
Published in Transactions on Machine Learning Research (05/2024)

Amortized Bayesian Decision Making
for simulation-based models

Mila Gorecki mila.gorecki@tuebingen.mpg.de
Social Foundations of Computation, Max Planck Institute for Intelligent Systems, Tübingen
Tübingen AI Center

Jakob H. Macke jakob.macke@uni-tuebingen.de
Machine Learning in Science, Excellence Cluster Machine Learning, University of Tübingen
Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen
Tübingen AI Center

Michael Deistler michael.deistler@uni-tuebingen.de
Machine Learning in Science, Excellence Cluster Machine Learning, University of Tübingen
Tübingen AI Center

Reviewed on OpenReview: https: // openreview. net/ forum? id= BQE4MTAfCE

Abstract

Simulation-based inference (SBI) provides a powerful framework for inferring posterior
distributions of stochastic simulators in a wide range of domains. In many settings, however,
the posterior distribution is not the end goal itself — rather, the derived parameter values
and their uncertainties are used as a basis for deciding what actions to take. Unfortunately,
because posterior distributions provided by SBI are (potentially crude) approximations of
the true posterior, the resulting decisions can be suboptimal. Here, we address the question
of how to perform Bayesian decision making on stochastic simulators, and how one can
circumvent the need to compute an explicit approximation to the posterior1. Our method
trains a neural network on simulated data and can predict the expected cost given any data
and action, and can, thus, be directly used to infer the action with lowest cost. We apply
our method to several benchmark problems and demonstrate that it induces similar cost
as the true posterior distribution. We then apply the method to infer optimal actions in a
real-world simulator in the medical neurosciences, the Bayesian Virtual Epileptic Patient,
and demonstrate that it allows to infer actions associated with low cost after few simulations.

1 Introduction

Many quantities in the sciences and engineering cannot be directly observed, but knowledge of these quantities
(often called ‘parameters’ θ) is crucial to make well-informed decisions on how to design experiments, claim
discoveries, or assign medical treatments. Take, for example, a mechanistic model in a medical context
that describes a specific brain function, but whose parameters are not directly or easily measurable. Given
observations from patients, various methods have been proposed to determine likely parameter values and
their uncertainty. Ultimately, however, the goal in this scenario is to assign medical diagnoses or to decide
whether an intervention is needed. Therefore, we have to turn our beliefs about parameter values into concrete
and accurate actions. To do so, Bayesian decision theory provides a framework to select optimal decisions (or
‘actions’) under noisy and potentially non-linear measurements of the parameters (Berger, 2013). Given the
measurement xo and a cost function that assigns a cost to each action (for example corresponding to the

1Concurrently to our work, another work on Bayesian decision making for simulators has been published (Alsing et al., 2023).
See Discussion for similarities and differences of our works.

1

https://openreview.net/forum?id=BQE4MTAfCE

Published in Transactions on Machine Learning Research (05/2024)

costs c(θ, a)

BAM:
feedforward NN

actionsimulator

prior

simulated data

a training

optimal action
a1
a2

expected costs

posteriorneural density
estimatorNPE cost estimation

action
θ

for every
action

observation xo BAM:
feedforward NN

action

b inference

x

Figure 1: Amortized Bayesian Decision Making. Given a (stochastic) simulator and a prior over
parameters, we propose to learn a neural network which directly estimates the expected cost associated
with any possible observation and action, i.e. a ‘Bayesian Amortized Decision Making’ (BAM) network. (a)
Analogous to simulation-based methods like Neural Posterior Estimation (NPE), BAM starts by generating
a database of (parameter, data) pairs by drawing prior samples and simulating them. BAM then uses a
feedforward neural network trained to directly predict the estimated costs of taking a particular action given
observations. This way, BAM circumvents the computation of an explicit posterior approximation. (b) At
inference, BAM requires only a single pass through the network to estimate the expected posterior costs of
each data-action-pair (xo,a). In contrast, NPE builds an explicit parameter estimate of the posterior. This
can be used to estimate the expected cost of a given action through Monte-Carlo estimation (NPE-MC). For
both algorithms, we select the action which leads to the lowest expected costs.

associated risk of each intervention), Bayesian decision making chooses the action which induces the lowest
cost, averaged over the distribution of parameters given the measurements p(θ|xo):

a∗ = arg min
a

∫
c(θ, a) · p(θ|xo)dθ.

The main difficulty associated with Bayesian decision making is to infer the posterior distribution p(θ|xo)
over (potentially many) parameters. The posterior distribution

p(θ|xo) ∝ p(xo|θ)p(θ)

is intractable for all but the simplest models, and requires methods such as Markov-Chain Monte Carlo
(MCMC) or variational inference to approximate. However, these methods require that the likelihood can
be evaluated, but many models in the sciences can only be simulated (Gonçalves et al., 2020; Cranmer
et al., 2020), i.e., their likelihood can only be sampled from. In addition, such methods require to re-run
inference for new data, which is computationally expensive. Contrary to that, recent methods from the field
of ‘simulation-based inference’ (SBI) (Cranmer et al., 2020) require a large upfront cost to generate a database
of simulations (but no likelihood evaluations), and they can then infer the posterior distribution given any
data without further simulator runs (Hermans et al., 2020; Gonçalves et al., 2020; Radev et al., 2020).

Here, we first investigate how faithful the actions induced by a particular amortized SBI algorithm, ‘Neural
Posterior Estimation’ (NPE) (Papamakarios and Murray, 2016; Greenberg et al., 2019), are. We demonstrate
that, in cases where the posterior is inaccurate (Lueckmann et al., 2021; Hermans et al., 2022), the induced
‘Bayes-optimal’ action will also be (largely) inaccurate, and that this failure can occur even for simulators
with few free parameters (Lacoste–Julien et al., 2011). In addition, while NPE amortizes simulation and

2

Published in Transactions on Machine Learning Research (05/2024)

training, it still has to compute the (potentially expensive) cost of several (parameter, action) pairs for every
observed data, which incur a substantial additional cost at decision time.

To address these limitations, we propose a method which we term Bayesian Amortized decision Making
(BAM) (Fig. 1). Like NPE, BAM uses an (upfront generated) database of simulations to train a neural
network. Unlike NPE, however, BAM circumvents the need to learn the (potentially high-dimensional)
posterior distribution explicitly and instead only requires to train a feedforward neural network which is
trained to directly predict the expected costs for any data and action. At inference time, BAM requires only
one forward pass through the neural network, without the requirement of computing the cost by averaging
over the posterior. Because of this, BAM can perform amortized Bayesian decision making in milliseconds
even in cases where the cost function itself is expensive to compute.

We define decisions on four benchmark tasks (Lueckmann et al., 2021) and evaluate both algorithms on
all of those tasks. We demonstrate that, on tasks where NPE is known to perform poorly (and returns a
poor estimate of the posterior), our alternative method, BAM, can lead to significantly better decisions,
sometimes leading to a reduction of cost by almost an order of magnitude. We then apply both methods to a
real-world problem from medical neuroscience: given potentially epileptic measured brain activity, we infer
which treatment option would be most suitable. We demonstrate that, given a specified loss function, both
algorithms can identify optimal decisions with only a few simulations.

2 Background

2.1 Problem setting

We consider a stochastic simulator with free parameters θ and assume access to a prior distribution p(θ).
Running the (potentially computationally expensive) simulator allows generating samples corresponding to
the likelihood x ∼ p(x|θ). We assume that the likelihood is only defined implicitly through the simulator and
cannot be evaluated. Given observed data xo we aim to obtain the Bayes-optimal action

a∗ = arg min
a

∫
c(θ, a) · p(θ|xo)dθ,

where we used the posterior p(θ|xo), defined as
p(θ|xo) ∝ p(xo|θ)p(θ),

and we defined a cost function c(θ, a) (Schervish, 2012). This cost function quantifies the consequences of
taking a particular action a if the true parameters of the system θ were known. The cost function can be an
(easy to compute) analytical expression of parameters and actions, but it can also require (computationally
expensive) computer simulations (Alsing et al., 2023). The Bayes-optimal action is found by minimizing over
actions a, sampled from a distribution p(a). We choose p(a) such that its support covers all possible actions,
i.e. it also contains the true optimal action. This is reasonable, as the range of available measures is usually
known to the decision maker.

To evaluate the performance of different decision making algorithms, we use the ‘incurred cost’ of an action.
Given a synthetically generated observation xo and its ground truth parameters θgt, the incurred cost of an
action a is defined as

ci = c(θgt, a).

2.2 Neural Posterior Estimation

The posterior distribution p(θ|xo) is intractable for all but the simplest models. Neural Posterior Estimation
(NPE) is a method that overcomes this by using samples from the joint distribution p(θ, x), obtained
by sampling θ from the prior and simulating to learn a parametric density for the posterior distribution
(Papamakarios and Murray, 2016). Concretely, NPE trains a deep neural density estimator by minimizing its
negative log-likelihood:

L(ϕ) = − 1
N

N∑
i=1

log qϕ(θi|xi),

3

Published in Transactions on Machine Learning Research (05/2024)

where ϕ are learnable parameters. After training, the deep neural density estimator can be evaluated for
any observation xo and will return an estimate for the posterior distribution, which can be sampled and
whose log-probability can be computed for any θ. Crucially, once the deep neural density estimator has been
trained, it can be applied to any observation without running further simulations and without retraining,
thereby amortizing the cost of inference.

3 Methods

We propose two methods to obtain amortized Bayesian decisions (Fig. 1). We discuss advantages and
disadvantages of both methods in Sec. 5.

3.1 Neural Posterior Estimation and Monte-Carlo Sampling (NPE-MC)

The first method is a direct extension of Neural Posterior Estimation (NPE) and serves as a baseline. We
use two properties of NPE, namely that it is (1) amortized across observations and (2) returns a posterior
estimate that can be sampled quickly (1000s of samples in milliseconds in typical applications). The method
proceeds in three steps: (1) train NPE to obtain an amortized neural density estimator qϕ(θ|x) and (2) draw
M samples from the approximate density qϕ(θ|xo) and (3) compute a Monte-Carlo estimate for the expected
cost for actions a:

Ep(θ|xo)[c(θ, a)] ≈ 1
M

M∑
i=1

c(θi, a)

If the action a is low-dimensional then we can evaluate actions a on a dense grid. All low-dimensional
experiments use a 1D action and we therefore obtain the optimal action via grid search. If the action is
high-dimensional (or if the cost function c(θ, a) is expensive to compute) then one can use generic optimization
method to identify the optimal action a∗ (e.g., genetic algorithms, or gradient descent if the cost function is
differentiable). We term this algorithm NPE-Monte-Carlo (NPE-MC).

For inference step (2) and (3) have to be repeated for every observation xo and action, resulting in M ·#xo ·
#actions cost evaluations. If evaluating the cost function c(θ, a) is expensive, this comes with considerable
computational costs. At the same time, decreasing M or the number of actions to compute the cost for can
significantly impact selection quality of the optimal action.

We note that every SBI approach which returns (approximate) posterior samples could be used in order
to estimate the expected cost with a Monte-Carlo estimate. This includes approaches like Approximate
Bayesian Computation (ABC) (Csilléry et al., 2010) and neural likelihood (Papamakarios et al., 2019) or
likelihood-ratio estimation (Hermans et al., 2020; Miller et al., 2022). Here, we chose NPE because it fully
amortizes the cost of inference, whereas Neural Likelihood Estimation (NLE) and Neural Ratio Estimation
(NRE) require additional MCMC steps and ABC requires re-computing distances for every observation.
We additionally report results using ABC and NLE for posterior estimation, referred to as ABC-MC and
NLE-MC respectively.

3.2 Bayesian Amortized Decision Making (BAM)

The approach outlined above returns the correct action if the neural density estimator indeed captures
the true posterior distribution and if the Monte-Carlo estimate provides a sufficiently accurate estimate
of the expected costs. However, it may seem overly complicated to infer the full posterior distribution if
one is only interested in the expected cost induced by the posterior. In addition, the above method still
requires computing the expected cost from Monte-Carlo simulations for every observation, which can become
prohibitively expensive if the cost function c(θ, a) is expensive to evaluate (e.g., if one has to run a simulator
to evaluate c(θ, a), Alsing et al. (2023)). To overcome these two limitations, we introduce a method which
(1) does not require estimating the full posterior and (2) directly returns an estimate for the expected cost,
thereby circumventing the need to recompute the cost for every observation (Fig. 1). We term this method
Bayesian Amortized decision Making (BAM).

4

Published in Transactions on Machine Learning Research (05/2024)

Algorithm 1: Bayesian Amortized decision Making (BAM)
Inputs: prior p(θ), simulator with implicit likelihood p(x|θ), cost function c(x, a), distribution of actions
p(a), number of simulations N , feedforward NN fϕ with parameters ϕ, NN learning rate η, observations
(not i.i.d.) x{k=1...K}

o .
Outputs: action a∗ with minimal expected cost given an observation.

Generate dataset:
sample prior and simulate: θ, x← {θi ∼ p(θ), xi ∼ p(x|θi)}i:1...N

Training:
while not converged do
L = 0
for (θ, x) in {(θi, xi}{i=1...N} do

a ∼ p(a)
L += 1

|N | (fϕ(x, a)− c(θ, a))2

ϕ← ϕ− η ·Adam(∇ϕL)

Inference:
for k ∈ [1, ..., K] do

a∗ = min fϕ(x(k)
o , a) ; // find optimal action, e.g., with grid search

Like NPE, BAM is trained on samples from the joint distribution p(θ, x). Unlike NPE, however, it employs
a feedforward neural network that takes data and independently sampled actions a ∼ p(a) as inputs and
aims to predict the cost of the associated underlying parameter set c(θ, a). We train this feedforward neural
network with Mean-Squared-Error (MSE) loss and thereby can recover the expected cost Ep(θ|xo)[c(θ, a)]
under the true posterior for every data-action-pair:

Proposition 1. Let p(θ, x) be the joint distribution over parameters and data and let p(a) be a distribution
of actions whose support covers the range of permissible actions. Let c(θ, a) be a cost function and fϕ(·) a
parameterized function. Then, the loss function L(ϕ) = Ep(θ,x)p(a)[(fϕ(x, a)− c(θ, a))2] is minimized if and
only if, for all θ ∈ supp(p(x)) and all a ∈ supp(p(a)) we have fϕ(x, a) = Ep(θ|x)[c(θ, a)].

Proof in Appendix Sec. A2. The algorithm is summarized in algorithm 1. We note that it is important
for p(a) to cover the full support of a such that all possible action can be observed during training. We
further note that, like NPE-MC, BAM requires a final phase to search for the optimal action that minimizes
the expected cost. Importantly, BAM requires only a single forward pass for every action and no further
evaluations of the cost function, which renders this step computationally cheap.

4 Results

4.1 Illustrative example

Inspired by the nuclear power plant example by Lacoste–Julien et al. (2011), we illustrate NPE-MC and BAM
on a simple example with one-dimensional parameter space and observations, but which induces a bimodal
posterior (Fig. 2a,b). To illustrate potential failure modes of NPE-MC, we parameterize the posterior using a
neural spline flow with two splines which fails to accurately capture the true, bimodal posterior and assigns
too little probability mass to the left mode (Fig. 2b). We then define a cost function c(θ, a) which assigns zero
cost if the action is optimal and whose cost increases monotonically with distance from the true parameter.
Crucially, the cost function is asymmetric: for large θ, the cost is high even if the estimation error is small,
whereas for low θ, the cost remains low for a larger region of θ (Fig. 2c). See Appendix Fig. A3 for more
parameterizations of the NPE posterior.

5

Published in Transactions on Machine Learning Research (05/2024)

θ

xo

x
a

θ

p(
θ|

x
)

o

b

action a

in
cu

rr
ed

 c
os

ts

small θ

large θ

c

action a

ex
pe

ct
ed

 c
os

ts

ground truth

NPE-MC

BAM

d

Figure 2: Illustrative Example. (a) Joint distribution of parameter and data (gray) and an observation
(green). (b) True posterior distribution p(θ|xo) and an estimate obtained with NPE with a NSF with two
splines. (c) Cost function for two values of θ (dotted and full). (d) Expected costs as a function of the action
obtained by the ground truth posterior (green) and as estimated with BAM (orange) and NPE-MC (with
NSF, blue). Both NPE and BAM were trained with a simulation budget of 5k. See Appendix Fig. A3 for
more parameterizations of NPE.

Due to this asymmetry of costs, the approximation to the posterior obtained with NPE systematically
underestimates the optimal action, and the optimal action chosen by NPE-MC incurs a much larger cost
than the true posterior (Fig. 2d).

4.2 Benchmark decisions

Next, we systematically evaluated the performance of BAM, NPE-MC and ABC-MC on tasks where the
ground truth posterior is available. We used the toy example introduced above and three previously published
simulators with ground truth posteriors (Lueckmann et al., 2021). For all tasks, we defined cost functions on
top of which to perform Bayesian decision making (details in Appendix Sec. A4). All cost functions used for
the evaluation are based on a flipped bell-shaped curve whose width depends on parameter θ:

c(θ, a) = 1− exp
(

(θ̃ − ã)2

w

)
where parameters and actions are normalized to take values in the same range, θ̃ = (θ−θmin)/(θmax−θmin),
ã = (a − amin)/(amax − amin) and the width of the bell curve is determined by w = (f · 1

|θ−o|+ϵ)m.

Toy example: A toy simulator with 1D θ and 1D x (Fig. 2a). We use the cost function described above
with f = 2, m = 2. We note that, for the benchmark results, we used a neural spline flow as approximate
density (Durkan et al., 2019).

Linear Gaussian: Simulator with a 10D Gaussian prior and linear Gaussian likelihood, leading to a Gaussian
posterior. We use the a similar cost function as for the toy example, but with f = 0.5 and m = 2 and offset
o = |θmax| to increase sensibility of the cost function towards small and large parameter values.

SIR: The SIR (suspectible-infected-removed) model is an epidemiological model that describes the basic
spreading behaviour of an infectious disease that is transmitted from human to human over time. The
simulator is parameterized by two parameters, the contact rate β and the recovery rate γ. The simulator
returns the number of infected individuals I at 10 evenly-spaced points in time. For the decision task we aim
to estimate the reproduction rate as the ratio R0 = β

γ . We assume that it is particularly crucial to estimate
the value of R around 1 and, therefore, define a cost function which is more sensitive to deviations from the
optimal action for R0 ≈ 1 (f = 2, m = 2, o = 1, details in Appendix Sec. A4).

Lotka-Volterra: The Lotka-Volterra model describes the oscillating dynamics between two species in a
predator-prey relationship. These dynamics are determined based on four parameters: the prey population
grows at rate α and shrinks at rate β. In the presence of prey, predators are born at rate δ and die at rate γ.
We evaluated four different cost functions with f = 3, m = 2, where each individual cost function assesses
only the accuracy of the estimated marginal distribution (i.e., the cost function ignores three out of four
parameters). Analogous to the toy example, the costs function is asymmetric and depends on the underlying
true parameter value. The higher the parameter value, the more accurate the prediction of the optimal action

6

Published in Transactions on Machine Learning Research (05/2024)

10
3

10
4

10
5

0.0

0.1

0.2

0.3

0.4

di
ff.

 in
cu

rr
ed

 c
os

t

Toy Example

10
3

10
4

10
5

Gaussian Linear

10
3

10
4

10
5

SIR

10
3

10
4

10
5

simulations

Lotka-Volterra α

10
3

10
4

10
5

Lotka-Volterra β

10
3

10
4

10
5

Lotka-Volterra γ

10
3

10
4

10
5

Lotka-Volterra δ

10
3

10
4

10
5

Lotka-Volterra all

BAM

ABC-MC

NPE-MC

Figure 3: Benchmarking decision tasks. Gap between the incurred cost of optimal actions computed
from the ground truth posterior and the predicted optimal actions of BAM (orange), NPE-MC (blue) and
ABC-MC (red) as a function of the simulation budget. Results are averaged across ten observations and five
seeds. Shaded areas show the standard error of the mean across seeds. Columns: four different simulators
(with four different decision tasks for Lotka-Volterra).

Table 1: Runtimes for NPE-MC and BAM. Exemplary runtimes for the multi-dimensional Lotka-Volterra
task measured on a NVIDIA GeForce RTX 2080 Ti GPU. Training dataset size is N = 10k, inference runtime
is computed based on 10k (data, action) pairs. For NPE, M = 1000 samples were drawn from the posterior.
Mean and standard deviation are based on five seeds.

method training inference per (x, a) pair

NPE-MC 1041.0525± 230.2177 s 81.4303± 5.1675 µs
BAM 17.5475± 1.8723 s 0.6816± 0.0408 µs

has to be to incur small costs. Intuitively, if the action entails various measures to intervene on the rate of
shrinkage or growth, this means that overestimation of the rate should be prevented.

Lotka-Volterra (4d): In addition to the low-dimensional tasks described above, we add a multi-dimensional
setup based on Lotka-Volterra. Using all four parameters θ = {α, β, γ, δ}, we also define a four-dimensional
action space and define the costs to be the mean incurred costs over all parameters, where individual cost
functions are characterized in the same way as described above.

For all tasks, we trained NPE-MC, ABC-MC and BAM with 6 different simulation budgets: 500, 1k, 5k, 10k,
50k, and 100k and averaged results over five random seeds. We then computed the Bayes optimal action for
ten different observations with all algorithms as outlined in Sec. 3, computed the incurred cost associated
with these actions (Sec. 2.1), and compared this to the incurred cost of the optimal action obtained from the
ground truth posterior (Fig. 3). For NPE-MC, we computed the expected costs based on M = 1000 samples
from the deep neural density estimator (but using M = 10 and M = 100 impacts the results only weakly,
see Appendix Fig. A1). For ABC-MC, we used Rejection ABC with only accepting the top 100 samples for
the posterior approximation. For BAM, we resampled one action per (θ, x) pair at every epoch (keeping
the same action at every epoch deteriorates performance, see Appendix Fig. A1). See Appendix Fig. A2 for
additional results using NLE-MC in place of to NPE-MC.

We first applied NPE-MC, ABC-MC and BAM to the statistical task of the 1D toy example and the linear
Gaussian simulator. On the simple 1D toy task all algorithms perform well and lead to essentially optimal
actions after around 1k simulations. Similarly, on the linear Gaussian task, the algorithms perform very well
and lead to actions with little associated cost. NPE-MC slightly outperforms BAM on this task. We expect
that this is because the neural density estimator employed by NPE-MC and ABC-MC has to learn an affine
mapping from data to parameters (because the task is a linear Gaussian task), whereas BAM has to learn a
non-linear function of the actions (which are used during training of BAM).

7

Published in Transactions on Machine Learning Research (05/2024)

0
20
40
60
80

100

ac
tio

ns
 o

n
α

ground truth NPE-MC BAM
distance to ground truth

BAM - NPE-MC

0
20
40
60
80

100

ac
tio

ns
 o

n
β

0
20
40
60
80

100

ac
tio

ns
 o

n
γ

1 2 3 4 5 6 7 8 9 10

0
20
40
60
80

100

ac
tio

ns
 o

n
δ

1 2 3 4 5 6 7 8 9 10
observation #

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
observations #

0.0

0.2

0.4

0.6

0.8

1.0

ex
pe

ct
ed

 c
os

ts

0.6

0.4

0.2

0.0

−0.2

−0.4

−0.6

NPE-MC better

BAM better

a b

Figure 4: Detailed comparison of NPE-MC and BAM on Lotka-Volterra task. (a) Expected costs
induced by the ground truth posterior (left), NPE-MC (middle), and BAM (right), for four different cost
functions (rows) based on the Lotka-Volterra simulator and a simulation budget of 10k simulations. The
x-axis shows the index of the observation, taken from (Lueckmann et al., 2021). (b) Difference in expected
costs between NPE-MC and BAM.

We then applied all algorithms to the more complex simulators of the SIR model and the Lotka-Volterra
simulator. On both of these simulators and for both algorithms, the induced costs are significantly higher as
compared to the previous tasks. For the SIR model, the actions obtained by BAM induce significantly less
cost as compared to both NPE-MC and ABC-MC. In order to achieve a similar level of induced cost, NPE-MC
often requires one order of magnitude more simulations than BAM. Similarly, for Lotka-Volterra, BAM
outperforms both NPE-MC and ABC on all decisions and for all simulation budgets. For fixed simulation
budget, the cost induced by BAM can be almost one order of magnitude less than for NPE-MC (e.g. on the
SIR task for 104 simulations).

Finally, we applied NPE-MC and BAM to the four-dimensional variant of Lotka-Volterra. For this task, we
found that BAM consistently outperforms NPE-MC for lower simulation budgets. For very large simulation
budgets, we found NPE-MC to improve over BAM. Runtimes for training and inference show that BAM
outperforms NPE-MC in terms of computational costs (Table 1).

In order to gain insights into the strong performance of BAM compared to NPE-MC, we evaluated the
expected costs for individual observations and for all possible actions for BAM and NPE-MC for the Lotka-
Volterra simulator (Fig. 4). Across all four decision tasks, BAM closely matches the expected costs induced
by the ground truth posterior for all actions, whereas NPE-MC often fails to capture the expected costs. In
particular, for almost every action and observation, BAM provides a closer approximation to the ground truth
expected cost than NPE-MC (Fig. 4b). This failure of NPE-MC occurs because NPE does not accurately
capture the true posterior, and is not due to the Monte-Carlo estimation procedure (Appendix Fig. A1).

Overall, our results demonstrate that BAM performs similarly to NPE-MC on simple statistical tasks. On
more complex and nonlinear simulators, BAM outperformed NPE-MC, sometimes by a large margin. This
indicates that, on tasks where estimating the posterior is difficult in itself, it is possible to save a large fraction
of simulations if only the Bayes-optimal action is desired (as compared to the full posterior).

8

Published in Transactions on Machine Learning Research (05/2024)

-2.00

0.00

Healthy Zone (HZ)

ground truth

NPE post. predictives

-2.00

0.00

fa
st

-v
ar

ia
bl

e
(x

)

Propagation Zone (PZ)

0 20 40 60 80 100
Time (sec)

-2.00

0.00

Epileptogenic Zone (EZ)

a Observations and NPE predictives

-5 0
η

0.1 50
τ

-5 0
xinit

0 5
zinit

b NPE posterior estimate

0

1
C(θ, HZ)

0

1
C(θ, PZ)

ηEZηPZ

θ

0

1
C(θ, EZ)

c Cost function

10
3

10
4

10
5

0.0

0.1

in
cu

rr
ed

 c
os

ts

overall

10
3

10
4

10
5

a = HZ

10
3

10
4

10
5

a = PZ

10
3

10
4

10
5

a = EZ

NPE-MC

BAM

simulations

d Comparison of incurred costs

Figure 5: Decision making for the Bayesian Virtual Epileptic Patient. (a) Three observations
(green, different rows) and posterior predictives obtained with NPE (different shades of blue) for each of the
observations. Each row corresponds to one of the zones of the data when classifying by excitability value η of
the brain region (healthy, propagation, epileptogenic). (b) Marginals and pairwise marginals of the posterior
distribution obtained with NPE given an observation from the epileptogenic zone. True parameter values are
shown in red. (c) The cost function for predicting θ to be in one of the three zones (zones shown in gray
scale, one decision per row). (d) Incurred costs of NPE-MC and BAM, averaged over 1k prior predictives
(left), as well as split by the decision made. Costs are shown for simulation budgets between 500 and 100k
simulations. Shaded areas show the standard error of the mean across seeds.

4.3 Bayesian Virtual Epileptic Patient

Finally, we performed Bayesian decision making on a real-world task from medical neuroscience. The
framework, termed the Bayesian Virtual Epileptic Patient (BVEP), allows to simulate neural activity in a
connected network of brain regions to model epilepsy spread (Hashemi et al., 2020; Jirsa et al., 2017). Previous
work has demonstrated that NPE is close to an approximate ground truth (obtained with Hamiltonian
Monte-Carlo) in this model (Hashemi et al., 2023). The dynamics are controlled by a simulator called
‘Epileptor’ and in this work, we focus on a single isolated brain region. Based on the level of excitability η
(one of the free parameters) simulations either lead to simulated data that resembles healthy brains or to
activity of brains during an epileptic seizure (Fig. 5a).

The simulator has four free parameters and generates a time series which is reduced into ten summary
statistics (details in Appendix Sec. A5, NPE posterior in Fig. 5b). The goal is to predict, given observations,
which of three actions is most appropriate (Hashemi et al., 2023). The first action corresponds to no
intervention (i.e., a healthy brain region, healthy zone, HZ), the second action corresponds to further tests
(unclear if the brain region will be recruited during an epileptic seizure, propagation zone, PZ), and the third
action corresponds to an intervention such as surgery (if the brain is clearly unhealthy and triggers seizures
autonomously, epileptogenic zone, EZ). We assume that, if the excitability of the brain tissue η were known
exactly, then one could exactly infer the optimal action and that the optimal action would induce zero ‘cost’.
For simplicity, we also assume that the cost of a mis-classification (i.e., predict an action which does not
match the excitability region of the true parameters) induces a constant cost (Fig 5c). We use this simple
cost function to demonstrate that both NPE-MC and BAM can generally solve this task and to avoid making
(potentially controversial) assumptions.

9

Published in Transactions on Machine Learning Research (05/2024)

We train NPE-MC and BAM on this simulator with simulation budgets ranging from 500 to 100k. For
training BAM, we sample actions from a discrete distribution over the three possible actions. After training,
we evaluate the expected costs under the three possible actions for both algorithms (we use 1k Monte-Carlo
samples for NPE). BAM and NPE-MC both converge with only a few thousand simulations and lead to low
expected cost (Fig. 5d, left). We then evaluated both algorithms for cases where the ground truth parameter
lies in either of three zones (HZ, PZ, EZ). Both algorithms perform similarly well in each zone, and have the
highest cost in cases where the ground truth parameter lies in the propagation zone.

Overall, these results demonstrate that NPE-MC and BAM can both be used to perform Bayesian decision
making on the BVEP real-world simulator and that the resulting actions can be obtained with few simulations
and induce low cost.

5 Discussion

We presented methods to perform amortized Bayesian decision making for simulation-based models. The first
method, NPE-MC, uses the parametric posterior returned by neural posterior estimation to infer the optimal
action with a Monte-Carlo average. However, this method requires to compute the cost for many parameter
sets and actions for every observation, and its performance can suffer if the parametric posterior approximation
is poor. Using other methods in place of NPE to estimate the posterior distribution comes with the additional
disadvantage that they not fully amortize the cost of inference. To overcome the limitations of NPE-MC, we
developed a second method, BAM (Bayesian Amortized decision Making), which circumvents the need to
compute an explicit posterior approximation and directly returns the expected cost. We demonstrated that
this method can largely improve accuracy over NPE-MC on challenging benchmark tasks and we demonstrated
that both methods can infer decisions for the Bayesian Virtual Epileptic Patient.

Related Work Most applications of Bayesian decision making rely on using Markov-chain Monte Carlo
or variational inference methods to obtain an estimate of the posterior distribution. Like NPE, variational
inference requires a parametric estimate of the posterior distribution, and Lacoste–Julien et al. (2011) have
studied how such an approximation can impact the quality of downstream actions and proposed to take the
decision task into account for training the variational posterior. Indeed, if the decision task and the associated
loss-function are already known at inference time, then the ‘quality’ of a posterior approximation can be
assessed by the accuracy with which it allows computation of expected costs and optimal actions– some
approximation errors will not impact the expected cost, whereas others might have a substantial impact. This
makes it possible to quantify the quality of different approximations, and potentially also directly optimize the
posterior approximations for this, an approach referred to as ‘loss-calibration’ (Lacoste–Julien et al., 2011).
Several works applied this principle to classification tasks with Bayesian Neural Networks (Cobb et al., 2018),
regression tasks for variational inference (Kuśmierczyk et al., 2019) and in the context of importance sampling
(Abbasnejad et al., 2015). Instead of adapting the training process of variational inference, which requires to
recompute the posterior approximation whenever specifics of the decision task change, Kuśmierczyk et al.
(2020) and Vadera et al. (2021) propose post-hoc correction procedures that calibrate the decision making
process itself (given an approximate posterior). We expect that, in cases where the parametric posterior
approximation of NPE-MC is poor, similar methods could be used to calibrate the NPE posterior for the
decision task at hand. BAM, on the other hand, circumvents the need for an explicit posterior approximation
and thus does not make any parametric assumptions about the posterior distribution.

Finally, another work on the topic of Bayesian decision making for simulators has been developed concurrently
to our work (Alsing et al., 2023). Alsing et al. (2023) focus on simulators which incorporate a mechanistic
model for the actions, thereby requiring to simulate in order to estimate the costs. For estimating the
cost, our method BAM parallels their method, and they introduce an additional algorithm to estimate the
distribution of cost (instead of directly estimating its expected value). Alsing et al. (2023) also introduce
a method to focus on inference on a particular observation with sequential inference (Papamakarios and
Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019; Deistler et al., 2022), whereas we always sample
parameters from the prior to avoid correction steps in the loss function. We provide empirical results across
eight benchmark decision tasks and for several simulation budgets (Sec. 4.2) and we empirically demonstrate
the ability to amortize across observations, whereas Alsing et al. (2023) provide empirical results for single

10

Published in Transactions on Machine Learning Research (05/2024)

observations on two benchmark problems. Finally, we provide a proof of convergence for BAM (Appendix
Sec. A2), and we apply the methods to Bayesian Virtual Epileptic Patient (Sec. 4.3).

Limitations For any real-world problem, it is difficult to assess the accuracy of the action proposed by
either NPE-MC or BAM. In particular, if the real-world observation differs from the simulated data (i.e., if
the observation is misspecified), then the neural networks employed by NPE-MC and BAM might give poor
results, and any estimated performance on the simulated data might no longer be correct (Cannon et al.,
2022; Gao et al., 2023).

In the following paragraphs we briefly outline further considerations regarding the space of actions and the
cost function in more detail.

Action Space In Bayesian decision theory the space of actions is assumed to be known to the decision
maker at inference time. Unlike NPE-MC, BAM requires the space of available actions to be fixed already at
training time as BAM is specifically tailored to the goal of decision making. We thus introduced a distribution
of actions p(a) which defines the range of actions across which to amortize, and require the support of p(a)
to cover all possible actions. We provided a proof that BAM converges to the expected costs for any action
in the support of p(a) and any data in the support of p(x), regardless of the exact form of p(a). Nonetheless,
we note that, different distributions p(a) might influence the results in practice. Being amortized over the
actions, BAM can can provide insights into the overall cost landscape. This can provide a helpful source of
information to guide the final choice of the action, especially if there are additional trade-offs or constraints
associated with different actions that are not considered in the simulator or the cost function.

Cost Function The cost function determines which inaccuracies hurt the decision process take the decision
task into account, motivating the call for loss-calibration. Another aspect to consider is the computational
cost of evaluating the cost function as the proposed methods differ on when to compute the costs of (data,
action) pairs: Training of NPE-MC is cost-agnostic, but at inference, the costs have to be computed for every
data xo, action a and the number of samples drawn from the posterior estimate M . When evaluating the
cost function is expensive, e.g., in scenarios where evaluating the cost function requires to simulate (Alsing
et al., 2023), this comes with considerable computational costs. In contrast, BAM requires evaluations of
the cost function only during training, in total #epochs · (Ntrain + Nval) evaluations. At inference, BAM
requires no further evaluation of the cost function, but #actions many passes through the network, which
makes this step is computationally very cheap. For high-dimensional actions in particular, the amortization
over the decision process makes BAM largely more efficient than NPE-MC.

Whether to use NPE or BAM We presented two approaches to perform amortized Bayesian decision
making, NPE-MC and BAM. Their key difference is that NPE-MC builds a full parametric estimate of
the posterior distribution (which is independent of the cost function or the specific action), whereas BAM
circumvents the requirement to build a posterior approximation and immediately regresses onto the expected
cost for every action in the support of p(a) and for every observation in the support of p(x). The key
advantages of NPE-MC are that it provides a full posterior that is interpretable and can be used for multiple
downstream applications (one of which might be Bayesian decision making), and that it does not require
retraining when the cost function or the space of actions changes. Contrary to that, we expect BAM to shine
especially in applications where the posterior is complex and hard to estimate (as evidenced by the results on
Lotka-Volterra and SIR). In addition, BAM immediately regresses onto the expected cost for every action
in the support of p(a) and every observation in the support of p(x), whereas NPE-MC requires additional
Monte-Carlo simulations and additional evaluations of the cost function for every observation, action, and
parameter set.

Conclusions We developed BAM, an algorithm to perform amortized Bayesian decision making. We
demonstrated that the approach recovers the Bayes-optimal action for a diverse set of tasks and that it can
be used to perform optimal decision making in an example from the medical neurosciences. In addition, we
provided a systematic evaluation of commonly used methods from the field of simulation-based inference,
namely NPE, ABC and NLE, in the context of decision making on a diverse set of tasks.

11

Published in Transactions on Machine Learning Research (05/2024)

Acknowledgements

MG and MD are supported by the International Max Planck Research School for Intelligent Systems (IMPRS-
IS). MD and JHM are funded by the Machine Learning Cluster of Excellence, EXC number 2064/1–390727645.
This work was supported by the Tübingen AI Center (Agile Research Funds), the German Federal Ministry
of Education and Research (BMBF): Tübingen AI Center, FKZ: 01IS18039A. We thank Julius Vetter, Guy
Moss, and Manuel Gloeckler for discussions and comments on the manuscript.

References
Ehsan Abbasnejad, Justin Domke, and Scott Sanner. Loss-calibrated Monte Carlo action selection. In

Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015. 10

Justin Alsing, Thomas DP Edwards, and Benjamin Wandelt. Optimal simulation-based Bayesian decisions.
arXiv preprint arXiv:2311.05742, 2023. 1, 3, 4, 10, 11

James O Berger. Statistical decision theory and Bayesian analysis. Springer Science & Business Media, 2013.
1

Patrick Cannon, Daniel Ward, and Sebastian M Schmon. Investigating the impact of model misspecification
in neural simulation-based inference. arXiv preprint arXiv:2209.01845, 2022. 11

Adam D Cobb, Stephen J Roberts, and Yarin Gal. Loss-calibrated approximate inference in Bayesian Neural
Networks. arXiv preprint arXiv:1805.03901, 2018. 10

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference. Proceedings
of the National Academy of Sciences, 117(48):30055–30062, 2020. 2

Katalin Csilléry, Michael GB Blum, Oscar E Gaggiotti, and Olivier François. Approximate Bayesian
computation (ABC) in practice. Trends in ecology & evolution, 25(7):410–418, 2010. 4

Michael Deistler, Pedro J. Goncalves, and Jakob H. Macke. Truncated proposals for scalable and hassle-free
simulation-based inference. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022. 10

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. Advances in
Neural Information Processing Systems, 32, 2019. 6, 15

Richard Gao, Michael Deistler, and Jakob H Macke. Generalized Bayesian inference for scientific simulators
via amortized cost estimation. arXiv preprint arXiv:2305.15208, 2023. 11

Pedro J Gonçalves, Jan-Matthis Lueckmann, Michael Deistler, Marcel Nonnenmacher, Kaan Öcal, Giacomo
Bassetto, Chaitanya Chintaluri, William F Podlaski, Sara A Haddad, Tim P Vogels, et al. Training deep
neural density estimators to identify mechanistic models of neural dynamics. Elife, 9:e56261, 2020. 2

David Greenberg, Marcel Nonnenmacher, and Jakob Macke. Automatic posterior transformation for likelihood-
free inference. In International Conference on Machine Learning, pages 2404–2414. PMLR, 2019. 2, 10

Meysam Hashemi, AN Vattikonda, Viktor Sip, Maxime Guye, Fabrice Bartolomei, Michael Marmaduke
Woodman, and Viktor K Jirsa. The Bayesian Virtual Epileptic Patient: A probabilistic framework designed
to infer the spatial map of epileptogenicity in a personalized large-scale brain model of epilepsy spread.
NeuroImage, 217:116839, 2020. 9, 17

Meysam Hashemi, Anirudh N Vattikonda, Jayant Jha, Viktor Sip, Marmaduke M Woodman, Fabrice
Bartolomei, and Viktor K Jirsa. Amortized Bayesian inference on generative dynamical network models of
epilepsy using deep neural density estimators. Neural Networks, 163:178–194, 2023. 9, 15, 17

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. 16

12

Published in Transactions on Machine Learning Research (05/2024)

Joeri Hermans, Volodimir Begy, and Gilles Louppe. Likelihood-free MCMC with amortized approximate
ratio estimators. In International Conference on Machine Learning, pages 4239–4248. PMLR, 2020. 2, 4

Joeri Hermans, Arnaud Delaunoy, François Rozet, Antoine Wehenkel, Volodimir Begy, and Gilles Louppe. A
crisis in simulation-based inference? Beware, your posterior approximations can be unfaithful. Transactions
on Machine Learning Research, 2022. ISSN 2835-8856. 2

Viktor K Jirsa, William C Stacey, Pascale P Quilichini, Anton I Ivanov, and Christophe Bernard. On the
nature of seizure dynamics. Brain, 137(8):2210–2230, 2014. 17

Viktor K Jirsa, Timothée Proix, Dionysios Perdikis, Michael Marmaduke Woodman, Huifang Wang, Jorge
Gonzalez-Martinez, Christophe Bernard, Christian Bénar, Maxime Guye, Patrick Chauvel, et al. The
virtual epileptic patient: individualized whole-brain models of epilepsy spread. Neuroimage, 145:377–388,
2017. 9, 17

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015. 16

Tomasz Kuśmierczyk, Joseph Sakaya, and Arto Klami. Variational Bayesian decision-making for continuous
utilities. Advances in Neural Information Processing Systems, 32, 2019. 10

Tomasz Kuśmierczyk, Joseph Sakaya, and Arto Klami. Correcting predictions for approximate Bayesian
inference. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 4511–4518,
2020. 10

Simon Lacoste–Julien, Ferenc Huszár, and Zoubin Ghahramani. Approximate inference for the loss-calibrated
Bayesian. In Geoffrey Gordon, David Dunson, and Miroslav Dudík, editors, Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine
Learning Research, pages 416–424, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR. 2, 5, 10

Jan-Matthis Lueckmann, Pedro J Goncalves, Giacomo Bassetto, Kaan Öcal, Marcel Nonnenmacher, and
Jakob H Macke. Flexible statistical inference for mechanistic models of neural dynamics. Advances in
Neural Information Processing Systems, 30, 2017. 10

Jan-Matthis Lueckmann, Jan Boelts, David Greenberg, Pedro Goncalves, and Jakob Macke. Benchmarking
simulation-based inference. In International Conference on Artificial Intelligence and Statistics, pages
343–351. PMLR, 2021. 2, 3, 6, 8, 16

Benjamin K Miller, Christoph Weniger, and Patrick Forré. Contrastive neural ratio estimation. Advances in
Neural Information Processing Systems, 35:3262–3278, 2022. 4

George Papamakarios and Iain Murray. Fast ε-free inference of simulation models with Bayesian conditional
density estimation. Advances in Neural Information Processing Systems, 29, 2016. 2, 3, 10

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density estimation.
Advances in Neural Information Processing Systems, 30, 2017. 15

George Papamakarios, David Sterratt, and Iain Murray. Sequential neural likelihood: Fast likelihood-free
inference with autoregressive flows. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 837–848. PMLR, 2019. 4

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in Neural Information Processing Systems, 32, 2019. 15

Stefan T Radev, Ulf K Mertens, Andreas Voss, Lynton Ardizzone, and Ullrich Köthe. Bayesflow: Learning
complex stochastic models with invertible neural networks. IEEE transactions on neural networks and
learning systems, 33(4):1452–1466, 2020. 2

Mark J Schervish. Theory of statistics. Springer Science & Business Media, 2012. 3

13

Published in Transactions on Machine Learning Research (05/2024)

Alvaro Tejero-Cantero, Jan Boelts, Michael Deistler, Jan-Matthis Lueckmann, Conor Durkan, Pedro J.
Gonçalves, David S. Greenberg, and Jakob H. Macke. sbi: A toolkit for simulation-based inference. Journal
of Open Source Software, 5(52):2505, 2020. doi: 10.21105/joss.02505. 15

Meet P. Vadera, Soumya Ghosh, Kenney Ng, and Benjamin M. Marlin. Post-hoc loss-calibration for Bayesian
Neural Networks. In Cassio de Campos and Marloes H. Maathuis, editors, Proceedings of the 37th Conference
on Uncertainty in Artificial Intelligence, volume 161 of Proceedings of Machine Learning Research, pages
1403–1412. PMLR, 27–30 Jul 2021. 10

Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github, 2019. 15

14

Published in Transactions on Machine Learning Research (05/2024)

Appendix
A1 Code and Reproducibility

Code to reproduce all experiments, including the full git commit history, is available at https://github.
com/mackelab/amortized-decision-making. All neural networks and optimization loops are written in
pytorch (Paszke et al., 2019). We tracked all experiments with hydra (Yadan, 2019). For NPE, we used the
implementation in the sbi toolbox (Tejero-Cantero et al., 2020).

A2 Convergence proof for proposition 1

The proof closely follows standard proofs that regression converges to the conditional expectation.

Proof. We aim to prove that

Eθ,x∼p(θ,x),a∼p(a)[(c(θ, a)− g(x, a))2] ≥
Eθ,x∼p(θ,x),a∼p(a)[(c(θ, a)− Eθ′∼p(θ|x)[c(θ′, a)])2]

for every function g(x, a). We begin by rearranging expectations:

Eθ,x∼p(θ,x),a∼p(a)[(c(θ, a)− g(x, a))2] =
Ep(a)[Eθ,x∼p(θ,x)[(c(θ, a)− g(x, a))2]]

Below, we prove that, for a given a and for any x, the optimal g(x, a) is the conditional expectation
Eθ′∼p(θ|x)[c(θ′, a)]:

Eθ,x∼p(θ,x)[(c(θ, a)− g(x, a))2] =
Eθ,x∼p(θ,x)[(c(θ, a)− Eθ′∼p(θ|x)[c(θ′, a)] + Eθ′∼p(θ|x)[c(θ′, a)]− g(x, a))2] =
Eθ,x∼p(θ,x)[(c(θ, a)− Eθ′∼p(θ|x)[c(θ′, a)])2 + (Eθ′∼p(θ|x)[c(θ′, a)]− g(x, a))2] + X

with
X = Eθ,x∼p(θ,x)[(c(θ, a)− Eθ′∼p(θ|x)[c(θ′, a)])(Eθ′∼p(θ|x)[c(θ′, a)]− g(x, a))],

By the law of iterated expectations, one can show that X = 0:

X = Ex′∼p(x)Ex∼p(x)Eθ∼p(θ|x)[(c(θ, a)− Eθ′∼p(θ|x)[c(θ′, a)])(Eθ′∼p(θ|x)[c(θ′, a)]− g(x, a))].

The first term in the product reads a difference of the same term, and, thus, is zero. Thus, since
(Eθ′∼p(θ|x)[c(θ′, a)]− g(x, a))2 ≥ 0, we have:

Eθ,x∼p(θ,x)[(c(θ, a)− g(x, a))2] ≥ Eθ,x∼p(θ,x)[(c(θ, a)− Eθ′∼p(θ|x)[c(θ′, a)])2]

Because this inequality holds for any a, the average over p(a) will also be minimized if and only if g(x, a)
matches the conditional expectation Eθ′∼p(θ|x)[c(θ′, a)] for any a within the support of p(a).

A3 Experimental setup

We used mainly the same hyperparameters for all benchmark tasks and for the Bayesian Virtual Epileptic
Patient task. Only the learning rate was adjusted to 0.005 for Lotka-Volterra, while it was set to 0.001 for all
other tasks.

For NPE, we used the default parameters of the sbi package (Tejero-Cantero et al., 2020), apart from the
density estimator, for which we used a neural spline (Durkan et al., 2019). Following Hashemi et al. (2023),
we used a masked autoregressive flow (Papamakarios et al., 2017) for the Bayesian Virtual Epileptic Patient
with default parameters as set in the sbi package.

15

https://github.com/mackelab/amortized-decision-making
https://github.com/mackelab/amortized-decision-making

Published in Transactions on Machine Learning Research (05/2024)

For BAM, we used a feedforward residual network (He et al., 2016) with 3 hidden layers and 50 hidden units
each. We use ReLU activation functions and, for cases where we know that the expected cost is going to be
positive and bounded by 1, squash the output through a sigmoid. We use the Adam optimizer (Kingma and
Ba, 2015). As described in Sec. 4, the size of the training dataset varied between 500 and 100k. In all cases,
the training dataset was split 90:10 into training and validation and with a batchsize of 500.

As distribution over all permissible actions, p(a), we use a uniform distribution over continuous actions
between 0 and 100 for all benchmark tasks, U(0, 100), and a discrete uniform distribution over three classes
for the Bayesian Virtual Epileptic Patient.

A4 Benchmark tasks

Below, we provide details on the simulators and cost functions used for benchmarking NPE-MC and BAM.

Toy example: The prior follows a uniform distribution

p(θ) = U [0, 5]

and the likelihood is given by:
p(x|θ) = 50 + 0.5θ(5− θ)4 + ν,

where ν ∼ N (θ, 10). We obtained (an approximation to) the ground truth posterior via quadrature.

As cost function, we used a flipped (along the y-axis) bell-shaped curve whose width decreases with increasing
parameter θ:

c(θ, a) = 1− exp
(

(θ − a)2

(2
|θ|+ϵ)2

)
with ϵ = 0.1. As the parameter space and the action space differ, θ and a were rescaled to both lie within
the range of [0, 10].

Linear Gaussian: We used exactly the same simulator as in Lueckmann et al. (2021). As cost function,
we used a flipped (along the y-axis) bell-shaped curve whose width decreases towards the extremes of the
parameter range:

c(θ, a) = 1− exp
(

(θ − a)2

(0.5
|θ−0.5·(θmax−θmin)|+ϵ)2

)
with ϵ = 0.1. As the parameter space and the action space differ, θ and a were rescaled to both lie within
the range of [0, 10]. Additionally, a shift was introduced such that the variance is widest at 5 and decreases
towards both ends of the value range.

Lotka-Volterra: We used exactly the same simulator as in Lueckmann et al. (2021). We evaluated four
different cost functions, where each individual cost function assesses only the accuracy of the estimated
marginal distribution (i.e., the cost function ignores three out of four parameters). The cost function for
individual parameters θi with i = 0, 1, 2, 3 is given by:

c(θi, a) = 1− exp
(

(θi − a)2

(3
|θ|+ϵ)2

)

with ϵ = 0.1. As the parameter space and the action space differ, θ and a were rescaled to both lie within
the range of [0, 10].

SIR: We used exactly the same simulator as in Lueckmann et al. (2021). The cost function is based on the
ration between parameters, r = β

γ , and is given by:

c(r, a) = 1− exp
(

(r− a)2

(2
|10−|r−1||+ϵ)2

)

16

Published in Transactions on Machine Learning Research (05/2024)

with ϵ = 0.1. As the parameter space and the action space differ, r and a were rescaled to both lie within the
range of [0, 10]. Additionally a shift by 1 in parameter space was introduced such that the cost function is
very sensitive around r = 1 and variance increases with increasing distance to 1.

A5 Details on Bayesian Virtual Epileptic Patient (BVEP) simulator

The Bayesian Virtual Epileptic Patient provides a framework to simulate neural activity in a connected
network of brain regions to model epilepsy spread (Hashemi et al., 2020; Jirsa et al., 2017). The dynamics of
individual brain regions are controlled by a simulator called ‘Epileptor’ that allows to reproduce dynamics of
electrical activity during seizure-like events. Hashemi et al. (2020) introduce two versions of the Epileptor,
the full 6D model and a reduced variant, the 2D Epileptor. The full Epileptor model (Jirsa et al., 2014;
Hashemi et al., 2020) is composed of five state variables that couple two oscillatory dynamical systems on
three different time scales. Variables x1 and y1 are associated with fast electrical discharges during seizures at
the fastest time scale. Variables x2 and y2 act on an intermediate timescale and the permittivity state variable
z that governs the transition between ictal, i.e. during a seizure, and interictal, i.e. in between seizures,
states on a slow time scale. See Jirsa et al. (2014) and Hashemi et al. (2020) for a detailed description of
the Epileptor equations. For this work, we focus on a single isolated brain region and used the reduced ‘2D
Epileptor’ model which results from applying averaging methods to make the effects of x2 and y2 negligible
and further assuming time scale separation so that x1 and y1 collapse on the slow manifold (Hashemi et al.,
2020).

The 2D Epileptor takes four parameters to generate a time series of neural activity: η describes the excitability
of the tissue, τ controls the time scale separation and xinit and zinit are initial values for the state variables.
See Hashemi et al. (2020) for a full description. Based on the level of excitability η, brain regions can be
categorized into three types (Hashemi et al., 2020):

• Epileptogenic Zone (EZ): if η > ηEZ , the Epileptor can trigger seizures autonomously

• Propagation Zone (PZ): if ηP Z = ηEZ − ∆η < η < ηEZ , the Epileptor cannot trigger seizures
autonomously, but (in a connected network of brain regions) can be recruited during the evolution of
an epileptic seizure

• Healthy Zone (HZ): if η < ηP Z , the Epileptor does not trigger seizures

Following Hashemi et al. (2023), we set the critical value ηEZ = −2.05 and ∆η = 1.0, i.e. ηP Z = ηEZ −∆η =
−3.05. These types of brain regions form the basis for the decision task described in Sec. 4.3.

When observations are high-dimensional as it is the case for the time series generated by the Epileptor,
low-dimensional summary statistics are commonly used for inference. For both, NPE-MC and BAM, we
used 10 time-independent summary statistics to describe the observed neural activity. These are the mean,
median, standard deviation, skew, and kurtosis of the time series as well as higher moments (up to the 10th
moment of the observation), the power envelope, seizure onset, the amplitude phase, and spectral power.

17

Published in Transactions on Machine Learning Research (05/2024)

A6 Supplementary figures

0.0

0.5N=1

Toy Example Gaussian Linear SIR Lotka-Volterra α Lotka-Volterra β Lotka-Volterra γ Lotka-Volterra δ

BAM

NPE-MC
(M=10)

NPE-MC
(M=100)

NPE-MC
(M=1000)

NPE-MC
(M=10000)

0.0

0.5N=5

0.0

0.5

di
ffe

re
nc

e
in

 in
cu

rr
ed

 c
os

t

N=10

0.0

0.5N=100

10
3

10
4

10
5

0.0

0.5in loop

10
3

10
4

10
5

10
3

10
4

10
5

10
3

10
4

10
5

simulations

10
3

10
4

10
5

10
3

10
4

10
5

10
3

10
4

10
5

Figure A1: Expected costs for sampling diverse numbers of actions per data point and for
a different number of Monte-Carlo (MC) samples. NPE-MC is the same for every row (blue).
Different shades of blue indicate NPE-MC with different number of MC-samples. For BAM, we sampled
N = {1, 5, 10, 100} actions per (θ, x) pair in the training dataset (rows). In the last row we sampled one new
action at every epoch. This is shown in the main paper in Fig. 3.

18

Published in Transactions on Machine Learning Research (05/2024)

10
3

10
4

10
5

0.0

0.1

0.2

0.3

0.4

di
ff.

 in
cu

rr
ed

 c
os

t

Toy Example

10
3

10
4

10
5

Gaussian Linear

10
3

10
4

10
5

SIR

10
3

10
4

10
5

simulations

Lotka-Volterra α

10
3

10
4

10
5

Lotka-Volterra β

10
3

10
4

10
5

Lotka-Volterra γ

10
3

10
4

10
5

Lotka-Volterra δ

BAM

NPE-MC

ABC-MC

NLE-MC

Figure A2: Benchmarking decision tasks. Gap between the incurred cost of optimal actions computed
from the ground truth posterior and the predicted optimal actions of BAM (orange), NPE-MC (blue),
ABC-MC (red) and NLE-MC (purple), averaged across ten observations and five seeds. Columns: four
different simulators (with four different decision tasks for Lotka-Volterra). NLE-MC performed well across
all benchmark tasks. In particular, we found that NLE-MC outperformed NPE-MC on all benchmark tasks
and also BAM for most simulation budgets. We note that it has previously been reported that NLE performs
particularly well on these tasks (Lueckmann et al. 2021). These results indicate that, if the cost of inference
(e.g., with MCMC) and of estimating the cost (via simulation) is not critical to the user, then NLE-MC can
provide a strong alternative.

θ

p(
θ|

x
)

o

MAF

θ

NSF with 2 splines

θ

NSF with 10 splines

θ

NSF with 100 splines

action a

ex
pe

ct
ed

 c
os

ts

action a action a action a

ground truth

BAM

NPE-MC

a

θ

p(
θ|

x
)

o

MAF

θ

MDN (2 components)

θ

MDN (10 components)

θ

MDN (100 components)

action a

ex
pe

ct
ed

 c
os

ts

action a action a action a

b

Figure A3: Illustrative Example. (a) Simulator with Gaussian noise and (b) Simulator with uniform noise.
First row: True posterior distribution p(θ|xo) and an estimate obtained with NPE. Second row: Expected
costs as a function of the action obtained by the ground truth posterior (green) and as estimated with BAM
(orange) and NPE-MC (blue). Columns correspond to different parametrizations of the posterior estimate.
Both NPE-MC and BAM were trained with a simulation budget of 5k.

19

	Introduction
	Background
	Problem setting
	Neural Posterior Estimation

	Methods
	Neural Posterior Estimation and Monte-Carlo Sampling (NPE-MC)
	Bayesian Amortized Decision Making (BAM)

	Results
	Illustrative example
	Benchmark decisions
	Bayesian Virtual Epileptic Patient

	Discussion
	Code and Reproducibility
	Convergence proof for proposition 1
	Experimental setup
	Benchmark tasks
	Details on Bayesian Virtual Epileptic Patient (BVEP) simulator
	Supplementary figures

