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Abstract

Training a diverse ensemble of models has several practical application scenarios,1

such as model selection for out-of-distribution (OOD) generalization and the2

detection of OOD samples via Bayesian principles. Previous approaches to diverse3

ensemble training have relied on the framework of letting the models make the4

correct predictions for the given in-distribution (ID) data while letting them come up5

with different hypotheses for the OOD data. As such, they require well-separated6

ID and OOD datasets to ensure a performant and diverse ensemble and have7

only been verified in smaller-scale lab environments where such a separation is8

readily available. In this work, we propose a framework, Scalable Ensemble9

Diversification (SED), for scaling up existing diversification methods to large-scale10

datasets and tasks (e.g. ImageNet), where the ID-OOD separation may not be11

available. SED automatically identifies OOD samples within the large-scale ID12

dataset on the fly and encourages the ensemble to make diverse hypotheses on13

them. To make SED more suitable for large-scale applications, we propose an14

algorithm to speed up the expensive pairwise disagreement computation. We verify15

the resulting diversification of the ensemble on ImageNet and demonstrate the16

benefit of diversification on the OOD generalization and OOD detection tasks.17

In particular, for OOD detection, we propose a novel uncertainty score estimator18

based on the diversity of ensemble hypotheses, which lets SED surpass all the19

considered baselines in OOD detection task. Code will be available soon.20

1 Introduction21

Training a diverse ensemble of models is useful in multiple applications. Diverse ensembles are used22

to enhance out-of-distribution (OOD) generalization, where strong spurious features learned from23

the in-distribution (ID) training data hinder generalization [30, 31, 28, 23]. By learning multiple24

hypotheses, the ensemble is given a chance to learn causal features that are otherwise overshadowed25

by the prominent spurious features [39, 4]. In Bayesian machine learning, diversification of the26

posterior samples has been studied as a means to improve the precision and efficiency of sample27

uncertainty estimates [5, 37].28

A common strategy to train a diverse ensemble is to introduce two objectives: one for the main29

task and one for diversification [29, 5, 28, 23]. The main task loss, such as the cross-entropy loss30

for classification, encourages the hypotheses to solve the task on the labeled ID training set. The31

diversification loss encourages the hypotheses to diversify the responses on an unlabelled OOD32

dataset [28, 23] (Figure 1). The datasets for the objectives are separated to avoid contradictory33

objectives: prediction diversification on the ID set will encourage wrong answers if there is only one34

correct label.35
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This strategy, however, requires a separate OOD dataset where the hypotheses may make diverse36

predictions without harming the main task performance on the ID training samples. Previous work37

has thus been tested on hypothetical lab settings where the spurious and causal features can easily be38

controlled to secure separate ID and OOD datasets for diverse ensemble training. It is not clear yet39

how one could diversify an ensemble of models for realistic, uncontrolled, and large-scale applications40

(e.g. ImageNet scale) where collecting a separate OOD dataset can be very costly, if not impossible.41

Existing work assumes existence of ID and OOD datasets.

Our Scalable Ensemble Diversi�cation (SED) only requires a single ID dataset.

Diverse model ensemble
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Figure 1: Existing diversification work vs SED. Unlike previous
diversification approaches that require a separate OOD dataset on
which the models are trained to diverge, our Scalable Ensemble
Diversification (SED) operates on a single ID dataset where OOD
samples are dynamically identified and are used to let the ensemble
members diverge.

To address the scalability challenge,42

we propose a novel diversification43

framework, Scalable Ensemble Diver-44

sification (SED, Figure 1). We intro-45

duce three ingredients. (1) OOD sam-46

ples are dynamically selected from the47

ID training samples, on which the mod-48

els are trained to make different predic-49

tions. (2) At each iteration, a subset of50

model pairs are stochastically selected51

to construct the disagreement objec-52

tive, rather than the full list of model53

pairs. (3) Deep networks are trained54

to diversify only a few layers at the55

end, rather than the full networks. This56

framework allows scaling up existing57

ensemble diversification methods. In58

this work, we focus on scaling up the59

Agree to Disagree (A2D) method [28].60

We verify that SEDdiversifies a model61

ensemble trained on ImageNet. We62

demonstrate the benefit of diversifica-63

tion on OOD generalization and OOD64

detection tasks. For the former, we showcase the usage of SED-diversified ensemble in three variants:65

(a) vanilla ensemble of prediction probabilities [22], (b) an average of the model weights through66

model soup [38], and (c) the oracle selection of the individual models for each OOD test set [23, 30].67

In all three cases, SEDachieves a superior generalization to OOD datasets like ImageNet-A/R/C,68

OpenImages, and iNaturalist.69

For OOD detection, we seek multiple ways to use the SED-diversified ensemble: (a) treating them as70

samples of the Bayesian posterior and (b) using our novel OODness estimate of Predictive Diversity71

Score (PDS) that measures the diversity of predictions from an ensemble. We show that PDS provides72

a superior detection of OOD samples like ImageNet-A/R/C, OpenImages, and iNaturalist.73

Our contributions are74

1. Scalable Ensemble Diversification (SED) framework that scales up existing ensemble75

methods;76

2. Predictive Diversity Score (PDS) that computes the OODness score for samples based on77

ensemble prediction diversity;78

3. First demonstration of the ensemble diversification and its application to OOD generalization79

and detection at ImageNet level.80

The code will be released with the next versions of the manuscript.81

2 Related work82

In this section, we give a short overview of ensembling methods. At first, we speak about ensembles83

in general and the role of diversity in them (§ 2.1), then we focus on ensembling methods for neural84

networks and separate them into two big groups. The first group includes algorithms that use loss85

regularizers (§ 2.2) and the second group covers works that do not modify the training loss (§ 2.3).86
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2.1 Ensembles as a technique87

Ensembling is a powerful technique of aggregating the outputs of multiple models to make more88

accurate predictions and it has been around for decades [12, 21, 18, 2, 3]. It is well known that89

diversity in ensemble members’ outputs leads to better performance of the ensemble compared to the90

performance of a single model [21] because ensemble members make independent errors [12, 11].91

Therefore, one way to reduce DNNs’ reliance on spurious correlations is to train multiple models92

on the same task and make them diverse in terms of errors they make so that their ensemble is less93

dependent on such correlations.94

2.2 Neural network ensembles that promote diversity through loss regularizers95

Diversity in models can be induced by supplying training loss with a suitable regularizer.96

Such regularizers can diversify models’ weights [5, 7, 34, 6], features [39, 4], input gradients97

[29, 30, 31, 33] and outputs [25, 5, 28, 23].98

Notably, in [5] authors showed that regularizer of a certain structure that repulses ensemble members’99

weights or outputs leads to ensembles that provide a better approximation of Bayesian Model100

Averaging. This idea was later extended by works that repulse ensemble members’ features [39] and101

input gradients [33].102

Since the ensemble performs better due to the diversity of errors that ensemble members make103

[21] we want those members to give pairwise different outputs for the same inputs. Unfortunately,104

diversity in weights space, input gradient space, or features space does not guarantee such property105

without additional assumptions due to functional symmetry which means that models can be different106

in terms of their weights or feature maps and input gradients they produce but still give the same107

outputs for a given input. That is why we are focused on methods that diversify models’ outputs,108

specifically [28, 23] which are state-of-the-art according to [1] and use regularizer of repulsive nature109

conceptually similar to [5].110

2.3 Neural network ensembles that promote diversity without modifying loss111

In addition to loss regularizers, there were an uncountable number of different ways to induce diversity112

in ensembles of neural networks that did not modify the training loss. The most straightforward113

approach of independently training multiple models of the same architecture by changing only random114

seeds is called Deep Ensemble [22] which was extended from the Bayesian perspective in [37].115

Another solution is to construct an ensemble from models trained with different hyperparameters [36],116

augmentations [24], or architectures [40]. More computationally efficient direction allows training117

only one base model inducing diversity by ensembling either checkpoints saved in different local118

minima along the training trajectory of this base model [19] or models produced by the base model119

after applying dropout [10] or masking [9] to it. The mixture of experts paradigm can also be viewed120

as an ensemble diversification technique [41] where diversification happens due to assigning different121

training samples to different ensemble members.122

Despite their conceptual simplicity Deep Ensembles [22] and ensembles of models trained with123

different hyperparameters [36] are strong baselines for OOD detection [27] and OOD generalization124

tasks, especially when combined with model souping techniques [38]. That is why we selected them125

as baselines for our experiments.126

3 Method127

We present our main technical contributions, Scalable Ensemble Diversification (SED, §3.2) and the128

Predictive Diversity Score (PDS, §3.3).129

3.1 Preliminaries130

We cover background materials before introducing our main technical contributions. We work with131

a training set D := {xn, yn}Nn=1, which we refer to as the in-distribution (ID) dataset. For prior132

diversification methods, we also assume the existence of a separate, unlabeled out-of-distribution133
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(OOD) dataset Dood := {xood
n }N ood

n=1. We write f(·, θ) for a deep neural network classifier parametrized134

by θ. f (x; θ) ∈ RC indicates the logit outputs for C classes for input x. We write p(x) :=135

Softmax(f(x)) ∈ [0, 1]C for the probability outputs. We consider an ensemble {f1, · · · , fM} of M136

models.137

3.1.1 Existing ensemble diversification approach138

We introduce an existing approach for diversifying an ensemble of models [28, 23]. Two objectives139

are imposed upon the ensemble of models: the main task loss and the diversification regularization.140

For the main task, the community has focused on the classification task. The cross-entropy loss141

− log py(x; θ) is used to train the model ensemble {f1, · · · , fM} on the ID dataset D:142

Lmain =
1

MN

∑
n

∑
m

− log pmyn
(xn; θ). (1)

This encourages each member of the ensemble to behave similarly on the ID dataset.143

Different diversification schemes use different diversification regularization loss Ldiv applied on pairs144

(fm, f l) of ensemble members. The diversification objective is commonly optimized on the OOD145

dataset Dood to encourage the training of multiple hypotheses on the OOD samples while avoiding146

clashes with the main task objective. In this work, we focus on the Agree to Disagree [28] method.147

The diversification loss for a pair (pm, pl) is defined as:148

A2D(pm(x), pl(x)) = − log
[
pmŷ (x) · (1− plŷ(x)) + (1− pmŷ (x)) · plŷ(x)

]
(2)

where ŷ := argmaxc p
m
c (x) is the predicted class for the first model pm. One may symmetrically149

define ŷ to be the prediction for the second model pl; in practice, it does not make a difference [28].150

Note that the diversification loss favors pl to predict a lower likelihood for the prediction by pm,151

plŷ(x), and vice versa. For M models in an ensemble, A2D is applied on the OOD dataset Dood for152

every pair of models (pm, pl):153

Ldiv =
1

N ood ·M(M − 1)

∑
n

∑
m<l

A2D(pm(xood
n ), pl(xood

n )). (3)

3.2 Scalable Ensemble Diversification (SED)154

We present Scalable Ensemble Diversification (SED) that addresses the limitation of the existing155

ensemble diversification framework that requires a separate OOD dataset. We introduce two main156

components of SED: dynamic selection of OOD samples within the ID dataset (§3.2.1) and the157

stochastic selection of pairs to diverge in the optimization iterations (§3.2.2).158

3.2.1 Dynamic selection of OOD samples159

If only the ID training dataset is present, it is difficult to induce diversity in ensemble members,160

as they are uniformly incentivized to solve the main task objective: given x, predict y. Hence,161

previous approaches have introduced a qualitatively disjoint unlabeled set, which we refer to as162

the OOD dataset, where the ensemble members are encouraged to disagree with each other. The163

clear separation of ID and OOD datasets for the two objectives matters for ensuring a good balance164

between the main task performance and the diversity of hypotheses.165

Previous works like Pagliardini et al. [28], Lee et al. [23] have performed experiments on small-scale166

datasets where factors are well-controlled and clean versions of OOD datasets are readily available.167

Examples include Waterbirds, Camelyon17, CelebA, MultiNLI, C-MNIST, and the Office-Home168

datasets. For example, for Waterbirds, the ID dataset is set as the cases where the bird’s habitat169

matches with the visual background and the OOD dataset corresponds to the complementary case.170

While conceptually desirable, collecting a separate OOD dataset can be highly cumbersome and171

expensive. For a large-scale dataset like ImageNet, it is highly non-obvious how one could build a172

corresponding OOD dataset where the underlying feature-label correlations are different from the ID173

training dataset.174

To address this challenge, we consider dynamically identifying an OOD subset of the ID dataset and175

letting the ensemble diverge on this subset. The desiderata for the identification of OOD samples176
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within the ID dataset are twofold: (a) we wish to discriminate samples where the ensemble members177

make mistakes and (b) we only trust the ensemble prediction for the OOD sample identification when178

the ensemble is sufficiently trained.179

We define the sample-wise weight αn on each ID sample (xn, yn) ∈ D that satisfy the two conditions:180

αn :=
CE(f1, · · · , fM ;xn, yn)(

1
|B|

∑
b∈B CE(f1, · · · , fM ;xb, yb)

)2 (4)

where CE(f1, · · · , fM ;xn, yn) := CE( 1
M

∑
m fm(xn), yn) is the loss on the logit-averaged pre-181

diction and B is a minibatch that contains the sample (xn, yn). αn is a weight proportional to the182

ensemble loss on the sample; we thus meet the condition (a). The normalization is designed to handle183

the condition (b). To see this, consider the batch-wise weight184

αB :=
1

|B|
∑
b∈B

αb =
1

1
|B|

∑
b CE(f1, · · · , fM ;xb, yb)

. (5)

Note that αB is now inversely proportional to the average cross-entropy loss of the ensemble on185

the batch B. Thus, the overall level of αn for n ∈ B is lower for earlier iterations of the ensemble186

training, where the predictions from the models are not trustworthy yet.187

With this definition of sample-wise weight αn for the diversification objective, we define the SED188

objective with the A2D loss for the diversification kernel:189

LSED := Lmain +
λ

NM(M − 1)

∑
n

∑
m<l

stopgrad(αn) · A2D(pm(xn), p
l(xn)), (6)

where λ > 0 controls the overall weight of the diversification term. Note that, compared to Equation190

3, this formulation does not rely on the OOD dataset Dood. Instead, all ID samples are treated as191

potential OOD samples, where their OODness is softly determined via αn. This enables a seamless192

adaptation of existing ensemble diversification methods to a relaxed setting where a separate OOD193

dataset is unavailable.194

3.2.2 Further tricks for scalability195

Model 1

Iteration K: 
randomly select 1 and 3

Input

Forward pass

Model 2

Model 3

Model 1

Iteration K + 1: 
randomly select 1 and 2

Model 2

Model 3

Ensemble diversification algorithms are often based on pairwise196

similarities of the members. Pairwise similarity computation scales197

quadratically with the size of the ensemble M . The second term of198

Equation 6 is an example of this. This is potentially a hurdle when199

ensemble diversification is to be applied to M ≥ 10, and the data200

and parameter sizes are in the order of millions (e.g. ImageNet).201

We address this computational challenge by computing the summa-202

tion of pairwise distances as a stochastic sum. For every minibatch B203

of SGD iterations, we uniformly-iid sample a subset I of {1, · · · ,M}204

to compute the diversification term in Equation 6. The procedure is205

illustrated in the figure on the right.206

To further speed up the SED training, we consider diversifying only207

a subset of layers, while freezing the other layers. In our experiments,208

ensemble members share the same frozen feature extractor of Deit3b209

[32] pretrained on ImageNet-21k [8] and we diversify only the last210

two layers of the models.211

3.3 Predictive Diversity Score (PDS) for OOD Detection212

We demonstrate several benefits of the diversified ensembles in §4. One of them is the possibility of213

using them for detecting OOD samples through the notion of epistemic uncertainty [13]. Given an214

ensemble of models, a simple baseline for OOD detection is to compute the predictive uncertainty of215

the Bayesian Model Averaging (BMA) by treating the ensemble members as samples of the posterior216

p(θ|D) [22, 37]:217

ηBMA := max
c

1

M

∑
m

pmc (x). (7)
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This notion of epistemic uncertainty does not directly exploit the potential diversity in individual218

models of the ensemble because it averages out the predictions along the model index m.219

We propose a novel measure for epistemic uncertainty, Predictive Diversity Score (PDS), that directly220

measures the prediction diversity of the individual members. The formulation is given below:221

ηPDS :=
1

C

∑
c

max
m

pmc (x). (8)

PDS is a continuous relaxation of the number of unique argmax predictions within an ensemble222

of models. To see this, consider the special case where pm ∈ {0, 1} are one-hot vectors. Then,223

maxm pmc (x) is 1 if any of m predicts c and 0 otherwise. Thus,
∑

c maxm pmc (x) computes the224

number of classes that at least one of the ensemble members predicts. We show that, with our diverse225

ensembles, PDS outperforms the DE baseline for the OOD detection task (§4.4).226

4 Experiments227

We verify our contributions, Scalable Ensemble Diversification (SED, §3.2) and Predictive Diversity228

Score (PDS, §3.3), on ImageNet-scale tasks and datasets. We first verify that SED diversifies the229

ensemble (§4.2). Then, we demonstrate the application of diversified ensemble to OOD generalization230

(§4.3) and OOD detection (§4.4) tasks.231

4.1 Experimental setup232

We task the ensemble with the OOD generalization and OOD detection tasks.233

Training settings. For both tasks, we train an ensemble of models with the SED framework with234

the A2D [28] diversity regularization using AdamW optimizer [26]. We use the default settings of a235

batch size of 16, learning rate 10−3, weight decay 0.01, and the number of epochs 10. The overall236

diversity weight λ is set to 0.1 and the stochastic pairing is done for |I| = 2 models for each SGD237

batch. We use Deit3b [32] network pretrained on ImageNet21k [8] for all the experiments. Following238

the speed-up trick in §3.2.2, we use only the last 2 layers of the network. For the in-distribution239

(ID) dataset where the ensemble is trained to diversify, we use the training split of ImageNet with240

|D| = 1, 281, 167. All experiments were ran on RTX2080Ti GPUs with 12GB vRAM and 40GB241

RAM, each experiment took from 2 to 12 hours depending on the complexity of the training.242

Baselines. For naive ensemble training, we consider the deep ensemble [22] where each ensemble243

member independently with different random seeds that control the weight initialization and SGD244

batch shuffling. To match the resource usage of our SED, where we diversify only the last 2 layers245

of the network, we consider the shallow ensemble variant, which is the deep ensemble where only246

the last 2 layers are trained. We further consider a viable diversification scheme that performs deep247

ensemble with varying hyperparameters [36]. In addition to that, we reimplement A2D [28] and248

DivDis [23] algorithms and apply them without stochastic model sampling to do classification on249

labeled samples from ImageNet-Train and disagreement on unlabeled samples from ImageNet-R.250

For A2D we use frozen feature extractor and a parallel variant of their method which means that all251

ensemble members are trained simultaneously and not sequentially. The computational complexity252

of both these approaches scales quadratically with ensemble size which is why they are called Naive253

A2D and Naive DivDis respectively.254

Evaluation benchmarks. The generalization performances of the ImageNet-trained ensembles are255

measured on multiple test datasets, ranging from the in-distribution validation split of ImageNet with256

50,000 samples to OOD datasets like ImageNet-A (A [17], 7.5k images & 200 classes), ImageNet-R257

(A [16], 30k images, 200 classes), ImageNet-C (C-i for corruption strength i [14], 50k images, 1k258

classes). OpenImages-O (OI [35], 17k images, unlabeled), and iNaturalist (iNat [20], 10k images,259

unlabeled). For OOD detection, we task the ensemble with the detection of the above OOD datasets260

against the ImageNet validation split.261

Evaluation metrics. For OOD generalization, we use the accuracy. For OOD detection, we use the262

area under the ROC curve, following [15].263
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GT Cowboy hat Sea lion Scuba diver Great shark Weimaraner
SED Cowboy hat Sea lion Scuba diver Great shark Weimaraner

Comic book Otter Jellyfish Killer whale Vizsla
PDS 0.300 0.300 0.294 0.292 0.292

GT Pomegranate Zebra Pomegranate Pomegranate Hummingbird
SED Pomegranate Zebra Pomegranate Pomegranate Hummingbird
PDS 0.216 0.216 0.216 0.216 0.216

Figure 2: ImageNet-R examples leading to the greatest and least disagreement. We show the 5 most
divergent and 5 least divergent samples according to the SED ensemble. We measure the prediction diversity
with the Prediction Diversity Score (PDS) in §3.3. GT refers to the ground truth category. Ensemble predictions
are shown in bold, in cases when ensemble members predict classes different from the ensemble prediction we
provide them on the next line with standard font.

4.2 Diversification264

We start with the question of whether Scalable Ensemble Diversification (SED) truly diversify the265

ensemble at the ImageNet scale. To measure the diversity of the ensemble, we compute the number266

of unique predictions for each sample for the committee of models (#unique).267

Method C-1 C-5 iNat OI

Deep ensemble 1.09 1.19 1.31 1.23
+Diverse hyperparams 1.11 1.32 1.48 1.33

Naive DivDis 1.04 1.14 1.19 1.16
Naive A2D 1.04 1.15 1.19 1.91

SED-A2D 5.00 5.00 4.68 4.11

Table 1: #unique for ensembles. We report the
#unique on OOD datasets (see §4.1 for the datasets).
The ensemble size M is 5 for all methods; it is the max
possible #unique value.

Table 1 shows the #unique values for the IN-Val268

as well as multiple OOD datasets. We observe269

that the deep ensemble baseline does not increase270

the diversity dramatically (e.g. 1.09 for C-1) be-271

yond no-diversity values (1.0). Diversification272

tricks like hyperparameter diversification (1.11273

for C-1) or Naive A2D (1.04 for C-1) and DivDis274

(1.04 for C-1) do not improve the prediction di-275

versity dramatically. On the other hand, our SED276

increases the prediction diversity across the board277

(e.g. 5.00 for C-1).278

Qualitative results on ImageNet-R further verify the ability of SED to diversify the ensemble (Fig-279

ure 2). As a measure for diversity, we use the Predictive Diversity Score (PDS) in §3.3. We observe280

that the samples inducing the highest diversity (high PDS scores) are indeed ambiguous: for the281

first image, where the “cowboy hat” is the ground truth category, we observe that “comic book” is282

also a valid label for the image style. On the other hand, samples with low PDS exhibit clearer283

image-to-category relationship.284

4.3 OOD Generalization285

We examine the first application of diversified ensembles: OOD generalization. We hypothesize that286

the superior diversification ability verified in §4.2 leads to greater OOD generalization due to the287

consideration of more robust hypotheses that do not rely on obvious spurious correlations.288

Ensemble aggregation for OOD generalization. As a means to exploit such robust hypothe-289

ses, we consider 3 aggregation strategies. (1) Oracle selection: the best-performing individ-290

ual model is chosen from an ensemble [28, 30]. Final prediction is given by f(x; θm
⋆

) where291

7



Oracle selection Prediction ensemble Uniform soup

Method M Val IN-A IN-R C-1 C-5 Val IN-A IN-R C-1 C-5 Val IN-A IN-R C-1 C-5

Single model 1 85.4 37.9 44.7 75.6 38.5 85.4 37.9 44.7 75.6 38.5 85.4 37.9 44.7 75.6 38.5

Deep ensemble 5 85.4 37.9 44.9 75.7 38.6 85.4 39.9 46.3 75.7 38.6 85.3 36.7 44.6 75.5 38.3
+Diverse HPs 5 85.4 38.5 45.4 77.4 40.7 85.4 39.9 46.5 76.0 39.0 85.3 35.3 44.1 75.9 38.7
Naive DivDis 5 85.2 35.8 40.8 77.2 40.2 85.1 36.3 41.8 77.2 40.2 84.8 40.7 42.5 76.2 38.9
Naive A2D 5 85.2 36.6 44.3 77.3 40.4 85.1 37.8 45.2 77.2 40.3 84.5 39.3 45.1 75.5 39.1
SED-A2D 5 85.1 38.3 45.3 77.2 40.4 85.3 42.4 48.1 77.3 40.6 85.3 40.3 46.1 77.3 40.6

Deep ensemble 50 85.5 38.1 45.2 75.7 38.6 85.5 38.8 45.8 75.6 38.5 85.4 37.5 45.0 75.5 38.4
+Diverse HPs 50 85.5 38.5 45.6 77.5 40.8 85.5 42.5 48.5 76.0 39.0 85.4 36.4 44.8 75.9 38.8
SED-A2D 50 82.6 39.0 45.8 74.4 38.3 83.5 50.9 54.4 75.8 39.3 83.5 39.2 46.5 75.8 39.3

Table 2: OOD generalization of ensembles. Models are trained on the ImageNet training split. M is the
ensemble size. For Naive DivDis and A2D, we use the ImageNet-R as the OOD datasets where the respective
diversification objectives are applied.

m⋆ := argmaxm Acc(fm,Dood). (2) Prediction ensemble is a vanilla prediction ensemble where292

the logit values are averaged: 1
M

∑
m fm(x) [38]. (3) Uniform soup [38] averages the weights293

themselves. Final prediction is given by f(x; 1
M

∑
m θm).294

SED improves OOD generalization for ensembles. We show the OOD generalization performances295

of ensembles in Table 2, for the three ensemble prediction aggregation strategies described above. We296

observe that our SED framework (SED-A2D) results in superior OOD generalization performances297

for all three strategies. SED-A2D is particularly strong in prediction ensemble (e.g. 48.1% for M = 5298

and 54.4% for M = 50 on ImageNet-R) and uniform soup (e.g. 46.1% for M = 5 and 46.5%299

for M = 50 on ImageNet-R). We contend that the increased ensemble diversity contributes to the300

improvements in OOD generalization. We also remark that the SED framework (SED-A2D) envelops301

the performance of Naive A2D in this ImageNet-scale experiment. Together with the superiority of302

computational efficiency (as discussed at the end of § 4.4) of SED-A2D over the Naive A2D, this303

demonstrates that SED fulfills its purpose of scaling up ensemble diversification methods like A2D.304

Deep ensemble is a strong baseline. We also note that deep ensemble, particularly with diverse305

hyperparameters, provides a strong baseline, outperforming dedicated diversification methodologies306

under the oracle selection strategy when M = 5. It also provides a good balance between ID307

(ImageNet validation split) and OOD generalization.308

4.4 OOD Detection309

Method η C-1 C-5 iNat OI

Single model BMA 0.615 0.833 0.958 0.909

Deep Ensemble BMA 0.619 0.835 0.958 0.911
+Diverse HPs BMA 0.642 0.861 0.969 0.923
Naive DivDis BMA 0.598 0.843 0.966 0.922
Naive A2D BMA 0.594 0.835 0.966 0.916
SED-A2D BMA 0.641 0.845 0.960 0.915

Deep Ensemble PDS 0.565 0.625 0.592 0.589
+Diverse HPs PDS 0.643 0.849 0.926 0.889
Naive DivDis PDS 0.600 0.851 0.969 0.939
Naive A2D PDS 0.599 0.850 0.971 0.939
SED-A2D PDS 0.686 0.896 0.977 0.941

Table 3: OOD detection via ensembles. For each OOD
dataset (C-1, C-5, iNat, and OI), the ensembles are tasked
to detect the respective OOD samples among ID samples
(ImageNet validation split). We show the AUROC scores for
the OOD detection task. Ensemble size is fixed at M = 5.
η refers to the epistemic uncertainty computation framework
discussed in §3.3.

We study the impact of ensemble diversifi-310

cation on OOD detection capabilities of an311

ensemble. Once an ensemble is trained, we312

compute the epistemic uncertainty, or like-313

lihood of the sample being OOD, following314

two schemes, ηBMA and ηPDS introduced in315

§3.3.316

SED and PDS together lead to superior317

OOD detection performances. We show318

the OOD detection results in Table 3. For319

the BMA scores, deep ensemble remains a320

strong baseline. In particular, when the hy-321

perparameters are varied (“+Diverse HPs”),322

the detection AUROC reaches the maximal323

performances among the ensembles using324

the BMA scores. The quality of PDS is325

more sensitive to the ensemble diversity, as326

seen in the jump from the deep ensemble327

(e.g. 0.589 for OI) to the diverse-HP vari-328

ant (0.889). However, when the ensemble329
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is sufficiently diverse, such as when trained330

with SED-A2D, the PDS leads to high-quality OODness scores. SED-A2D with PDS achieves the331

best AUROC across the board, including the BMA variants.332

Figure 3: Impact of diversity regulariser on OOD detection. We show the model answer diversity, measured
by PDS, and the OOD detection performance, measured by AUROC, against λ values, the loss weight for the
disagreement regularizer term.

Impact of diversification parameter λ. We further study the impact of ensemble diversification333

on the OOD detection with the PDS estimator. In Figure 3, we observe that strengthening the334

diversification objective (higher λ) indeed leads to greater diversity (higher PDS), with a jump at335

around λ ∈ [10−1, 101]. This range corresponds to the jump in the OOD detection performance336

(higher AUROC).337

Figure 4: Impact of ensemble size on OOD detection.

Influence of ensemble size. How ensemble size338

influences performance of our method? We can339

see that increasing ensemble size helps to im-340

prove AUROC for OOD detection on C-1 (Fig-341

ure 4). Increasing ensemble size marginally342

helps, but using 5 models provides already a343

significant improvement over the smallest pos-344

sible ensemble of size 2. It is also important to345

mention, that SED framework is computationally346

more efficient w.r.t. ensemble size M than Naive347

A2D and Naive DivDis: since we train ensembles for the fixed number of epochs, training complexity348

for SED is O(1) thanks to stochastic model pairs selection, while for Naive A2D and Naive DivDis it349

is O(M2).350

5 Conclusion351

Ensemble diversification has many implications for treating one of the ultimate goals of machine learn-352

ing, handling out-of-distribution (OOD) samples. By training a large number of plausible hypotheses353

on an in-distribution (ID) dataset, an OOD-generalizable hypothesis may appear. Moreover, the354

diversity of hypotheses lets us distinguish ID samples from OOD samples by measuring the degree of355

divergence in ensemble members’ predictions. Despite conceptual benefits, diverse-ensemble training356

has previously remained a lab-bound concept for several reasons. First, previous approaches required357

a separate OOD dataset that may nurture diverse hypotheses. Second, computational complexities of358

previous pairwise diversification objectives increase quadratically with the ensemble size.359

We have addressed the challenges through the novel Scalable Ensemble Diversification (SED)360

framework. SED identifies the OOD-like samples from a single dataset, bypassing the need to361

prepare a separate OOD dataset. SED also employs a stochastic pair selection algorithm which362

reduces the quadratic complexity of previous approaches to a constant cost per SGD iteration. We363

have demonstrated good performances by SED on the OOD generalization and detection tasks, both364

at the ImageNet scale, a largely underexplored regime in the ensemble diversification community.365

In particular, for OOD detection, our novel diversity measure of Predictive Diversity Score (PDS)366

amplifies the benefits of diverse ensembles for OOD detection. The code to reproduce the results of367

our experiments will provided with the next revision of the manuscript.368

Limitations369

We do not provide theoretical justification for the method. Our experiments were conducted on370

models with a frozen feature extractor.371
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• The answer NA means that the abstract and introduction do not include the claims491

made in the paper.492
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contributions made in the paper and important assumptions and limitations. A No or494

NA answer to this question will not be perceived well by the reviewers.495

• The claims made should match theoretical and experimental results, and reflect how496

much the results can be expected to generalize to other settings.497
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Answer: [Yes]502
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• The authors should reflect on the factors that influence the performance of the approach.516
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Justification: The paper contains no theoretical results.535

Guidelines:536

• The answer NA means that the paper does not include theoretical results.537

• All the theorems, formulas, and proofs in the paper should be numbered and cross-538
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• All assumptions should be clearly stated or referenced in the statement of any theorems.540

• The proofs can either appear in the main paper or the supplemental material, but if541
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• Inversely, any informal proof provided in the core of the paper should be complemented544

by formal proofs provided in appendix or supplemental material.545
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4. Experimental Result Reproducibility547

Question: Does the paper fully disclose all the information needed to reproduce the main ex-548

perimental results of the paper to the extent that it affects the main claims and/or conclusions549

of the paper (regardless of whether the code and data are provided or not)?550

Answer: [Yes]551

Justification: Please refer to § 4552
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• The answer NA means that the paper does not include experiments.554

• If the paper includes experiments, a No answer to this question will not be perceived555

well by the reviewers: Making the paper reproducible is important, regardless of556

whether the code and data are provided or not.557

• If the contribution is a dataset and/or model, the authors should describe the steps taken558

to make their results reproducible or verifiable.559

• Depending on the contribution, reproducibility can be accomplished in various ways.560

For example, if the contribution is a novel architecture, describing the architecture fully561

might suffice, or if the contribution is a specific model and empirical evaluation, it may562

be necessary to either make it possible for others to replicate the model with the same563

dataset, or provide access to the model. In general. releasing code and data is often564

one good way to accomplish this, but reproducibility can also be provided via detailed565

instructions for how to replicate the results, access to a hosted model (e.g., in the case566

of a large language model), releasing of a model checkpoint, or other means that are567

appropriate to the research performed.568

• While NeurIPS does not require releasing code, the conference does require all submis-569

sions to provide some reasonable avenue for reproducibility, which may depend on the570

nature of the contribution. For example571

(a) If the contribution is primarily a new algorithm, the paper should make it clear how572

to reproduce that algorithm.573

(b) If the contribution is primarily a new model architecture, the paper should describe574

the architecture clearly and fully.575

(c) If the contribution is a new model (e.g., a large language model), then there should576

either be a way to access this model for reproducing the results or a way to reproduce577

the model (e.g., with an open-source dataset or instructions for how to construct578

the dataset).579

(d) We recognize that reproducibility may be tricky in some cases, in which case580

authors are welcome to describe the particular way they provide for reproducibility.581

In the case of closed-source models, it may be that access to the model is limited in582

some way (e.g., to registered users), but it should be possible for other researchers583

to have some path to reproducing or verifying the results.584

5. Open access to data and code585

Question: Does the paper provide open access to the data and code, with sufficient instruc-586

tions to faithfully reproduce the main experimental results, as described in supplemental587

material?588
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Answer: [Yes]589

Justification: Code will be available soon, please refer to § 4.1.590
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• The answer NA means that paper does not include experiments requiring code.592

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/593

public/guides/CodeSubmissionPolicy) for more details.594

• While we encourage the release of code and data, we understand that this might not be595

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not596

including code, unless this is central to the contribution (e.g., for a new open-source597

benchmark).598

• The instructions should contain the exact command and environment needed to run to599

reproduce the results. See the NeurIPS code and data submission guidelines (https:600

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.601

• The authors should provide instructions on data access and preparation, including how602

to access the raw data, preprocessed data, intermediate data, and generated data, etc.603

• The authors should provide scripts to reproduce all experimental results for the new604

proposed method and baselines. If only a subset of experiments are reproducible, they605

should state which ones are omitted from the script and why.606

• At submission time, to preserve anonymity, the authors should release anonymized607

versions (if applicable).608

• Providing as much information as possible in supplemental material (appended to the609

paper) is recommended, but including URLs to data and code is permitted.610

6. Experimental Setting/Details611

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-612

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the613

results?614

Answer: [Yes]615

Justification: please refer to § 4.1.616
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• The answer NA means that the paper does not include experiments.618

• The experimental setting should be presented in the core of the paper to a level of detail619

that is necessary to appreciate the results and make sense of them.620

• The full details can be provided either with the code, in appendix, or as supplemental621

material.622

7. Experiment Statistical Significance623

Question: Does the paper report error bars suitably and correctly defined or other appropriate624

information about the statistical significance of the experiments?625

Answer: [No]626

Justification: Error bars are not reported because their magnitude was below the rounding627

error or roughly around it for the majority of experiments.628
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• The answer NA means that the paper does not include experiments.630

• The authors should answer "Yes" if the results are accompanied by error bars, confi-631

dence intervals, or statistical significance tests, at least for the experiments that support632

the main claims of the paper.633

• The factors of variability that the error bars are capturing should be clearly stated (for634

example, train/test split, initialization, random drawing of some parameter, or overall635

run with given experimental conditions).636

• The method for calculating the error bars should be explained (closed form formula,637
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• It should be clear whether the error bar is the standard deviation or the standard error640

of the mean.641

• It is OK to report 1-sigma error bars, but one should state it. The authors should642

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis643

of Normality of errors is not verified.644

• For asymmetric distributions, the authors should be careful not to show in tables or645

figures symmetric error bars that would yield results that are out of range (e.g. negative646

error rates).647

• If error bars are reported in tables or plots, The authors should explain in the text how648

they were calculated and reference the corresponding figures or tables in the text.649

8. Experiments Compute Resources650

Question: For each experiment, does the paper provide sufficient information on the com-651

puter resources (type of compute workers, memory, time of execution) needed to reproduce652

the experiments?653

Answer: [Yes]654

Justification: please refer to § 4.1.655

Guidelines:656

• The answer NA means that the paper does not include experiments.657

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,658

or cloud provider, including relevant memory and storage.659

• The paper should provide the amount of compute required for each of the individual660

experimental runs as well as estimate the total compute.661

• The paper should disclose whether the full research project required more compute662

than the experiments reported in the paper (e.g., preliminary or failed experiments that663

didn’t make it into the paper).664

9. Code Of Ethics665

Question: Does the research conducted in the paper conform, in every respect, with the666

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?667

Answer: [Yes]668

Justification: we followed the Code to the best of our knowledge.669

Guidelines:670

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.671

• If the authors answer No, they should explain the special circumstances that require a672

deviation from the Code of Ethics.673

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-674

eration due to laws or regulations in their jurisdiction).675

10. Broader Impacts676

Question: Does the paper discuss both potential positive societal impacts and negative677

societal impacts of the work performed?678

Answer: [NA]679

Justification: We believe that this work has no societal impact.680

Guidelines:681

• The answer NA means that there is no societal impact of the work performed.682

• If the authors answer NA or No, they should explain why their work has no societal683

impact or why the paper does not address societal impact.684

• Examples of negative societal impacts include potential malicious or unintended uses685

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations686

(e.g., deployment of technologies that could make decisions that unfairly impact specific687

groups), privacy considerations, and security considerations.688
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• The conference expects that many papers will be foundational research and not tied689

to particular applications, let alone deployments. However, if there is a direct path to690

any negative applications, the authors should point it out. For example, it is legitimate691

to point out that an improvement in the quality of generative models could be used to692

generate deepfakes for disinformation. On the other hand, it is not needed to point out693

that a generic algorithm for optimizing neural networks could enable people to train694

models that generate Deepfakes faster.695

• The authors should consider possible harms that could arise when the technology is696

being used as intended and functioning correctly, harms that could arise when the697

technology is being used as intended but gives incorrect results, and harms following698

from (intentional or unintentional) misuse of the technology.699

• If there are negative societal impacts, the authors could also discuss possible mitigation700

strategies (e.g., gated release of models, providing defenses in addition to attacks,701

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from702

feedback over time, improving the efficiency and accessibility of ML).703

11. Safeguards704

Question: Does the paper describe safeguards that have been put in place for responsible705

release of data or models that have a high risk for misuse (e.g., pretrained language models,706

image generators, or scraped datasets)?707

Answer: [NA]708

Justification: We believe that our paper does not pose such risks as we train models for709

ImageNet classification.710

Guidelines:711

• The answer NA means that the paper poses no such risks.712

• Released models that have a high risk for misuse or dual-use should be released with713

necessary safeguards to allow for controlled use of the model, for example by requiring714

that users adhere to usage guidelines or restrictions to access the model or implementing715

safety filters.716

• Datasets that have been scraped from the Internet could pose safety risks. The authors717

should describe how they avoided releasing unsafe images.718

• We recognize that providing effective safeguards is challenging, and many papers do719

not require this, but we encourage authors to take this into account and make a best720

faith effort.721

12. Licenses for existing assets722

Question: Are the creators or original owners of assets (e.g., code, data, models), used in723

the paper, properly credited and are the license and terms of use explicitly mentioned and724

properly respected?725

Answer: [No]726

Justification: we were unable to find the license for the dataset we used.727

Guidelines:728

• The answer NA means that the paper does not use existing assets.729

• The authors should cite the original paper that produced the code package or dataset.730

• The authors should state which version of the asset is used and, if possible, include a731

URL.732

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.733

• For scraped data from a particular source (e.g., website), the copyright and terms of734

service of that source should be provided.735

• If assets are released, the license, copyright information, and terms of use in the736

package should be provided. For popular datasets, paperswithcode.com/datasets737

has curated licenses for some datasets. Their licensing guide can help determine the738

license of a dataset.739

• For existing datasets that are re-packaged, both the original license and the license of740

the derived asset (if it has changed) should be provided.741
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• If this information is not available online, the authors are encouraged to reach out to742

the asset’s creators.743

13. New Assets744

Question: Are new assets introduced in the paper well documented and is the documentation745

provided alongside the assets?746

Answer: [NA]747

Justification: the paper does not release new assets.748

Guidelines:749

• The answer NA means that the paper does not release new assets.750

• Researchers should communicate the details of the dataset/code/model as part of their751

submissions via structured templates. This includes details about training, license,752

limitations, etc.753

• The paper should discuss whether and how consent was obtained from people whose754

asset is used.755

• At submission time, remember to anonymize your assets (if applicable). You can either756

create an anonymized URL or include an anonymized zip file.757

14. Crowdsourcing and Research with Human Subjects758

Question: For crowdsourcing experiments and research with human subjects, does the paper759

include the full text of instructions given to participants and screenshots, if applicable, as760

well as details about compensation (if any)?761

Answer: [NA]762

Justification: the paper does not involve crowdsourcing nor research with human subjects.763

Guidelines:764

• The answer NA means that the paper does not involve crowdsourcing nor research with765

human subjects.766

• Including this information in the supplemental material is fine, but if the main contribu-767

tion of the paper involves human subjects, then as much detail as possible should be768

included in the main paper.769

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,770

or other labor should be paid at least the minimum wage in the country of the data771

collector.772

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human773

Subjects774

Question: Does the paper describe potential risks incurred by study participants, whether775

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)776

approvals (or an equivalent approval/review based on the requirements of your country or777

institution) were obtained?778

Answer: [NA]779

Justification: the paper does not involve crowdsourcing nor research with human subjects.780

Guidelines:781

• The answer NA means that the paper does not involve crowdsourcing nor research with782

human subjects.783

• Depending on the country in which research is conducted, IRB approval (or equivalent)784

may be required for any human subjects research. If you obtained IRB approval, you785

should clearly state this in the paper.786

• We recognize that the procedures for this may vary significantly between institutions787

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the788

guidelines for their institution.789

• For initial submissions, do not include any information that would break anonymity (if790

applicable), such as the institution conducting the review.791
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