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Abstract

The class of subweibull distributions has recently been shown to generalize the important
properties of subexponential and subgaussian random variables. We describe alternative
characterizations of subweibull distributions, illustrate their application to concentration
inequalities, and detail the conditions under which their tail behavior is preserved after
exponential tilting.

1 Introduction

Subexponential and subgaussian distributions are of fundamental importance in the application of high
dimensional probability to machine learning (Vershynin, 2018; Wainwright, 2019). Recently it has been
shown that the subweibull class unifies the subexponential and subgaussian families, while also incorporating
distributions with heavier tails (Vladimirova et al., 2020; Kuchibhotla & Chakrabortty, 2022). Informally,
a q-subweibull (q > 0) random variable has a survival function that decays at least as fast as exp(−λxq) for
some λ > 0. For example, the exponential distribution is 1-subweibull and the Gaussian distribution is 2-
subweibull. Here, we provide alternative characterizations of the subweibull class and introduce a distinction
between strictly and broadly subweibull distributions. As an example, the Poisson distribution is shown
to be strictly subexponential (q = 1) but not subweibull for any q > 1. We demonstrate how subweibull
properties can be used to prove Bernstein concentration inequalities in both heavy and light-tailed settings.
Finally, we detail the conditions under which the subweibull property is preserved after exponential tilting.

To motivate this last result, consider the setting of adapting a model to a target distribution that differs
from its training distribution. Maity et al. (2023) proposed an importance weighting strategy based on
the assumption that the target distribution is well approximated by an exponential tilt of the training
distribution. Our results will clarify particular settings where this approximation breaks down, and when
one may transfer tail bounds from the training distribution to the target distribution.

2 Preliminaries

2.1 Laplace-Stieltjes transforms

Definition 2.1. The bilateral Laplace-Stieltjes transform (BLT) of a random variable X with distribution
function F is

LX(t) = E[exp(−tX)] =
∫ ∞

−∞
exp(−tx)dF (x)

We do not restrict X to be nonnegative or to have a density function. In the special case that LX(t) < ∞
for all t in an open interval around t = 0, then X has a moment generating function (MGF) which is
MX(t) = E[exp(tX)] = LX(−t). The BLT can characterize the distribution even if the MGF does not exist.
Lemma 2.0.1. If the BLTs of random variables X and Y satisfy LX(t) = LY (t) for all t in any nonempty
open interval (a, b) ⊂ R, not necessarily containing zero, then X

d= Y .
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For a proof refer to Mukherjea et al. (2006). A random variable X is considered subexponential iff the MGF
exists (Vershynin, 2018). If LX(t) = ∞ for all t > 0 (respectively t < 0), X is said to have a heavy left
(respectively, right) tail (Nair et al., 2022). If a tail is not heavy it is said to be light. It is well known
that the one-sided Laplace-Stieltjes transform characterizes nonnegative distributions (Feller, 1971). Lemma
2.0.1 shows that the BLT characterizes any distribution with at least one light tail.

2.2 Orlicz norms

An Orlicz function ψ : R+ 7→ R+ is a nondecreasing, convex function with ψ(0) = 0. Unless explicitly stated
below, we further restrict it to be strictly increasing.
Definition 2.2. The ψ-Orlicz norm of a random variable X is given by

∥X∥ψ = inf
{
t > 0 : E

[
ψ

(
|X|
t

)]
≤ 1
}

where inf{∅} = ∞.

Since ψ
(
|X|/t

)
is a decreasing function of t, it is clear that E [ψ(|X|/t)] ≤ 1 for all t > ∥X∥ψ. Like other

norms, Orlicz norms have the following properties.

• Homogeneity: ∥aX∥ψ = |a|∥X∥ψ

• Subadditivity: ∥X + Y ∥ψ ≤ ∥X∥ψ + ∥Y ∥ψ

• Positive definiteness: ∥X∥ψ = 0 implies X = 0 almost surely.

Suppose b ∈ R is a constant. If X is a degenerate random variable with Pr(X = b) = 1, homogeneity implies
∥b∥ψ = |b|/ψ−1(1). Finiteness of the ψ-Orlicz norm is preserved under location-scale transformations. If
∥X∥ψ < ∞ and a, b ∈ R, then

∥aX + b∥ψ ≤ |a|∥X∥ψ + ∥b∥ψ < ∞

If ∥X∥ψ = ∞, then ∥aX∥ψ = ∞ as well. Here are some examples of Orlicz norms. Let ψ(x) = xp for p ≥ 1.
Then ∥X∥ψ = E

[
|X|p

]1/p and X ∈ Lp has finite moments up to order p iff ∥X∥ψ < ∞. Here, we will focus
primarily on the norm derived from the Orlicz function ψq(x) = ex

q − 1, which is convex for q ≥ 1.
Definition 2.3. The ψq-Orlicz norm (q ≥ 1) of random variable X is given by

∥X∥ψq
= inf

{
t > 0 : E

[
exp

{(
|X|
t

)q}]
≤ 2
}

The condition that ∥X∥ψq
< ∞ clearly implies that |X|q is subexponential. The following lemma, modified

from Pollard (2024) is useful in establishing when a ψ-Orlicz norm is finite.
Lemma 2.0.2. Let c0,K0 > 0 be constants and ψ an Orlicz function. The following are equivalent.

(a)

E
[
ψ

(
|X|
c0

)]
≤ K0

(b)
∥X∥ψ ≤ c0 max{K0, 1}
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3 Subweibull random variables

Definition 3.1. A random variable X is q-subweibull if E[exp(λq|X|q)] < ∞ for some λ > 0. X is strictly
q-subweibull if the condition is satisfied for all λ > 0. If X is q-subweibull but not strictly so, we refer to it
as broadly q-subweibull.

The first part of this definition was also proposed by Kuchibhotla & Chakrabortty (2022) and by Vladimirova
et al. (2020) using a parameterization equivalent to 1/q. Clearly X is (strictly) q-subweibull if and only if
|X|q is (strictly) subexponential. As an example, the Laplace distribution is broadly 1-subweibull (ie broadly
subexponential).
Definition 3.2. The radius of convergence of a q-subweibull random variable X is defined by

Rq = sup {λ > 0 : E[exp(λq|X|q)] < ∞}

and if no such λ > 0 exists we adopt the convention that Rq = 0.

In the case of strictly q-subweibull distributions, Rq = ∞. X has “heavy tails” (in the sense of Nair et al.,
2022) iff it is not subexponential (R1 = 0).
Lemma 3.0.1. Random variable X with Pr(X < 0) /∈ {0, 1} is q-subweibull if and only if the nonnegative
random variables A = [−X |X < 0] and B = [X |X ≥ 0] are q-subweibull. Let Rqx, Rqa, and Rqb denote
the radii of convergence for X, A, and B, respectively. Then Rqx = min{Rqa, Rqb}.
Proposition 3.1. The following are equivalent characterizations of a q-subweibull random variable X where
q > 0.

1. Tail bound:

(a) ∃ K1a > 0 such that ∀ t ≥ 0,

Pr(|X| > t) ≤ 2 exp
(

− (t/K1a)q
)

(b) ∃ K1b > 0 such that
lim sup
t→∞

Pr(|X| > t) exp
(
(t/K1b)q

)
< ∞

2. Growth rate of absolute moments:

(a) ∃ K2 > 0 such that ∀ p ≥ 1, (
E[|X|p]

)1/p ≤ K2p
1/q

(b)

lim sup
p→∞

(
E[|X|p]

)1/p

p1/q < ∞

3. MGF of |X|q finite in open interval of zero: ∃ K3 > 0 such that

(a) ∀ 0 < λ < 21/q

K3

E [exp(λq|X|q)] ≤ 1
1 − λqKq

3/2

(b) ∀ 0 < λ ≤ 1/K3

E [exp(λq|X|q)] ≤ exp(Kq
3λ

q)

A similar result (excluding conditions 1b and 2b) was proven by Vladimirova et al. (2020). Our proof provides
explicit constants, which reveals the connection with the Orlicz norm.
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Proposition 3.2. A random variable X is q-subweibull (q ≥ 1) if and only if the ψq-Orlicz norm is finite.
Furthermore, when q ≥ 1 the constants in Proposition 3.1 are related to the norm by the global constant

Cq = exp
(

2Γ(1/q)(eq)1/q

eq

)
e2

(eq log 2)1/q (1)

such that
∥X∥ψq

Cq
≤ Kj ≤ Cq∥X∥ψq

for Kj ∈ {K1a,K2,K3}

An important special case is

C1 = e3

log 2 (2)

A quasinorm for q < 1 (heavy tails) is discussed in Kuchibhotla & Chakrabortty (2022). This relationship
to the Orlicz norm allows us to restate Proposition 2.7.1(e) of Vershynin (2018) with explicit constants.
Corollary 3.0.1. If X is a subexponential random variable with mean zero, then

E[exp(λX)] ≤ exp(2K2λ2)

for all |λ| ≤ 1/(2K) where

K = eC1∥X∥ψ1 = e4

log 2∥X∥ψ1

It was shown by Vladimirova et al. (2020) that a q-subweibull distribution is also r-subweibull for all r < q.
We now show that this also implies it is strictly r-subweibull.
Corollary 3.0.2. If X is q-subweibull then it is strictly r-subweibull for all r ∈ (0, q).
Corollary 3.0.3. Every bounded random variable is strictly q-subweibull for all q > 0.

Proof. If X is bounded then there exists M ≥ 0 such that |X| ≤ M . Then E[exp(λq|X|q)] ≤ exp(λqMq) < ∞
for all λ > 0 and q > 0.

Corollary 3.0.4. If X is not strictly q-subweibull with q ≥ 1 then it is not r-subweibull for any r > q.

3.1 Subweibull properties of the Poisson distribution

Corollaries 3.0.2 and 3.0.4 suggest a hierarchy of distributions based on the heaviness of the tails. Broadly q-
subweibull distributions, which have a finite but nonzero radius of convergence (Rq), serve as “critical points”
in the transition between the strictly r-subweibull regime (r < q), with Rq = ∞ and the not r-subweibull
regime (r > q) with Rq = 0. However, the transition from strictly subweibull to not subweibull can be
immediate, without passing through the stage of broadly subweibull. Here we provide a simple example: the
Poisson tail is lighter than any exponential tail, but heavier than any weibull tail with q > 1.
Proposition 3.3. The Poisson distribution is strictly q-subweibull for q ≤ 1 but not q-subweibull for any
q > 1.

4 Concentration inequalities

Subweibull tail bounds can be straightforwardly used to improve the tightness of Bernstein’s concentration
inequality, which we restate here with explicit constants.
Proposition 4.1. If X1, . . . , Xn are independent, subexponential random variables, then

Pr
(∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤

{
2 exp

(
−t2

2K2σ̃2

)
0 ≤ t ≤ K σ̃2

θ

2 exp
( −t

2Kθ
)

t ≥ K σ̃2

θ

where θ = maxi{∥Xi∥ψ1}, σ̃2 =
∑n
i=1 ∥Xi∥2

ψ1
and K = 2eC1 = 2e4/ log(2).
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This is a standard result (eg, Theorem 2.8.1 of Vershynin (2018)) so the proof is omitted. We now show that
if the summands have lighter than exponential tails, the bound can be tightened.
Proposition 4.2. Light-tailed Bernstein inequality

If X1, . . . , Xn are independent, zero-mean q-subweibull random variables with q > 1, then

Pr
(∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤

2 exp
(

−t2
2K2σ2

1

)
0 ≤ t ≤ K σ̃2

θ

2 exp
(

−tq
Cq

qnq−1σq
q

)
t ≥ K

σ̃2
1
θ

where σqq =
∑n
i=1 ∥Xi∥qψq

, Cq is the global constant from Equation 1, and σ̃2,K, θ are from Proposition 4.1.

For sums of heavy-tailed subweibull distributions (q < 1), the MGF does not exist, but it is still possible to
produce a uniform tail bound.
Proposition 4.3. Heavy-tailed Bernstein inequality

If X1, . . . , Xn are independent, zero-mean q-subweibull random variables with q < 1, then

Pr
(∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

{
−tq

(C1/ log 2)
∑n
i=1 ∥|Xi|q∥ψ1

}
where C1 is the global constant from Equation 2, and ∥|Xi|q∥ψ1 is the subexponential norm of |Xi|q.

Similar results are also found in Vladimirova et al. (2020); Kuchibhotla & Chakrabortty (2022).

5 Exponential tilting

Definition 5.1. Let X be a random variable with distribution function F . If the BLT satisfies LX(−θ) < ∞
for some θ ̸= 0, then the exponentially tilted distribution is given by

Fθ(x) =
∫ x

−∞

exp(θt)
LX(−θ)dF (t)

We adopt the convention of using −θ instead of θ so that the interpretation of the tilting parameter is
consistent with other works that assume X has an MGF, in which case one could equivalently require
MX(θ) < ∞.

From the Radon-Nikodym theorem, Fθ is absolutely continuous with respect to F . Since the density function
eθx/LX(−θ) is also strictly positive, exponential tilting does not change the support. Generally speaking it
is possible to produce a subexponential distribution by exponential tilting of any distribution with at least
one light tail.
Proposition 5.1. If X ∼ F is a random variable having at least one light tail then exponential tilting is
possible for all θ in some open interval (−S, T ) with S, T ≥ 0 and S+T > 0. The resulting tilted distribution
Fθ is subexponential with MGF MZ(t) = LX(−θ − t)/LX(−θ) finite for all t ∈ (−S − θ, T − θ).

As an example, if X ∼ F is a nonnegative, heavy tailed random variable (T = 0), its left tail is strictly
subexponential (S = ∞) so exponential tilting is possible for all θ < 0. By Proposition 5.1 the resulting tilted
distribution is subexponential and hence has lighter tails than the original distribution. On the other hand,
if X is broadly subexponential, exponential tilting produces another broadly subexponential distribution,
with a shifted interval of convergence.

While exponential tilting can alter the tail behavior of heavy tailed and broadly subexponential distributions,
it does not affect the tail behavior of q-subweibull distributions with lighter than exponential tails (i.e., q > 1).
Lemma 5.0.1. Preservation of nonnegative subweibull tails under exponential tilting. Let θ be any real
number. If X ∼ F is nonnegative and q-subweibull (q > 1), then the exponentially tilted variable Z ∼ Fθ is
also nonnegative and q-subweibull with the same radius of convergence.

5



Published in Transactions on Machine Learning Research (09/2025)

1. E[exp(λqXq)] < ∞ for all λ ∈ [0, Rq) implies E[exp(λqZq)] < ∞ for all λ ∈ [0, Rq).

2. E[exp(λqXq)] = ∞ for all λ > Rq implies E[exp(λqZq)] = ∞ for all λ > Rq.

We now extend Lemma 5.0.1 to general random variables.
Theorem 5.1. Preservation of subweibull tails under exponential tilting. Let θ be any real number.

1. If X ∼ F is q-subweibull (q > 1) with radius of convergence Rq, then the exponentially tilted variable
Z ∼ Fθ is also q-subweibull and has the same radius of convergence.

2. If X ∼ F is strictly q-subweibull (q ≥ 1), the exponentially tilted variable Z ∼ Fθ is also strictly
q-subweibull.

3. If X ∼ F is not q-subweibull (q > 1), then Z ∼ Fθ is also not q-subweibull.

5.1 Application to domain adaptation

Consider a classification problem where labeled training data are drawn from distribution P and the goal is
to make accurate predictions on a different target distribution Q. We are given unlabeled samples from Q.
Maity et al. (2023) proposed an exponential tilt model to facilitate importance weighting:

q(x, Y = k) = exp {θ′
kT (x) + αk} p(x, Y = k)

where θk, αk are the tilting parameters. It can be straightforwardly shown that

αk = − logEX∼P [exp(θ′
kT (X))] = − logMT (x)(θk)

For simplicity we consider a univariate T (X). If its distribution has heavy tails on both sides, the MGF
is not finite and exponential tilting is not possible. In practice, the method of Maity et al. (2023) relies
on minimizing a discrepancy such as KL divergence between P and Q using samples. If the distribution of
T (X) is heavy tailed, it may not be possible to consistently estimate the tilting parameters. If T (X) has
a heavy tail on only one side, then the importance weights may still be validly estimated, but the tilting
parameters involved must be constrained. On the other hand, if T (x) follows a q-subweibull distribution
with q > 1, then any tail bounds available for T (X) may be readily transferred to the target distribution Q
using Theorem 5.1.

6 Discussion

The theory of subexponential and subgaussian distributions is a key prerequisite to many results in theoret-
ical machine learning and nonasymptotic statistics. That the important subexponential properties can be
generalized to the broader subweibull class has been established by Vladimirova et al. (2020) and Kuchib-
hotla & Chakrabortty (2022). Our work differs from these in several ways: we provide explicit constants
without requiring quasinorms, distinguish between strictly and broadly subweibull distributions, and address
exponential tilting, which has not been previously examined to our knowledge. Exponential tilting is used in
a variety of statistical areas such as causal inference (McClean et al., 2024) and Monte Carlo sampling (Fuh
& Wang, 2024). If Fθ is a tilted distribution, it is a natural exponential family with parameter θ. The expo-
nential families are building blocks for generalized linear models (McCullagh & Nelder, 1989). For another
application of exponential tilting to machine learning beyond domain adaptation, see Li et al. (2023).

Here, we have provided a brief overview of subweibull distributions and their Orlicz norms. We showed
that the Poisson distribution is strictly 1-subweibull but not q-subweibull for any q > 1. We illustrated the
application of subweibull properties to prove concentration inequalities. Finally, we detailed the conditions
under which the subweibull property is preserved under exponential tilting. Specifically, if a distribution is
subweibull with a lighter than exponential tail, then the tail of the exponentially tilted distribution decays
at the same rate.
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A Proofs for Section 2 (Preliminaries)

Lemma 2.0.2. Let c0,K0 > 0 be constants and ψ an Orlicz function. The following are equivalent.

(a)

E
[
ψ

(
|X|
c0

)]
≤ K0

(b)
∥X∥ψ ≤ c0 max{K0, 1}

Proof. (a) =⇒ (b): if K0 ≤ 1 the result is immediate. If K0 > 1, let α ∈ (0, 1).

E
[
ψ

(
|X|
c0/α

)]
= E

[
ψ

(
(1 − α)(0) + α

|X|
c0

)]
≤ E

[
(1 − α)ψ(0) + αψ

(
|X|
c0

)]
≤ αK0

Setting α = 1/K0 produces the result.

(b) =⇒ (a): Let ∥X∥ψ ≤ t. Then

E
[
ψ

(
|X|
t

)]
≤ 1

We need to show for every K1 > 0, there exists a c1 > 0 such that

E
[
ψ

(
|X|
c1

)]
≤ K1

For all K1 ≥ 1 simply choose c1 = t. For K1 < 1,

E
[
ψ

(
|X|
t/K1

)]
= E

[
ψ

(
(1 −K1)(0) +K1

|X|
t

)]
≤ E

[
(1 −K1)ψ(0) +K1ψ

(
|X|
t

)]
≤ K1

So we can set c1 ≥ max{t, t/K1}.

B Proofs for Section 3 (Subweibull random variables)

Lemma 3.0.1. Random variable X with Pr(X < 0) /∈ {0, 1} is q-subweibull if and only if the nonnegative
random variables A = [−X |X < 0] and B = [X |X ≥ 0] are q-subweibull. Let Rqx, Rqa, and Rqb denote
the radii of convergence for X, A, and B, respectively. Then Rqx = min{Rqa, Rqb}.

Proof. Let p = Pr(X < 0) and define nonnegative random variables A = [−X |X < 0] and B = [X |X ≥ 0].

E[exp(λq|X|q)] = E[exp(λq(−X)q) |X < 0]p+ E[exp(λqXq) |X ≥ 0](1 − p)
= E[exp(λqAq)]p+ E[exp(λqBq)](1 − p)

The left hand side is finite if and only if both terms on the right hand side are finite. If Rqx is the
radius of convergence for X then E[exp(λq|X|q)] < ∞ for all λ ∈ [0, Rqx). Clearly E[exp(λqAq)] < ∞ and
E[exp(λqBq)] < ∞ for all λ ∈ [0, Rqx) also, implying min{Rqa, Rqb} ≥ Rqx. However, if min{Rqa, Rqb} > Rqx
then there exists some λ > Rqx such that E[exp(λq|X|q)] < ∞, which by Definition 3.2 means Rqx is not
the radius of convergence of X, a contradiction. Therefore, min{Rqa, Rqb} = Rqx.
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Proposition 3.1. The following are equivalent characterizations of a q-subweibull random variable X where
q > 0.

1. Tail bound:

(a) ∃ K1a > 0 such that ∀ t ≥ 0,

Pr(|X| > t) ≤ 2 exp
(

− (t/K1a)q
)

(b) ∃ K1b > 0 such that
lim sup
t→∞

Pr(|X| > t) exp
(
(t/K1b)q

)
< ∞

2. Growth rate of absolute moments:

(a) ∃ K2 > 0 such that ∀ p ≥ 1, (
E[|X|p]

)1/p ≤ K2p
1/q

(b)

lim sup
p→∞

(
E[|X|p]

)1/p

p1/q < ∞

3. MGF of |X|q finite in open interval of zero: ∃ K3 > 0 such that

(a) ∀ 0 < λ < 21/q

K3

E [exp(λq|X|q)] ≤ 1
1 − λqKq

3/2

(b) ∀ 0 < λ ≤ 1/K3
E [exp(λq|X|q)] ≤ exp(Kq

3λ
q)

Proof. (1a) =⇒ (1b):

lim sup
t→∞

Pr(|X| > t) exp
(
(t/K1a)q

)
≤ sup

t≥0
Pr(|X| > t) exp

(
(t/K1a)q

)
≤ 2 < ∞

So we can simply set K1b = K1a.

(1b) =⇒ (1a): Assume
lim sup
t→∞

Pr(|X| > t) exp
(
(t/K1b)q

)
= K

Then, for every C > K, there exists some T such that for all t > T ,

Pr(|X| > t) exp
(
(t/K1b)q

)
< C

For all t ∈ [0, T ], Pr(|X| > t) ≤ 1 and exp
(
(t/K1b)q

)
≤ exp

(
(T/K1b)q

)
. Therefore

sup
t≥0

Pr(|X| > t) exp
(
(t/K1b)q

)
≤ max

{
C, exp

(
(T/K1b)q

)}
Let U = max

{
C, exp

(
(T/K1b)q

)}
. If U ≤ 2 this directly implies (1a) with K1a = K1b. In the case that

U > 2, set

K1a = K1b

(
logU
log 2

)1/q
> K1b

Let f(t) = U exp
(
−(t/K1b)q

)
, g(t) = 2 exp

(
−(t/K1a)q

)
, and T ⋆ = K1b(logU)1/q. Since f(T ⋆) = g(T ⋆) = 1

and g(t) is a strictly decreasing function, this implies that Pr(|X| > t) ≤ 1 ≤ g(t) for t ∈ [0, T ⋆]. For t ≥ T ⋆,
g(t) ≥ f(t) since K1a > K1b, and f(t) ≥ Pr(|X| > t) by assumption therefore 2 exp

(
−(t/K1a)q

)
≥ Pr(|X| >

t) for all t ≥ 0.
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(1a) =⇒ (2a):

E[|X|p] =
∫ ∞

0
Pr(|X|p > u)du

=
∫ ∞

0
Pr(|X| > t)ptp−1dt

≤
∫ ∞

0
2 exp(−(t/K1a)q)ptp−1dt

= (2p)
∫ ∞

0

(
K1as

1/q)p−1K1a

q
s(1/q)−1 exp(−s)ds

= 2(p/q)Kp
1a

∫ ∞

0
sp/q−1e−sds = (2p/q)Kp

1aΓ(p/q)

For x ≥ c > 0, the function Γ(x) is bounded above by Γ(c)(e/c)c(x/e)x. Therefore, with c = 1/q,

Γ(p/q) ≤ Γ(1/q)(eq)1/q(p/q)p/q exp(−p/q)

Substituting this into the previous expressions.

E[|X|p] ≤ (2p/q)Kp
1aΓ(1/q)(eq)1/q(p/q)p/q exp(−p/q)

E[|X|p]1/p ≤
(

2Γ(1/q)(eq)1/q

q
p

)1/p

K1a(eq)−1/qp1/q

Let a = 2Γ(1/q)(eq)1/q

q > 0. Consider the function f(x) = (ax)1/x which we would like to upper bound.

f(x) = exp
(

1
x

log(ax)
)

f ′(x) = f(x)
[

1
x2 − 1

x2 log(ax)
]

= f(x)
x2 (1 − log(ax))

f ′′(x) = f ′(x)
x2 (1 − log(ax)) − 2f(x)

x3 (1 − log(ax)) − f(x)
x3

The global maximum occurs at x = e/a which is confirmed by checking f ′(e/a) = 0 and f ′′(e/a) < 0.
Therefore a suitable upper bound is (ax)1/x ≤ exp(a/e). Substitute this into the above expression.

E[|X|p]1/p ≤ exp
(

2Γ(1/q)(eq)1/q

eq

)
(eq)−1/qK1ap

1/q

Therefore, there exists some K2 ≤ C2K1a such that E[|X|p]1/p ≤ K2p
1/q as required where

C2 = exp
(

2Γ(1/q)(eq)1/q

eq

)
(eq)−1/q

Note that C2 > 1 for all q.

(2a) =⇒ (2b):

lim sup
p→∞

(
E[|X|p]

)1/p

p1/q ≤ sup
p≥1

(
E[|X|p]

)1/p

p1/q ≤ K2 < ∞

(2b) =⇒ (2a): Assume

lim sup
p→∞

(
E[|X|p]

)1/p

p1/q = K < ∞

10
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Then for every C > K, there exists some p⋆ such that for all p > p⋆,(
E[|X|p]

)1/p

p1/q < C

The Lp norm is increasing in p, so for p ∈ [1, p⋆],
(
E[|X|p]

)1/p ≤
(
E[|X|p⋆ ]

)1/p⋆

and p1/q ≥ 1, which
establishes

sup
p≥1

(
E[|X|p]

)1/p

p1/q ≤ max
{(

E[|X|p
⋆

]
)1/p⋆

, C
}

(2a) =⇒ (3a): The power series representation of the exponential function produces

E [exp(λq|X|q)] = E

[
1 +

∞∑
p=1

(λq|X|q)p
p!

]
= 1 +

∞∑
p=1

λpqE[|X|pq]
p!

From (2) we have E[|X|pq] ≤ Kpq
2 (pq)p and p! ≥ (p/e)p by Stirling approximation.

E [exp(λq|X|q)] ≤ 1 +
∞∑
p=1

(
λqKq

2pq
)p

(p/e)p =
∞∑
p=0

(
λqKq

2eq
)p = 1

1 − λqKq
2eq

where the last series converges when λqKq
2eq < 1, or

λ <
1

K2(eq)1/q = 21/q

K2(2eq)1/q

Since (2eq)1/q ≤ e2 for all q > 0, and 1/(1 − x) is increasing for x < 1, set C3 = e2 so that λ < 21/q

C3K2
implies

series convergence and

E [exp(λq|X|q)] ≤ 1
1 − λqKq

2eq
= 1

1 − λq
(
(2eq)1/qK2

)q
/2

≤ 1
1 − λq(C3K2)q/2

Therefore there exists some K3 ≤ C3K2 such that if λ < 21/q

K3
,

E [exp(λq|X|q)] ≤ 1
1 − λqKq

3/2

Clearly C3 > 1 for all q as well.

(3a) =⇒ (3b): Straightforward application of the numerical inequality 1
1−x ≤ e2x for 0 ≤ x ≤ 1/2.

(3b) =⇒ (1a): Set C1 = (log 2)−1/q and note that C1 > 1 for all q > 0. Therefore we may choose

λ = (log 2)1/q

K3
= 1
C1K3

≤ 1
K3

so that E[exp(λq|X|q)] ≤ exp(λqKq
3) = 2. Then,

Pr(|X| > t) = Pr
(

exp(λq|X|q) > exp(λqtq)
)

≤ E[exp(λ|X|q)] exp(−(λt)q)

≤ 2 exp
(

−
(

t

C1K3

)q)
So there exists some K1a ≤ C1K3 such that condition (1a) is satisfied as desired.
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Proposition 3.2. A random variable X is q-subweibull (q ≥ 1) if and only if the ψq-Orlicz norm is finite.
Furthermore, when q ≥ 1 the constants in Proposition 3.1 are related to the norm by the global constant

Cq = exp
(

2Γ(1/q)(eq)1/q

eq

)
e2

(eq log 2)1/q (1)

such that
∥X∥ψq

Cq
≤ Kj ≤ Cq∥X∥ψq

for Kj ∈ {K1a,K2,K3}

Proof. Proposition 3.1 (3b) implies finite norm: Let ψq(x) = exp(xq)−1 as before. This is a convex function
for q ≥ 1. Rearranging terms produces

E
[
ψq

(
|X|
1/λ

)]
= E [exp(λq|X|q)] − 1 ≤ exp(λqKq

3) − 1

From Lemma 2.0.2 this implies

∥X∥ψq ≤ (1/λ) max {1, exp(Kq
3λ

q) − 1}

where 0 < λ < 1/K3. Observing that the second term in the max is increasing in λ and ranges from
0 to e − 1 > 1, while 1/λ is a decreasing function, the tightest bound in terms of λ is achieved when
exp(Kq

3λ
q) − 1 = 1 which produces λ⋆ =

(
log 2

)1/q
/K3. This establishes ∥X∥ψq

≤ C4K3 < ∞ with
C4 = (log 2)−1/q.

Finite norm implies Proposition 3.1 (1a): Let K4 = ∥X∥ψq
(1 + ϵ) for some arbitrarily small ϵ > 0.

Pr(|X| ≥ t) = Pr
(

exp
((

|X|
K4

)q)
≥ exp

(
(t/K4)q

))
≤ E

[
exp

((
|X|
K4

)q)]
exp

(
− (t/K4)q

)
≤ 2 exp

(
− (t/K4)q

)
This shows there exists some K1a ≤ K4 = ∥X∥ψq

(1 + ϵ) such that the desired condition is satisfied.

To show the relationship to the global constant, recall from the proof of Proposition 3.1 that

C1 = C4 = (log 2)−1/q

C2 = exp
(

2Γ(1/q)(eq)1/q

eq

)
(eq)−1/q

C3 = e2

Set
Cq = C1C2C3 = exp

(
2Γ(1/q)(eq)1/q

eq

)
e2

(eq log 2)1/q

Since C1, C2, C3 ≥ 1, Cq ≥ 1 also. We can choose ϵ ≤ C1 − 1 > 0 so that

K1a ≤ ∥X∥ψq
(1 + ϵ) ≤ C1∥X∥ψq

≤ Cq∥X∥ψq

and
∥X∥ψq ≤ C1K3 ≤ C1C3K2 ≤ C1C3C2K1a = CqK1a

By a similar argument,
K2 ≤ C2K1a ≤ C2C1∥X∥ψq ≤ Cq∥X∥ψq

12
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and
∥X∥ψq ≤ C1K3 ≤ C1C3K2 ≤ CqK2

Finally,
K3 ≤ C3C2K1a ≤ C3C2C1∥X∥ψq

= Cq∥X∥ψq

and ∥X∥ψq ≤ C1K3 ≤ CqK3.

Corollary 3.0.1. If X is a subexponential random variable with mean zero, then

E[exp(λX)] ≤ exp(2K2λ2)

for all |λ| ≤ 1/(2K) where

K = eC1∥X∥ψ1 = e4

log 2∥X∥ψ1

Proof. By Propositions 3.1 and 3.2 there is some K2 ≤ C1∥X∥ψ1 such that E[|X|p] ≤ Kp
2p
p for all p ≥ 1

where C1 = e3/ log(2) (Equation 2).

E[exp(λx)] = 1 + (0) +
∞∑
p=2

λpE[Xp]
p! ≤ 1 +

∞∑
p=2

|λ|pKp
2p
p

(p/e)p = 1 + (λeK2)2

1 − |λ|eK2

where the sum converges whenever |λeK2| < 1. The function 1 + x2/(1 − |x|) is bounded above by exp(2x2)
whenever |x| ≤ 1/2, so

E[exp(λx)] ≤ exp
(
2(λeK2)2) ≤ exp

(
2λ2(eC1∥X∥ψ1

)2
)

whenever |λeK2| ≤ 1/2 which is satisfied by

|λ| ≤ 1
2eC1∥X∥ψ1

Setting K = eC1∥X∥ψ1 yields the desired result.

Corollary 3.0.2. If X is q-subweibull then it is strictly r-subweibull for all r ∈ (0, q).

Proof. If X is q-subweibull, by Proposition 3.1 we may assume there exists K > 0 such that ∀ p ≥ 1,(
E[|X|p]

)1/p ≤ Kp1/q

Let r ∈ (0, q). The MGF of |X|r is given by

E [exp(λr|X|r)] = 1 +
∞∑
p=1

λprE[|X|pr]
p!

≤ 1 +
∞∑
p=1

λprKpr(pr)pr/q
(p/e)p

= 1 +
∞∑
p=1

(
λrKrerr/q

)p
pp(r/q−1)

Apply the root test to the series to determine convergence.

R(p) = λrKrerr/qpr/q−1

Since r < q, then limp→∞ R(p) = 0 and the series converges regardless of the value of λ, which shows X is
strictly r-subweibull.
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Corollary 3.0.4. If X is not strictly q-subweibull with q ≥ 1 then it is not r-subweibull for any r > q.

Proof. From Proposition 3.1 we may assume ∃ λ > 0 such that

lim sup
t→∞

Pr(|X| > t) exp(λtq) = ∞

which implies there is an infinite sequence tn → ∞ such that

lim
n→∞

Pr(|X| > tn) exp(λtqn) = ∞

Now let ρ > 0 and r > q. Whenever t ≥ t⋆ = (λ/ρ)1/(r−q), we have exp(ρtr) ≥ exp(λtq). Let {tm} be the
infinite subsequence of {tn} excluding the elements less than t⋆. Clearly tm → ∞ as well. Then

lim
m→∞

Pr(|X| > tm) exp(ρtrm) ≥ lim
m→∞

Pr(|X| > tm) exp(λtqm) = ∞

which implies X cannot be r-subweibull.

Proposition 3.3. The Poisson distribution is strictly q-subweibull for q ≤ 1 but not q-subweibull for any
q > 1.

Proof. Since the Poisson distribution has a finite MGF with infinite radius of convergence, it is strictly
subexponential and by Corollary 3.0.2 strictly q-subweibull for all q ≤ 1. Let X ∼ Poi(µ). Without loss of
generality assume t > 1 and let n = ⌊t⌋ + 1 with t < n ≤ t+ 1.

Pr(X > t) =
∞∑
j=n

Pr(X = j) ≥ Pr(X = n) = µn exp(−µ)
n! = µn exp(−µ)

nΓ(n)

Since tΓ(t) is increasing for t ≥ 1, we have nΓ(n) ≤ (t+ 1)Γ(t+ 1). Also, Γ(n) ≤ nn for n ≥ 1. For the µn
term, it is increasing for µ ≥ 1 and decreasing for µ < 1, so µn ≥ min{µt+1, µt} = µt min{µ, 1}. Combining
these we obtain

Pr(X > t) ≥ µt min{µ, 1}e−µ

(t+ 1)Γ(t+ 1) = µt min{µ, 1}e−µ

(t+ 1)(t)Γ(t) ≥ µt min{µ, 1}e−µ

(t+ 1)(t)tt

To assess whether the tail follows a subweibull rate of decay, choose any λ > 0 and q > 1, then

lim sup
t→∞

Pr(X > t) exp(λtq) ≥ min{µ, 1}e−µ lim
t→∞

µt

(t+ 1)(t)tt exp(λtq)

= min{µ, 1}e−µ exp
[

lim
t→∞

t logµ− log(t+ 1) − log t− t log t+ λtq
]

The expression inside brackets is of the form ∞−∞ so we rearrange terms and apply L’Hopital’s rule. Define

lim
t→∞

t logµ− log(t+ 1) − log t− t log t+ λtq

= lim
t→∞

(t log t)
[

lim
t→∞

logµ
log t − log(t+ 1)

t log t − 1
t

+ λtq

t log t

]
= lim
t→∞

(t log t)
[

lim
t→∞

0 − 1/(t+ 1)
1 + log t − (0) + λqtq−1

1 + log t

]
= lim
t→∞

(t log t)
[

lim
t→∞

λq(q − 1)tq−2

1/t

]
= ∞ · ∞ = ∞

Therefore
lim sup
t→∞

Pr(X > t) exp(λtq) = ∞

Since this holds for all λ > 0, X cannot satisfy Proposition 3.1 and therefore is not q-subweibull for any
q > 1.
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C Proofs for Section 4 (Concentration inequalities)

Proposition 4.2. Light-tailed Bernstein inequality

If X1, . . . , Xn are independent, zero-mean q-subweibull random variables with q > 1, then

Pr
(∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤

2 exp
(

−t2
2K2σ2

1

)
0 ≤ t ≤ K σ̃2

θ

2 exp
(

−tq
Cq

qnq−1σq
q

)
t ≥ K

σ̃2
1
θ

where σqq =
∑n
i=1 ∥Xi∥qψq

, Cq is the global constant from Equation 1, and σ̃2,K, θ are from Proposition 4.1.

Proof. By Corollary 3.0.2 each Xi is subexponential, so the bound for small deviations t follows directly
from Proposition 4.1. For large deviations, let S =

∑n
i=1 Xi. Since q > 1 the Orlicz norm exists and by

subadditivity,

∥S∥ψq
=
∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
ψq

≤
n∑
i=1

∥Xi∥ψq
≤ n1−1/q

(
n∑
i=1

∥Xi∥qψq

)1/q

= n1−1/qσq

By Propositions 3.1 and 3.2, there exists some K1a ≤ Cq∥S∥ψq
such that

Pr(|S| ≥ t) ≤ 2 exp(−(t/K1a)q) ≤ 2 exp
(

−tq

Cqqnq−1σqq

)
For all t ≥ 0. In particular, it holds for t ≥ Kσ̃2/θ.

Proposition 4.3. Heavy-tailed Bernstein inequality

If X1, . . . , Xn are independent, zero-mean q-subweibull random variables with q < 1, then

Pr
(∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

{
−tq

(C1/ log 2)
∑n
i=1 ∥|Xi|q∥ψ1

}
where C1 is the global constant from Equation 2, and ∥|Xi|q∥ψ1 is the subexponential norm of |Xi|q.

Proof. Since f(x) = xq is concave for x ≥ 0 and q ∈ (0, 1),∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣
q

≤

(
n∑
i=1

|Xi|

)q
≤

n∑
i=1

|Xi|q

With λ > 0 this implies

Pr
(∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ Pr

(
n∑
i=1

|Xi|q ≥ tq

)
≤

n∏
i=1

E [exp {λ|Xi|q}] exp {−λtq}

If Xi is q-subweibull, then |Xi|q is subexponential. By Proposition 3.1 (3b), for each Xi there is some
K3i ≤ C1∥|Xi|q∥ψ1 such that

E[exp(λ|Xi|q)] ≤ exp(K3iλ)

if λ ≤ 1/K3i. Therefore set θq = maxi {∥|Xi|q∥ψ1} and restrict λ ≤ 1/(C1θq). Plugging this back into the
previous expression,

Pr
(∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ exp

(
n∑
i=1

K3iλ− λtq

)
≤ exp (λ(C1σq − tq))
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where σq =
∑n
i=1 ∥|Xi|q∥ψ1 . The bound is decreasing in λ when t ≥ t⋆ = (C1σq)1/q, in which case the

tightest bound occurs with λ = 1/(C1θq). This leads to

Pr
(∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ exp

(
1

C1θq
(C1σq − tq)

)
= exp

(
σq
θq

− tq

C1θq

)
Referring to Proposition 3.1 (1b), we can see that

lim sup
t→∞

exp
(
σq
θq

− tq

C1θq

)
exp ((t/K1b)q) < ∞

with K1b = (C1θq)1/q. Therefore the sum of q-subweibull random variables is also q-subweibull. To get a
bound over all t ≥ 0, define

f(t) = σq
θq

− (t/K1b)q

g(t) = log(2) − (t/K1a)q

Since σq/θq ≥ 1 > log(2), we can choose K1a > K1b such that f(t) ≥ g(t) ≥ 0 for t ≤ t⋆ and g(t) ≥ f(t) for
t ≥ t⋆, where f(t⋆) = g(t⋆) = 0.

t⋆ =
(
σq
θq

)1/q
K1b = (log 2)1/qK1a

therefore

K1a =
(

σq
θq log 2

)1/q
(C1θq)1/q =

(
C1σq
log 2

)1/q

D Proofs for Section 5 (Exponential tilting)

Proposition 5.1. If X ∼ F is a random variable having at least one light tail then exponential tilting is
possible for all θ in some open interval (−S, T ) with S, T ≥ 0 and S+T > 0. The resulting tilted distribution
Fθ is subexponential with MGF MZ(t) = LX(−θ − t)/LX(−θ) finite for all t ∈ (−S − θ, T − θ).

Proof. Without loss of generality assume the right tail is light so LX(−θ) < ∞ for some θ > 0. For all
θ′ ∈ [0, θ),

LX(−θ′) = E[exp(θ′X)] ≤ E[exp(θX)] < ∞
Set T = sup{θ : LX(−θ) < ∞} > 0. If X has a heavy left tail then LX(−θ) = ∞ for all θ < 0, so the
interval of convergence is (−S, T ) with S = 0. If X has a light left tail then we can set S = − inf{θ :
LX(−θ) < ∞} > 0. This establishes the interval is (−S, T ) with S, T ≥ 0 and S+T > 0. Let Z ∼ Fθ follow
the tilted distribution with θ ∈ (−S, T ). Its BLT is

LZ(t) = E[exp(−tZ)] =
∫ ∞

−∞
exp(−tz)dFθ(z) =

∫ ∞

−∞
exp(−tx) exp(θx)

LX(−θ)dF (x)

= E[exp(−(t− θ)X)]/LX(−θ) = LX(−(θ − t))/LX(−θ)

This is finite when θ − t ∈ (−S, T ) or equivalently t ∈ (−T + θ, S + θ). Since θ ∈ (−S, T ), the interval of
convergence for LZ(t) is an open interval containing zero, which proves Z is subexponential and has the
MGF

MZ(t) = LZ(−t) = LX(−θ − t)/LX(−θ)
which is finite on the interval t ∈ (−S − θ, T − θ).

Lemma 5.0.1. Preservation of nonnegative subweibull tails under exponential tilting. Let θ be any real
number. If X ∼ F is nonnegative and q-subweibull (q > 1), then the exponentially tilted variable Z ∼ Fθ is
also nonnegative and q-subweibull with the same radius of convergence.
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1. E[exp(λqXq)] < ∞ for all λ ∈ [0, Rq) implies E[exp(λqZq)] < ∞ for all λ ∈ [0, Rq).

2. E[exp(λqXq)] = ∞ for all λ > Rq implies E[exp(λqZq)] = ∞ for all λ > Rq.

Proof. If X is q-subweibull with q > 1 then by Corollary 3.0.2 it is strictly subexponential and LX(−θ) < ∞
for all θ ∈ R. Let Z ∼ Fθ. The MGF of Zq is

E[exp(λqZq)] =
∫

exp(λqxq + θx)dF (x)
LX(−θ)

(1) case of λ < Rq. If θ ≤ 0 then∫
exp(λqxq + θx)dF (x) ≤

∫
exp(λqxq + 0)dF (x) = E[exp(λqXq)] < ∞

If θ > 0, choose ρ ∈ (λ,Rq) and define

x⋆ =
(

θ

ρq − λq

) 1
q−1

Then for x > x⋆, λqxq + θx ≤ ρqxq. Therefore,∫
exp(λqxq + θx)dF (x) =

∫ x⋆

0
exp(λqxq + θx)dF (x) +

∫ ∞

x⋆

exp(λqxq + θx)dF (x)

≤
∫ x⋆

0
exp

(
θx⋆ + λq(x⋆)q

)
dF (x) +

∫ ∞

x⋆

exp(ρqxq)dF (x)

≤ exp
(
θx⋆ + λq(x⋆)q

)
Pr(X ≤ x⋆) +

∫ ∞

0
exp(ρqxq)dF (x)

< ∞

(2) case of λ > Rq. If θ ≥ 0 then∫
exp(λqxq + θx)dF (x) ≥

∫
exp(λqxq + 0)dF (x) = E[exp(λqXq)] = ∞

If θ < 0. Choose ρ ∈ (Rq, λ) and define

x⋆ =
(

−θ
λq − ρq

) 1
q−1

Then for x > x⋆, λqxq + θx ≥ ρqxq. Therefore,∫
exp(λqxq + θx)dF (x) =

∫ x⋆

0
exp(λqxq + θx)dF (x) +

∫ ∞

x⋆

exp(λqxq + θx)dF (x)

≥
∫ x⋆

0
exp(λqxq + θx)dF (x) +

∫ ∞

x⋆

exp(ρqxq)dF (x)

The first term is finite. We will show the second term is infinite. By assumption,∫ ∞

0
exp(ρqxq)dF (x) = ∞

=
∫ x⋆

0
exp(ρqxq)dF (x) +

∫ ∞

x⋆

exp(ρqxq)dF (x)

But ∫ x⋆

0
exp(ρqxq)dF (x) ≤ exp

(
ρq(x⋆)q

)
Pr(X ≤ x⋆) < ∞

17
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Therefore ∫ ∞

x⋆

exp(ρqxq)dF (x) = ∞

implying ∫
exp(λqxq + θx)dF (x) = ∞

as well.

Theorem 5.1. Preservation of subweibull tails under exponential tilting. Let θ be any real number.

1. If X ∼ F is q-subweibull (q > 1) with radius of convergence Rq, then the exponentially tilted variable
Z ∼ Fθ is also q-subweibull and has the same radius of convergence.

2. If X ∼ F is strictly q-subweibull (q ≥ 1), the exponentially tilted variable Z ∼ Fθ is also strictly
q-subweibull.

3. If X ∼ F is not q-subweibull (q > 1), then Z ∼ Fθ is also not q-subweibull.

Proof. (1) By Corollary 3.0.2, X is strictly subexponential so LX(−θ) < ∞ for all θ ∈ R. Choose any
arbitrary θ and set M1 = LX(−θ). Define nonnegative random variables A = [−X |X < 0] and B =
[X |X ≥ 0] with distributions F− and F+, respectively. By Lemma 3.0.1 both A and B are q-subweibull
and strictly subexponential. Let Rqa and Rqb be the radii of convergence of A and B, respectively. Let
p = Pr(X < 0) and assume p /∈ {0, 1} (otherwise simply apply Lemma 5.0.1 to X or −X). Note that

M1 = LA(θ)p+ LB(−θ)(1 − p) (3)

We have

E[exp(λq|Z|q)] =
∫ ∞

−∞
exp(λq|z|q)dFθ(z) =

∫ ∞

−∞
exp(λq|x|q)exp(θx)

M1
dF (x)

= E[exp(λq|X|q + θX)]
M1

= p

M1
E[exp(λqAq − θA)] + (1 − p)

M1
E[exp(λqBq + θB)]

= pLA(θ)
M1

∫ ∞

0
exp(λqxq)exp(−θx)

LA(θ) dF−(x) . . .

. . .+ (1 − p)LB(−θ)
LX(−θ)

∫ ∞

0
exp(λqxq) exp(θx)

LB(−θ)dF
+(x)

= (p̃)
∫ ∞

0
exp(λqzq)dF−

(−θ)(z) + (1 − p̃)
∫ ∞

0
exp(λqzq)dF+

θ (z)

= p̃E[exp(λqUq)] + (1 − p̃)E[exp(λqV q)]

where (see Equation 3), p̃ = pLA(θ)/M1 so that p̃ ∈ (0, 1). The nonnegative random variable U is distributed
as F−

(−θ), which is the exponentially tilting of A ∼ F− by −θ and V ∼ F+
θ is similarly defined as the

exponential tilting of B ∼ F+. By Lemma 5.0.1, this implies U and V are q-subweibull with radii of
convergence Rqa and Rqb, respectively. Let Rqz be the radius of convergence of Z. Note that

Pr(Z ≥ 0) =
∫ ∞

0
dFθ(z) =

∫ ∞

0

exp(θx)
LX(−θ)dF (x) = E[exp(θX) |X ≥ 0] Pr(X ≥ 0)

M1

= E[exp(θB)](1 − p)
M1

= LB(−θ)(1 − p)
M1

= 1 − p̃

18
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So Pr(Z < 0) = p̃. By Lemma 3.0.1 this implies Z is q-subweibull with radius of convergence min{Rqa, Rqb},
which is also the radius of convergence of X.

(2) For q = 1 apply Proposition 5.1 with S = ∞ and T = ∞. For q > 1, apply (1) with Rq = ∞.

(3) This is a direct corollary of (1) obtained in the case of Rq = 0.
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