rank correlation co-
efficients, ρ, and p-values
for AutoCodeRover v2 and
GPT-4O in Table 4. We ob-
serve that only characteris-
tics computed with knowledge of the solution have a statistically significant correlation with perfor-
mance. In particular, the overlap of the issue with the reference code patch in terms of file names, and
number of lines has a strong positive correlation with performance, while all fix complexity metrics
have a strong negative correlation with performance.

Table 5: Accuracy of AutocodeRover v2 (Zhang
et al., 2024) on SWA-Bench instances split between
those created before and after the model’s knowledge
cutoff (KC) and the p-value of the underlying resolu-
tion rate being the same or higher after the KC.

Dataset Model # after KC Acc before Acc after p-value

SWA
GPT-4O-MINI 249 9.4% 7.2% 17.90%
GPT-4O 249 12.2% 7.2% 2.65%
HAIKU-3.5 44 11.0% 9.1% 34.83%

SWEE
GPT-4O-MINI 230 8.2% 10.0% 76.50%
GPT-4O 230 15.4% 15.2% 47.56%
HAIKU-3.5 102 13.6% 9.8% 15.01%

Data Contamination We analyze the accu-
racy (Acc) of AutoCodeRover v2 on SWA-
and SWEE-Bench, depending on whether
a PR was created before or after a model’s
knowledge cutoff (KC), showing results in Ta-
ble 5. We report the (one-sided) p-value of
observing these results under the null hypoth-
esis that the success rate is not lower after the
KC (computed using a t-test and normal ap-
proximation of the binomial distribution). We
observe that on SWA-Bench all considered
models have a lower success rate after the KC with the difference being statistically significant
only for GPT-4O. Interestingly, we observe no such signs on SWEE-Bench which contains much
less popular projects and is thus less prone to contamination. While all SWE instances are too old
to conduct a similar analysis, we observe that the performance delta between SWE and SWA is
correlated with the drop in accuracy over the KC on SWA.

6 CONCLUSION

We introduced SETUPAGENT, the first method for automated and historically accurate execution
environment setup for Python codebases. SETUPAGENT enables us to create repository-level code
benchmarks fully automatically from a simple list of GitHub repositories. We demonstrated its
effectiveness by creating two new benchmarks, SWA- and SWEE-Bench, focusing on applications
and diversity of codebases, respectively, and addressing several limitations of existing repository-
level code benchmarks. In particular, their automated generation allows us to consider many more
repositories, increasing diversity and reducing the risk of overfitting, and update the benchmarks over
time, minimizing the risk of data contamination.

We extensively analyzed SWA- and SWEE-Bench, observing significant distributional differences
compared to SWE-Bench in fix-complexity characteristics that are strongly correlated with agent
success. We further found statistically significant performance degradation for SWA-Bench instances
created after the knowledge cutoff for one model. Together, these findings highlight the importance
of evaluating on diverse, representative, and frequently updated benchmarks and thus the value of
our automated benchmark generation approach. We believe SETUPAGENT can facilitate this by
enabling practitioners to quickly turn their specific target domain into a high-quality representative
benchmark.

9

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

REFERENCES

Aider. Aider is SOTA for both SWE Bench and SWE Bench Lite, Jun 2024.

Anthropic. Model card addendum: Claude 3.5 haiku and upgraded claude 3.5
sonnet. https://assets.anthropic.com/m/1cd9d098ac3e6467/original/
Claude-3-Model-Card-October-Addendum.pdf, 2024.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis
with large language models. CoRR, abs/2108.07732, 2021. URL https://arxiv.org/abs/
2108.07732.

Islem Bouzenia and Michael Pradel. You name it, I run it: An LLM agent to execute tests of
arbitrary projects. CoRR, abs/2412.10133, 2024. doi: 10.48550/ARXIV.2412.10133. URL
https://doi.org/10.48550/arXiv.2412.10133.

Islem Bouzenia, Premkumar T. Devanbu, and Michael Pradel. Repairagent: An autonomous, llm-
based agent for program repair. CoRR, 2024a.

Islem Bouzenia, Bajaj Piyush Krishan, and Michael Pradel. Dypybench: A benchmark of executable
python software. Proc. ACM Softw. Eng., 1(FSE):338–358, 2024b. doi: 10.1145/3643742. URL
https://doi.org/10.1145/3643742.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021. URL https://arxiv.
org/abs/2107.03374.

Mahmoud Hashemi. Awesome python applications. https://github.com/mahmoud/
awesome-python-applications, 2024.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring
coding challenge competence with APPS. In Joaquin Vanschoren and Sai-Kit Yeung (eds.),
Proceedings of the Neural Information Processing Systems Track on Datasets and Bench-
marks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html.

Yiming Huang, Zhenghao Lin, Xiao Liu, Yeyun Gong, Shuai Lu, Fangyu Lei, Yaobo Liang, Yelong
Shen, Chen Lin, Nan Duan, and Weizhu Chen. Competition-level problems are effective LLM
evaluators. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association
for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16,
2024, pp. 13526–13544. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.
FINDINGS-ACL.803. URL https://doi.org/10.18653/v1/2024.findings-acl.
803.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. CoRR, abs/2403.07974, 2024a. doi: 10.48550/
ARXIV.2403.07974. URL https://doi.org/10.48550/arXiv.2403.07974.

10

https://assets.anthropic.com/m/1cd9d098ac3e6467/original/Claude-3-Model-Card-October-Addendum.pdf
https://assets.anthropic.com/m/1cd9d098ac3e6467/original/Claude-3-Model-Card-October-Addendum.pdf
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.48550/arXiv.2412.10133
https://doi.org/10.1145/3643742
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://github.com/mahmoud/awesome-python-applications
https://github.com/mahmoud/awesome-python-applications
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://doi.org/10.18653/v1/2024.findings-acl.803
https://doi.org/10.18653/v1/2024.findings-acl.803
https://doi.org/10.48550/arXiv.2403.07974

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2E: turning any
github repository into a programming agent environment. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024b.
URL https://openreview.net/forum?id=kXHgEYFyf3.

Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2e: Turning
any github repository into a programming agent test environment. In ICLR 2024, 2024c.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
VTF8yNQM66.

Tianyang Liu, Canwen Xu, and Julian J. McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. CoRR, abs/2306.03091, 2023. doi: 10.48550/ARXIV.2306.03091.

Niels Mündler, Mark Niklas Mueller, Jingxuan He, and Martin Vechev. Swt-bench: Testing and
validating real-world bug-fixes with code agents. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

OpenAI. Openai model docs. https://platform.openai.com/docs/models/gpt-4o,
2025.

OpenDevin. Opendevin: Code less, make more, 2024.

Tal Ridnik, Dedy Kredo, and Itamar Friedman. Code generation with alphacodium: From prompt
engineering to flow engineering. CoRR, abs/2401.08500, 2024. doi: 10.48550/ARXIV.2401.08500.
URL https://doi.org/10.48550/arXiv.2401.08500.

Statista. Statista market insights. https://www.statista.com/outlook/tmo/
software/worldwide, 2025.

Hugo van Kemenade, Cal Paterson, Martin Thoma, Richard Si, and Zsolt Dollenstein. hugovk/top-
pypi-packages: Release 2024.12, December 2024. URL https://doi.org/10.5281/
zenodo.14252675.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on large
language model based autonomous agents. Frontiers Comput. Sci., 2024a.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. OpenHands: An Open Platform for AI Software
Developers as Generalist Agents, 2024b. URL https://arxiv.org/abs/2407.16741.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
llm-based software engineering agents. CoRR, abs/2407.01489, 2024. doi: 10.48550/ARXIV.2407.
01489. URL https://doi.org/10.48550/arXiv.2407.01489.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. SWE-agent: Agent Computer Interfaces Enable Software Engineering Language
Models, 2024.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement. CoRR, abs/2404.05427, 2024. doi: 10.48550/ARXIV.2404.05427.

11

https://openreview.net/forum?id=kXHgEYFyf3
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://platform.openai.com/docs/models/gpt-4o
https://doi.org/10.48550/arXiv.2401.08500
https://www.statista.com/outlook/tmo/software/worldwide
https://www.statista.com/outlook/tmo/software/worldwide
https://doi.org/10.5281/zenodo.14252675
https://doi.org/10.5281/zenodo.14252675
https://arxiv.org/abs/2407.16741
https://doi.org/10.48550/arXiv.2407.01489

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

A APPENDIX: EXPERIMENTS

Below, we provide the exact model versions we used in Table 6.

Table 6: LLM Details inlcuding Knowledge Cutoff (KC)

Model Name Model ID API Provider KC Reference

GPT-4O gpt-4o-2024-08-06 OpenAI Oct 2023 OpenAI (2025)
GPT-4O-MINI gpt-4o-mini-2024-07-18 OpenAI Oct 2023 OpenAI (2025)
HAIKU-3.5 claude-3-5-haiku-20241022 Anthropic Jul 2024 Anthropic (2024)

B APPENDIX: ADDITIONAL DATASET DETAILS

Table 7: Ablation study on SETUPAGENT, report-
ing the number of successfully extracted execution
environments for SWA-Bench.

Repositories

SETUPAGENT 44
only CI/CD Files 33
only Text Files 15
no Iterative Improvement 11

Ablation We evaluate the impact of SETU-
PAGENT’s components in an ablation study on
SWA-Bench, reporting results in Table 7. We
observe that especially the use of CI/CD config
files and the iterative improvement are crucial
for SETUPAGENT’s success.

Benchmark Creation Details In Table 8, we
provide a detailed breakdown of the number of
repositories and pull requests (PRs) that pass each filter in the SWEE pipeline.
Table 8: SWEE-Bench (left) and SWA-Bench (right) pipeline from projects to tasks. A PR is valid if
it resolves an issue, modifies a test file, and is merged. An instance valid, if it has additionally at least
one F→P test.

Step # Repos # PRs

Initial Projects 8000
+ GH Repo Found 7057
+ Preprocessing 5097
+ Permissive License 3800
+ Has valid PR 2377
+ SETUPAGENT succeeds 514
+ Get nper_repo valid PRs 2115
+ SETUPAGENT succeeds 1513
+ valid instance 885

Step # Repos # PRs

Initial Projects 475
+ GH Repo Found 440
+ Preprocessing 427
+ Permissive License 227
+ Has valid PR 154
+ SETUPAGENT succeeds 44
+ Get up to 50 valid PRs 1527
+ SETUPAGENT succeeds 893
+ valid instance 535

12

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

C APPENDIX: PROMPTS

In this Section, we provide the full-length prompts used by SETUPAGENT.

Prompt to suggest relevant files

You are a senior developer contributing to the
www.github.com/<repo_id> project by solving issues. You
have created a Docker environment with Ubuntu, and now
you want to install the repository in development mode
(meant for active development and testing) and run the
tests. The first step is to locate the installation
instructions and the test commands. I will provide
you a list of filenames or file paths (e.g., README.md,
contributing.md), which typically include instructions
for installation and testing. The files can be either
filenames (e.g., README.md) or file paths (e.g.,
docs/maintaining/installing/install-from-source.rst). From
the provided list of filenames or file paths your task is:
1. Identify those likely related to installation or testing
based on their names. 2. Exclude those that are clearly
irrelevant. 3. If unsure, include the file/path in your
response. 4. Return only the files/paths from the given
list, exactly as they appear, without modifying their names
or structure 5. If a full path is given, return the full
path, not just the filename. 6. Use the following format
for your response <ANSWER>: file 1, ...file n, filepath 1,
...filepath k
<REASONING>: <YOUR REASONING>
Example input:
‘‘‘
readme.md, contributing.md, contributors.md,
docs/maintaining/installing/install-from-source.rst,
docs/source/lib/install_datatypes.rst,
docs/html/ux-research-design/contribute.md
‘‘‘
A reasonable output is:
‘‘‘
<ANSWER>: readme.md, contributing.md,
docs/maintaining/installing/install-from-source.rst,
<REASONING>: The files readme.md and contributing.md
commonly contain installation and testing instructions,
while docs/maintaining/installing/install-from-source.rst
is likely related to installation as the name suggests
‘‘‘
Here are the file names
‘‘‘
<file 1>, <file 2>, ..., <file k>
‘‘‘
Please read the names carefully, ask yourself the purpose
of each file based on the name before including it in your
response. Use the given format for your answer and please
do not add any extra comment or text.

Figure 9: Prompt for choosing relevant files to installation and testing

13

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

Prompt to suggest external sources of information

You are a senior developer contributing to the GitHub project
at www.github.com/<repo_id> by solving issues. Your goal
is to install the repository in development mode and run its
tests.
You have created a Docker environment with Ubuntu, and now
you are searching for the installation instructions and test
commands.
I will provide you with the content of common repository
files (e.g., README.md, CONTRIBUTING.md). Your task is to
analyze the provided text and identify all external links
that contain relevant information to
1. Installation instructions for this project.
2. Test commands or instructions for running the tests for
this project.
3. Contribution guidelines.

Please provide the links you found following the criteria
below.
a. Exclude links to generalpurpose documentation
for external tools (e.g., Tox, Pytest, or other
frameworks/libraries).
b. If you are unsure about the relevance of a link, better
include it.
c. Order the links from most to least relevant.
d. Do not add any comment or text.
e. Use the following format:
LINK: <LINK 1>
LINK: <LINK 2>
...LINK: <LINK n>
Here is the text:
’’’
<text_content>
’’’

Figure 10: Prompt to suggest potentially relevant external sources

14

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

Prompt to determine importance of a url content

You are a senior developer working on the GitHub project
at www.github.com/<repo_id>. You have set up a Docker
environment with Ubuntu, and now your goal is to install
the repository in development mode and run its tests.
Your task is to carefully review the content of the following
link: <current_link>, and determine if it includes
installation instructions or test commands for the <repo_id>
project.
Please follow these steps:
1. Look carefully in the provided content for any potential
installation commands or test commands related to the
<repo_id> project.
2. Ask yourself if the located instructions are reasonable,
legitimate and can be practically executed to install or to
test the <repo_id> project only.
Please provide your answer using the following format:
INSTALLATION/TEST COMMANDS: <TRUE|FALSE>
REASONING: <REASONING>
Important Notes
Answer with TRUE only if the content explicitly includes

valid and usable installation or test commands.
If you do not find any relevant commands, or if the

instructions are vague, ambiguous, impractical, or unrelated
answer FALSE.
When in doubt, answer FALSE.

Content of the link <current_link>:
’’’
<clean_content> ’’’

Figure 11: Prompt for determining if a link is relevant to installation and testing in the extraction
phase of the SETUPAGENT

15

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

Extract Install Command Prompt

You are a senior developer working on the project located
at www.github.com/<repo_id>. You have created a Docker
environment with Ubuntu, cloned the repository, and
navigated to the directory <repo_dir>.
Your next step is to install the project in development mode,
which is intended for active development and testing. I’ll
provide you with important text files (e.g., README.md) and
important continuous integration (CI) configuration files,
which typically contain instructions for developers on
installation and testing. The format provided will be the
file name followed by its content.
Your task is to identify and return the bash commands
necessary for the correct installation of the repository.
This includes system dependencies, project installation in
development mode, and any prerequisites or configuration
commands.

** IMPORTANT NOTES **
1. Include system dependencies installation commands
required for the project (e.g., via apt, yum, curl, etc.).
2. Include installation commands necessary for setting up
the project in development mode.
3. Include prerequisites installation and configuration
commands, such as those for npm or any other required setup.
3. If comprehensive installation instructions are provided,
return them without any modifications.
4. Only exclude commands related to creating or activating
virtual environments.

The returned commands should meet the following criteria:
1. Enclosed in quotes.
2. Focused strictly on commands necessary for both system
dependency installation and development-mode installation of
the project.
3. Free from any comments or text.
4. Accurate and executable without errors.

If no installation commands are present, return NONE.
Here is the text:
‘‘‘
<context>
‘‘‘
Take your time to carefully analyze the content. Make sure
that your response includes only the necessary installation
bash commands. Ask yourself if the provided content is
sufficient for installation. And for each command, ask
yourself what’s the purpose of the command and if it is
necessary.
An example of the expected response is:
‘‘‘bash
install_command_1
install_command_2
‘‘‘
Please provide the installation commands in the above
specified format.

Figure 12: Prompt used for extraction of installation commands in extraction phase of SETUPAGENT

16

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

Extract Test Command Prompt

You are a senior developer working on the
www.github.com/<repo_id> project. You have created a
Docker environment with Ubuntu, cloned the repository,
and installed it in development mode (meant for active
development and testing).
You are now inside the <repo_dir> directory and your next
goal is to run the unit tests. I will provide you with
some important text files (e.g., README.md) and important
continuous integration (CI) congiguration files, which
typically include instructions for running tests. The
format provided will be the file name followed by its
content.
Your task is to identify and return the exact bash commands
required to run the tests.
The returned commands should meet the following criteria:
1. Enclosed in quotes.
2. Free from any comments or text.
3. Accurate and executable without errors.
If no test commands are present, return NONE.
Here is the text:
‘‘‘
<context>
‘‘‘
Take your time to analyze the content carefully. Ensure that
only the necessary bash commands for running the tests are
included. Ask yourself the purpose of each command before
including it in your response.
An example of the expected response is:
‘‘‘bash
test_command_1
test_command_2
‘‘‘
Please provide the test commands in the above specified
format.

Figure 13: Prompt used for extraction of test commands in the extraction phase of SETUPAGENT

17

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

Prompt for determining error causes

You are a developer working on the project at
www.github.com/<repo_id>. You created an environment
with python version <python_version>. Your goal is to
install the repository in development mode (meant for active
development and testing) and run the unit tests.
The installation commands are:
‘‘‘bash
<install_command_1>
<install_command_2>
...
<install_command_k>
‘‘‘
The testing commands are:
‘‘‘bash
<test_command_1>
<test_command_2>
...
<test_command_k>
‘‘‘
You received the following error message after executing the
command <error_command>:
’’’
<error_message>
’’’
Your task is to analyze the error message and determine its
causes.
You can return one of the following answers:
1. <PYTHON>, if the error is caused by incompatibilities
between the python version and any used package.
2. <INSTALLATION>, if the error is caused by an
installation command or is related to any missing package,
regardless if it a testing related framework or not. All
the required packages must be installed in the installation
phase.
3. <TESTING>, if the error is caused by any testing command
(e.g., an invalid flag in the test command)
4. <UNDECIDABLE>, if you cannot determine what causes the
error.
Please read the error message carefully and try to spot the
commands that are responsible for the error. Always provide
the reasoning for your answer.
Use the following format:
RESULT: <PYTHON, INSTALLATION, TESTING, UNDECIDABLE>
REASONING: <YOUR REASONING>

Figure 14: Prompt for determining the error cause in the iterative improvement phase of the SETUPA-
GENT

18

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

Prompt for fixing python version

You are a senior developer working on the project at
www.github.com/<repo_id>. Your goal is to install the
repository in development mode (meant for active development
and testing) and run the unit tests.
You created an environment with python version
<python_version>, but you are unsure if the python version
is correct.
You received the following error message while testing the
repository:
’’’
<error_message>
’’’
A senior software developer colleague has provided an
explanation of why things are not working as expected with
the current commands:
<Reasoning from the answer to the prompt for determining the
error cause>. Use his reasoning to resolve the current error
we are facing.
Your task is to determine a compatible Python version for the
current state of the repository. Carefully read the error
message and identify the most suitable Python version.
Please follow this answer format:
1. Return <NONE> if the error is unrelated to the Python
version or you cannot determine a compatible version.
2. If a specific Python version is compatible, return only
the version number (e.g., 2̈.7)̈.
3. Do not include any additional comments or text in your
response.

Figure 15: Prompt for fixing python version used in the iterative improvement phase of SETUPAGENT

19

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

Prompt for fixing installation commands 1

You are a senior developer working on the project at
www.github.com/<repo_id>. You are working in an enviroment
with python version <python_version>. You have attempted to
install the repository in development mode (meant for active
development and testing) using the following bash commands:
‘‘‘bash
<install_command_1>
<install_command_2>
...
<install_command_n>
‘‘‘
However, the command <error_command> failed and we received
the following error message:
’’’
<error_message> ’’’
Your task is to fix the above error. Think carefully what
causes the error and try to spot the commands that are
responsible for it. Please provide the updated installation
steps in a bash code block, following these rules:
1. You have to use always uv pip instead of regular pip.
2. Return <NONE> if you can not fix the command.
3. Do not add any comments or text.
For example:
‘‘‘bash
apt-get install -y <package_name>
uv pip install -r requirements.txt
‘‘‘

Figure 16: Prompt for fixing the installation commands used in the iterative improvement phase of
SETUPAGENT when the error occurs in the building process of containers

20

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

Prompt for fixing installation commands 2

You are a senior developer working on the project at
www.github.com/<repo_id>. You tried to install the
repository in development mode, which is intended for active
development and testing, however the installation failed.
You are working in an enviroment with python version <python>
and you tried to use the following bash commands for the
installation:
‘‘‘bash
<install_command_1>
<install_command_2>
...
<install_command_n>
‘‘‘
During the execution of these commands, you received the
following error message: ’’’
<error_message> ’’’
A senior software developer colleague has provided an
explanation of why things are not working as expected with
the current commands:
<Reasoning from the answer to the prompt for determining the
error cause>. Use his reasoning to resolve the current error
we are facing.
Your task is to carefully read the error message and
determine which commands are causing the error. Reason
about every command if it is causing the error. If you
conclude that the problem is related to any of the commands,
update the installation bash script to solve the problem.
Note that you can also add new commands to fix the problem.
If you decide to update the installation bash script you
have to follow these rules:
1. Provide the updated installation steps in a bash code
block.
2. Use uv pip instead of regular pip.
2. Return NONE if the error is not related to the
installation steps or you are not able to fix it.
3. Do not add any comments or text.
For example:
The initial installation command is:
‘‘‘bash
uv pip install ˙
‘‘‘
However, the error message states that the <package_name>
package is not installed. Then you would update the
installation command to:
‘‘‘bash
uv pip install ˙
uv pip install <package_name> ‘‘‘

Figure 17: Prompt for fixing the installation commands used in the iterative improvement phase of
SETUPAGENT

21

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

Prompt for fixing testing commands

You are a senior developer working on the project at
www.github.com/<repo_id>. You installed the repository in
an enviroment with python version <python_version> and now
you are trying to run the unit tests.
You run the tests using the following bash commands:
‘‘‘bash
<test_command_1>
<test_command_2>
...
<test_command_k>
‘‘‘
However, at the moment we receive the following error
message:
’’’ <error_message> ’’’
A senior software developer colleague has provided an
explanation of why things are not working as expected with
the current commands:
<Reasoning from the answer to the prompt for determining the
error cause>. Use his reasoning to resolve the current error
we are facing.
Your task is to read the produced error message carefully,
determine what the problem is and try to fix it. Ask
yourself which test command could cause this problem.
If you conclude that the problem is related to the test
commands, update the test commands to solve the problem.
Please provide the updated test commnds in a bash code block,
following these rules:
1. You have to always use uv pip instead of regular pip.
2. Return NONE if the error is not related to the test
command or you cannot fix it.
3. Do not add any comments or text.
4. Add a command only if you are sure that it is correct.
For example: The initial testing command was:
‘‘‘bash
pytest test_file.py run all ‘‘‘ However, if in this case we
would need the flag ’-v’ and the maximal number of failing
tests to be 1, we would have to correct the command to:
‘‘‘bash
pytest test_file.py maxfail=1 v ‘‘‘

Figure 18: Prompt for fixing the installation commands used in the iterative improvement phase of
SETUPAGENT

22

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

D APPENDIX – DATASET DETAILS

Below, we list all repositories along with the number of corresponding tasks in SWA-Bench.

SWA-Bench– Repositories

1. iterative/dvc - 42

2. streamlink/streamlink - 35

3. spack/spack - 35

4. PrefectHQ/prefect - 34

5. xonsh/xonsh - 32

6. mitmproxy/mitmproxy - 31

7. python-pillow/Pillow - 29

8. mkdocs/mkdocs - 23

9. hynek/structlog - 22

10. pallets/click - 21

11. locustio/locust - 20

12. jpadilla/pyjwt - 17

13. elastic/elasticsearch-dsl-py
- 17

14. pallets-eco/wtforms - 17

15. ipython/ipython - 16

16. python-poetry/poetry - 15

17. conan-io/conan - 15

18. sabnzbd/sabnzbd - 14

19. Zulko/moviepy - 14

20. nvbn/thefuck - 12

21. arrow-py/arrow - 11

22. benoitc/gunicorn - 8

23. cookiecutter/cookiecutter - 8

24. pypa/pipenv - 7

25. graphql-python/graphene - 6

26. pypa/bandersnatch - 5

27. AtsushiSakai/PythonRobotics -
4

28. hynek/doc2dash - 3

29. PythonCharmers/python-future
- 3

30. aimhubio/aim - 2

31. dbcli/pgcli - 2

32. geopython/pycsw - 2

33. dbader/schedule - 2

34. kibitzr/kibitzr - 1

35. getnikola/nikola - 1

36. geopy/geopy - 1

37. Maratyszcza/PeachPy - 1

38. gawel/pyquery - 1

39. Suor/funcy - 1

40. simonw/datasette - 1

41. cowrie/cowrie - 1

42. pypa/pip - 1

43. StevenBlack/hosts - 1

44. jupyter/nbgrader - 1

Below, we list all repositories along with the number of corresponding tasks in SWEE-Bench.

23

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

SWEE-Bench– Repositories Part I

1. python-attrs/attrs - 9

2. dgasmith/opt_einsum - 9

3. jazzband/tablib - 8

4. MartinThoma/flake8-simplify -
8

5. matthewwithanm/python-markdownify
- 8

6. stephenhillier/starlette_exporter
- 8

7. sciunto-org/python-bibtexparser
- 8

8. davidhalter/parso - 8

9. marshmallow-code/flask-smorest
- 7

10. adamchainz/blacken-docs - 7

11. MarketSquare/robotframework-tidy
- 7

12. lundberg/respx - 7

13. seperman/deepdiff - 7

14. Stranger6667/hypothesis-graphql
- 7

15. cantools/cantools - 7

16. didix21/mdutils - 7

17. marshmallow-code/apispec - 7

18. softlayer/softlayer-python -
6

19. gorakhargosh/watchdog - 6

20. pygments/pygments - 6

21. dask-contrib/dask-histogram -
6

22. andialbrecht/sqlparse - 6

23. mirumee/ariadne - 6

24. tableau/tabcmd - 6

25. gerrymanoim/exchange_calendars
- 5

26. snowplow/snowplow-python-tracker
- 5

27. joerick/pyinstrument - 5

28. scikit-rf/scikit-rf - 5

29. matthewwardrop/formulaic - 5

30. laspy/laspy - 5

31. python-control/python-control
- 5

32. mwouts/itables - 5

33. AzureAD/microsoft-authentication-library-for-python
- 5

34. firebase/firebase-admin-python
- 5

35. ethereum/eth-account - 5

36. davidhalter/jedi - 5

37. agronholm/typeguard - 5

38. Delgan/loguru - 5

39. pytransitions/transitions - 5

40. lovasoa/marshmallow_dataclass
- 5

41. aio-libs/yarl - 5

42. PyCQA/pyflakes - 5

43. python/importlib_metadata - 5

44. konradhalas/dacite - 5

45. ilevkivskyi/typing_inspect -
5

46. jupyter/jupyter_core - 5

47. getsentry/responses - 5

48. beartype/plum - 4

49. open2c/bioframe - 4

50. developmentseed/morecantile -
4

51. nats-io/nats.py - 4

52. nipy/nipype - 4

53. python-quantities/python-quantities
- 4

54. stac-utils/pystac-client - 4

55. luolingchun/flask-openapi3 -
4

56. sayanarijit/expandvars - 4

57. jpadilla/pyjwt - 4

58. NowanIlfideme/pydantic-yaml -
4

59. john-kurkowski/tldextract - 4

60. geopandas/geopandas - 4

61. cloudevents/sdk-python - 4

62. jupyter/nbformat - 4

63. matthew-brett/delocate - 4

64. iterative/shtab - 4

65. jsonpickle/jsonpickle - 4

66. ethereum/eth-utils - 4

67. mhe/pynrrd - 4

68. adamjstewart/fiscalyear - 4

69. pytest-dev/pytest-xdist - 4

70. facelessuser/wcmatch - 4

71. scikit-hep/awkward - 4

72. tomplus/kubernetes_asyncio -
4

73. ipython/traitlets - 4

74. David-Wobrock/sqlvalidator -
4

75. omry/omegaconf - 4

76. python-lsp/python-lsp-server
- 4

77. cogeotiff/rio-tiler - 3

78. wjohnson/pyapacheatlas - 3

24

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

SWEE-Bench – Repositories Part II

79. adamchainz/django-htmx - 3

80. mwclient/mwclient - 3

81. executablebooks/sphinx-book-theme
- 3

82. scikit-hep/vector - 3

83. patrick-kidger/equinox - 3

84. christiansandberg/canopen - 3

85. regebro/pyroma - 3

86. nephila/giturlparse - 3

87. cookiecutter/cookiecutter - 3

88. serge-sans-paille/pythran - 3

89. tomasvotava/fastapi-sso - 3

90. jsvine/pdfplumber - 3

91. scrapy/protego - 3

92. SmileyChris/django-countries
- 3

93. cscorley/whatthepatch - 3

94. pythological/kanren - 3

95. pypa/virtualenv - 3

96. fastavro/fastavro - 3

97. marshmallow-code/marshmallow-sqlalchemy
- 3

98. gazpachoking/jsonref - 3

99. lepture/mistune - 3

100. scikit-learn-contrib/category_encoders
- 3

101. simonw/sqlite-utils - 3

102. executablebooks/mdit-py-plugins
- 3

103. tsutsu3/linkify-it-py - 3

104. hhatto/autopep8 - 3

105. cubewise-code/mdxpy - 3

106. joblib/joblib - 3

107. python-trio/trio-typing - 3

108. nalepae/pandarallel - 3

109. tableau/server-client-python
- 3

110. r1chardj0n3s/parse - 3

111. ipython/ipython - 3

112. pypa/readme_renderer - 3

113. jaraco/zipp - 3

114. docker/docker-py - 3

115. joshy/striprtf - 3

116. googleapis/python-pubsub - 3

117. TylerYep/torchinfo - 3

118. scrapy/w3lib - 3

119. googleapis/google-auth-library-python-oauthlib
- 3

120. agronholm/cbor2 - 3

121. weiwei/junitparser - 3

122. conan-io/conan - 3

123. python/importlib_resources -
3

124. timvink/mkdocs-git-authors-plugin
- 3

125. agronholm/exceptiongroup - 3

126. magmax/python-inquirer - 3

127. PrefectHQ/prefect - 3

128. Yelp/detect-secrets - 3

129. Chilipp/autodocsumm - 3

130. jaraco/keyring - 3

131. Pylons/waitress - 3

132. pypa/setuptools - 3

133. barrust/pyspellchecker - 2

134. bluesky/ophyd - 2

135. OpenMath/py-openmath - 2

136. readthedocs/sphinx-notfound-page
- 2

137. canonical/operator - 2

138. ekzhu/datasketch - 2

139. dhatim/python-license-check -
2

140. Shoobx/xmldiff - 2

141. ewels/rich-click - 2

142. jaraco/path - 2

143. yu-iskw/dbt-artifacts-parser
- 2

144. symerio/pgeocode - 2

145. daggaz/json-stream - 2

146. jazzband/dj-database-url - 2

147. nipunsadvilkar/pySBD - 2

148. adamchainz/django-linear-migrations
- 2

149. mwouts/jupytext - 2

150. MrBin99/django-vite - 2

151. ml31415/numpy-groupies - 2

152. regebro/svg.path - 2

153. gmr/flatdict - 2

154. aws-samples/sample-python-helper-aws-appconfig
- 2

155. behave/behave - 2

25

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

SWEE-Bench – Repositories Part III

156. thesimj/envyaml - 2

157. codingjoe/django-select2 - 2

158. allisson/python-simple-rest-client
- 2

159. christianhelle/autofaker - 2

160. esphome/aioesphomeapi - 2

161. oauthlib/oauthlib - 2

162. rustedpy/result - 2

163. graphql-python/graphene - 2

164. benmoran56/esper - 2

165. eerimoq/bincopy - 2

166. keleshev/schema - 2

167. PyCQA/flake8 - 2

168. kjd/idna - 2

169. jupyter/nbconvert - 2

170. scikit-hep/hist - 2

171. spulec/freezegun - 2

172. jupyter/nbclient - 2

173. PythonCharmers/python-future
- 2

174. tortoise/pypika-tortoise - 2

175. rthalley/dnspython - 2

176. mkaranasou/pyaml_env - 2

177. terraform-compliance/cli - 2

178. googleapis/python-firestore -
2

179. googleapis/python-api-core -
2

180. scrapy/cssselect - 2

181. python-humanize/humanize - 2

182. jdepoix/youtube-transcript-api
- 2

183. dedupeio/dedupe - 2

184. databricks/databricks-cli - 2

185. bluesky/event-model - 2

186. workos/workos-python - 2

187. kynan/nbstripout - 2

188. assertpy/assertpy - 2

189. dbt-labs/hologram - 2

190. sendgrid/python-http-client -
2

191. keis/base58 - 2

192. attwad/python-osc - 2

193. wireservice/csvkit - 2

194. adamchainz/time-machine - 2

195. MagicStack/immutables - 2

196. vinitkumar/json2xml - 2

197. frispete/keyrings.cryptfile -
2

198. swansonk14/typed-argument-parser
- 2

199. scottwernervt/favicon - 2

200. slackapi/python-slack-sdk - 2

201. nginxinc/crossplane - 2

202. hetznercloud/hcloud-python -
2

203. dbader/schedule - 2

204. amplify-education/python-hcl2
- 2

205. jazzband/contextlib2 - 2

206. theskumar/python-dotenv - 2

207. raimon49/pip-licenses - 2

208. locustio/locust - 2

209. astanin/python-tabulate - 2

210. alecthomas/voluptuous - 2

211. django-crispy-forms/crispy-bootstrap5
- 2

212. geospace-code/pymap3d - 2

213. tedder/requests-aws4auth - 2

214. pyvisa/pyvisa-py - 1

215. nithinmurali/pygsheets - 1

216. mlenzen/collections-extended
- 1

217. emcconville/wand - 1

218. rsalmei/alive-progress - 1

219. rycus86/prometheus_flask_exporter
- 1

220. fastapi-users/fastapi-users -
1

221. google/mobly - 1

222. scrapy/itemadapter - 1

223. ncclient/ncclient - 1

224. google/duet - 1

225. di/calver - 1

226. beancount/smart_importer - 1

227. bridgecrewio/python-hcl2 - 1

228. construct/construct - 1

229. devrimcavusoglu/pybboxes - 1

230. richardpenman/whois - 1

231. cvxpy/cvxpy - 1

232. elastic/ecs-logging-python -
1

233. pythonarcade/pytiled_parser -
1

234. astropy/extension-helpers - 1

26

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

SWEE-Bench – Repositories Part IV

235. SAP/python-pyodata - 1

236. Azure/azure-functions-durable-python
- 1

237. IdentityPython/djangosaml2 -
1

238. jwodder/check-wheel-contents
- 1

239. Zulko/moviepy - 1

240. xhtml2pdf/xhtml2pdf - 1

241. cknd/stackprinter - 1

242. guillp/jwskate - 1

243. jmcarp/flask-apispec - 1

244. timofurrer/colorful - 1

245. miso-belica/sumy - 1

246. kvesteri/intervals - 1

247. marcotcr/lime - 1

248. wkentaro/gdown - 1

249. realpython/codetiming - 1

250. jaraco/tempora - 1

251. jendrikseipp/vulture - 1

252. pycontribs/ruyaml - 1

253. albumentations-team/albumentations
- 1

254. nose-devs/nose2 - 1

255. jongracecox/anybadge - 1

256. patrys/httmock - 1

257. maxfischer2781/asyncstdlib -
1

258. pgzip/pgzip - 1

259. arvkevi/kneed - 1

260. rasterio/affine - 1

261. circus-tent/circus - 1

262. xchwarze/samsung-tv-ws-api -
1

263. jaraco/portend - 1

264. fabiocaccamo/python-benedict
- 1

265. numpy/numpy-financial - 1

266. praw-dev/prawcore - 1

267. scipy/oldest-supported-numpy
- 1

268. logtail/logtail-python - 1

269. polkascan/py-scale-codec - 1

270. Knio/pynmea2 - 1

271. jazzband/django-configurations
- 1

272. allenai/cached_path - 1

273. click-contrib/click-aliases -
1

274. Pylons/hupper - 1

275. cloudscale-ch/cloudscale-python-sdk
- 1

276. alessandromaggio/pythonping -
1

277. imageio/imageio-ffmpeg - 1

278. podhmo/python-node-semver - 1

279. netbox-community/pynetbox - 1

280. kumar303/mohawk - 1

281. SpamScope/mail-parser - 1

282. perrygeo/python-rasterstats -
1

283. pahaz/sshtunnel - 1

284. python-hyper/h11 - 1

285. razorpay/razorpay-python - 1

286. zeroSteiner/rule-engine - 1

287. mocobeta/janome - 1

288. glut23/webvtt-py - 1

289. benoitc/gunicorn - 1

290. mcmtroffaes/pybtex-docutils -
1

291. alexmojaki/executing - 1

292. sigmavirus24/github3.py - 1

293. ccpem/mrcfile - 1

294. csinva/imodels - 1

295. click-contrib/click-help-colors
- 1

296. srossross/rpmfile - 1

297. hgrecco/pint - 1

298. django-ses/django-ses - 1

299. gmr/pamqp - 1

300. spotify/annoy - 1

301. PyCQA/pycodestyle - 1

302. regebro/tzlocal - 1

303. mapado/haversine - 1

304. scientific-python/lazy-loader
- 1

305. grappa-py/grappa - 1

306. flexmock/flexmock - 1

307. jg-rp/liquid - 1

308. prompt-toolkit/python-prompt-toolkit
- 1

309. jaraco/jaraco.context - 1

310. aio-libs/multidict - 1

311. rsheftel/pandas_market_calendars
- 1

27

Presented at ICLR 2025 Workshop on Possibilities and Challenges in Deep Learning for Code.

SWEE-Bench – Repositories Part V

312. mkdocs/mkdocs - 1

313. websocket-client/websocket-client
- 1

314. DataDog/datadog-lambda-python
- 1

315. iterative/dvclive - 1

316. cogeotiff/rio-cogeo - 1

317. erikrose/parsimonious - 1

318. facelessuser/pymdown-extensions
- 1

319. pypa/build - 1

320. mkdocs/mkdocs-redirects - 1

321. dlint-py/dlint - 1

322. klen/peewee_migrate - 1

323. afq984/python-cxxfilt - 1

324. kinverarity1/lasio - 1

325. Turbo87/utm - 1

326. django/daphne - 1

327. executablebooks/sphinx-design
- 1

328. interpretml/slicer - 1

329. google/yapf - 1

330. sensein/etelemetry-client - 1

331. MKuranowski/aiocsv - 1

332. executablebooks/sphinx-tabs -
1

333. pexpect/pexpect - 1

334. pythological/etuples - 1

335. frankie567/httpx-oauth - 1

336. sarugaku/resolvelib - 1

337. python273/telegraph - 1

338. boolangery/py-lua-parser - 1

339. Electrostatics/mmcif_pdbx - 1

340. pyca/service-identity - 1

341. diff-match-patch-python/diff-match-patch
- 1

342. xlwings/jsondiff - 1

343. mapbox/cligj - 1

344. cthoyt/pystow - 1

345. Rapptz/discord.py - 1

346. gahjelle/pyplugs - 1

347. Colin-b/pytest_httpx - 1

348. LLNL/certipy - 1

349. spec-first/connexion - 1

350. Yelp/bravado - 1

351. mkorpela/pabot - 1

352. scrapy/parsel - 1

353. alexmojaki/pure_eval - 1

354. graphql-python/graphql-core -
1

355. joke2k/faker - 1

356. averbis/averbis-python-api -
1

357. jupyter/jupyter_client - 1

358. jaraco/inflect - 1

359. GreyZmeem/python-logging-loki
- 1

360. suminb/base62 - 1

361. youknowone/wirerope - 1

362. xnuinside/simple-ddl-parser -
1

363. executablebooks/sphinx-thebe
- 1

364. Pylons/webob - 1

365. SethMMorton/fastnumbers - 1

366. python-semver/python-semver -
1

28

