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Abstract

The class of subweibull distributions has recently been shown to generalize the important
properties of subexponential and subgaussian random variables. We describe alternative
characterizations of subweibull distributions and detail the conditions under which their tail
behavior is preserved after exponential tilting.

1 Introduction

Subexponential and subgaussian distributions are of fundamental importance in the application of high
dimensional probability to machine learning (Vershynin, 2018; Wainwright, 2019). Recently it has been
shown that the subweibull class unifies the subexponential and subgaussian families, while also incorporating
distributions with heavier tails (Vladimirova et al., 2020; Kuchibhotla & Chakrabortty, 2022). Informally,
a q-subweibull (q > 0) random variable has a survival function that decays at least as fast as exp(−λxq)
for some λ > 0. For example, the exponential distribution is 1-subweibull and the Gaussian distribution
is 2-subweibull. Here, we provide two alternative characterizations of the subweibull class and introduce a
distinction between strictly and broadly subweibull distributions. As an example, the Poisson distribution
is shown to be strictly subexponential (q = 1) but not subweibull for any q > 1. Finally, we detail the
conditions under which the subweibull property is preserved after exponential tilting.

2 Laplace transforms

Definition 2.1. We define the two-sided Laplace transform of a random variable X with distribution
function F as

LX(t) = E[exp(−tX)] =
∫ ∞

−∞
exp(−tx)dF (x)

We do not restrict X to be nonnegative or to have a density function. In the special case that LX(t) < ∞
for all t in an open interval around t = 0, then X has a moment generating function (MGF) which is
MX(t) = E[exp(tX)] = LX(−t). The Laplace transform can characterize the distribution even if the MGF
does not exist.
Lemma 2.0.1. If the Laplace transforms of random variables X and Y satisfy LX(t) = LY (t) for all t in
any nonempty open interval (a, b) ⊂ R, not necessarily containing zero, then X

d= Y .

For a proof refer to Mukherjea et al. (2006). A random variable X is considered subexponential iff the MGF
exists (Vershynin, 2018). If LX(t) = ∞ for all t > 0 (respectively t < 0), X is said to have a heavy left
(respectively, right) tail (Nair et al., 2022). If a tail is not heavy it is said to be light. It is well known that
the one-sided Laplace transform characterizes nonnegative distributions (Feller, 1971). Lemma 2.0.1 shows
that the two-sided Laplace transform characterizes any distribution with at least one light tail.

3 Subweibull random variables

Definition 3.1. A random variable X is q-subweibull if E[exp(λq|X|q)] < ∞ for some λ > 0. X is strictly
q-subweibull if the condition is satisfied for all λ > 0. If X is q-subweibull but not strictly so, we refer to it
as broadly q-subweibull.
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The first part of this definition was also proposed by Kuchibhotla & Chakrabortty (2022) and by Vladimirova
et al. (2020) using a parameterization equivalent to 1/q. Clearly X is (strictly) q-subweibull if and only if
|X|q is (strictly) subexponential. As an example, the Laplace distribution is broadly 1-subweibull (ie broadly
subexponential).
Definition 3.2. The radius of convergence of a q-subweibull random variable X is defined by

Rq = sup {λ > 0 : E[exp(λq|X|q)] < ∞}

and if no such λ > 0 exists we adopt the convention that Rq = 0.

In the case of strictly q-subweibull distributions, Rq = ∞. X has “heavy tails” (in the sense of Nair et al.,
2022) iff it is not subexponential (R1 = 0).
Lemma 3.0.1. Random variable X with Pr(X < 0) /∈ {0, 1} is q-subweibull if and only if the nonnegative
random variables A = [−X |X < 0] and B = [X |X ≥ 0] are q-subweibull. Let Rqx, Rqa, and Rqb denote
the radii of convergence for X, A, and B, respectively. Then Rqx = min{Rqa, Rqb}.
Proposition 3.1. (Theorem 1 of Vladimirova et al. (2020)) The following are equivalent characterizations
of a q-subweibull random variable X for q > 0.

1. Tail bound: ∃ K1a > 0 such that ∀ t ≥ 0,

Pr(|X| > t) ≤ 2 exp
(

− (t/K1a)q
)

2. Growth rate of absolute moments: ∃ K2 > 0 such that ∀ p ≥ 1,(
E[|X|p]

)1/p ≤ K2p
1/q

3. MGF of |X|q finite in interval of zero: ∃ K3 > 0 such that ∀ 0 < λ ≤ 1/K3

E [exp(λq|X|q)] ≤ exp(Kq
3λ

q)

When q ≥ 1, Condition 3 is equivalent to requiring the Orlicz norm ∥X∥ψq < ∞ where ψq(x) = exp(xq) − 1.
The case of q < 1 (heavy tails) is further discussed in Kuchibhotla & Chakrabortty (2022). It is sometimes
convenient to use the following asymptotic alternatives to Proposition 3.1 (1 and 2).
Corollary 3.0.1. A random variable X is q-subweibull if and only if either of the following hold

1. Tail bound: ∃ K1b > 0 such that

lim sup
t→∞

Pr(|X| > t) exp
(
(t/K1b)q

)
< ∞

2. Growth rate of absolute moments:

lim sup
p→∞

(
E[|X|p]

)1/p

p1/q < ∞

It was shown by Vladimirova et al. (2020) that a q-subweibull distribution is also r-subweibull for all r < q.
We now show that this also implies it is strictly r-subweibull.
Corollary 3.0.2. If X is q-subweibull then it is strictly r-subweibull for all r ∈ (0, q).
Corollary 3.0.3. Every bounded random variable is strictly q-subweibull for all q > 0.

Proof. If X is bounded then there exists M ≥ 0 such that |X| ≤ M . Then E[exp(λq|X|q)] ≤ exp(λqMq) < ∞
for all λ > 0 and q > 0.

Corollary 3.0.4. If X is not strictly q-subweibull with q ≥ 1 then it is not r-subweibull for any r > q.
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3.1 Subweibull properties of the Poisson distribution

Corollaries 3.0.2 and 3.0.4 suggest a hierarchy of distributions based on the heaviness of the tails. Broadly q-
subweibull distributions, which have a finite but nonzero radius of convergence (Rq), serve as “critical points”
in the transition between the strictly r-subweibull regime (r < q), with Rq = ∞ and the not r-subweibull
regime (r > q) with Rq = 0. However, the transition from strictly subweibull to not subweibull can be
immediate, without passing through the stage of broadly subweibull. Here we provide a simple example: the
Poisson tail is lighter than any exponential tail, but heavier than any weibull tail with q > 1.
Proposition 3.2. The Poisson distribution is strictly q-subweibull for q ≤ 1 but not q-subweibull for any
q > 1.

4 Exponential tilting

Definition 4.1. Let X be a random variable with distribution function F . If the Laplace transform satisfies
LX(−θ) < ∞ for some θ ̸= 0, then the exponentially tilted distribution is given by

Fθ(x) =
∫ x

−∞

exp(θt)
LX(−θ)dF (t)

We adopt the convention of using −θ instead of θ so that the interpretation of the tilting parameter is
consistent with other works that assume X has an MGF, in which case one could equivalently require
MX(θ) < ∞.

From the Radon-Nikodym theorem, Fθ is absolutely continuous with respect to F . Since the density function
eθx/LX(−θ) is also strictly positive, exponential tilting does not change the support. Generally speaking it
is possible to produce a subexponential distribution by exponential tilting of any distribution with at least
one light tail.
Proposition 4.1. If X ∼ F is a random variable having at least one light tail then exponential tilting is
possible for all θ in some open interval (−S, T ) with S, T ≥ 0 and S+T > 0. The resulting tilted distribution
Fθ is subexponential with MGF MZ(t) = LX(−θ − t)/LX(−θ) finite for all t ∈ (−S − θ, T − θ).

As an example, if X ∼ F is a nonnegative, heavy tailed random variable (T = 0), its left tail is strictly
subexponential (S = ∞) so exponential tilting is possible for all θ < 0. By Proposition 4.1 the resulting tilted
distribution is subexponential and hence has lighter tails than the original distribution. On the other hand,
if X is broadly subexponential, exponential tilting produces another broadly subexponential distribution,
with a shifted interval of convergence.

While exponential tilting can alter the tail behavior of heavy tailed and broadly subexponential distributions,
it does not affect the tail behavior of q-subweibull distributions with lighter than exponential tails (i.e., q > 1).
Lemma 4.0.1. Preservation of nonnegative subweibull tails under exponential tilting. Let θ be any real
number. If X ∼ F is nonnegative and q-subweibull (q > 1), then the exponentially tilted variable Z ∼ Fθ is
also nonnegative and q-subweibull with the same radius of convergence.

1. E[exp(λqXq)] < ∞ for all λ ∈ [0, Rq) implies E[exp(λqZq)] < ∞ for all λ ∈ [0, Rq).

2. E[exp(λqXq)] = ∞ for all λ > Rq implies E[exp(λqZq)] = ∞ for all λ > Rq.

We now extend Lemma 4.0.1 to general random variables.
Theorem 4.1. Preservation of subweibull tails under exponential tilting. Let θ be any real number.

1. If X ∼ F is q-subweibull (q > 1) with radius of convergence Rq, then the exponentially tilted variable
Z ∼ Fθ is also q-subweibull and has the same radius of convergence.

2. If X ∼ F is strictly q-subweibull (q ≥ 1), the exponentially tilted variable Z ∼ Fθ is also strictly
q-subweibull.

3. If X ∼ F is not q-subweibull (q > 1), then Z ∼ Fθ is also not q-subweibull.
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5 Discussion

The theory of subexponential and subgaussian distributions is a key prerequisite to many results in non-
parametric and nonasymptotic statistical inference such as concentration inequalities. A comprehensive
overview with applications to high-dimensional machine learning problems is provided by Kuchibhotla &
Chakrabortty (2022). Exponential tilting is used in a variety of statistical areas such as causal inference
(McClean et al., 2024) and Monte Carlo sampling (Fuh & Wang, 2024). If Fθ is a tilted distribution, it is
a natural exponential family with parameter θ. The exponential families are building blocks for generalized
linear models (McCullagh & Nelder, 1989). For applications to machine learning see Li et al. (2023); Maity
et al. (2023).

Here, we have provided a brief overview of subweibull distributions. We showed that the Poisson distribution
is strictly 1-subweibull but not q-subweibull for any q > 1. Finally, we detailed the conditions under which
the subweibull property is perserved under exponential tilting.
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A Proofs for Section 3 (Subweibull random variables)

Lemma 3.0.1. Random variable X with Pr(X < 0) /∈ {0, 1} is q-subweibull if and only if the nonnegative
random variables A = [−X |X < 0] and B = [X |X ≥ 0] are q-subweibull. Let Rqx, Rqa, and Rqb denote
the radii of convergence for X, A, and B, respectively. Then Rqx = min{Rqa, Rqb}.

Proof. Let p = Pr(X < 0) and define nonnegative random variables A = [−X |X < 0] and B = [X |X ≥ 0].

E[exp(λq|X|q)] = E[exp(λq(−X)q) |X < 0]p+ E[exp(λqXq) |X ≥ 0](1 − p)
= E[exp(λqAq)]p+ E[exp(λqBq)](1 − p)

The left hand side is finite if and only if both terms on the right hand side are finite. If Rqx is the
radius of convergence for X then E[exp(λq|X|q)] < ∞ for all λ ∈ [0, Rqx). Clearly E[exp(λqAq)] < ∞ and
E[exp(λqBq)] < ∞ for all λ ∈ [0, Rqx) also, implying min{Rqa, Rqb} ≥ Rqx. However, if min{Rqa, Rqb} > Rqx
then there exists some λ > Rqx such that E[exp(λq|X|q)] < ∞, which by Definition 3.2 means Rqx is not
the radius of convergence of X, a contradiction. Therefore, min{Rqa, Rqb} = Rqx.

Corollary 3.0.1. A random variable X is q-subweibull if and only if either of the following hold

1. Tail bound: ∃ K1b > 0 such that

lim sup
t→∞

Pr(|X| > t) exp
(
(t/K1b)q

)
< ∞

2. Growth rate of absolute moments:

lim sup
p→∞

(
E[|X|p]

)1/p

p1/q < ∞

Proof. Proposition 3.1 (1) =⇒ (1) :

lim sup
t→∞

Pr(|X| > t) exp
(
(t/K1a)q

)
≤ sup

t≥0
Pr(|X| > t) exp

(
(t/K1a)q

)
≤ 2 < ∞

So we can simply set K1b = K1a.

(1) =⇒ Proposition 3.1 (1): Assume

lim sup
t→∞

Pr(|X| > t) exp
(
(t/K1b)q

)
= K

Then, for every C > K, there exists some T such that for all t > T ,

Pr(|X| > t) exp
(
(t/K1b)q

)
< C

For all t ∈ [0, T ], Pr(|X| > t) ≤ 1 and exp
(
(t/K1b)q

)
≤ exp

(
(T/K1b)q

)
. Therefore

sup
t≥0

Pr(|X| > t) exp
(
(t/K1b)q

)
≤ max

{
C, exp

(
(T/K1b)q

)}
Let U = max

{
C, exp

(
(T/K1b)q

)}
. If U ≤ 2 this directly implies Proposition 3.1 (1) with K1a = K1b. In

the case that U > 2, set

K1a = K1b

(
logU
log 2

)1/q
> K1b

Let f(t) = U exp
(
−(t/K1b)q

)
, g(t) = 2 exp

(
−(t/K1a)q

)
, and T ⋆ = K1b(logU)1/q. Since f(T ⋆) = g(T ⋆) = 1

and g(t) is a strictly decreasing function, this implies that Pr(|X| > t) ≤ 1 ≤ g(t) for t ∈ [0, T ⋆]. For t ≥ T ⋆,
g(t) ≥ f(t) since K1a > K1b, and f(t) ≥ Pr(|X| > t) by assumption therefore 2 exp

(
−(t/K1a)q

)
≥ Pr(|X| >

t) for all t ≥ 0.
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Proposition 3.1 (2) =⇒ (2):

lim sup
p→∞

(
E[|X|p]

)1/p

p1/q ≤ sup
p≥1

(
E[|X|p]

)1/p

p1/q ≤ K2 < ∞

(2) =⇒ Proposition 3.1 (2): Assume

lim sup
p→∞

(
E[|X|p]

)1/p

p1/q = K < ∞

Then for every C > K, there exists some p⋆ such that for all p > p⋆,(
E[|X|p]

)1/p

p1/q < C

The Lp norm is increasing in p, so for p ∈ [1, p⋆],
(
E[|X|p]

)1/p ≤
(
E[|X|p⋆ ]

)1/p⋆

and p1/q ≥ 1, which
establishes

sup
p≥1

(
E[|X|p]

)1/p

p1/q ≤ max
{(

E[|X|p
⋆

]
)1/p⋆

, C
}

Corollary 3.0.2. If X is q-subweibull then it is strictly r-subweibull for all r ∈ (0, q).

Proof. If X is q-subweibull, by Proposition 3.1 we may assume there exists K > 0 such that ∀ p ≥ 1,(
E[|X|p]

)1/p ≤ Kp1/q

Let r ∈ (0, q). The MGF of |X|r is given by

E [exp(λr|X|r)] = 1 +
∞∑
p=1

λprE[|X|pr]
p!

≤ 1 +
∞∑
p=1

λprKpr(pr)pr/q

(p/e)p

= 1 +
∞∑
p=1

(
λrKrerr/q

)p
pp(r/q−1)

Apply the root test to the series to determine convergence.

R(p) = λrKrerr/qpr/q−1

Since r < q, then limp→∞ R(p) = 0 and the series converges regardless of the value of λ, which shows X is
strictly r-subweibull.

Corollary 3.0.4. If X is not strictly q-subweibull with q ≥ 1 then it is not r-subweibull for any r > q.

Proof. From Corollary 3.0.1 we may assume ∃ λ > 0 such that

lim sup
t→∞

Pr(|X| > t) exp(λtq) = ∞

which implies there is an infinite sequence tn → ∞ such that

lim
n→∞

Pr(|X| > tn) exp(λtqn) = ∞

7



Under review as submission to TMLR

Now let ρ > 0 and r > q. Whenever t ≥ t⋆ = (λ/ρ)1/(r−q), we have exp(ρtr) ≥ exp(λtq). Let {tm} be the
infinite subsequence of {tn} excluding the elements less than t⋆. Clearly tm → ∞ as well. Then

lim
m→∞

Pr(|X| > tm) exp(ρtrm) ≥ lim
m→∞

Pr(|X| > tm) exp(λtqm) = ∞

which implies X cannot be r-subweibull.

Proposition 3.2. The Poisson distribution is strictly q-subweibull for q ≤ 1 but not q-subweibull for any
q > 1.

Proof. Since the Poisson distribution has a finite MGF with infinite radius of convergence, it is strictly
subexponential and by Corollary 3.0.2 strictly q-subweibull for all q ≤ 1. Let X ∼ Poi(µ). Without loss of
generality assume t > 1 and let n = ⌊t⌋ + 1 with t < n ≤ t+ 1.

Pr(X > t) =
∞∑
j=n

Pr(X = j) ≥ Pr(X = n) = µn exp(−µ)
n! = µn exp(−µ)

nΓ(n)

Since tΓ(t) is increasing for t ≥ 1, we have nΓ(n) ≤ (t+ 1)Γ(t+ 1). Also, Γ(n) ≤ nn for n ≥ 1. For the µn
term, it is increasing for µ ≥ 1 and decreasing for µ < 1, so µn ≥ min{µt+1, µt} = µt min{µ, 1}. Combining
these we obtain

Pr(X > t) ≥ µt min{µ, 1}e−µ

(t+ 1)Γ(t+ 1) = µt min{µ, 1}e−µ

(t+ 1)(t)Γ(t) ≥ µt min{µ, 1}e−µ

(t+ 1)(t)tt

To assess whether the tail follows a subweibull rate of decay, choose any λ > 0 and q > 1, then

lim sup
t→∞

Pr(X > t) exp(λtq) ≥ min{µ, 1}e−µ lim
t→∞

µt

(t+ 1)(t)tt exp(λtq)

= min{µ, 1}e−µ exp
[

lim
t→∞

t logµ− log(t+ 1) − log t− t log t+ λtq
]

The expression inside brackets is of the form ∞−∞ so we rearrange terms and apply L’Hopital’s rule. Define

lim
t→∞

t logµ− log(t+ 1) − log t− t log t+ λtq

= lim
t→∞

(t log t)
[

lim
t→∞

logµ
log t − log(t+ 1)

t log t − 1
t

+ λtq

t log t

]
= lim
t→∞

(t log t)
[

lim
t→∞

0 − 1/(t+ 1)
1 + log t − (0) + λqtq−1

1 + log t

]
= lim
t→∞

(t log t)
[

lim
t→∞

λq(q − 1)tq−2

1/t

]
= ∞ · ∞ = ∞

Therefore
lim sup
t→∞

Pr(X > t) exp(λtq) = ∞

Since this holds for all λ > 0, X cannot satisfy Corollary 3.0.1 and therefore is not q-subweibull for any
q > 1.

B Proofs for Section 4 (Exponential tilting)

Proposition 4.1. If X ∼ F is a random variable having at least one light tail then exponential tilting is
possible for all θ in some open interval (−S, T ) with S, T ≥ 0 and S+T > 0. The resulting tilted distribution
Fθ is subexponential with MGF MZ(t) = LX(−θ − t)/LX(−θ) finite for all t ∈ (−S − θ, T − θ).
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Proof. Without loss of generality assume the right tail is light so LX(−θ) < ∞ for some θ > 0. For all
θ′ ∈ [0, θ),

LX(−θ′) = E[exp(θ′X)] ≤ E[exp(θX)] < ∞

Set T = sup{θ : LX(−θ) < ∞} > 0. If X has a heavy left tail then LX(−θ) = ∞ for all θ < 0, so the
interval of convergence is (−S, T ) with S = 0. If X has a light left tail then we can set S = − inf{θ :
LX(−θ) < ∞} > 0. This establishes the interval is (−S, T ) with S, T ≥ 0 and S+T > 0. Let Z ∼ Fθ follow
the tilted distribution with θ ∈ (−S, T ). Its Laplace transform is

LZ(t) = E[exp(−tZ)] =
∫ ∞

−∞
exp(−tz)dFθ(z) =

∫ ∞

−∞
exp(−tx) exp(θx)

LX(−θ)dF (x)

= E[exp(−(t− θ)X)]/LX(−θ) = LX(−(θ − t))/LX(−θ)

This is finite when θ − t ∈ (−S, T ) or equivalently t ∈ (−T + θ, S + θ). Since θ ∈ (−S, T ), the interval of
convergence for LZ(t) is an open interval containing zero, which proves Z is subexponential and has the
MGF

MZ(t) = LZ(−t) = LX(−θ − t)/LX(−θ)
which is finite on the interval t ∈ (−S − θ, T − θ).

Lemma 4.0.1. Preservation of nonnegative subweibull tails under exponential tilting. Let θ be any real
number. If X ∼ F is nonnegative and q-subweibull (q > 1), then the exponentially tilted variable Z ∼ Fθ is
also nonnegative and q-subweibull with the same radius of convergence.

1. E[exp(λqXq)] < ∞ for all λ ∈ [0, Rq) implies E[exp(λqZq)] < ∞ for all λ ∈ [0, Rq).

2. E[exp(λqXq)] = ∞ for all λ > Rq implies E[exp(λqZq)] = ∞ for all λ > Rq.

Proof. If X is q-subweibull with q > 1 then by Corollary 3.0.2 it is strictly subexponential and LX(−θ) < ∞
for all θ ∈ R. Let Z ∼ Fθ. The MGF of Zq is

E[exp(λqZq)] =
∫

exp(λqxq + θx)dF (x)
LX(−θ)

(1) case of λ < Rq. If θ ≤ 0 then∫
exp(λqxq + θx)dF (x) ≤

∫
exp(λqxq + 0)dF (x) = E[exp(λqXq)] < ∞

If θ > 0, choose ρ ∈ (λ,Rq) and define

x⋆ =
(

θ

ρq − λq

) 1
q−1

Then for x > x⋆, λqxq + θx ≤ ρqxq. Therefore,∫
exp(λqxq + θx)dF (x) =

∫ x⋆

0
exp(λqxq + θx)dF (x) +

∫ ∞

x⋆

exp(λqxq + θx)dF (x)

≤
∫ x⋆

0
exp

(
θx⋆ + λq(x⋆)q

)
dF (x) +

∫ ∞

x⋆

exp(ρqxq)dF (x)

≤ exp
(
θx⋆ + λq(x⋆)q

)
Pr(X ≤ x⋆) +

∫ ∞

0
exp(ρqxq)dF (x)

< ∞

(2) case of λ > Rq. If θ ≥ 0 then∫
exp(λqxq + θx)dF (x) ≥

∫
exp(λqxq + 0)dF (x) = E[exp(λqXq)] = ∞

9
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If θ < 0. Choose ρ ∈ (Rq, λ) and define

x⋆ =
(

−θ
λq − ρq

) 1
q−1

Then for x > x⋆, λqxq + θx ≥ ρqxq. Therefore,

∫
exp(λqxq + θx)dF (x) =

∫ x⋆

0
exp(λqxq + θx)dF (x) +

∫ ∞

x⋆

exp(λqxq + θx)dF (x)

≥
∫ x⋆

0
exp(λqxq + θx)dF (x) +

∫ ∞

x⋆

exp(ρqxq)dF (x)

The first term is finite. We will show the second term is infinite. By assumption,∫ ∞

0
exp(ρqxq)dF (x) = ∞

=
∫ x⋆

0
exp(ρqxq)dF (x) +

∫ ∞

x⋆

exp(ρqxq)dF (x)

But ∫ x⋆

0
exp(ρqxq)dF (x) ≤ exp

(
ρq(x⋆)q

)
Pr(X ≤ x⋆) < ∞

Therefore ∫ ∞

x⋆

exp(ρqxq)dF (x) = ∞

implying ∫
exp(λqxq + θx)dF (x) = ∞

as well.

Theorem 4.1. Preservation of subweibull tails under exponential tilting. Let θ be any real number.

1. If X ∼ F is q-subweibull (q > 1) with radius of convergence Rq, then the exponentially tilted variable
Z ∼ Fθ is also q-subweibull and has the same radius of convergence.

2. If X ∼ F is strictly q-subweibull (q ≥ 1), the exponentially tilted variable Z ∼ Fθ is also strictly
q-subweibull.

3. If X ∼ F is not q-subweibull (q > 1), then Z ∼ Fθ is also not q-subweibull.

Proof. (1) By Corollary 3.0.2, X is strictly subexponential so LX(−θ) < ∞ for all θ ∈ R. Choose any
arbitrary θ and set M1 = LX(−θ). Define nonnegative random variables A = [−X |X < 0] and B =
[X |X ≥ 0] with distributions F− and F+, respectively. By Lemma 3.0.1 both A and B are q-subweibull
and strictly subexponential. Let Rqa and Rqb be the radii of convergence of A and B, respectively. Let
p = Pr(X < 0) and assume p /∈ {0, 1} (otherwise simply apply Lemma 4.0.1 to X or −X). Note that

M1 = LA(θ)p+ LB(−θ)(1 − p) (1)

10
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We have

E[exp(λq|Z|q)] =
∫ ∞

−∞
exp(λq|z|q)dFθ(z) =

∫ ∞

−∞
exp(λq|x|q)exp(θx)

M1
dF (x)

= E[exp(λq|X|q + θX)]
M1

= p

M1
E[exp(λqAq − θA)] + (1 − p)

M1
E[exp(λqBq + θB)]

= pLA(θ)
M1

∫ ∞

0
exp(λqxq)exp(−θx)

LA(θ) dF−(x) . . .

. . .+ (1 − p)LB(−θ)
LX(−θ)

∫ ∞

0
exp(λqxq) exp(θx)

LB(−θ)dF
+(x)

= (p̃)
∫ ∞

0
exp(λqzq)dF−

(−θ)(z) + (1 − p̃)
∫ ∞

0
exp(λqzq)dF+

θ (z)

= p̃E[exp(λqUq)] + (1 − p̃)E[exp(λqV q)]

where (see Equation 1), p̃ = pLA(θ)/M1 so that p̃ ∈ (0, 1). The nonnegative random variable U is distributed
as F−

(−θ), which is the exponentially tilting of A ∼ F− by −θ and V ∼ F+
θ is similarly defined as the

exponential tilting of B ∼ F+. By Lemma 4.0.1, this implies U and V are q-subweibull with radii of
convergence Rqa and Rqb, respectively. Let Rqz be the radius of convergence of Z. Note that

Pr(Z ≥ 0) =
∫ ∞

0
dFθ(z) =

∫ ∞

0

exp(θx)
LX(−θ)dF (x) = E[exp(θX) |X ≥ 0] Pr(X ≥ 0)

M1

= E[exp(θB)](1 − p)
M1

= LB(−θ)(1 − p)
M1

= 1 − p̃

So Pr(Z < 0) = p̃. By Lemma 3.0.1 this implies Z is q-subweibull with radius of convergence min{Rqa, Rqb},
which is also the radius of convergence of X.

(2) For q = 1 apply Proposition 4.1 with S = ∞ and T = ∞. For q > 1, apply (1) with Rq = ∞.

(3) This is a direct corollary of (1) obtained in the case of Rq = 0.
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