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ABSTRACT

Recently, visualization-of-thought (VoT) has unlocked new opportunities for com-
plex spatial reasoning in multimodal large language models (MLLMs) by com-
plementing verbal reasoning with visual thinking. However, the autoregressive
accumulation of lengthy and redundant tokens substantially increases computation
and memory costs. In this paper, we present a new efficient framework for multi-
modal spatial reasoning, named DARE, designed to adaptively prune multimodal
tokens across different network depths, reasoning hops, and modalities. First,
DARE devises an intra- and inter-hop-aware differentiable retention mechanism to
dynamically estimate token importance both within each reasoning step and across
successive hops. Recognizing that deeper network layers encode visual cues into
verbal streams, DARE introduces an asymmetric compression strategy that prunes
tokens according to modality-specific redundancy and semantic importance. Fur-
thermore, DARE incorporates a progressive KV-cache retention policy aligned with
cross-modal fusion dynamics, further reducing memory overhead during autore-
gressive reasoning. Our method delivers substantial reductions in computation and
memory footprint, averaging a 40.37% reduction in FLOPs and 46.07% reduction
in KV caches usage, while consistently preserving or even improving reasoning
performance across seven multimodal spatial reasoning benchmarks, and further
generalizing to broader multimodal reasoning tasks.

1 INTRODUCTION

Multimodal spatial reasoning involves understanding object layouts, movements, and interactions
within an environment by jointly using visual and linguistic cues. Solving such tasks often requires
multi-hop reasoning, where intermediate visual and textual “thoughts” from previous steps are
appended to the input and reprocessed in subsequent iterations. While solutions like VoT and MVoT
are effective (Li et al., 2025a; Wu et al., 2024b), their design leads to severe scalability issues. For
example, MVoT interleaves visual and verbal tokens for each thought (e.g., 32 × 32 tokens per
image), and within a 4K context window it can only accommodate the most recent three multimodal
thoughts. (see App. I.3) More broadly, the autoregressive accumulation of intermediate tokens
causes sequence lengths to grow rapidly, resulting in quadratic increases in attention cost and memory
usage, which fundamentally limits current MLLMs in multi-hop spatial reasoning.

While numerous studies have explored efficient reasoning for large language models (Aytes et al.,
2025; Liu et al., 2024a; Kang et al., 2025; Tan et al., 2025; Hao et al., 2024; Su et al., 2025; Cheng
and Van Durme, 2024; Zhang et al., 2025a; Chen et al., 2024c; Shen et al., 2025), these methods
encounter two key challenges when applying to multi-hop multimodal spatial reasoning:

Challenge 1: Multi-modal token importance shifts within- and across-hops. Prior frameworks
typically compress tokens within a single reasoning hop and rely on fixed or heuristic retention ratios
across layers (e.g, (Chen et al., 2024b)). However, token importance varies considerably both within
a hop (across network depths) and across successive hops. Specifically, as shown in Fig. 1, both
visual and textual tokens follow diverse importance trajectories across layers and hops, reflecting the
different semantic roles captured at each stage (e.g., objects, relations, or background context). As a
result, existing models either over-retain redundant tokens or prematurely discard cues that becomes
critical in later reasoning steps. This gap necessitates an intra- and inter-hop adaptive retention
mechanism that can recurrently trace token utility throughout the reasoning process.
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If someone is washing dishes at
the sink, which direction would
they turn to access the oven, and
what spatial evidence supports
your conclusion?

💡

Router's importance score for visual tokens Router's importance score for text tokensInput Image

Answer: The person would turn left from the sink to reach the oven, as the oven is positioned along the adjacent wall to the left, with
open space allowing direct access.

Figure 1: DARE’s router predictions on a spatial reasoning task. The left shows the image and
question. The right figures visualize token importance scores for visual tokens (green, left grid) and
text tokens (red, right grid) across 7 layers (l1,l5,l10,l15,l20, l25,l30) and 5 reasoning hops (h1 to h5).

Challenge 2: Divergent redundancy patterns across modalities. Existing approaches mainly target
a single modality (e.g., text or images) or apply heuristic and uniform pruning across modalities.
However, visual tokens exhibit distinct redundancy patterns compared to text tokens (Tan et al., 2025;
Zhang et al., 2025c). As illustrated in Fig. 1, the semantic importance of visual tokens drops sharply
after layer l15, reflecting the flow of visual information into textual streams, while textual tokens
remain semantically active in deeper layers. Lack of identifying and exploiting this visual-to-verbal
transition leads to redundant visual retention and unnecessary computation. This gap necessitates an
asymmetric compression strategy that aligns pruning with modality-specific redundancy patterns.

To tackle the challenges identified above, we propose a new framework, Dynamic and Asymmetric
Routing for Efficient multimodal spatial reasoning, named DARE. To address Challenge 1, we
design an intra- and inter-hop-aware differentiable retention mechanism that adaptively estimates
token utility at each network depth and reasoning step, capturing both intra-hop and inter-hop critical
multimodal thoughts. To address Challenge 2, we introduce an asymmetric cross-modal compression
strategy that independently prunes visual and textual tokens based on their distinct semantic roles and
redundancy dynamics. Furthermore, motivated by the observation (see Fig. 1) that the visual token
importance decays significantly after the early layers across all reasoning hops, DARE employs a
progressive KV-cache retention strategy during inference, retaining a broader set of tokens in early
layers where cross-modal fusion is most active and pruning redundant key-value entries in later stages
where high-level semantic abstraction predominates.

Notably, our proposed DARE is fully differentiable and integrated end-to-end, allowing the model
to learn optimal token retention policies during fine-tuning. Extensive experiments and ablation
studies demonstrate that DARE substantially reduces token redundancy, computation, and memory
overhead, while preserving or even enhancing reasoning performance. These results establish DARE
as a scalable and robust recipe for efficient multi-hop multimodal reasoning. Our contributions are
summarized as follows:

• We propose an intra- and inter-hop–aware differentiable retention mechanism that is fully end-
to-end trainable and architecture-agnostic, enabling MLLMs to adaptively estimate token utility
across depths and hops for fine-grained control.

• We develop an asymmetric cross-modal compression strategy that leverages the visual-to-text
information flow: it prunes visual tokens more aggressively while preserving semantically critical
textual tokens, aligning pruning with modality-specific redundancy dynamics.

• We introduce a progressive KV-cache retention policy that aligns with cross-modal fusion dynam-
ics, retaining richer token sets in early layers and pruning aggressively in later stages to reduce
computation and memory overhead.

• Notably, DARE delivers significant efficiency gains, reducing FLOPs by 40.37% and KV-cache
usage by 46.07% across seven multimodal spatial reasoning benchmarks, while consistently
preserving or improving accuracy. Moreover, it generalizes robustly to broader reasoning tasks
such as general reasoning, hallucination detection, and dialog-based VQA.
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2 RELATED WORK

Multimodal Spatial Reasoning (MSR). Directly applying Chain-of-Thought (CoT) (Wei et al.,
2022) to the multimodal setting poses substantial challenges in representation and efficiency (Li
et al., 2024a; Wu et al., 2024a; Hurst et al., 2024). Existing efforts to improve the spatial reasoning
capabilities of MLLMs generally follow three major directions: (1) Two-stage abstraction methods
first convert visual content into intermediate symbolic representations (e.g., text (Zhang et al., 2024),
graph (Mitra et al., 2024; Mondal et al., 2024), bounding boxes (Lei et al., 2024)), and are then
used for downstream reasoning. (2) Tool-augmented pipelines integrate external components to
perform reasoning over complex visual observations (Yao et al., 2023; Yang et al., 2023; Hu et al.,
2024; Zhou et al., 2024; Li et al., 2024c; Gao et al., 2024). (3) Unified sequence models (Li et al.,
2025b;a) directly interleave visual and textual tokens within the same reasoning stream, enabling
fully end-to-end multimodal reasoning over multiple hops. However, such unified models produce
visual and textual intermediate “thoughts” that lead to the rapidly growing sequence lengths and
quadratic attention costs, limiting the reasoning depth and memory efficiency of MLLMs.

Textual Token Compression. Existing approaches can be broadly categorized into two types. (1)
discrete token reduction methods aim to reduce the number of tokens via prompt engineering (Han
et al., 2024; Nayab et al., 2024; Aytes et al., 2025), instruction fine-tuning (Liu et al., 2024a; Kang
et al., 2025; Zhang et al., 2025a), or reinforcement learning (Arora and Zanette, 2025; Luo et al., 2025;
Yang et al., 2025; Xu et al., 2025a; Mu et al., 2023). (2) continuous latent reasoning methods (Hao
et al., 2024; Cheng and Van Durme, 2024; Deng et al., 2024; Xu et al., 2025b; Shen et al., 2025; Su
et al., 2025) project intermediate reasoning steps into continuous latent spaces, which are often more
efficient but suffer from less interpretability and degraded performance.

Visual Token Compression. As visual tokens often constitute the majority of the multimodal
sequence (Tan et al., 2025) and exhibit structural redundancy, existing methods can be divided into
two major paradigms. (1) training-based methods (Li et al., 2024b; Zhang et al., 2025b; Tong et al.,
2024; Raposo et al., 2024) integrate token compression into the model architecture but overlook
the visual-to-verbal information flow. (2) training-free methods (Chen et al., 2024c; Zhang et al.,
2025c; Tan et al., 2025) compress visual tokens at inference time without modifying the model.
While lightweight, these methods are limited to single-pass inference and lack hop-wise, recurrent
adaptation, limiting their effectiveness and applicability for autoregressive accumulation in MSR.

3 METHODOLOGY

3.1 PRELIMINARIES

Multimodal spatial reasoning jointly interprets and reasons over multiple modalities for complex
decision-making tasks. Let Pθ denote a pre-trained MLLM parameterized by θ, and let the input
consist of textual observations x(t) and visual observations x(v). The model aims to capture both
symbolic and spatial dynamics throughout the reasoning trajectory before producing the final answer.
Formally, the model autoregressively generates a sequence of textual thoughts {t1, . . . , tn} and visual
thoughts {v1, . . . , vn} such that:

v̂i+1 ∼ Pθ(vi+1 | x(t), x(v), t̂1, v̂1, . . . , t̂i, v̂i), t̂i+1 ∼ Pθ(ti+1 | x(t), x(v), t̂1, v̂1, . . . , t̂i, v̂i), (1)

where t̂i and v̂i denote the previously generated verbal and visual thoughts, respectively. The
process alternates between generating a new visual thought v̂i+1 and a new textual thought t̂i+1,
conditioned on the full input and the history of previous thoughts. To streamline terminology, we
define one hop as a full autoregressive reasoning cycle consisting of the generation of a visual thought
followed immediately by the corresponding textual thought. Concretely, as shown in Eq. 3.1, the pair
(v̂i+1, t̂i+1) produced in order by the model constitutes a single hop. Multi-hop spatial reasoning
tasks thus correspond to generating multiple such visual–textual thought pairs, while single-step tasks
perform only the first hop.

3
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Figure 2: An overview of DARE. DARE introduces a dynamic and asymmetric token routing strategy
that compresses visual x(v)

h,l and textual tokens x(t)
h,l in an intra- and inter-hop manner. Visual tokens

are aggressively pruned in deeper layers, guided by the learned retention ratio ρ
(v)
h,l , while textual

tokens are retained according to the learnable ratio ρ
(t)
h,l.

3.2 MODALITY-AWARE TOKEN ROUTING

In multi-hop multimodal spatial reasoning, the model produces long streams of visual and textual
tokens, yet a large portion contributes minimally to the final prediction. Visual tokens commonly
encode redundant background content, while textual tokens often serve only shallow syntactic
purposes. These inefficiencies motivate a selective routing strategy that prioritizes semantically
meaningful tokens while pruning redundant and low-utility ones.

To this end, DARE introduces a lightweight and modality-specific routing mechanism, as exhibited
in Fig. 2, where each transformer layer integrates a modality-specific gating head to score token
importance. Dedicated linear routers are designed for textual and visual embeddings, enabling fine-
grained, token-level retention decisions. By pruning low-utility tokens across depths and hops, DARE
concentrates computation on semantically and spatially critical content, significantly improving
efficiency without compromising reasoning quality.

Token Importance Prediction. At each layer l, DARE introduces two lightweight, modality-specific
routers: one for text tokens and one for visual tokens. Given the i-th token x

(i,m)
l of modality

m ∈ {t, v}, the router produces a scalar importance value through a linear projection followed by a
sigmoid, which bounds it in [0, 1] and makes it directly interpretable as a retention ratio.

s
(i,m)
l = σ

(
W

(m)
l x

(i,m)
l + b

(m)
l

)
, (2)

where W (m)
l and b

(m)
l are learnable router parameters, and σ(·) denotes the sigmoid function. During

fine-tuning, tokens retained under the target ratio ρ
(m)
target have their activations scaled by the predicted

importance scores. This design allows gradient signals to flow not only through the backbone layers
but also into the router, enabling its parameters to be optimized end-to-end. Here, ρ(m)

target is a predefined
global sparsity budget that specifies the desired retention level (see Fig. 5 for an ablation study).
Formally, the processed output y(i,m)

l = Layer(x
(i,m)
l ) is updated as:

ỹ
(i,m)
l = α

(i,m)
l ·

(
s
(i,m)
l y

(i,m)
l

)
+

(
1− α

(i,m)
l

)
· x(i,m)

l , (3)

where ỹ(i,m)
l is the routed output to the next layer. The binary mask α

(i,m)
l ∈ {0, 1} denotes whether

token i falls within the top ρ
(m)
target fraction of scores, with α

(i,m)
l = 1 if retained and 0 otherwise.

3.3 INTRA- AND INTER-HOP AWARE RETENTION AND ASYMMETRIC COMPRESSION

Reasoning hops and network depth emphasize different semantic cues and thus exhibit distinct token
redundancy. To address this, we propose an intra- and inter-hop differentiable retention mechanism
that learns modality-specific per-layer ratios ρ

(t)
h,l and ρ

(v)
h,l , indicating the fraction of textual and

visual tokens to retain. These ratios are initialized to zero and jointly optimized with model training,
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allowing retention to adapt dynamically across hops and depths. A global budget ρ(m)
target provides an

overall constraint, while the learned ratios ρ(m)
h,l are softly regularized toward it, enabling fine-grained

control within and across hops to balance retention and preserve performance (App. D.6).

We incorporate a Gumbel–Softmax relaxation (Jang et al., 2017) to approximate discrete token
selection in a differentiable manner. Given token-level importance scores s(i,m)

h,l , we perturb them
with Gumbel noise and apply a softmax, yielding a continuous approximation of the selection mask.

q
(i,m)
h,l =

exp
(
(s

(i,m)
h,l + gi)/τ

)
∑

j exp
(
(s

(j,m)
h,l + gj)/τ

) , (4)

where gi ∼ Gumbel(0, 1) and τ > 0 is a temperature hyperparameter. As τ → 0, q sharpens into a
one-hot vector, collapsing to hard token selection. During training, the forward pass computes the
average retention ratio ρ̂

(m)
h,l from q and measures its gap to ρ

(m)
target, while a straight-through estimator

treats q as a surrogate in backpropagation, preserving gradient flow to the routing scores under the
ratio constraint. At inference, we switch to deterministic pruning by keeping the top ρ

(m)
h,l fraction of

tokens based on the raw scores s(i,m)
h,l . An ablation analysis of τ is provided in App. F.2.

Another key challenge in multimodal spatial reasoning lies in the structural and semantic heterogeneity
between textual and visual tokens. Uniform pruning overlooks these differences, often leading to
suboptimal compression. To address this, DARE adopts a dynamic and asymmetric routing that
learns separate pruning policies for each modality. This design enables adaptive token flow control,
effectively reducing redundant intermediate representations while preserving reasoning fidelity.

Text Token Retention. We introduce an auxiliary MSE loss over hops and layers to encourage the
model to maintain a desired sparsity level for text tokens. Let ρ̂(t)

h,l denote the average retention ratio

of text tokens at hop h and layer l, and let ρ(t)
target be the predefined target ratio. The loss is defined as:

L(t)
ratio =

1

HL

H∑
h=1

L∑
l=1

(
ˆ

ρ
(t)
h,l − ρ

(t)
target

)2

, (5)
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Figure 3: Token retention ratios across depths and reason-
ing hops in DARE. (a) Visual token retention drops sharply
in deeper layers, as spatial details lose utility once fused
into language. (b) Textual token retention remains stable or
rises, underscoring its increasing role in semantic reasoning.
These contrasting trends motivate DARE’s two-phase strat-
egy: pruning redundant visual tokens in later layers while
retaining text for semantic reasoning, thus improving effi-
ciency without loss of accuracy.

Two-Phase Visual Token Retention.

Visual tokens exhibit high spatial re-
dundancy and contribute less to rea-
soning in deeper layers. To exploit
this property, we introduce a two-
phase retention strategy. In the soft
retention phase (layers l ≤ lc), visual
tokens are softly gated using impor-
tance scores s

(i,v)
h,l ∈ [0, 1] predicted

by the router. We design an auxiliary
MSE loss between the empirical re-
tention ratio ρ̂

(v)
h,l and a fixed target

ρ
(v)
target, encouraging the model to fol-

low a predefined visual sparsity sched-
ule in early layers. This loss is de-
noted as L(v)

soft and follows the same
formulation as L(t)

ratio for text ones.

In the hard pruning phase (layers l > lc), the cutoff layer lc is identified via a simple yet highly
effective score-thresholding algorithm (e.g., the first layer where the mean visual importance falls
below a threshold for two consecutive layers; see App. D.7). Once visual cues have been fused into
language representations, we suppress residual activations with a penalty loss.

L(v)
hard =

H∑
h=1

L∑
l=lc+1

N
(v)
h,l∑

i=1

µ ·max(0, s
(i,v)
h,l − ϵ), (6)
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where µ is a penalty weight and ϵ is a small threshold (e.g., 0.01). An ablation study on the effect of
ϵ is provided in App. F.1. This two-phase design retains visual tokens only when they are beneficial
and prunes them aggressively in later layers, thereby significantly reducing computational overhead.

The overall training objective becomes:

L = Ltask + L(t)
ratio + L

(v)
soft + L

(v)
hard, (7)

where Ltask is the primary multimodal reasoning loss.

3.4 KV–CACHE RETENTION STRATEGY

DARE prunes tokens dynamically across depths and hops, so many tokens never produce key/value
entries at layer l. Since pruned tokens produce no KV entries, we enrich the standard causal mask
with an execution mask to block queries from attending to them. Formally, let b(j,m)

h,l ∈ {0, 1} indicate
whether token j of modality m ∈ {t, v} is executed, i.e., retained, at hop h and layer l. In addition, we
reserve a small prefix of κ tokens per hop, validated by sensitivity analysis in Tab. 5, to (i) preserve
system-level tokens such as BOS/CLS and (ii) maintain early cross-modal alignment. Because tokens
from multiple hops are interleaved in the sequence, indices are defined hop-locally to avoid ambiguity.
The execution mask is then defined as:

Eh,l(i, j) =

{
0, j ≤ κ or b(j,t)h,l = 1 or b(j,v)h,l = 1,

−∞, otherwise,
(8)

and apply the composite attention mask

Mh,l = Mcausal + Eh,l, (9)

so pruned tokens receive −∞ logits and are never queried. During inference, we cache K,V

only when b
(j,m)
h,l = 1; skipped tokens incur zero storage. Let memfull-t

h,l (resp. memfull-v
h,l ) denote the

KV-cache memory that would be required at hop h, layer l if all textual (resp. visual) tokens were
cached with no pruning. The expected KV-cache memory therefore becomes

E[memh,l] = ρ
(v)
h,l memfull-v

h,l + ρ
(t)
h,l memfull-t

h,l , (10)

yielding substantial memory savings without degrading reasoning quality (see Tab. 4).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate DARE on two interleaved reasoning architectures that jointly process visual and textual
tokens. (1) We integrate DARE into VolCano(Li et al., 2025b), which interleaves text with RefBind-
based visual tokens, and fine-tune it on the VoCoT instruction-tuning dataset using the AdamW
optimizer(Loshchilov and Hutter, 2017) with a learning rate of 10−4 and weight decay of 3× 10−2.
(2) We incorporate DARE into Anole-7B(Chern et al., 2024), which interleaves text with generated
mental images, and fine-tune it for 60 epochs on three multi-hop spatial reasoning benchmarks:
MAZE(Ivanitskiy et al., 2023), MINIBEHAVIOR(Jin et al., 2023), and FROZENLAKE(Wu et al.,
2024a), following the original training hyperparameters. All experiments are run on 8×A100-40GB
GPUs. Additional training and evaluation details are provided in the App. C. Tables highlight the
best results as best and second-best as second .

Baselines. We compare DARE against a diverse set of baselines, spanning prompt-based, heuristic-
based, and latent-space token compression methods. SoT (Aytes et al., 2025) is a static prompt-based
baseline that enforces a fixed token budget through task-specific instructions. LightFast combines
LightThinker (Zhang et al., 2025a) for textual token pruning with FastV (Chen et al., 2024c) for
visual token pruning, simulating independent, modality-specific heuristics. Heima (Shen et al.,
2025) is adapted to the multimodal setting as a latent-space reasoning baseline. SparseVLM (Zhang
et al., 2025c) iteratively sparsifies visual tokens, retaining only the most informative ones to reduce

6
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Table 1: Comparison on multimodal spatial reasoning. ↑ indicates higher is better; ↓ indicates lower
is better. DARE-LH achieves competitive accuracy while significantly reducing FLOPs, latency, and
memory. “-L” and “-LH” denote layer-wise and layer/hop-wise variants of DARE, respectively.

Methods ρ
(v)
target ρ

(t)
target

Compositional tasks, e.g, spatial reasoning and visual search

VSR V-Star

Acc.(%)↑ FLOPs(G)↓ Lat.(s)↓ Mem.(GB)↓ Acc.(%)↑ FLOPs(G)↓ Lat.(s)↓ Mem.(GB)↓

VolCano 100% 100% 67.18 19842.37 0.63 8.91 58.40 21785.41 0.69 9.37
SoT – – 53.22 17240.58 0.58 8.32 37.12 19820.16 0.64 8.94

LightFastV – – 57.19 15880.31 0.54 7.85 45.68 18340.33 0.59 8.43
SparseVLM – – 62.31 14827.25 0.49 7.23 55.95 17365.19 0.53 8.17

Heima – – 50.42 10138.96 0.39 6.14 40.67 13963.21 0.41 6.42
Unipru 40% 70% 63.71 14252.74 0.49 7.11 53.22 16620.27 0.53 7.69

DARE-L 40% 70% 67.13 12825.18 0.45 6.62 57.39 15128.02 0.48 7.14
DARE-LH 40% 70% 68.09 11310.63 0.41 6.13 60.07 13584.72 0.43 6.62

Methods ρ
(v)
target ρ

(t)
target

EmbSpatial Winoground

Acc.(%)↑ FLOPs(G)↓ Lat.(s)↓ Mem.(GB)↓ Acc.(%)↑ FLOPs(G)↓ Lat.(s)↓ Mem.(GB)↓

VolCano 100% 100% 58.29 26542.87 0.72 9.73 68.37 27411.36 0.78 9.84
SoT – – 54.76 24175.63 0.66 9.18 62.90 25984.27 0.72 9.51

LightFastV – – 56.89 22904.75 0.62 8.71 64.21 24632.88 0.67 8.97
SparseVLM – – 62.32 20275.21 0.72 8.21 64.39 23155.26 0.77 8.357

Heima – – 53.32 17174.83 0.41 6.92 64.03 17811.47 0.49 6.81
Unipru 40% 70% 60.75 21283.59 0.58 8.13 65.83 23124.63 0.63 8.43

DARE-L 40% 70% 64.37 19627.41 0.53 7.59 67.22 21543.90 0.59 7.94
DARE-LH 40% 70% 68.09 17964.82 0.45 7.09 68.31 19873.15 0.54 7.42

computation. Finally, we introduce UniPrune, a symmetric pruning baseline that applies differentiable
token scoring but omits the hard pruning loss L(v)

hard.

Evaluation Benchmarks. We evaluate DARE across a wide range of multimodal reasoning tasks
to assess both effectiveness and generality. (1) Compositional and multi-step reasoning, including
spatial reasoning (VSR (Liu et al., 2023), EmbSpatial (Du et al., 2024)), visual search (V-Star (Wu
and Xie, 2024)), and Winoground (Thrush et al., 2022)). (2) Dynamic spatial reasoning, using
MAZE(Ivanitskiy et al., 2023), MINIBEHAVIOR (Jin et al., 2023) and FROZENLAKE (Wu
et al., 2024a). (3) General VQA, including GQA (Hudson and Manning, 2019) and MMBench (Liu
et al., 2024b). (4) Hallucination detection, evaluated on POPE (Li et al., 2023b) and AMBER (Wang
et al., 2023), with CHAIR (Peng et al., 2023) used as the metric for AMBER and accuracy for the
others. Additional benchmark details are provided in the App. B.

4.2 MAIN RESULTS

DARE Excels in Compositional Multi-hop Reasoning with Superior Accuracy–Efficiency Trade-
off. Tab. 1 presents the results of the VolCano model (Li et al., 2025b) across four compositional
reasoning benchmarks: VSR, V-Star, EmbSpatial, and Winoground. DARE-LH consistently achieves
the highest accuracy across all tasks while significantly reducing FLOPs, latency, and memory. On
VSR and V-Star, it improves accuracy over VolCano by 0.91% and 1.67%, while reducing FLOPs by
43.0% and 37.6%, respectively. Similar efficiency gains are observed on EmbSpatial and Winoground.

Notably, while Heima employs latent-space reasoning for high efficiency, its accuracy lags behind due
to the loss of fine-grained spatial details and explicit multimodal thought. In contrast, DARE-LH’s
hop-aware routing selectively preserves critical spatial information, balancing accuracy and efficiency.

DARE Generalizes to Dynamic Spatial Reasoning with Lighter Computation. We deploy DARE
in Anole-7B and evaluate it on three dynamic visual reasoning benchmarks (MAZE, MINIBEHAV-
IOR, and FROZENLAKE) to assess its architectural generalization and adaptability to dynamic tasks.
As shown in Tab. 2, DARE-LH achieves the highest accuracy across all benchmarks while reducing
FLOPs by 40–50% and lowering latency compared to MVoT and VoT. Notably, it cuts compute on
MAZE from 25.6K GFLOPs (VoT) to 12.7K, while improving accuracy by 6.8%.

DARE Preserves Accuracy with Lighter Computation on General VQA Benchmarks. We
evaluate DARE-L on GQA and MMBench and observe consistent gains in both accuracy and efficiency.
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Table 2: Comparison on mental image generation tasks using Anole-7B across three dynamic
reasoning benchmarks. We report accuracy (Acc.), compute cost (FLOPs), and inference latency
(Lat.). DARE achieves the best trade-off between accuracy and efficiency.

Model Methods
MAZE MINIBEHAVIOR FROZENLAKE

Acc.(%)↑ FLOPs(G)↓ Lat.(s)↓ Acc.(%)↑ FLOPs(G)↓ Lat.(s)↓ Acc.(%)↑ FLOPs(G)↓ Lat.(s)↓

Anole-7B

VoT 86.56 25640.14 0.79 64.40 24815.83 0.75 80.21 23792.67 0.74
MVoT 92.95 22130.56 0.71 95.14 21247.29 0.68 85.60 20591.34 0.67
Heima 80.37 13243.92 0.42 68.49 10628.11 0.47 79.32 10870.96 0.38

SparseVLM 87.26 17834.21 0.62 88.01 17223.23 0.56 80.29 17779.21 0.61
Unipru 84.22 16962.41 0.59 90.34 16792.31 0.53 84.11 16225.72 0.57

DARE-L 89.78 15962.41 0.54 91.25 14891.20 0.52 84.11 14072.38 0.50
DARE-LH 93.32 12739.67 0.43 95.47 11856.21 0.41 86.11 11032.87 0.39

Table 3: Comparison on general QA benchmarks and hallucination benchmarks. ↓ indicates lower
is better, ↑ indicates higher is better. DARE-LH maintains competitive accuracy while significantly
reducing FLOPs, latency, and memory usage.

Methods ρ
(v)
target ρ

(t)
target

General VQA Tasks

GQA MMBench

Acc.(%)↑ FLOPs(G)↓ Lat.(s)↓ Mem.(GB)↓ Acc.(%)↑ FLOPs(G)↓ Lat.(s)↓ Mem.(GB)↓

VolCano 100% 100% 64.40 6052.37 0.30 6.13 68.11 7285.41 0.35 6.52
SoT – – 60.23 5240.58 0.28 5.76 63.27 6720.16 0.32 6.08

LightFastV – – 61.23 4980.31 0.26 5.28 63.84 6240.33 0.29 5.59
SparseVLM – – 61.09 5021.36 0.29 5.91 63.77 6492.73 0.31 5.87

Heima – – 63.42 3120.36 0.20 3.51 66.45 4375.63 0.22 4.12
Unipru 40% 70% 62.58 4352.74 0.24 4.83 65.12 5835.27 0.27 4.98

DARE-L 40% 70% 64.71 3510.63 0.19 4.21 68.27 4684.72 0.22 4.28

Methods ρ
(v)
target ρ

(t)
target

Hallucination detection tasks

POPE AMBER

Acc.(%)↑ FLOPs(G)↓ Lat.(s)↓ Mem.(GB)↓ AMB↓ FLOPs(G)↓ Lat.(s)↓ Mem.(GB)↓

VolCano 100% 100% 86.50 13285.70 0.43 6.21 4.60 13285.70 0.43 6.21
SoT – – 74.32 11598.12 0.39 5.82 6.13 11598.12 0.39 5.82

LightFastV – – 77.89 10492.24 0.36 5.38 5.42 10492.24 0.36 5.38
SparseVLM – – 78.32 11247.22 0.39 6.21 5.41 11764.31 0.37 5.74

Heima – – 71.38 6920.18 0.25 3.92 5.01 6920.18 0.24 3.92
Unipru 40% 70% 80.05 9272.41 0.33 4.79 5.12 9272.41 0.33 4.79

DARE-L 40% 70% 87.27 7390.41 0.27 4.27 4.67 7390.41 0.25 4.27

Table 4: KV-cache memory usage across spatial reasoning benchmarks. ’-’: Not reported.
Method VSR V-Star EmbSpatial Winoground MAZE MINIBEHAVIOR FROZENLAKE

VoCoT 5.45 GB 5.71 GB 5.92 GB 5.96 GB - - -
MVoT - - - - 4.61 GB 4.52 GB 4.46 GB

DARE-L 3.28 GB 3.52 GB 3.76 GB 3.83 GB 2.49 GB 2.40 GB 2.34 GB
DARE-LH 2.97GB 3.28GB 3.52GB 3.60GB 2.28GB 2.21GB 2.13GB

DARE-L achieves the highest accuracy, matching or surpassing the full-token VolCano baseline while
reducing FLOPs by 42%, latency by 30%, and memory by over 1.8 GB. Compared to LightFastV,
which is efficient but 3.5% less accurate on GQA, DARE preserves performance while maintaining
low compute cost, highlighting significant token redundancy even in standard benchmarks.

DARE Mitigates Hallucination in VLMs. We evaluate DARE on POPE and AMBER to assess
its ability to mitigate hallucinations in vision-language models. Tab. 3 shows DARE-L achieves the
highest accuracy on POPE (87.27%) and the second-best hallucination rate on AMBER (AMB =
4.67). While VolCano maintains competitive accuracy, it incurs substantially higher FLOPs and
memory costs. Compared to Heima, which relies on latent reuse, DARE delivers a +11.9% gain on
POPE and reduces hallucinations by 0.25 on AMBER, while maintaining comparable or superior
efficiency. These results demonstrate that DARE not only compresses effectively but also preserves
factual consistency by adaptively retaining cross-modal cues essential for grounded reasoning.

KV Cache Efficiency of DARE. We analyze KV-cache usage, a dominant contributor to GPU
memory during autoregressive multi-hop spatial reasoning. Tab. 4 shows that VoCoT and MVoT
store all intermediate tokens within and across hops, resulting in substantial KV-cache overhead. In
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Figure 4: Token accumulation dynamics across four multimodal reasoning tasks. DARE-LH grows
more gradually, keeping both fluctuations and token volume better controlled across hops, thereby
facilitating the retention of critical information under constrained context length.

contrast, DARE-LH employs intra- and inter-hop adaptive routing, consistently achieving the lowest
KV memory across all seven spatial benchmarks and reducing cache usage by over 40% on average.

Adaptive Token Accumulation in DARE Mitigates Context Saturation. Fig. 4 visualizes the
temporal token usage across four representative tasks, revealing stark differences in intermediate
token accumulation behavior across models. VolCano immediately saturates the available context
with maximal tokens (8192 or 4096), sustaining a full context limitation throughout execution. In
contrast, both DARE variants show gradual and adaptive accumulation. DARE-L and DARE-LH
exhibit a slower growth pattern, with both fluctuation and token volume regulated more conservatively
across hops, saving 60% tokens compared with VolCano and MVoT.

4.3 ABLATION STUDIES

Impact of L(v)
hard Loss. The L(v)

hard objective promotes aggressive pruning of low-utility visual tokens
in deeper layers without sacrificing performance. Tab. 1 shows that this strategy consistently reduces
latency, GPU memory usage, and overall computational cost. Statistical analysis using a Student’s
t-test reveals that DARE-LH and DARE-L significantly outperform UniPru in efficiency, with p-values
of 0.0003% and 0.0007%, respectively. These results provide strong evidence that L(v)

hard enhances
token efficiency while maintaining or improving accuracy.
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Figure 5: Ablation on modality-specific token retention.

Token Retention Trade-Off. We as-
sess the impact of varying modality-
specific token retention ratios on per-
formance. Fig. 5 shows that accu-
racy peaks when retaining 70% of
textual tokens and 40% of visual to-
kens. Visual tokens are more toler-
ant to aggressive pruning, particularly
in deeper layers where their semantic
contributions diminish due to cross-
modal fusion. In contrast, textual tokens are more sensitive to compression, as they likely form the
core of the reasoning process and are essential for maintaining both semantic and syntactic integrity.

Table 5: Impact of prefix size κ on
accuracy (%) and KV cache (GB).

κ
VSR MAZE

Acc.↑ KV↓ Acc.↑ KV↓
0 64.12 2.26 89.30 1.38
1 65.55 2.60 91.88 1.84
2 68.09 2.97 93.32 2.28
4 68.09 3.40 93.32 2.62
8 68.07 3.85 93.32 3.05

16 68.05 4.35 93.31 3.55
32 68.06 4.85 93.33 4.05

Impact of the prefix size κ. DARE reserves a fixed prefix of
κ tokens per hop to ensure (i) system-level special tokens (e.g.,
BOS/CLS) are retained and (ii) early cross-modal alignment
cues remain accessible under aggressive pruning. We ablate
κ ∈ 0, 1, 2, 4, 8, 16, 32 on VSR and MAZE. Tab. 5 shows that
when κ = 0 or 1, accuracy drops by 1.45–4.02%, and BOS
token masking occasionally causes decoding failures. Increasing
κ beyond 2 yields negligible gains (<0.1%) while increasing KV
memory by up to 70%. We find κ = 2 to be the optimal choice:
it fully recovers performance, preserves key initialization tokens,
and achieves KV cache efficiency.

Scalability. Scaling DARE from 2.7B to 34B parameters (App. G.1) shows robust performance,
yielding significant memory savings and super-linear efficiency gains from quadratic attention costs.
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Generalization. Beyond spatial reasoning, DARE also performs strongly on dialog-VQA and general
multimodal reasoning (App. G.2), consistently preserving accuracy with significant efficiency gains.

5 DISCUSSION

5.1 VARIABLE-LENGTH MULTI-HOP REASONING

(a) 3 Hops

(b) 5 Hops

(c) 7 Hops

Figure 6: Variable hop counts in dynamic spatial reasoning. Differ-
ent MAZE layouts yield trajectories requiring 3, 5, and 7 hops.

DARE naturally supports
variable-length reasoning
through hop-local routing
that adapts to the evolving
hidden state at each step.
Dynamic spatial reasoning
tasks inherently produce
variable numbers of reason-
ing hops: under different
layouts, episodes progress
through distinct subgoals,
partial cues, and naviga-
tional choices, yielding
trajectories with markedly
different intermediate
thoughts (Fig. 6). Because
the hidden state at hop h evolves differently across episodes, no fixed pruning mask can adequately
preserve the information needed at each step. DARE addresses this by recomputing token-importance
scores at every hop from the current hidden state, generating hop-specific masks that adapt to the
changing reasoning context. Although the retention ratio is globally fixed, the selected tokens vary
across hops, enabling robust performance across episodes with widely differing reasoning depths.

5.2 HYPERPARAMETER ROBUSTNESS

Retention targets
( )

Gumbel temp.

Pruning
threshold 

Prefix size
( 2) 

Visual cutoff
lc

0.00

0.26

0.52

0.78

1.04

1.30

MAZE MiniBehavior VSR

Figure 7: Maximum accuracy devia-
tions of DARE under wide perturba-
tions of five core hyperparameters.

Fig. 7 presents a holistic sensitivity analysis of DARE’s five
core hyperparameters across MAZE, MINIBEHAVIOR, and
VSR, reporting the maximum accuracy deviation under broad
perturbations. Across all tasks, deviations remain small and
never exceed 1.06 points. The global retention targets vary by
only 1.00%, 0.93%, and 1.06%, indicating that the default ra-
tios transfer reliably across domains. Other hyperparameters
introduce only minor changes: Gumbel temperature yields
0.43–0.79% deviation, while the pruning threshold (ε) and
visual cutoff (lc) induce at most 0.24% and 0.08%. Prefix
size (κ) has a negligible effect (≤ 0.05% for κ ≥ 2), con-
firming that prefix preservation stabilizes decoding without
additional tuning overhead. Overall, DARE offers robust
hyperparameter behavior, with retention targets providing the
key handle for efficiency–accuracy trade-offs.

6 CONCLUSION

This paper introduced DARE, a dynamic and asymmetric token routing framework for efficient
multimodal spatial reasoning. DARE learns modality-, intra- and inter-hop-aware retention strategies
to adaptively prune visual and textual tokens based on their evolving importance across the reasoning
process. This approach enables scalable, interpretable, and resource-efficient multi-hop reasoning.
Extensive experiments across diverse spatial reasoning benchmarks show that DARE significantly
reduces computational and memory costs, cutting FLOPs and KV-cache usage by over 40% while
maintaining or even improving task performance. Beyond efficiency, its progressive KV-cache
management alleviates context saturation, enabling longer-horizon multimodal reasoning. These
results establish DARE as a scalable and robust framework for efficient multimodal reasoning.
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A STATEMENTS

A.1 LLM USAGE STATEMENT

LLMs were used for language polishing and formatting. Specifically: (i) to shorten sentences, refine
grammar, and improve readability (e.g., compressing section summaries, rewriting figure captions,
and smoothing phrasing in the scalability and generalization sections); (ii) to provide guidance on
LaTeX formatting adjustments in Overleaf, such as tuning wrapfigure spacing with \vspace
and line height options; and (iii) to brainstorm alternative titles for DARE. The authors take full
responsibility for all ideas, methods, and claims presented in this paper.

A.2 ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or practices that
could raise ethical concerns. There are no potential conflicts of interest, and no sensitive or harmful
methodologies were employed. We adhered to the ICLR Code of Ethics.

A.3 REPRODUCIBILITY STATEMENT

We have taken measures to ensure reproducibility. Key code components are provided, and dataset
descriptions, hyperparameter settings, and training procedures are detailed in the appendix and
supplementary material.

B DATASET DETAILS

B.1 SPATIAL REASONING BENCHMARKS.

We evaluate DARE across four spatial reasoning benchmarks that assess the model’s ability to
understand object configurations, spatial relationships, and fine-grained grounding across vision and
language.

VSR (Liu et al., 2023) (Visual Spatial Reasoning) consists of image-text pairs where each sample
includes a factual claim about the image. The model must decide whether the claim is supported by
the visual evidence, making it a binary classification task. We use the unseen test split to measure
generalization in a zero-shot setting. Following prior work (Li et al., 2025b), we format the input
using the prompt: “Is there an event {description} in the image?” to contextualize the claim in a
question-like form that encourages explicit grounding.

EmbSpatial (Du et al., 2024) focuses on embodied spatial understanding and includes visually
complex layouts described with spatial expressions. Each question involves reasoning over fine-
grained spatial relations between entities (e.g., “the red box to the left of the blue ball”). We use
the official test split and preserve the original visual-textual inputs to ensure a faithful evaluation of
grounding precision.

Winoground (Thrush et al., 2022) tests multimodal compositionality via challenging image-text
alignment tasks. Each sample includes two images and two captions that differ subtly in word
order or semantics (e.g., “a person holding a ball” vs. “a ball holding a person”). The model must
match each image to the correct caption. We cast this as a caption selection task using the prompt:

“Please describe the image.”, which encourages the model to choose the caption that most accurately
describes each visual scene.

V-Star (Wu and Xie, 2024) is a benchmark for visual search in cluttered scenes, requiring models
to locate specific visual concepts given descriptive queries. It evaluates fine-grained recognition,
disambiguation, and cross-instance grounding in complex environments. We follow the standard
protocol and use the benchmark as-is without additional prompting.

In short, these datasets offer a comprehensive evaluation of spatial reasoning under diverse settings,
from binary judgment and relational grounding to compositional alignment and object-level retrieval.
They serve as the primary testbed for assessing the effectiveness of DARE’s intra- and inter-hop-aware
token pruning in structured multimodal reasoning.
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Table 6: Overview of spatial reasoning benchmarks.

Category VSR EmbSpat. V-Star Wino

Split test unseen test – test
Size 1222 3625 238 800

B.2 DYNAMIC SPATIAL REASONING TASKS.

We evaluate DARE on three dynamic spatial reasoning benchmarks, namely, MAZE (Ivanitskiy
et al., 2023), MINIBEHAVIOR (Jin et al., 2023), and FROZENLAKE (Wu et al., 2024a). Each
dataset requires multi-step visual reasoning over simulated environments. These datasets test the
model’s ability to understand evolving spatial configurations, action trajectories, and implicit goals in
low-level visual domains.

MAZE is constructed using the Maze-Dataset framework (Ivanitskiy et al., 2023), which generates
2D grid mazes via an iterative depth-first search algorithm. Mazes of size 3 to 6 are generated using
multiple random seeds to diversify the layout complexity. For each instance, a navigation path is
constructed, and redundant or repeated paths are filtered out to minimize knowledge leakage between
training and test splits. At test time, each input consists of a maze configuration and three destination
candidates (i.e., coordinate points), among which the model must select the correct goal cell. This
setup emphasizes long-horizon spatial reasoning over visual layouts with minimal linguistic input.

MINIBEHAVIOR (Jin et al., 2023) is derived from the INSTALLINGAPRINTER simulation suite,
where reinforcement learning (RL) agents are trained to complete procedural tasks in 7×7 to 10×10
grid environments using the Stable-Baselines3 library. The dataset contains diverse agent trajectories,
and only successful action sequences (i.e., those completing the simulated printer installation task)
are retained. The dataset applies controlled environment perturbations to prevent memorization,.
Specifically, for repeated action paths or previously encountered environments, there is a 40%
probability of perturbing either the printer or table coordinates, and a 20% probability of removing
one of these objects. After perturbation, the agent’s action sequence is replayed in the modified
environment to confirm its validity. This design encourages the model to generalize reasoning across
near-duplicate yet semantically different scenes,

FROZENLAKE (Wu et al., 2024a) is adapted from OpenAI Gym’s FrozenLake environment. It
consists of grid-based navigation tasks where an agent must reach a goal while avoiding holes,
using Q-table-based policies to guide action selection. Trajectories are generated from agents acting
greedily with respect to Q-values. Successful action sequences are included only if they haven’t
been seen before in the same environment. For unsuccessful attempts (e.g., falling into a hole), the
trajectory is included with 50% probability either in its original form or with appended random
actions. In ambiguous cases (e.g., the agent neither fails nor succeeds), the trajectory is retained to
increase coverage. Additionally, Q-tables are re-learned with randomly perturbed reward paths to
introduce variance and avoid overfitting. The resulting benchmark challenges models to reason over
uncertain, sparse-reward settings where the structure of the environment must be inferred through
action sequences.

We follow the same experimental conditions as MVoT (Li et al., 2025a). Table 7 summarizes the core
characteristics of the three dynamic spatial reasoning benchmarks used to evaluate DARE: MAZE,
MINIBEHAVIOR, and FROZENLAKE. These benchmarks differ in grid sizes, entity types, and
action sequence complexity, capturing a range of spatial-temporal reasoning challenges. MAZE
features procedurally generated layouts with deterministic navigation paths and moderate action
diversity. MINIBEHAVIOR introduces greater behavioral complexity, offering a larger action space
and controlled environment perturbations that test generalization over procedural tasks. FROZEN-
LAKE, by contrast, is defined by its stochastic transitions, variable action lengths, and explicit
reasoning over patterned environments (e.g., slippery tiles and traps), making it the most structurally
demanding. Notably, only FROZENLAKE includes explicit pattern modeling, as indicated in the
"Pattern Details" row. Reported action lengths and entity counts are averaged across samples to
reflect typical task complexity. All three datasets provide comparably sized training and testing splits,
supporting controlled evaluations of DARE’s spatial-temporal token retention strategies. Overall,
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Table 7: Characteristics of dynamic spatial reasoning tasks, highlighting varying complexities in
action dynamics and structural patterns.

Task MAZE MINIBEHAVIOR FROZENLAKE

Grid Sizes 3–6 5–8 3–6
Entity Types 5 3 3
Entities Numbers 5 3 7.16
Action Length 9.11 7.83 6.56
Action Types 4 7 4
Pattern Details ✗ ✗ ✓

Train Set Size 5007 6400 6846
Test Set Size 1255 1604 1664

Table 8: Overview of General VQA Benchmarks and Hallucination Benchmarks
Category General VQA Hallucination

Dataset GQA MMBench POPE AMBER
Split testdev_balanced DEV adversarial generative
Size 12578 4329 3000 1004

these benchmarks form a diverse testbed that complements static spatial reasoning tasks, emphasizing
trajectory grounding, goal-directed prediction, and dynamic decision-path comprehension.

B.3 GENERAL VQA BENCHMARKS.

We evaluate DARE on two widely used vision-language benchmarks to assess its generalization
beyond spatial reasoning: GQA (Hudson and Manning, 2019) and MMBench (Liu et al., 2024b).

For GQA, we follow prior work (Liu et al., 2023) and use the “testde_balanced” split, which provides a
balanced distribution over question types and supports rigorous evaluation of compositional reasoning
and object-centric grounding. We prepend the instruction prompt: “Please visualize the answer if you
are not sure about the details.” in order to promote concise and confident outputs. This encourages
the model to rely more explicitly on visual content when answering.

For MMBench, we adopt the official “DEV” split for efficient evaluation. MMBench is a manually
curated multi-dimensional benchmark that tests model capabilities across 12 skill categories, includ-
ing object recognition, attribute understanding, spatial relations, and commonsense reasoning. It
emphasizes fine-grained vision-language alignment and has been used as a standard diagnostic tool
for evaluating VLM performance under diverse visual and linguistic challenges.

Overall, these two benchmarks offer complementary perspectives on general vision-language under-
standing and help validate the effectiveness of DARE’s compression mechanism beyond its primary
spatial reasoning setup.

B.4 HALLUCINATION BENCHMARKS.

We assess the factual reliability and grounding capability of DARE by benchmarking it on two recent
hallucination detection datasets: POPE (Li et al., 2023b) and AMBER (Wang et al., 2023). These
benchmarks evaluate whether a model generates content that is not supported or entailed by the visual
input.

POPE (Perception-Oriented Probe for Evaluation) (Li et al., 2023b) introduces a suite of contrastive
visual examples designed to probe factual grounding and resistance to object hallucination. We
follow prior work (Li et al., 2025b) and evaluate on the adversarial subset, which contains the most
challenging examples where visual distractors are introduced to provoke hallucinations. Each sample
presents a claim about the image (e.g., “There is a cat on the table”), and the model is asked to
verify its correctness. We adopt the binary yes-or-no prompting protocol from the original dataset,
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ensuring consistency with the official evaluation setup. This setting stresses the model’s ability to
avoid overconfident assertions unsupported by visual evidence.

AMBER (Wang et al., 2023) (A Benchmark for Evaluating Realistic Hallucinations in Multimodal
Models) tests the model’s ability to generate grounded, factual descriptions of images in free-
form language. It consists of diverse images with multiple levels of hallucination risk and uses
CHAIR (Peng et al., 2023) as the underlying hallucination scoring metric. We evaluate DARE
on the generative task split, where the model must produce a description for each image. The
original prompts from the dataset are preserved to maintain fair comparison. Generated responses are
assessed for consistency, relevance, and hallucination rate using the CHAIR metric, which quantifies
object-level mismatches between the output and the ground truth.

These two benchmarks offer complementary views of hallucination: POPE provides a focused and
controllable binary setting, while AMBER offers open-ended generation under real-world uncertainty.
In a nutshell, they allow us to assess whether DARE’s sparsity-aware routing improves not only
efficiency but also the factual alignment of multimodal outputs.

B.5 VISION–LANGUAGE REASONING DATASETS

NLVR2 (Suhr et al., 2018) is a benchmark dataset designed to evaluate models’ ability to perform
compositional reasoning over images paired with text. Each example presents a natural photograph
and a pair of human-written captions that are closely related but differ in subtle semantic aspects,
requiring fine-grained visual and linguistic understanding to determine which caption is true of the
image. Unlike simple recognition tasks, this dataset emphasizes relational and contextual reasoning,
such as spatial relations, object attributes, and logical consistency between image and language.

VLEP (Video-and-Language Event Prediction) (Lei et al., 2020) is a large-scale dataset introduced
to study future event prediction in multimodal settings. Each example consists of a short video
clip paired with a natural language description of the observed context, followed by two candidate
textual hypotheses about what is more likely to happen next. Models must select the correct continua-
tion, requiring them to integrate temporal visual cues with linguistic semantics and commonsense
knowledge. Covering diverse everyday scenarios, VLEP emphasizes anticipatory reasoning beyond
recognition, making it a challenging benchmark for evaluating video–language models’ ability to
understand events and predict plausible outcomes.

B.6 DIALOG VQA

CLEVR-Dialog (Kottur et al., 2019) is a synthetic diagnostic dataset designed to evaluate multi-
round reasoning in visual dialog systems. Built on the CLEVR framework, it pairs images of
3D-rendered objects with automatically generated multi-turn question–answer dialogues that probe
complex reasoning skills such as counting, attribute comparison, spatial relations, and coreference
resolution. Each dialogue requires the model to maintain contextual memory across rounds while
grounding linguistic references in the visual scene. By controlling the visual environment and
dialogue generation process, CLEVR-Dialog provides a clean and interpretable benchmark for
studying compositional, multi-step reasoning in vision–language interaction.

C IMPLEMENTATION AND HYPERPARAMETER SETTINGS

C.1 FINE-TUNING DARE IN THE VOLCANO MODEL.

We embed DARE into the 7B-parameter VolCano model (Li et al., 2025b), which interleaves textual
tokens with RefBind–based visual tokens for fine-grained grounding. Instruction tuning is performed
on the VoCoT corpus under the configuration summarized in Table 9. Briefly, we keep the CLIP
ViT-L/14 visual encoder frozen (input resolution 336×336) and initialize the language backbone with
multi-domain caption checkpoints (ALLaVA-Caption, GRIT, Flickr30k-Entities, MMC4). Training
uses the AdamW optimiser (Loshchilov and Hutter, 2017) with β1=0.9, β2=0.95, ϵ=10−4, a base
learning rate of 1×10−4 for visual-router parameters (and a peak LLM LR of 1×10−5), weight
decay 3×10−2, no warm-up, and a cosine schedule. A global batch of 128 sequences (each ≤3072
tokens) is optimised for one epoch, using bfloat16 precision on eight NVIDIA A100 (40 GB) GPUs;
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Table 9: DARE’s Training configuration for the instruction tuning stage.

Configuration Instruction Tuning

Visual Encoder OpenAI-CLIP ViT-L/14 (Radford et al., 2021)
Backbone Init ALLaVA-Caption (Chen et al., 2024a), GRIT (Peng et al., 2023)

Flickr30k-Entities (Plummer et al., 2015), MMC4 (Zhu et al., 2023b)
Optimizer AdamW
Optimizer Hyperparameters β1 = 0.9, β2 = 0.95, ϵ = 1e−4

Global batch size 64
Peak learning rate of LLM 1e-5
Learning rate schedule Cosine
Training Epochs 1
Warm-up ratio 0
Weight decay 3× 10−2

Gradient clipping 1.0
Input image resolution 336 × 336
Input sequence to LLM 3072
Numerical precision bfloat16
GPU Usage 8 NVIDIA A100
Training Time 115h

gradients are clipped to 1.0, and total wall-clock time is ∼30 h. Under this regime, DARE jointly
minimizes task loss plus sparsity regularisers, converging to retention ratios of roughly 40% for visual
tokens and 70% for text tokens, while preserving VolCano’s task accuracy and reducing both FLOPs
and KV cache by ≥40%.

After completing instruction tuning, we evaluate the fine-tuned DARE-VolCano model on a suite
of downstream benchmarks covering static spatial reasoning, dynamic spatial reasoning, general
visual question answering, and hallucination detection. For spatial reasoning, we assess perfor-
mance on VSR, EmbSpatial, V-Star, and Winoground. For general VQA, we use GQA with the
“testde_balanced” split to measure compositional question answering performance. Finally, we assess
factual grounding and hallucination resistance using POPE (binary classification) and AMBER
(generative description), which stress the model’s ability to align outputs with visual evidence.

C.2 FINE-TUNING DARE ON ANOLE-7B MODEL

We integrate DARE into the Anole-7B model (Chern et al., 2024), a multimodal architecture that
combines textual inputs with self-generated mental imagery to support abstract spatial reasoning. We
fine-tune this model for 60 epochs on three challenging multi-hop, dynamic spatial reasoning tasks:
MAZE (Ivanitskiy et al., 2023), MINIBEHAVIOR (Jin et al., 2023), and FROZENLAKE (Wu
et al., 2024a). These tasks require the model to reason over evolving spatial environments and
multi-step action trajectories. Fine-tuning follows the MVoT configuration shown in Table 10, using
AdamW with β1=0.9, β2=0.95, and ϵ=2e−4, weight decay 3×10−2, and a batch size of 8 with
gradient accumulation of 2. Training is distributed across 4 NVIDIA GPUs.

This setup enables DARE to dynamically prune uninformative tokens while preserving crucial
trajectory and spatial cues. By integrating DARE’s retention-aware routing into Anole-7B, we
demonstrate that our method generalizes beyond static instruction-tuned models, enabling scalable
and efficient reasoning in long-horizon, procedurally generated environments.

C.3 IMPLEMENTATION OF BASELINES

We adopt three recent efficiency–oriented reasoning baselines, SoT, LightFast, and Heima, and align
their settings with our DARE evaluation pipeline.
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SoT (Sketch-of-Thought). SoT is a static prompt framework that condenses reasoning into cog-
nitively inspired “sketch” phrases, reducing token usage by a predefined retention ratio ρ without
model fine–tuning (Aytes et al., 2025). For each task, we prepend the task–specific SoT instruction
(“<sketch>”) to VolCano’s original prompt, explicitly injecting the same retention ratio ρ used
in DARE to ensure consistent sparsity constraints. We maintain the same generation parameters
(temperature 0.7). Because SoT is purely prompt-based, no additional training or model modification
is required.

LightFast (LightThinker (Zhang et al., 2025a) + FastV) (Chen et al., 2024c). LightFast combines
LightThinker, a text-side token compression module that prunes low-utility reasoning tokens, with
FastV, a visual pruning component that discards redundant visual tokens after the second transformer
layer. We implement LightThinker as a lightweight controller atop VolCano’s language blocks,
using the original hyperparameters (retention ratio matched to DARE, λentropy = 5e−3). FastV is
integrated into the frozen CLIP encoder with its default layer-2 cutoff strategy. Both modules are
fine-tuned jointly for one epoch on the VoCoT corpus to ensure a fair comparison with DARE under
the same training budget. This setup reflects a strong modular baseline that simulates independent,
modality-specific compression without unified routing.

Heima. Heima shifts chain-of-thought reasoning into a latent “hidden thinking” space by compress-
ing intermediate reasoning into a single thinking token, which is decoded only at the final step (Shen
et al., 2025). We condition the Heima Encoder on interleaved image and text inputs, allowing the
latent reasoning vector to capture fused cross-modal semantics to adapt it for multimodal reasoning.
Each intermediate reasoning step is encoded as a 128-dimensional vector, while a frozen Heima
Decoder reconstructs the final output if needed. We follow the official implementation, fine-tuning
only the encoder using AdamW (β1=0.9, β2=0.95, LR 1×10−4) for 3 epochs on the VoCoT corpus.
This setup offers a strong latent-space baseline that eliminates intermediate tokens while leveraging
multimodal context.

SparseVLM. SparseVLM introduces a visual token sparsification framework that prunes redundant
image tokens before they are fed into the language backbone (Zhang et al., 2025c). We integrate
SparseVLM into the VolCano pipeline by applying its token selection module on CLIP-encoded visual
features, using the same retention ratio ρ as in DARE to ensure fairness. This module ranks tokens
by learned importance scores and discards background or low-saliency patches while preserving
critical object-centric cues. Following the official setup, the pruning module is jointly fine-tuned
with VolCano for one epoch on the VoCoT corpus under identical optimization settings (AdamW,
β1=0.9, β2=0.95, LR 1×10−4). This configuration reflects a strong visual sparsification baseline
that reduces computation and KV-cache usage without altering the textual pathway.

Table 10: Hyper-parameters used for fine-tuning Anole 7B.

Configurations DARE

Random Seed 42
Epochs 60
Optimizer AdamW
Optimizer Hyperparameters β1 = 0.9, β2 = 0.95, ϵ = 2e−4

Weight decay 3× 10−2

Train Batch Size 8
Val Batch Size 8
Grad Accumulation 2
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Figure 8: Scatter-density plots of router-predicted token scores vs. learned retention ratios for visual
and text tokens. Pearson correlations (r = 0.85 visual; r = 0.89 text) indicate that DARE aligns
token importance with retention, despite different sparsity budgets (40 % visual, 75 % text).

D MECHANISMS AND ANALYSIS OF LEARNABLE TOKEN RETENTION

D.1 CORRELATION BETWEEN LEARNED RETENTION RATIOS AND ROUTER PREDICTIONS

Figure 8 illustrates the relationship between token importance scores predicted by the DARE router
and the corresponding retention ratios after differentiable token compression. Each point represents a
token, with its router score on the x-axis and its final retention ratio on the y-axis. Pearson correlation
coefficients are computed over ∼25,000 tokens spanning 5 hops and 32 layers on the validation set,
while 200 tokens in each subfigure are uniformly sampled for visualization in the figure. We observe
strong positive correlations (r = 0.85 for visual tokens, r = 0.89 for text tokens), despite differing
average retention budgets (40% for visual tokens and 75% for text tokens). This trend confirms
that higher router scores consistently translate into higher retention probabilities. Importantly, this
alignment emerges without any explicit supervision, validating that DARE’s joint routing-compression
framework effectively couples token scoring with sparsity-aware retention across heterogeneous
modalities.

D.2 EFFECTIVENESS OF MSE LOSS FOR RETENTION PREDICTION

DARE relies on a lightweight mean-squared-error (MSE) objective to steer its router toward a
desired sparsity profile. For each modality m ∈ {t, v}, hop h, and layer l, the auxiliary loss
L(m)

ratio = (ρ̂
(m)
h,l −ρ

(m)
target)

2 penalizes deviations between the empirical retention ratio ρ̂
(m)
h,l and a target

ratio ρ
(m)
target. Taking the gradient with respect to the learnable ratio parameter yields

∂L(m)
ratio

∂ρ
(m)
h,l

= 2
(
ρ̂
(m)
h,l − ρ

(m)
target

)
, (11)

which is an unbiased estimator of the error magnitude. Hence the update magnitude shrinks linearly
as the observed ratio approaches the target, guaranteeing a first-order stationary point at ρ̂ = ρtarget.
Because L(m)

ratio is convex in ρ, gradient descent with a diminishing step size converges to this optimum
under the same Lipschitz conditions stated in Proposition 1 (Sec. H). In practice we observe rapid
stabilization of the per-layer retention ratios (≤5 training epochs), providing a reliable sparsity signal
to the router while adding negligible computational overhead.
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Table 11: Ablation on modality-specific MSE losses. Accuracy (%, ↑) after (i) removing the
text-ratio loss, (ii) removing the visual soft + hard losses, and (iii) removing all MSE regularisers.

Benchmark All MSE –L(t)
ratio –(L(v)

soft+L
(v)
hard) –Both

EmbSpatial 68.09 67.12 64.42 60.01
Winoground 68.31 67.01 61.78 57.34
V-Star 60.07 56.21 52.52 49.21
VSR 68.09 66.62 62.31 59.23
MAZE 93.32 90.90 82.73 76.42
MINIBEHAVIOR 95.47 92.11 85.02 70.71
FROZENLAKE 86.11 83.13 77.61 69.21

Avg.∆ — −2.34 −7.58 −13.90

Empirical Evidence. Table 11 presents an ablation study on the role of modality-specific MSE
regularizers in DARE. Removing the text-token ratio loss L(t)

ratio results in a 2.34% average accuracy
drop, with notable degradation on V-Star and Winoground. Excluding the visual retention losses
L(v)

soft + L
(v)
hard causes a larger 7.58% drop, underscoring their role in preserving spatial precision.

Removing all MSE terms leads to a 13.90% average decline, confirming that task supervision alone
is insufficient for effective sparsity-aware routing.

These results show that the MSE regularizers play a critical role in guiding DARE’s router toward
consistent and effective token selection. Without these losses, the model tends to misalign token
importance scores with retention behavior, leading to degraded accuracy across both visual and textual
modalities. As illustrated in Figure 8, the inclusion of MSE supervision enhances the correlation
between router scores and final retention decisions. This complements our theoretical analysis, where
the convex form of the MSE objective ensures stable optimization toward the target sparsity. Overall,
the empirical and theoretical evidence supports the inclusion of modality-specific MSE losses as
essential components for reliable and efficient routing.

D.3 WHY GUMBEL-SOFTMAX INSTEAD OF SOFTMAX?

Why Gumbel-Softmax? We employ Gumbel-Softmax (Jang et al., 2017) to enable differentiable
yet sparse token selection, which standard softmax cannot provide. Unlike softmax, which always
outputs dense, positive weights that retain all tokens and thus prevents any FLOP or KV-cache
reduction (Table 12), Gumbel-Softmax offers three advantages: (1) inference-time sparsity, where
setting τ = 0 yields deterministic top-k token selection and allows token skipping in attention/MLP
layers, (2) stable gradients, as the added i.i.d. Gumbel(0,1) noise and temperature τ produce a
smooth, differentiable relaxation unlike non-differentiable softmax+thresholding, and (3) improved
exploration early in training, since the injected noise prevents premature collapse on arbitrarily ranked
tokens.

Table 12: Comparison between Softmax and Gumbel-Softmax.

Operation Forward-pass output Gradients w.r.t. logits

Softmax Dense, all-positive weights that
sum to 1.

Non-zero, but every token is
still processed; no FLOP or KV-
cache savings.

Gumbel-Softmax
(add Gumbel noise,
divide by τ , softmax)

For τ ≈ 1, behaves like a
noisy softmax (encouraging ex-
ploration); as τ → 0, converges
to one-hot vectors, mimicking
top-k.

Non-zero until τ → 0, enabling
end-to-end training of the router
and retention ratios ρ.
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Empirical evidence. Our ablation study (Table 13) highlights the necessity of Gumbel-Softmax.
Replacing it with softmax+thresholding reduces average accuracy by over 6% (77.01%→ 70.92%)
without any gain in KV-cache savings, while fixing τ = 1 throughout leads to even larger performance
drops and weaker memory reduction (–34% vs. –46%). These findings demonstrate that Gumbel-
Softmax is crucial for maintaining both stable training dynamics and efficient inference, enabling
deterministic top-k token selection in DARE.

Table 13: Ablation on Gumbel-Softmax. Accuracy is averaged across 9 tasks.
Variant Avg. Accuracy (9 tasks) KV-cache ∆

Full DARE (Gumbel-Softmax) 77.01% –46%
Replace with softmax+threshold 70.92% –37%
No perturbation, τ = 1 throughout 70.73% –34%

D.4 COMPARISON WITH HEURISTIC TOKEN RETENTION AND ROUTING METHODS

We benchmarked DARE against four budget-matched heuristic token retention strategies to evaluate
the effectiveness of learned routing: (1) Gist token (Mu et al., 2023), which compresses input
sequences into a summary token, (2) average attention scores, which retain tokens with the highest
mean attention across heads, (3) hidden-state norm pruning, which removes tokens with low activation
magnitudes, and (4) heavy-hitter routing (Zhang et al., 2023), which prioritizes tokens frequently
activated across layers.

Table 14: Comparison of heuristic routers and DARE on VSR and MAZE benchmarks.
Router Type VSR Acc. MAZE Acc. Avg. GFLOPs ×103

Gist token 62.8% 84.5% 14.8
Hidden-state norm 57.2% 83.6% 14.3
Mean attention score 60.7% 81.8% 15.5
Heavy-hitter 63.0% 88.7% 13.2
DARE (learned) 68.1% 93.3% 10.1

As shown in Table 14, heuristic methods underperform DARE by 4.6–11.5% in accuracy, while also
incurring higher computational cost per token retained. The primary limitation of these heuristics
is that they operate in a layer-wise manner, without adapting to evolving cross-hop or cross-modal
dependencies, and are unable to dynamically detect task-dependent information cliffs. In contrast,
DARE’s learned routing mechanism provides consistent gains in both efficiency and accuracy across
benchmarks.

We further compared DARE with the heuristic MoD (Raposo et al., 2024) routing mechanism. MoD
prunes tokens using fixed, hard-coded top-k ratios at each layer, designed primarily for unimodal,
single-pass inference. This approach lacks the ability to adapt retention across layers, reasoning hops,
or modalities, and does not address memory growth from recurrent reasoning.

By contrast, DARE represents a principled departure from heuristic-based MoD and introduces four
key innovations. First, it implements modality-aware routing through asymmetric routing heads for
vision and text. This enables pruning decisions to adapt to each modality’s changing informativeness
after fusion, whereas MoD is restricted to unimodal routing and cannot distinguish modality-specific
contributions. As a result, DARE-LH outperforms the unimodal UniPru baseline by up to +9.1%
accuracy while simultaneously reducing FLOPs by as much as 32% (Table 15).

Second, DARE employs dynamic, intra- and inter-hop-aware retention ratio. Its retention ratios
are learnable and differentiated by both hop and layer, optimized end-to-end via Gumbel-Softmax.
In contrast, MoD applies fixed, hard-coded top-k ratios per layer, preventing adaptation to evolving
reasoning dynamics. In matched-budget comparisons, DARE improves accuracy by up to +8.7% over
MoD (EmbSpatial), as shown in Table 16. Further evidence in Table 17 shows that hop-awareness
alone provides an additional +4.2% accuracy and –21.6% FLOPs savings compared to DARE-L,
underscoring the importance of intra- and inter-aware retention rates.
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Third, DARE explicitly aligns routing with the information fusion process across modalities. Multi-
hop spatial reasoning requires joint processing of vision and text, where visual cues are progressively
absorbed into the textual stream. DARE captures this transition: early layers retain more visual tokens
for grounding and spatial alignment, while deeper layers prioritize text tokens for abstract reasoning.
This dynamic behavior, visualized in Figure 9, ensures pruning decisions remain consistent with the
natural flow of multimodal information. MoD, lacking modality awareness or fusion tracking, cannot
replicate this adaptation.

Finally, DARE addresses the often-overlooked challenge of KV-cache efficiency in recurrent
reasoning. In multi-hop settings, recurrent computation causes rapid growth in KV-cache size,
which in practice, rather than FLOPs, is often the dominant bottleneck for scalability. MoD entirely
overlooks this issue. DARE mitigates it with an execution mask (Eq. 9) that prunes dropped tokens
from the cache at every hop, reducing memory requirements by 35–48% (Table 18). This mechanism
substantially improves scalability and makes DARE well-suited for long-horizon reasoning tasks
where cache size, not compute, is the limiting factor.

Table 15: Comparison of DARE-LH with unimodal UniPru baseline.
Task ∆ Acc. (DARE-LH − UniPru) DARE-LH FLOPs Saving

VSR +4.38 –20.6%
V-Star +6.85 –18.3%
EmbSpatial +7.34 –15.7%
Winoground +2.48 –14.1%
MAZE +9.10 –24.9%
MiniBehavior +5.13 –24.4%
FrozenLake +2.00 –32.0%

Table 16: Comparison between MoD and DARE under matched budgets.
Task MoD DARE ∆ Acc. (DARE−MoD)

VSR 62.11 68.09 +5.98
V-Star 50.72 60.07 +9.35
EmbSpatial 59.37 68.09 +8.72
Winoground 62.65 68.31 +5.66

Table 17: Accuracy and FLOP savings of DARE-LH relative to DARE-L.
Task ∆ Acc. (DARE-LH − DARE-L) DARE-LH FLOPs Saving

VSR +0.96 –11.8%
V-Star +2.68 –10.2%
EmbSpatial +3.72 –8.5%
Winoground +1.09 –7.8%
MAZE +3.54 –20.2%
MiniBehavior +4.22 –20.4%
FrozenLake +2.00 –21.6%

These results confirm that DARE takes a principled departure from heuristic-based MoD. Its
learnable and modality-aware design, aligned with cross-modal fusion and adaptive across hops,
not only delivers substantial accuracy gains but also addresses KV-cache efficiency, a limitation
unaddressed by MoD. This distinction is crucial for efficient multi-hop multimodal reasoning and
explains DARE’s consistent superiority across benchmarks, as heuristic approaches tend to accumulate
and propagate errors while lacking the fine-grained signals required to calibrate compression at the
level of each layer, hop, and modality.
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Table 18: KV-cache memory usage (GB) across hops in VSR and related tasks.

Task Thought 1 Thought 3 Thought 5
MoD DARE MoD DARE MoD DARE

VSR 1.92 1.21 3.28 2.09 5.69 2.97
V-Star 1.96 1.35 3.34 2.37 5.52 3.28
EmbSpatial 2.01 1.51 3.41 2.65 5.37 3.52
Winoground 2.05 1.62 3.48 2.86 5.72 3.60

D.5 STABILITY OF LEARNED RETENTION MASKS ACROSS SEEDS

We trained the model five times with independent random seeds (11111, 22222, 33333, 44444, 55555)
to evaluate the robustness of DARE to initialization.

Accuracy stability. As shown in Table 19, performance remains highly consistent across all seven
spatial reasoning tasks. For instance, VSR achieves 68.3± 0.24, and all other tasks exhibit standard
deviations below 0.32 points, which is well within expected random variation. These results confirm
that DARE maintains stable accuracy regardless of initialization.

Retention mask consistency. In addition to accuracy, the learned retention masks are also repro-
ducible across seeds. Specifically, the average Jaccard overlap of retained tokens across seed pairs is
0.91± 0.02, while the Spearman correlation between router scores exceeds ρ = 0.94 across all layers
and modalities. This demonstrates that DARE consistently learns near-identical retention patterns
across runs, further reinforcing its stability and reliability.

Table 19: Accuracy stability of DARE across random seeds. Reported as mean ± standard deviation.
Metric (across seeds) VSR V-Star EmbSpatial Winoground
Mean ±σ 68.3 ± 0.24 60.4 ± 0.06 68.1 ± 0.07 68.4 ± 0.17

Metric (across seeds) MAZE MiniBehavior FrozenLake
Mean ±σ 93.5 ± 0.09 95.8 ± 0.11 86.4 ± 0.32

D.6 DETAILS OF RETENTION RATIOS ρ
(m)
h,l , TARGETS ρ

(m)
TARGET , AND THEIR RATIONALE

We provide additional clarification on the retention ratios used in DARE. The framework distinguishes
between three quantities: (i) learnable per-hop, per-layer, per-modality ratios ρ

(m)
h,l , (ii) the corre-

sponding empirical ratios ρ̂(m)
h,l realized during execution, and (iii) modality-specific global targets

ρ
(m)
target that act as sparsity anchors.

Learnable vs. empirical ratios. Each ratio ρ
(m)
h,l is a learnable scalar parameter, defined sepa-

rately for each modality m ∈ {text, vision}, hop h, and layer l. These parameters are initialized to
zero and updated jointly with the model via backpropagation. During the forward pass, the router
produces token importance scores s(i,m)

h,l (Eq. 2). A differentiable Gumbel–Softmax mask (Eq. 4)

selects the top fraction specified by ρ
(m)
target, producing routed activations ỹ(i,m)

h,l (Eq. 3). The empirical
retention ratio is then

ρ̂
(m)
h,l =

1

N
(m)
h,l

N
(m)
h,l∑
i=1

α
(i,m)
h,l , (12)

where N
(m)
h,l is the token count and α

(i,m)
h,l ∈ {0, 1} is the selection mask. Thus, ρ(m)

target encodes the

intended budget, while ρ̂
(m)
h,l reflects the actual fraction realized in the forward pass.
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Consistency with global targets ρ(m)
target. We introduce modality-specific global anchors ρ(m)

target that

regulate average retention across hops and layers. Without these anchors, the learned ratios ρ(m)
h,l drift

upward during fine-tuning, leading to excessive memory use (up to 2.7× KV-cache growth on VSR
and nearly 2× on average across seven multimodal spatial reasoning tasks).

A quadratic auxiliary loss

L(m)
budget =

1

HL

H∑
h=1

L∑
l=1

(
ρ̂
(m)
h,l − ρ

(m)
target

)2

, (13)

softly penalizes deviations from the global budget while preserving local flexibility. These anchors
stabilize FLOP and memory usage, prevent error accumulation in autoregressive reasoning, and keep
KV-cache growth under control. With ρ

(t)
target = 0.7 and ρ

(v)
target = 0.40, DARE achieves large efficiency

gains (≥ 40% FLOP reduction and ≥ 46% KV-cache savings) without sacrificing accuracy.

Sensitivity analysis. We validated robustness by sweeping text targets ρ(t)target from 60–80% and
visual targets from 20–60% (Figure 5). Accuracy remained within 1% of baseline across most
settings, degrading only when the text ratio fell below 20%. The 70%/40% configuration provides the
best trade-off between accuracy and efficiency. Under these targets, DARE consistently outperforms
or matches baselines on nine benchmarks while maintaining over 40% FLOP reduction and 46%
KV-cache savings.

D.7 DATA-DRIVEN DETERMINATION AND ROBUSTNESS OF THE VISUAL PRUNING PHASE lc

DARE’s transition from soft to hard visual token pruning is not heuristic, but an automated, data-
driven procedure that generalizes across models and tasks. The method is described in Alg. 4.

Automated detection. The pruning phase boundary lc is determined at the start of training by
analyzing the router’s layer-wise mean visual token importance. Specifically, the importance curve is
first smoothed with a short moving average. A greedy scan is then applied to identify the first layer
where importance consistently falls below a fixed threshold ϵ, after which hard pruning is applied.
This process is transparent, deterministic, and requires no manual tuning. As a result, lc naturally
adapts across architectures and scales (e.g., lc = 14 for VSR-7B, lc = 18 for Chameleon-34B).

Robustness of lc. The boundary is highly robust to hyperparameters and offsets. Shifting lc by
±3 layers alters accuracy by at most 0.3% and FLOP savings by at most 1%, confirming that lc
serves as a stable diagnostic rather than a sensitive knob (Table 20). Across ten diverse benchmarks,
the detected thresholds ϵ are consistently below 0.01, and lc typically lies near the midpoint of the
network (Table 21), reflecting consistent dynamics in visual-token utility.

Comparison with learned gates. We also experimented with learning lc using a differentiable
gating mechanism. While the gate converged to a similar location (within ±2 layers of the automati-
cally detected lc), it introduced gradient noise and increased variance (±0.3% accuracy fluctuations)
without providing any performance gains. This demonstrates that the automated procedure is not
only simpler, but also more reliable.

Interpretation. The automatically detected split aligns with a genuine semantic transition in
multimodal reasoning. As shown in Figure 3, visual token importance drops sharply after lc, exactly
when text importance rises, marking the point where visual features have been absorbed and linguistic
reasoning becomes dominant. Thus, DARE’s pruning boundary reflects the natural dynamics of
information flow, ensuring that pruning decisions remain both effective and semantically grounded.

E EFFICIENCY ANALYSIS

E.1 PARAMETER OVERHEAD

DARE introduces only two categories of additional parameters: (i) lightweight per-layer routing
heads, and (ii) learnable retention ratios ρ that determine the fraction of tokens preserved per modality,
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Table 20: Robustness of DARE to shifts in the pruning boundary lc. Accuracy (%) and FLOP savings
are reported.

Offset from lc VSR Acc. FLOPs↓ MAZE Acc. FLOPs↓
–3 68.0 –40.8% 93.2 –41.5%

0 (auto) 68.1 –41.6% 93.3 –42.1%
+3 67.9 –40.9% 93.1 –41.3%

Table 21: Post-jump importance values and corresponding lc values across benchmarks.
Benchmark Post-jump importance values lc (layer index)
VSR 0.003 15
V-Star 0.007 14
EmbSpatial 0.002 15
Winoground 0.003 15
MAZE 0.004 14
MiniBehavior 0.003 13
FrozenLake 0.007 13
NLVR2 0.010 15
GQA 0.009 15
POPE 0.002 14

hop, and layer. For a 7B-parameter VolCano backbone with L = 32 layers, hidden size d = 4096,
H = 5 reasoning hops, and M = 2 modalities, the total number of added parameters is

PDARE = L×M × (d+ 1) +H × L×M = 262,528.

This accounts for less than 0.004% of the base model size, over three orders of magnitude smaller
than typical LoRA adapters. Such an overhead is negligible, confirming that DARE’s efficiency gains
are achieved without materially increasing model size or training complexity.

E.2 TRAINING STABILITY AND CONVERGENCE SPEED

DARE maintains stable optimization while accelerating training efficiency. As shown in Table 22,
training across five independent random seeds exhibited no instability events, with accuracy variance
below 0.70%. Moreover, DARE reduced wall-clock time to the same validation loss by 32%,
primarily due to early token pruning, which decreases per-layer computation by 25–40% from the
first mini-batch onward. Importantly, convergence speed in terms of optimization steps remains
nearly unchanged (17.5k vs. 17.2k), indicating that faster training arises from lower per-step cost
rather than shallower optimization.

Table 22: Training metrics for DARE vs. baseline Anole-7B.
Aspect Baseline Anole-7B DARE-Anole-7B
Extra parameters — +0.26M
Per-step FLOPs (train) 100% 57–69%
Wall-clock time to same val. loss 28h 19h (–32%)
Convergence steps (to 99% final acc.) 17.2k 17.5k
Instability events (loss spikes >5× median, 5 seeds) 0/5 0/5

Sources of stability. The robustness of DARE is attributable to three simple design factors. First,
the auxiliary retention-target losses are deliberately down-weighted (0.1×) and removed after the
early epochs; excluding them changes final accuracy by less than 0.3%, confirming their role as
gentle regularizers. Second, the Gumbel-Softmax relaxation with moderate temperature (τ = 0.7)
provides smooth gradients and stable training; performance remains consistent across τ ∈ [0.5, 0.9],
while hard masking is applied only at inference. Finally, DARE reuses the same optimizer (AdamW)
and schedule as the baseline model, requiring no additional warm-up phases or learning rate groups.
These choices ensure that DARE integrates seamlessly into standard training pipelines, achieving
significant efficiency gains without sacrificing stability or convergence quality.
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E.3 ENGINEERING EFFORT

DARE integrates with existing MLLM frameworks with minimal overhead. The implementation
introduces a lightweight router module responsible for three tasks: (i) token importance scoring, (ii)
differentiable soft masking during training, and (iii) KV-cache pruning at inference. All components
are implemented at the Python layer, requiring no modifications to attention kernels, checkpoint
formats, or training loops. Consequently, DARE can be incorporated as a plug-and-play option with
only a few hundred lines of additional code, leaving the backbone architecture and training pipeline
entirely unchanged.

F HYPERPARAMETER SENSITIVITY AND ABLATION

F.1 ABLATION ON PRUNING THRESHOLD ϵ

We further evaluated the sensitivity of DARE to the pruning threshold ϵ on both a static benchmark
(VSR) and a dynamic benchmark (MAZE). As shown in Table 23, varying ϵ over a wide range
produces negligible changes in performance: accuracy shifts by less than 0.2% and FLOP savings by
less than 1%. This demonstrates that DARE’s efficiency and accuracy are highly robust to the choice
of ϵ, making the method stable across different settings without the need for hyperparameter tuning.

Table 23: Sensitivity of DARE to ϵ on VSR and MAZE. Accuracy (%) and FLOP savings are reported.
ϵ VSR Acc. ∆ FLOPs↓ MAZE Acc. ∆ FLOPs↓

0 (no penalty) 67.9 –0.2 –40.1% 93.1 –0.1 –41.2%
0.005 68.1 0 –41.6% 93.1 –0.2 –42.0%

0.010 (def.) 68.1 0 –41.6% 93.3 0 –42.1%
0.020 68.0 –0.1 –41.3% 93.2 –0.1 –41.9%
0.050 67.7 –0.4 –40.8% 93.1 –0.2 –41.0%

F.2 IMPACT OF TEMPERATURE τ SCALING

Temperature τ in DARE controls the sharpness of the token importance distribution produced
by the Gumbel-Softmax routing mechanism. Lower temperatures lead to harder, more discrete
selections, while higher temperatures introduce softer token scores. Table 24 presents an ablation over
τ ∈ {0.3, 0.5, 0.7, 0.9, 1.1, 1.3} across all seven benchmarks. We observe that both excessively low
and high temperatures degrade performance slightly, likely due to increased noise or over-smoothing
in the token selection process.

A moderate temperature of τ = 0.7 consistently yields the best accuracy across most datasets,
balancing sharpness and stability in routing decisions. Notably, this value performs well across both
static (e.g., EmbSpatial, VSR) and dynamic spatial reasoning tasks (e.g., MAZE, FROZENLAKE),
indicating that the routing mechanism generalizes effectively under shared hyperparameter settings.
These results validate our choice of a fixed temperature during training and confirm that DARE’s
differentiable routing is robust to moderate variations in τ .

G SCALABILITY AND GENERALIZATION

G.1 SCALABILITY TO LARGER AND SMALLER MODELS

We evaluate DARE’s scalability, without any architectural modification, across models ranging from
2.7B to 34B parameters. Results on BLIP-2 OPT (2.7B) (Li et al., 2023a), MiniGPT-4 (13B) (Zhu
et al., 2023a), and Chameleon (34B) (Team, 2024) are summarized in Table 25.

Performance across scales. On the small-scale BLIP-2 OPT (2.7B), DARE improves accuracy
by +2.7 on VSR and +3.1 on NLVR2, while reducing FLOPs by 36–40%, latency by 27–31%, and
KV-cache memory by 39–43%. Scaling up to MiniGPT-4 (13B), efficiency benefits become larger:
FLOPs and KV-cache shrink by 43%, latency by 33%, and accuracy gains remain consistent at +2.8
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Table 24: Impact of routing temperature τ on accuracy. Lower or higher τ values lead to slightly
noisier routing decisions, while τ = 0.7 provides the most balanced and robust results across tasks.

Temperature τ EmbSpatial↑ Winoground↑ V-Star↑ VSR↑ MAZE↑ MINIBEHAVIOR↑ FROZENLAKE↑

0.3 67.81 67.42 59.33 67.58 92.97 94.95 85.62
0.5 68.02 67.91 59.75 67.92 93.21 95.12 85.79
0.7 68.09 68.31 60.07 68.07 93.32 95.47 86.11
0.9 67.95 68.14 59.82 67.89 93.17 95.47 85.97
1.1 67.63 67.55 59.01 67.41 92.84 94.87 85.44
1.3 67.29 67.10 58.76 66.98 92.53 94.52 85.03

to +3.2 points. For Chameleon (34B), the largest model tested, DARE yields the strongest gains:
FLOPs drop by 46%, KV-cache by 48%, and latency by 34%, while accuracy improves by +3.5 (VSR)
and +4.1 (NLVR2). These results demonstrate two consistent trends: (i) accuracy improvements
hold across all scales, and (ii) efficiency gains grow super-linearly as models become larger due to
quadratic attention costs.

Retention targets and overhead. The same retention targets (40% visual, 70% text) remain
optimal within ±0.02 across all model sizes, showing that DARE generalizes without retuning.
Router parameters account for less than 0.1% of the total model size, and the additional compute
per forward pass is under 2%, even at 34B scale. Thus, overhead remains negligible while efficiency
benefits amplify with size.

These results confirm that DARE is both robust and scalable. Even compact models achieve meaning-
ful improvements, while larger models reap amplified efficiency savings and stronger accuracy gains.
This scaling behavior highlights DARE’s suitability for real-world deployment, where efficiency
constraints grow more severe as model size increases.

Table 25: Accuracy and efficiency gains of DARE across model sizes (2.7B–34B).
Model Params Dataset Baseline acc. DARE acc. ∆ FLOPs↓ Latency↓ KV-mem↓
BLIP-2 OPT 2.7B VSR 52.5 55.2 +2.7 –36% –27% –39%

NLVR2 70.1 73.2 +3.1 –40% –31% –43%

MiniGPT-4 13B VSR 71.5 74.7 +3.2 –43% –33% –45%
NLVR2 85.1 87.9 +2.8 –43% –33% –45%

Chameleon 34B VSR 74.1 77.6 +3.5 –46% –34% –48%
NLVR2 85.1 89.2 +4.1 –46% –34% –48%

G.2 GENERALIZATION TO BROADER MULTIMODAL REASONING TASKS

We tested DARE on multimodal reasoning tasks with distinct characteristics to evaluate generalization
beyond spatial reasoning: event prediction in videos (VLEP) and multi-round dialog VQA (CLEVR-
Ask). Both benchmarks require cross-modal integration and multi-step reasoning, providing a strong
test of robustness.

Results. As shown in Table 26, DARE improves accuracy by +1.7–4.3% while reducing FLOPs by
40–42%, latency by 31–33%, and memory usage by 45–47%. These results confirm that DARE’s ben-
efits extend well beyond spatial reasoning, delivering consistent accuracy gains alongside substantial
efficiency improvements across diverse multimodal settings.

Table 26: DARE-LH performance on broader multimodal reasoning tasks.
Dataset VolCano-7B DARE-LH ∆ FLOPs (G)↓ Latency (s)↓ Mem. (GB)↓
VLEP 62.8 67.1 +4.3% –40% –31% –45%
CLEVR-Ask 95.2 96.9 +1.7% –42% –33% –47%
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Analysis. DARE generalizes effectively for three reasons. First, its dynamic, modality-specific
retention adapts per layer, preserving critical visual and textual cues. Second, the framework
consistently delivers large computational savings (up to 42% FLOP and 47% memory reduction).
Third, the method yields accuracy gains even on semantically complex tasks such as dialog reasoning,
validating its robustness across task types. Overall, these findings demonstrate that DARE provides a
generalizable framework for efficient multimodal reasoning, achieving both efficiency and accuracy
improvements across a broad spectrum of tasks.

H THEORETICAL ANALYSIS

We provide a formal analysis of the retention mechanism in DARE, showing (i) that the
hop–layer–modality ratios ρ

(m)
h,l optimized with the AdamW algorithm converge, asymptotically

driving the expected gradient norm |∇ρL| to zero, and (ii) that the Gumbel–Softmax relaxation
employed during training approximates the hard top-k masking used at inference within an O(τ) gap,
where τ is the final temperature.

H.1 NOTATION AND SETUP

Let Θ denote the model parameters excluding the retention variables ρ. The full loss is decomposed
as:

L(Θ, ρ) = Ltask + L(t)
ratio + L

(v)
soft + L

(v)
hard. (14)

Each auxiliary term regularizes the learned retention schedule ρ to promote sparsity in a structured
and adaptive way. For hop h, layer l, and modality m ∈ {t, v}, let s(i,m)

h,l be the router score for

token i, α(i,m)
h,l ∈ {0, 1} the top-k binary mask at inference, and α̃

(i,m)
h,l ∈ (0, 1) the soft score during

training.

Assumptions:

A1 (Lipschitz Continuity). The gradient ∇ρL is L-Lipschitz continuous.

A2 (Bounded Variance). There exists G > 0 such that E[∥∇ρL∥2] ≤ G2.

H.2 CONVERGENCE OF RETENTION RATIO OPTIMIZATION

We now analyze the update rule for ρ when optimized with the AdamW algorithm1. Let mt and vt be
the first- and second-moment estimates maintained by AdamW, with hyper-parameters β1, β2 ∈ (0, 1)
and learning-rate schedule ηt = η0/

√
t. For each step t:

gt = ∇ρL(Θt, ρt), (15)
mt = β1mt−1 + (1− β1)gt, (16)

vt = β2vt−1 + (1− β2)g
⊙2
t , (17)

m̂t = mt/(1− β t
1 ), v̂t = vt/(1− β t

2 ), (18)

ρt+1 = ρt − ηt m̂t

/(√
v̂t + ε

)
− ηt λw ρt, (19)

where ε > 0 is a small stability constant and λw is the decoupled weight-decay coefficient applied to
ρ.

Lemma 1 (First-order Stationarity under Adam). Assume A1–A2,
∑∞

t=1 ηt =∞, and
∑∞

t=1 η
2
t <∞.

Let ρt be generated by AdamW with β1 < 1, β2 < 1, and ε > 0. Then the retention schedule satisfies

lim
T→∞

min
1≤t≤T

E
[∥∥∇ρL(Θt, ρt)

∥∥2] = 0. (20)

1We use the decoupled formulation of Loshchilov and Hutter (2017).
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Sketch. Following Reddi et al. (2019) for Adam-type methods, we bound the bias-corrected moments
under Lipschitz gradients (Bauschke et al., 2017), then show that the aggregated expected decrease
in L is lower-bounded by

∑
t ηt ∥∇ρL∥2 − C

∑
t η

2
t . Because

∑
t η

2
t <∞ while

∑
t ηt =∞, the

gradient norm must decay to 0. Even with AdamW’s adaptive moments and decoupled weight decay,
the learned retention policy converges to a first-order stationary point, ensuring a stable sparsity
pattern that jointly respects task loss and regularization.

H.3 DIFFERENTIABLE SOFT-TO-HARD TOKEN SELECTION

Although retention is specified as a ratio, each (h, l,m) instance with N
(m)
h,l tokens naturally induces

an equivalent top-k formulation by setting k
(m)
h,l = ⌊ρ(m)

h,l N
(m)
h,l ⌋, and retaining the top-k(m)

h,l tokens.

During training, relaxed weights q̃ are obtained via Gumbel–Softmax, and the top-k(m)
h,l entries are

selected in the forward pass, while a straight-through estimator treats q̃ as the surrogate for gradient
flow. Formally, let {s(i,m)

h,l }Ni=1 be the token importance scores, ordered as s(1) > s(2) ≥ · · · ≥ s(N),
and denote the top–runner-up margin by ∆ := s(1) − s(2) > 0. This discrete top-k selection is
approximated via Gumbel–Softmax relaxation in a differentiable manner.

q̃
(i,m)
h,l =

exp
(
(s

(i,m)
h,l + gi)/τ

)∑N
j=1 exp

(
(s

(j,m)
h,l + gj)/τ

) , gi ∼ Gumbel(0, 1), τ > 0, (21)

which provides smooth gradients; at inference we take the hard top-k mask directly from the raw
scores s.

Top-1 selection under Gumbel–Max. Consider the hard Gumbel–Max sample y =
argmaxj{sj/τ + gj}. The classic identity gives

P[y = (1)] =
es(1)/τ∑N
j=1 e

s(j)/τ
=

1

1 +
∑N

j=2 e
−(s(1)−s(j))/τ

. (22)

Using 1/(1 + x) ≥ 1− x and s(1) − s(j) ≥ ∆ for j ≥ 2, we obtain the margin-based lower bound

P[y = (1)] ≥ 1−
N∑
j=2

e−(s(1)−s(j))/τ ≥ 1− (N − 1) e−∆/τ . (23)

Thus, as the margin ∆ grows or the temperature τ decreases, the probability that the hard sample
agrees with the true top index rapidly approaches 1, with the exponential lower bound in equation 23.

Sketch. This follows from the Gumbel–Max trick (see, e.g., Jang et al. (2017)): adding i.i.d. Gumbel
noise to (scaled) logits and taking the argmax produces a categorical draw with probabilities
proportional to esj/τ . The lower bound uses a one-step relaxation of the softmax denominator and a
union bound over competitors to the top logit.

Top-k agreement. Let Sk := {(1), . . . , (k)} be the set of true top-k indices of s, and let Ŝk be the
top-k indices after Gumbel perturbation of s/τ . Denote the k-th margin by ∆k := s(k) − s(k+1) > 0.
Then a simple union bound yields

P
[
Ŝk = Sk

]
≥ 1−

N∑
j=k+1

P
(
sj/τ + gj ≥ s(k)/τ + g(k)

)
≥ 1−

N∑
j=k+1

e−(s(k)−sj)/τ ≥ 1−(N−k) e−∆k/τ .

(24)
Hence, larger k-margins ∆k or lower temperatures τ make top-k agreement exponentially likely.

Remark on the relaxed vector. The relaxed output q̃ in equation 21 is a continuous probability
vector (it is almost never exactly one-hot for τ > 0). Events like {q̃(1) = 1} have probability zero
unless τ → 0. In practice we train with q̃ (to pass gradients) and switch to the deterministic hard
top-k mask at inference, recovering computational savings while benefiting from the high agreement
guarantees in equation 23 and equation 24.
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Empirical observation. With an annealed temperature schedule (τ ∈ [0.7, 0.1]), the Hamming
disagreement between the relaxed top-k mask (thresholded from q̃) and the deterministic hard top-k
mask remains below 1% under typical router margins (∆k ≳ 0.7). See Appendix I for supporting
plots. In practice, the soft training procedure closely matches inference-time behavior, and the learned
retention policy converges reliably.

I INTERPRETABILITY AND VISUALIZATION

I.1 DETAILED EXPLANATION OF RETENTION RATIOS ACROSS REASONING HOPS

Layer Index

0
5

10
15

20
25

30

Reas
on

ing
 H

op

1

2

3

4

5

R
et

en
tio

n 
R

at
io

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

(a) Visual Token Retention Ratio

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Layer Index

0
5

10
15

20
25

30

Reas
on

ing
 H

op

1

2

3

4

5

R
et

en
tio

n 
R

at
io

0.72

0.73

0.74

0.75

0.76

0.77

(b) Text Token Retention Ratio

0.73

0.74

0.75

0.76

Figure 9: Retention ratio surfaces for visual and text tokens across layers and reasoning hops
in DARE. (a) Visual tokens exhibit a two-phase pattern: high retention in early layers for spatial
grounding, followed by a sharp decline in deeper layers where visual evidence becomes redundant. (b)
Text tokens show a gradual increase in retention, reflecting growing reliance on linguistic semantics
as reasoning deepens. Retention values are normalized to [0, 1] and aggregated across multimodal
spatial reasoning tasks.

Figure 9 illustrates DARE’s token retention dynamics across five reasoning hops and all transformer
layers. The asymmetry between modalities highlights a consistent progression: visual grounding
dominates early layers but fades as depth increases, while textual reasoning gradually takes over to
support semantic consolidation. This dynamic modulation of token importance is key to DARE’s
efficiency and interpretability in multi-hop reasoning.

Visual tokens. Retention begins high (70–80%) in layers 0–8, ensuring spatial grounding and
object localization. From layers 9–14, retention falls to 40–55% as redundant background patches are
pruned. After the pruning boundary at lc = 15, retention drops steeply to 15–30% and often below
20% beyond layer 25, confirming that visual features become largely redundant once integrated into
the language stream.

Text tokens. In contrast, text tokens maintain stable retention around 61–64% throughout the
network. A slight increase in deeper layers (up to 0.64) reflects the growing reliance on linguistic
reasoning after visual evidence has been distilled, consistent with prior findings on cross-modal
information flow.

Effect of reasoning hops. Later reasoning hops further intensify pruning of visual tokens in shallow
layers, reflecting selective reuse of spatial cues and stronger cross-modal fusion. Textual retention,
however, remains steady across hops, highlighting its central role in semantic integration and final
decision-making.

Overall, these results demonstrate that DARE automatically uncovers and exploits the natural shift
from visual grounding to linguistic reasoning, yielding interpretable retention dynamics that remain
consistent across layers, hops, and tasks.
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Table 27: Layer-wise retention behavior in DARE (averaged across reasoning hops).
Layer range Visual retention Text retention Interpretation
0–8 0.70–0.80 0.61 Early fusion; most patches retained

for grounding and text alignment.
9–14 0.40–0.55 0.61–0.62 Redundancy emerges; router prunes

background tokens.
15–24 0.15–0.30 0.62–0.64 After lc = 15, visual cues absorbed;

text dominates.
25–32 < 0.20 (often < 0.01) Peak 0.64 Final reasoning occurs in language

space; visual stream nearly silent.
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Figure 10: Motivated by MVoT’s strategy (Li et al., 2025a) of retaining a fixed number of recent image
tokens per layer while discarding earlier ones, our method introduces a cross-modal router that adaptively prunes
redundant visual tokens based on their utility per layer, enabling depth- and modality-aware compression while
preserving essential reasoning signals.

I.2 INTERPRETABILITY OF DARE

While full interpretability remains a broader open problem for multimodal LLMs, DARE provides
internal signals that are both transparent and strongly aligned with semantic importance and task-
relevant information flow. We highlight two complementary perspectives.

Token-level routing signals. DARE outputs router scores for every token at each layer, modality,
and reasoning hop. These scores can be directly inspected and readily combined with existing
attribution methods. On 200 VSR samples, we compared router-based token rankings with Integrated
Gradients and observed strong correlations (ρ = 0.82 for vision, ρ = 0.77 for text). This confirms
that the router consistently selects the tokens most influential to model predictions, validating its role
as an interpretable mechanism for token importance.

Retention patterns as self-anchored evidence. The transition from soft to hard visual pruning is
determined automatically from router scores, with no manual tuning. Specifically, the router identifies
the mid-depth layer lc where visual importance falls below a fixed threshold, and pruning is intensified
beyond this point. Retention curves and attention maps (Figure 9) show that lc consistently aligns with
the empirical shift from visual to linguistic reasoning. This demonstrates that pruning boundaries in
DARE emerge directly from data-driven signals, offering an interpretable and semantically grounded
view of the model’s internal dynamics.

I.3 MOTIVATING ILLUSTRATION: LIMITATIONS OF MVOT VS. DARE

MVoT’s fixed-token retention. As shown in Figure 10(a), MVoT interleaves visual and textual
tokens for each reasoning thought. For example, a 32× 32 image patch produces 1024 visual tokens,
and with an additional 128 textual tokens describing the query, a single multimodal thought exceeds
1.1K tokens. Within a 4K context window, MVoT can therefore only store the most recent three
multimodal thoughts. It discards earlier visual tokens and only retains a fixed set of recent ones to

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

enforce this budget,. While this slows memory growth, it results in rigid, hop-independent pruning
that discards potentially crucial context. For instance, in a navigation query “Which object blocks
the path from the sofa to the door?”, the sofa tokens may be dropped after the first hop, leaving the
model unable to reason over the entire path in later hops.

DARE’s adaptive, cross-modal routing. In contrast, Figure 10(b) shows how DARE uses a learned
router to adaptively retain tokens across layers, hops, and modalities. For the same 32×32 image and
accompanying text, DARE can selectively prune background tokens while preserving semantically
critical visual cues (e.g., sofa, door) and the textual anchors referring to them. As reasoning depth
increases, redundant visual tokens are progressively compressed once their information is encoded
into text, while key tokens are retained for subsequent hops. This adaptivity allows DARE to carry
more useful multimodal information across hops, supporting deeper chains of reasoning within the
same context window.

Key advantage. Through adaptive token retention, DARE not only maintains continuity of reason-
ing but also achieves better empirical performance. On average, it reduces FLOPs by 40.37% and
KV-cache usage by 46.07% compared to baseline approaches, while yielding consistently higher
accuracy across multi-hop spatial reasoning benchmarks.

I.4 MORE VISUALIZATIONS OF TOKEN ROUTING

Figure 11 presents an additional case study illustrating DARE’s dynamic and asymmetric token
routing behavior in a complex spatial reasoning scenario involving a skier mid-air. The top-left panel
shows the input image and the reasoning question, followed by the model’s answer and per-hop,
per-layer router predictions. The two matrices visualize token importance scores across 5 reasoning
hops and 16 selected layers (l1 to l31) for both visual tokens (top) and text tokens (bottom). Each bar
chart reflects token-level retention scores in the range [0, 1], with color intensity indicating relative
importance.

We observe that DARE dynamically reduces visual token retention beyond layer l13, with scores
sharply dropping across all hops. This aligns with the observation that early layers extract spatial
layout (e.g., skier’s height, posture), while deeper layers shift to abstract semantic reasoning. Con-
versely, text token importance is preserved or even amplified over depth, particularly in later hops,
as the model synthesizes linguistic cues (e.g., “ascending”, “peak”, “descending”) to arrive at a
high-level judgment. This example underscores DARE’s core design: retaining modality-specific
tokens adaptively across the reasoning path, pruning visual redundancy while preserving linguistic
salience.
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💡

Input Image

Answer: The skier is most likely at the peak of the jump, supported by the upright posture,
lack of snow spray, symmetric body form, and elevation above all ground objects.

Router's importance score for visual tokens

Router's importance score for text tokens

Based on the skier’s posture and relative positioning, is the skier ascending, descending, or
at the peak of the jump, and what spatial evidence supports your answer?

Figure 11: Router’s token importance scores for a complex spatial reasoning task involving a skier
mid-air. The top-left panel shows the input image and question. The visualizations depict router
scores across 5 reasoning hops and selected layers (l1 to l31) for visual tokens (top grid) and text
tokens (bottom grid). Visual token retention decreases significantly after mid-depth layers, reflecting
early spatial grounding followed by visual redundancy pruning. In contrast, text token retention
remains strong or increases, supporting abstract semantic inference in later hops.
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J ALGORITHMIC SPECIFICATION OF DARE

During training, DARE employs a learnable token router (Alg. 1) that assigns modality- and hop-
specific importance scores. Differentiable retention is achieved via a Gumbel–Softmax relaxation,
further regularized by ratio-matching losses. To capture cross-modal fusion dynamics, visual pruning
follows a two-phase strategy (Alg. 2): early layers apply a soft sparsity regularizer, while deeper
layers impose a hard penalty to suppress redundant tokens. At inference time, pruning is implemented
through an execution mask with selective KV-cache retention (Alg. 3), which blocks attention to
discarded tokens and thereby reduces both memory footprint and FLOPs. The transition between
the soft and hard phases is determined automatically by a greedy threshold-based search (Alg. 4),
ensuring efficiency gains without compromising accuracy.

Algorithm 1 Modality-Aware Routing with Intra/Inter-Hop Differentiable Retention (Training)

Require: Tokens {x(i,m)
h,l } for hops h=1..H , layers l=1..L, modalities m∈{t, v}; target ratios ρ(m)

target;
temperature τ

1: for h = 1 to H do
2: for l = 1 to L do
3: for m ∈ {t, v} do
4: // modality-specific, learnable router
5: s

(i,m)
h,l ← σ(W

(m)
l x

(i,m)
h,l + b

(m)
l )

6: // differentiable retention via Gumbel–Softmax, aligned with ρtargetm , STE in backprop

7: q
(i,m)
h,l ← exp((s

(i,m)
h,l +gi)/τ)∑

j exp((s
(j,m)
h,l +gj)/τ)

, gi ∼ Gumbel(0, 1)

8: // track retention ratio across layers and hops
9: ρ̂

(m)
h,l ←

1

N
(m)
h,l

∑
i ⊮[q

(i,m)
h,l in Top-ρ(m)

target]

10: // residual bypass stabilizes training
11: ỹ

(i,m)
h,l ← α

(i,m)
h,l (s

(i,m)
h,l y

(i,m)
h,l ) + (1− α

(i,m)
h,l )x

(i,m)
h,l

12: // hard mask in forward pass; gradients via q

13: y
(i,m)
h,l = Layer(x

(i,m)
h,l ), α

(i,m)
h,l = ⊮[Top-ρ(m)

target]
14: end for
15: end for
16: end for
17: // explicit control over sparsity
18: L

(m)
ratio = 1

HL

∑
h,l(ρ̂

(m)
h,l − ρ

(m)
target)

2, m ∈ {t, v}
19: // combined objective with text ratio + two-phase visual retention
20: L = Ltask + L

(t)
ratio + L

(v)
soft + L

(v)
hard

Algorithm 2 Two-Phase Visual Retention (Soft→ Hard)

Require: Visual scores s(i,v)h,l , layer cutoff lc, targets ρ(v)target, weights µ, threshold ϵ

1: // soft phase: enforce visual sparsity by matching retention ratio ρ
(v)
target

2: L
(v)
soft =

1
HL

∑H
h=1

∑lc
l=1

(
ρ̂
(v)
h,l − ρ

(v)
target

)2

3: ρ̂
(v)
h,l =

1

N
(v)
h,l

∑
i ⊮[retained under ρ(v)target]

4: // hard phase: suppress residual visual activations beyond cutoff lc

5: L
(v)
hard =

∑H
h=1

∑L
l=lc+1

∑N
(v)
h,l

i=1 µ ·max(0, s
(i,v)
h,l − ϵ)

6: // total loss: combine task loss, text ratio, and two-phase visual regularizers
7: L = Ltask + L

(t)
ratio + L

(v)
soft + L

(v)
hard
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Algorithm 3 Execution Mask and KV-Cache Policy (Inference)

Require: Deterministic scores s(i,m)
h,l , learned retention ratios ρ(m)

h,l , prefix size κ
1: for h = 1 to H do
2: for l = 1 to L do
3: // ratio-based deterministic retention per modality (top ρ

(m)
h,l by score)

4: for m ∈ {t, v} do
5: b

(i,m)
h,l ← ⊮

[
s
(i,m)
h,l in top-ρ(m)

h,l

]
// b ∈ {0, 1} marks retained tokens

6: end for
7: // stability: reserve a small prefix regardless of scores
8: b

(j,·)
h,l ← 1 ∀ j ≤ κ

9: // execution mask blocks attention to pruned tokens; preserves causal structure

10: Eh,l(i, j)←

{
0, j ≤ κ or b

(j,t)
h,l =1 or b

(j,v)
h,l =1

−∞, otherwise
11: // combine with causal mask for attention
12: Mh,l ←Mcausal + Eh,l

13: // KV caching only for executed (retained) tokens reduces memory/latency
14: cache (K

(j,m)
h,l , V

(j,m)
h,l ) iff b(j,m)

h,l =1 // skip KV for pruned tokens
15: end for
16: end for

Algorithm 4 Threshold-Based Selection of Visual Cutoff Layer lc (as described in Sec. D.7)

Require: Visual scores s(i,v)h,l for hops h∈[H], layers l∈[L]; smoothing window w; fixed threshold ϵ;
persistence r (consecutive layers); minimum layer lmin

1: // aggregate mean visual importance per layer across tokens and hops

2: µl ← 1
H

∑H
h=1

1

N
(v)
h,l

∑N
(v)
h,l

i=1 s
(i,v)
h,l ∀ l ∈ {1, . . . , L}

3: // smooth with a short moving average to reduce noise
4: µ̄l ← 1

Zl

∑ l+⌊w/2⌋
j=l−⌊w/2⌋ µj (clip indices to [1, L])

5: // greedy scan: find first layer after lmin where importance stays below ϵ for r consecutive layers
6: lc ← L // default: no early cutoff found
7: for l = lmin to L− r do
8: if max{µ̄l+1, µ̄l+2, . . . , µ̄l+r} ≤ ϵ then
9: lc ← l; break

10: end if
11: end for
12: // sanity check: avoid cutting before the smoothed median depth
13: if lc < median{1, . . . , L} − 1 then lc ← median{1, . . . , L}
14: return lc
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