
Fast Causal Attention with Dynamic Sparsity

Matteo Pagliardini * 1 Daniele Paliotta * 2 Martin Jaggi 1 François Fleuret 2

Abstract
Transformer-based language models have found
many diverse applications requiring them to pro-
cess sequences of increasing length. For these
applications, the causal self-attention—which is
the only component scaling quadratically w.r.t.
the sequence length—becomes a central concern.
While many works have proposed schemes to
sparsify the attention patterns and reduce the com-
putational overhead of self-attention, those are of-
ten limited by implementation concerns and end
up imposing a simple and static structure over the
attention matrix. Conversely, implementing more
dynamic sparse attention often results in runtimes
significantly slower than computing the full atten-
tion using the Flash implementation. We extend
FlashAttention to accommodate a large class of
attention sparsity patterns that, in particular, en-
compass key/query dropping and hashing-based
attention. This leads to implementations with no
computational complexity overhead and a multi-
fold runtime speedup on top of FlashAttention.
Even with relatively low degrees of sparsity, our
method improves visibly upon FlashAttention as
the sequence length increases. Without sacrific-
ing perplexity, we increase the training speed of
a transformer language model by 2.0× for se-
quences of 8k tokens.

1. Introduction
Many methods have been developed to mitigate the
quadratic cost of self-attention in Transformers (Vaswani
et al., 2017). A promising line of work consists in com-
puting a dynamic modulation of a sub-part of the attention
matrix. These methods are based, for instance, on drop-
ping keys and queries (Kim et al., 2022) or using geometric
hashing of the keys and queries to identify, at linear cost,

*Equal contribution 1EPFL 2University of Geneva. Corre-
spondence to: Matteo Pagliardini <matteo.pagliardini@epfl.ch>,
Daniele Paliotta <daniele.paliotta@unige.ch>.

ICML 2023 workshop on Efficient Systems for Foundation Models,
Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright 2023 by the
author(s).

sub-blocks of the attention matrix that carry most of the
weight (Kitaev et al., 2020).

However, today’s most successfully deployed models still
rely on vanilla attention, in part thanks to the efficiency of
FlashAttention (Dao et al., 2022). This implementation is
mathematically equivalent to the vanilla attention proposed
by Vaswani et al. (2017), but trades in additional compute for
less memory I/O. While still avoiding a memory footprint
quadratic with the sequence length, it delivers practical
speedups of over ×5 compared to a naive implementation.

Using an attention layer in an autoregressive model requires
making it causal. This is achieved by applying a mask to the
attention matrix, so that information cannot flow from the
future to the past during training. While FlashAttention can
deal with vanilla causal masks, it does not provide enough
flexibility to be used for situations where the mask is not
perfectly regular, that is, lower triangular. This in particular
prevents using it for models that dynamically drop keys
and queries or rely on geometric hashing, which results in
irregular causal structures as illustrated in Fig. 1 and Fig. 4.

We propose an extension of FlashAttention—Sparse Causal
Flash Attention (SCFA)— that addresses this constraint.
Our contribution is threefold:

• We present the SCFA kernel, which relaxes the con-
straint that the causal mask has to be triangular. This
kernel can handle any sparsity pattern that can be ex-
pressed with a range of keys per query, and any causal
masking in the resulting sub-blocks. See § 3.

• We show that SCFA permits to revisit the promising
paradigm of dynamic hash-based attention. We devise
an algorithm that builds upon the fundamental idea
of Reformer (Kitaev et al., 2020) to restrict the com-
putation of the attention matrix over “hash collision
blocks”, but avoids both the high computational cost,
and the approximate coverage of the hash collisions.
See § 3.2.

• We propose a new approach implemented with SCFA
that reduces computation by dynamically selecting, for
each head, keys and queries to be removed from the
attention operation, superseding existing methods that
limited pruning to entire heads or entire queries/keys,

1



Submission and Formatting Instructions for ICML 2023

K

Q

QK-sparse

Hash-sparse

Figure 1. Sparsification of the attention matrix. In each depicted attention matrix, black areas indicate coefficients to compute, patterned
areas those forced to zero due to the causal masking, and white areas coefficients that are ignored. We consider two dynamic strategies
to sparsify the left attention matrix. The QK-sparse attention consists of dropping some keys and queries (top, the discarded keys and
queries are indicated in red), and the Hash-sparse attention computes a hash code for each key and each query, and restricts the attention
matrix to blocks of keys and queries of same hash code (bottom, the three hash values are indicated for each key or query with the colors
blue/green/red). In both cases, the attention operation must be able to deal with sub-blocks of the attention matrix with a non-triangular
causal mask.

due to the lack of an efficient fine-grained kernel im-
plementation. See § 3.1.

Experimental evaluations show that SCFA can efficiently be
used for a variety of sequence modeling tasks, and that our
open-source implementation in the Triton language and com-
piler (Tillet et al., 2019) significantly outperforms FlashAt-
tention as we increase the sparsity and for longer sequences.
Moreover, unlike the hash-based attention introduced in
Reformer by Kitaev et al. (2020), our hash-based SCFA
not only implements the exact computation but also has a
smaller runtime (see, § 3.2). Finally, we show that a pro-
totype of queries and keys dropping can be implemented
thanks to SCFA, and that the computational reduction is
proportional to the fraction of query-key pairs dropped (see
§ 3.1).

2. Related Work
State-of-the-art sequence models have very high computa-
tional requirements. As a consequence, a lot of effort has
been invested into developing methods to reduce the mem-
ory footprint in Transformers. Many efficient Transformer
variants have been developed, with the main goal of tam-
ing the quadratic complexity of the attention mechanism
(Tay et al., 2020). Several methods rely on kernelized atten-
tion (Katharopoulos et al., 2020; Choromanski et al., 2020),
while others endow the Transformer with some auxiliary
memory to increase the context (Wu et al., 2022; Borgeaud
et al., 2021).

In many cases, leveraging sparsity in the attention matrix
has proven useful. The Sparse Transformer (Child et al.,
2019) works with a factorized sparse representation of the
attention. They employ several sparse attention patterns,

where each output position only computes weightings from
a subset of input positions.

The Reformer (Kitaev et al., 2020) uses locality-sensitive-
hashing (LSH) to sparsify the attention matrix and allow
queries to restrict their context window to keys that col-
lide with the same hash. However, to allow GPU-efficient
processing, complex machinery has to be developed where
the queries and keys are split into fixed-sized chunks, with
the attention being applied only within the chunk and the
immediate neighbor.

FlashAttention introduced by Dao et al. (2022) has recently
gained a lot of popularity as an efficient, IO-aware exact at-
tention implementation. FlashAttention uses tiling to avoid
materializing the full attention matrix on slow GPU HBM,
splitting the computation over blocks of query, key, and
value vectors. FlashAttention has already reached wide
adoption, as it’s now available directly in Pytorch as of
version 2.0. Additionally, FlashAttention supports very effi-
cient block-sparse structures.

Hash Attention. When computing the attention matrix for
a T ×D query tensor Q and a T ×D key tensor K, we con-
sider the matrix of dot-products QK⊤, which can become
impractical to compute for very long sequences. However,
we are only interested in the row-wise softmax(QK⊤),
meaning that the contribution of the keys to every query is
dominated by the ones with the highest similarity. Thus, re-
stricting the attention computation to queries and keys with
high similarity is a natural choice to reduce the computation.

Hash attention, introduced in the Reformer (Kitaev et al.,
2020), allows to quickly select the closest key vectors for
each query using locality-sensitive-hashing (LSH). In gen-
eral, the LSH mechanism assigns a hash code to vectors
with the requirement that vectors that are close in space are

2



Submission and Formatting Instructions for ICML 2023

0 1000 2000 3000 4000
Sequence length

0

20

40

60
m

s
50%

60%

70%

80%

Naive QK-sparse
Flash attention

(a) Naive QK-sparse

0 10000 20000 30000
Sequence length

0

200

400

600

800

1000

m
s

20%

30%

40%

50%

60%
70%
80%

QK-sparse (ours)
Flash attention

(b) QK-sparse

0 10000 20000 30000
Sequence length

0

250

500

750

1000

1250

m
s

nb = 2

nb = 4

nb = 8
nb = 16
nb = 32
nb = 64

Hash-sparse (ours)
Naive hash-sparse
Flash attention

(c) Hash-sparse

Figure 2. Fig.(a) & Fig.(b): Runtimes of full Flash-attention (Dao et al., 2022) and Query/Key dropping based sparsity. We
show the forward + backward runtimes. For sparse methods, we drop at random a percentage of keys and queries. Fig.(a): A naive
implementation consisting in creating compact representations of the key, value, and query tensors by removing dropped keys and queries.
As a result, the attention matrix is no longer triangular (see Fig. 1). We call the PyTorch scaled dot product attention method
with a custom but still causal mask. The non-triangular mask prevents FlashAttention to be used and only dropping more than 70% of the
keys and queries seems to improve the runtime over attending the entire sequence using FlashAttention. Fig.(b): Our modification of
FlashAttention improves the runtime. Reshaping the tensor induces an overhead which compensates the speed gain for shorter sequences.
However, this offset is compensated by a strong margin as the sequence length increases. Our implementation allows significant gains
over FlashAttention even for low levels of sparsity. The detailed runtimes for the forward and backward passes can be found in App. C.
Fig.(c): Runtimes of the full Flash-attention and hash-based sparsity. Similarly to our QK-sparse method we show how a naive
implementation fails to provide any speed gain. On the other hand, our modification of the basic FlashAttention method computes only
what is required. While there is a cost to reordering the tensors based on the hash buckets, this cost is largely compensated for as the
number of buckets nb increases, and as the sequence length increases.

mapped to the same hash with high probability. For the hash
attention, the Reformer assumes a shared query-key space
(Q = K). After computing the hashes, the queries are
sorted according to their hash bucket. In the sorted attention
matrix, pairs that fall into the same bucket cluster near the
diagonal. In order to implement the LSH-attention scheme
efficiently on GPU, the Reformer splits the queries into
fixed-sized chunks. Queries belonging to the same chunk
can attend to each other and one chunk back. This results in
a suboptimal mechanism where there is no guarantee that
the attention will capture exactly all of the elements that
belong to the same bucket (See Fig. 3.c).

3. Method
We develop an efficient CUDA kernel written in Triton
(Tillet et al., 2019) that maintains the careful memory man-
agement of FlashAttention but can handle a causal structure
defined through an arbitrary indexing of the keys and the
queries. In the case where this indexing consists of a binary
decision to drop or not the head of a query/key, this corre-
sponds to our QK-sparse kernels as described in § 3.1. In the
case where the indexing corresponds to bucket indices e.g.
obtained from hashing, this corresponds to our Hash-sparse
kernel described in § 3.2.

3.1. QK-Sparse Attention

Shrinking the attention matrix. Our QK-sparse attention
kernel is best summarized in the first row of Fig. 1. Indepen-

dently for each head, we decide to keep or drop keys and
queries. We then remove dropped keys and queries to create
smaller Qc, Kc, and V c tensors. Through this reduction
we are left with a smaller attention matrix Ac which still
has a causal structure in that indices for the queries and keys
are increasing monotonically.

Leveraging non-triangular causal attention structure.
Despite the advantageous structure of the smaller attention
matrix, existing implementations fail to take advantage of it.
Especially, as shown in Fig. 4 bottom-left, FlashAttention
can leverage the causal structure when the causal mask is
triangular but does not support any other shape. See App. B
for more details on the kernel implementation.

3.2. Hash-Sparse Attention

Restructuring attention based on hashes. Independently
for each head, we associate a bucket identifier to each key
and query. We then need to reorder Q,K,V by sorting
them along the sequence length dimension. As shown in
the bottom row of Fig.1, this results in clusters of keys and
queries with a similar hash index close to the diagonal. If
the sorting is stable, then those blocks have a local causal
structure in which the original indices (original position in
the sequence) of keys and queries is a monotonic function
within the block. This brings us to a case very similar to the
previous one in section § 3.1, in that we now have the same
structure but scattered by blocks within the full attention
matrix.

3



Submission and Formatting Instructions for ICML 2023

0 5000 10000 15000
Iterations

20

30

40

50

60

70
Va

lid
at

io
n

Pe
rp

le
xi

ty
F-LM
H-LM nb = 16
D-LM S = 30%
D-LM S = 50%

(a) Iter to reach perplexity

F-LM
D-LM

s = 30% H-LM

nb
= 16 D-LM

s = 50%

0.0

2.5

5.0

7.5

10.0

It
er

/m
in

on
1

G
PU

×1.9 ×2.0

×2.6

(b) Speed gains

0 20000 40000 60000
Sequence length

0.6

0.7

0.8

0.9

1.0

C
ov

er
ag

e

Reformer attention
Flash attention
Hash-sparse (ours)

(c) Reformer coverage

Figure 3. Fig.(a) & Fig.(b): Training Language Models (LM) on OpenWebText2 (Gao et al., 2020) using Hash-sparse (H-LM),
QK-sparse (D-LM), or FlashAttention over the entire sequence (F-LM). We train on sequences of length 8192 and use 16 buckets for
our H-LM model and a sparsity of 30% and 50% for our D-LM models. We show that it is possible to use our proposed dynamic sparsity
schemes to significantly gain in speed (Fig.(b)) without compromising the perplexity (Fig.(a)). In Fig.(c) we observe the impact of the
fixed attention structure in Reformer: an increasing fraction of hash collisions are missed. Our approach maintains 100% exact coverage
of collisions for all sequence lengths. See App. C for more details.

Taking advantage of the new structure. We would like
to take advantage of the block structure and only compute
attention for queries and keys falling within the same block
while at the same time respecting causality. We adapt the
FlashAttention kernel in a very similar way to our QK-
sparse kernel. See Fig. 4 for a visual representation. See
App. B for more details on the kernel implementation.

Overhead. Sorting and re-ordering Q, K and V introduces
some overhead. As shown in our experiments in § 3.2, this
overhead is largely compensated for as the sequence length
increases.

4. Experiments
In this section, we present our experimental setup and re-
sults. We show that (i) unlike naive implementations using
existing libraries, our dynamic sparsity attention schemes
can significantly improve over the FlashAttention runtime,
(ii) this still holds in real-world sequence modeling tasks
after factoring in all the non-attention operations, and (iii)
it is possible to match—and sometimes outperform—the
baselines in terms of perplexity while significantly gaining
in speed.

Experimental setup We test our hash-based sparsity
scheme on OpenWebText2 (Gao et al., 2020), enwik8 (Hut-
ter, 2012), and MNIST (LeCun et al., 1998) for autoregres-
sive image generation . We experiment with QK-dropping-
based sparsity on OpenWebText2. See App. B.3 for details
on models, baselines and hardware.

Hashing mechanism We adopt the same hashing procedure
as (Kitaev et al., 2020). Namely, we use a shared query-key
space, and we disallow queries to attend to themselves. We

also adopt the LSH scheme from (Andoni et al., 2015). This
allows us to pick the number of unique hash codes. We refer
to bucket as the set of vectors that map to a certain hash.

Q/K-dropping mechanism used. We show that naively
dropping heads for each key and query at random can al-
ready yield competitive results while significantly improv-
ing the runtime. While better dropping schemes could be
devised, they are outside of the scope of this work.

Runtime performances in a vacuum. We test our imple-
mentation with different numbers of buckets nb and per-
centages of dropped keys, queries, and values. Buckets
and dropped entries are randomly sampled. We compare
with causal FlashAttention over the entire sequence. Im-
portantly, to ensure a fair comparison, we take into account
pre-processing and post-processing steps required to reshape
the tensors for both methods. For our method this includes
stable sorting by bucket index and transposing tensors, for
the baseline only the transposition is required, see App. B.2
for detailed code. Fig. 2 summarises our findings. We
observe large improvements in runtime as the number of
buckets nb and the sequence length increases.

Language modeling on OpenWebText2. For sequences of
length T = 8192 we train transformer LMs using FlashAt-
tention (F-LM), and identical models replacing only the
FlashAttention by our Hash-sparse and QK-sparse attention
(H-LM and D-LM). Our findings are summarized in Fig. 3.

Comparison with Reformer. We compare our Hash-sparse
implementation with the Reformer hashed attention. For all
comparisons, we always equalize the average bucket size.
Fig. 3.c shows that the fixed attention structure imposed by
the Reformer does not allow to capture all of the hash colli-

4



Submission and Formatting Instructions for ICML 2023

sions, with the coverage decreasing steeply as the sequence
length increases. On the contrary, our method is exact and
covers every bucket collision in the attention matrix.

5. Conclusions
We develop and validate an efficient kernel that can make
sparse attention based on dynamic patterns very fast. We
hope that our contribution will inspire the community to
research dynamic attention patterns in a way that is less
constrained by a tight computational budget.

The computational cost of large attention models remains
both a practical issue in scaling up to very large contexts,
and a fundamental research question to close the gap be-
tween the energy usage of biological systems to that of GPU
systems able to run very large models. Dynamically mod-
ulating the computation is an obvious direction to address
this challenge.

References
Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I., and

Schmidt, L. Practical and optimal lsh for angular distance,
2015.

Behnke, M. and Heafield, K. Losing heads in the lottery:
Pruning transformer attention in neural machine trans-
lation. In EMNLP (1), pp. 2664–2674. Association for
Computational Linguistics, 2020.

Bender, E. M., Gebru, T., McMillan-Major, A., and
Shmitchell, S. On the dangers of stochastic parrots:
Can language models be too big? In Proceedings
of the 2021 ACM Conference on Fairness, Account-
ability, and Transparency, FAccT ’21, pp. 610–623,
New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450383097. doi: 10.1145/
3442188.3445922. URL https://doi.org/10.
1145/3442188.3445922.

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Ruther-
ford, E., Millican, K., van den Driessche, G., Lespiau, J.,
Damoc, B., Clark, A., de Las Casas, D., Guy, A., Menick,
J., Ring, R., Hennigan, T., Huang, S., Maggiore, L., Jones,
C., Cassirer, A., Brock, A., Paganini, M., Irving, G.,
Vinyals, O., Osindero, S., Simonyan, K., Rae, J. W., Elsen,
E., and Sifre, L. Improving language models by retrieving
from trillions of tokens. CoRR, abs/2112.04426, 2021.
URL https://arxiv.org/abs/2112.04426.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gener-
ating long sequences with sparse transformers. CoRR,
abs/1904.10509, 2019. URL http://arxiv.org/
abs/1904.10509.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X.,
Gane, A., Sarlós, T., Hawkins, P., Davis, J., Mohiud-
din, A., Kaiser, L., Belanger, D., Colwell, L. J., and
Weller, A. Rethinking attention with performers. CoRR,
abs/2009.14794, 2020. URL https://arxiv.org/
abs/2009.14794.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. In NeurIPS, 2022.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
Presser, S., and Leahy, C. OpenWebText2 dataset, as part
of ‘the Pile: An 800gb dataset of diverse text for language
modeling‘. arXiv preprint arXiv:2101.00027, 2020.

Goyal, S., Choudhury, A. R., Raje, S., Chakaravarthy, V. T.,
Sabharwal, Y., and Verma, A. Power-bert: Accelerating
BERT inference via progressive word-vector elimination.
In ICML, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 3690–3699. PMLR, 2020.

Hutter, M. The human knowledge compression contest.
URL http://prize. hutter1. net, 6, 2012.

Katharopoulos, A., Vyas, A., Pappas, N., and
Fleuret, F. Transformers are RNNs: Fast au-
toregressive transformers with linear attention.
In Proceedings of the International Conference
on Machine Learning (ICML), pp. 5294–5303,
2020. URL https://fleuret.org/papers/
katharopoulos-et-al-icml2020.pdf.

Kim, S., Shen, S., Thorsley, D., Gholami, A., Kwon, W.,
Hassoun, J., and Keutzer, K. Learned token pruning for
transformers. In KDD, pp. 784–794. ACM, 2022.

Kitaev, N., Kaiser, L., and Levskaya, A. Reformer: The
efficient transformer. In ICLR. OpenReview.net, 2020.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proc.
IEEE, 86(11):2278–2324, 1998.

Li, J., Cotterell, R., and Sachan, M. Differentiable subset
pruning of transformer heads. Trans. Assoc. Comput.
Linguistics, 9:1442–1459, 2021.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In ICLR (Poster). OpenReview.net, 2019.

Michel, P., Levy, O., and Neubig, G. Are sixteen heads
really better than one? In NeurIPS, pp. 14014–14024,
2019.

Peng, H., Schwartz, R., Li, D., and Smith, N. A. A mixture
of h - 1 heads is better than h heads. In ACL, pp. 6566–
6577. Association for Computational Linguistics, 2020.

5

https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://arxiv.org/abs/2112.04426
http://arxiv.org/abs/1904.10509
http://arxiv.org/abs/1904.10509
https://arxiv.org/abs/2009.14794
https://arxiv.org/abs/2009.14794
https://fleuret.org/papers/katharopoulos-et-al-icml2020.pdf
https://fleuret.org/papers/katharopoulos-et-al-icml2020.pdf


Submission and Formatting Instructions for ICML 2023

Peng, H., Pappas, N., Yogatama, D., Schwartz, R., Smith,
N. A., and Kong, L. Random feature attention. In ICLR.
OpenReview.net, 2021.

Qin, Z., Sun, W., Deng, H., Li, D., Wei, Y., Lv, B., Yan, J.,
Kong, L., and Zhong, Y. cosformer: Rethinking softmax
in attention. In ICLR. OpenReview.net, 2022.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners, 2019.

Raganato, A., Scherrer, Y., and Tiedemann, J. Fixed encoder
self-attention patterns in transformer-based machine trans-
lation. In EMNLP (Findings), volume EMNLP 2020 of
Findings of ACL, pp. 556–568. Association for Computa-
tional Linguistics, 2020.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. Efficient
transformers: A survey. CoRR, abs/2009.06732, 2020.
URL https://arxiv.org/abs/2009.06732.

Tay, Y., Bahri, D., Metzler, D., Juan, D., Zhao, Z., and
Zheng, C. Synthesizer: Rethinking self-attention for
transformer models. In ICML, volume 139 of Proceedings
of Machine Learning Research, pp. 10183–10192. PMLR,
2021a.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P., Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
range arena : A benchmark for efficient transformers. In
ICLR. OpenReview.net, 2021b.

Tillet, P., Kung, H. T., and Cox, D. Triton: An in-
termediate language and compiler for tiled neural net-
work computations. In Proceedings of the 3rd ACM
SIGPLAN International Workshop on Machine Learn-
ing and Programming Languages, MAPL 2019, pp.
10–19, New York, NY, USA, 2019. Association for Com-
puting Machinery. ISBN 9781450367196. doi: 10.
1145/3315508.3329973. URL https://doi.org/
10.1145/3315508.3329973.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. CoRR, abs/1706.03762, 2017. URL
http://arxiv.org/abs/1706.03762.

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., and Titov, I.
Analyzing multi-head self-attention: Specialized heads
do the heavy lifting, the rest can be pruned. In ACL (1), pp.
5797–5808. Association for Computational Linguistics,
2019.

Wang, H., Zhang, Z., and Han, S. Spatten: Efficient sparse
attention architecture with cascade token and head prun-
ing. In HPCA, pp. 97–110. IEEE, 2021.

Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato, J.,
Huang, P., Cheng, M., Glaese, M., Balle, B., Kasirzadeh,
A., Kenton, Z., Brown, S., Hawkins, W., Stepleton, T.,
Biles, C., Birhane, A., Haas, J., Rimell, L., Hendricks,
L. A., Isaac, W., Legassick, S., Irving, G., and Gabriel, I.
Ethical and social risks of harm from language models.
CoRR, abs/2112.04359, 2021.

Wu, Y., Rabe, M. N., Hutchins, D., and Szegedy, C. Memo-
rizing transformers, 2022.

Xia, M., Zhong, Z., and Chen, D. Structured pruning learns
compact and accurate models. In ACL (1), pp. 1513–1528.
Association for Computational Linguistics, 2022.

Zheng, L., Wang, C., and Kong, L. Linear complexity
randomized self-attention mechanism. In ICML, volume
162 of Proceedings of Machine Learning Research, pp.
27011–27041. PMLR, 2022.

Zhou, W., Ge, T., Wei, F., Zhou, M., and Xu, K. Sched-
uled drophead: A regularization method for transformer
models. In EMNLP (Findings), volume EMNLP 2020 of
Findings of ACL, pp. 1971–1980. Association for Com-
putational Linguistics, 2020.

6

https://arxiv.org/abs/2009.06732
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
http://arxiv.org/abs/1706.03762


Submission and Formatting Instructions for ICML 2023

Hash-sparseQK-sparseK

Q

Figure 4. SCFA computation patterns. In each depicted attention matrix, black areas indicate coefficients to compute, patterned areas are
those forced to zero due to the causal masking, and white areas coefficients that are ignored. The red squares in the bottom matrices show
the tiles actually computed by our SCFA kernel. In the regular case (left), this coincides with the behavior of FlashAttention. However,
in the case of irregular causal masking due to keys/queries dropping (center) or in the case of irregular causal masking and band block
sparsity due to hashing (right), FlashAttention does not provide means to compute a fine-grain subset of the attention matrix.

A. Additional Background
A.1. Structured attention

With a focus on performances on downstream applications, Raganato et al. (2020) show that it is possible to replace all but
one attention head with static attentive patterns only relying on the position, e.g. attending to the previous token. Similarly,
Tay et al. (2021a) investigate removing entirely the dot product attention and instead let the input token alone predict
its attention pattern over the entire sequence, or use a random attention pattern. While they show their approach can be
competitive on certain downstream task, results on language modeling seems to indicate those attention patterns are not
expressive enough to model natural language. Peng et al. (2021) propose Random Feature Attention (RFA) which relies on
kernel methods to approximate the softmax atttention and achieve a linear computational complexity w.r.t. the sequence
length. A follow up work by Zheng et al. (2022) augments RFA with randomized attention to build an unbiased estimator of
the softmax attention. Instead of looking for a linear approximation of the softmax, Qin et al. (2022) propose to replace the
softmax by a linear projection kernel and a cos-based re-weighting mechanism which scales linearly with the sequence
length. While kernel based method seem like a good compromise in terms of speed vs. performance, they have been shown
to underperform on certain downstream tasks (Tay et al., 2021b). Compared to those methods, we are not trying to replace
or find an estimator of the softmax attention, we instead provide an efficient way to leverage different forms of sparsity of
the softmax attention matrix. Our speed gains do not come from a conceptually different way to compute the attention but
simply deciding not to compute certain regions of the softmax attention matrix.

A.2. Pruning

The large body of works on pruning mostly focus on faster inference on downstream tasks. As a result, many methods are
modifying the training process to facilitate pruning, often resulting in slower training.

Pruning heads in transformers. Many works have investigated dropping entire attention heads in transformer architec-
tures. Let the entire attention matrix A be of shape B×H×T ×T with B the batch size, H the number of heads, and T the
sequence length. Dropping entire heads imposes an implicit structure over A which is now of shape B ×H ′ × T × T , with
H ′ the number of non-dropped heads. Michel et al. (2019) and Voita et al. (2019) both observe—in the context of Neural
Machine Translation (NMT)—that a large fraction of heads can be dropped without significantly impacting performance.
While their goal is not primarily to speed up training, many of methods following on this insight try to incorporate a
sparsifying mechanism during training which facilitate dropping heads at test time (Behnke & Heafield, 2020; Peng et al.,

7



Submission and Formatting Instructions for ICML 2023

2020; Xia et al., 2022; Li et al., 2021). Still limited to NMT and downstream classification tasks, Zhou et al. (2020) found a
regularizing effect of dropping heads during training. In comparison, less works have investigated dropping head in the
context of language modeling, with text generations applications in mind. In comparison to those works, we propose a way
to take advantage of dynamic sparsity structures, which is much more general but still includes head dropping. We show the
potential of our work to enable speedup during training. Our work is orthogonal to head-dropping mechanisms and could be
used in addition to those.

Pruning tokens in transformers. While dropping heads can be seen as dropping the model parameters generating keys,
queries and values for those heads, another more recent line of work looked into dropping tokens. Dropping entire tokens
imposes an implicit structure over the attention matrix A which is now of shape B×H ×TQ×TKV , with TQ and TKV the
number remaining queries and keys. Goyal et al. (2020) obtain faster inference on downstream tasks by using an attention
based scoring mechanism to eliminate redundant input vectors. Wang et al. (2021) develop a joint algorithm-architecture
framework which speeds up inference for downstream classifications tasks and language generation tasks. Their method
includes head and token pruning along with specific hardware optimizations. Our work can be used to implement those
approaches and does not require custom hardware accelerators. We moreover allow dropping individual heads instead of
entire tokens.

B. Details On The Implementation
We here give implementation details for experiments of § 4. First, in App. B.1, we describe in more details the im-
plementations of our custom Triton kernels introduced in § 3. Secondly in App. B.2 we provide the python code
used in our runtime benchmarks of § 4, including pre and post processing steps required to reshape and re-order
tensors. Lastly in § B.3 and § B.4 we give more details on the experimental setup and hyperparameters used in
our sequence modeling experiments of § 4. The code for all our experiments can be found via the following link:
https://anonymous.4open.science/r/dynamic-sparse-flash-attention-1C84.

B.1. Triton Kernels

QK-Sparse Triton Kernel. In Alg. 1 we detail the core of the QK-sparse algorithm from § 3.1. This algorithm is
computing the softmax attention result only for one block of queries, corresponding to one head. In practice this algorithm
would be run in parallel for all blocks of queries for all heads. We find the index of the last relevant tile to compute by
iterating over block of key indices and comparing them with the largest query index for the current block of queries. This
works as qidx and kidx have a monotonic structure thanks to the stable sort used when reshaping the tensors (see the
pre-processing code in App. B.2 for more details). We apply causal masking locally by looking at qidx and kidx, q query
can only attend to past keys: mask = q idx[:, None] >= k idx[None, :] . The backward pass relies exactly
on the same trick, we first iterate over query indices to find the starting block of queries.

8

https://anonymous.4open.science/r/dynamic-sparse-flash-attention-1C84


Submission and Formatting Instructions for ICML 2023

Algorithm 1 Forward Pass for the QK-sparse kernel

Require: Matrix Q ∈ RNQ×d, matrices K,V ∈ RNKV ×d, index matrices Qidx ∈ RNQ×d and Kidx ∈ RNKV ×d ,softmax
scaling constant τ ∈ R, softmax statistics vectors M ∈ RNQ and L ∈ RNQ , output tensor O ∈ RNQ×d, query block
size Bm, key block size Bn, starting query index startm.

1: Initialize o← (0)Bm×d ∈ RBm×d, ℓ← (0)Bm
∈ RBm ,m← (−∞)Bm

∈ RBm

2: Load current block of queries q ← Q[startm : startm +Bm, :]
3: Load current block of query indices qidx ← Qidx[startm : startm +Bm]
4: end← 0
5: for startn in range(0, NKV , Bm) do
6: Load block of key indices: kidx ←Kidx[startn : startn +Bn]
7: if min(kidx) ≤ max(qidx) then
8: end← end + 1
9: end if

10: end for
11: for n in range(0, end) do
12: Start of current key block startn ← n ∗Bn

13: Load current block of values v ← V [startn : startn +Bn, :]
14: Load current block of keys k←K[startn : startn +Bn, :]
15: Load current block of key indices kidx ←Kidx[startn : startn +Bn]
16: Compute inner product qk← τq.k⊤

17: Apply causal mask qk← MASK(qk, qidx,kidx)
18: Update softmax statistics ℓ,m,o← UPDATE STATS(ℓ,m,qk,o,v)
19: end for
20: Write O[startm : startm +Bm, :]← o
21: Write L[startm : startm +Bm]← ℓ
22: Write M [startm : startm +Bm]←m

Hash-Sparse Triton Kernel. In Alg. 2 we detail the core of the Hash-sparse algorithm from § 3.2. This algorithm
is computing the softmax attention result only for one block of queries, corresponding to one head. In practice this
algorithm would be run in parallel for all blocks of queries for all heads. We find the index of the first and last relevant
tiles to compute by iterating over block of key hashes and comparing them with the largest and smallest query hashes
for the current block of queries. This works as we reshaped our Q,K,V tensors by sorting them by their hash values
(see the pre-processing code in App. B.2 for more details). In addition to causal masking, we also enforce attention to
happen within the same bucket: mask = (q idx[:, None] >= k idx[None, :]) & (q hash[:, None]
== k hash[None, :]). In our experiments we often replace >= by > to prevent a query to attend to itself as in the
Reformer. As a side note, for most application it would also be fine to only enforce causal masking and allow attention
across buckets within a tile. While this could add some serendipity in the attention computation, some applications might
require masking based on hash. The backward pass relies exactly on the same trick, we first iterate over query indices to find
the starting and end blocks of queries.

9



Submission and Formatting Instructions for ICML 2023

Algorithm 2 Forward Pass for the Hash-sparse kernel

Require: Matrix Q ∈ RNQ×d, matrices K,V ∈ RNKV ×d, index matrices Qidx ∈ RNQ×d and Kidx ∈ RNKV ×d,
matrices containing the hash values Qhash ∈ RNQ×d and Khash ∈ RNKV ×d ,softmax scaling constant τ ∈ R, softmax
statistics vectors M ∈ RNQ and L ∈ RNQ , output tensor O ∈ RNQ×d, query block size Bm, key block size Bn,
starting query index startm.

1: Initialize o← (0)Bm×d ∈ RBm×d, ℓ← (0)Bm
∈ RBm ,m← (−∞)Bm

∈ RBm

2: Load current block of queries q ← Q[startm : startm +Bm, :]
3: Load current block of query indices qidx ← Qidx[startm : startm +Bm]
4: Load current block of query hashes qhash ← Qhash[startm : startm +Bm]
5: start← 0
6: endhash ← 0
7: for startn in range(0, NKV , Bm) do
8: Load block of key hashes: khash ←Khash[startn : startn +Bn]
9: if min(khash) ≤ max(qhash) then

10: endhash ← endhash + 1
11: end if
12: if max(khash) < min(qhash) then
13: start← start + 1
14: end if
15: end for
16: end← endhash

17: for j in range(start, endhash) do
18: Load block of key indices: kidx = Kidx[jBn : (j + 1)Bn]
19: if min(kidx) ≤ max(qidx) then
20: end← j + 1
21: end if
22: end for
23: for n in range(start, end) do
24: Start of current key block startn ← n ∗Bn

25: Load current block of values v ← V [startn : startn +Bn, :]
26: Load current block of keys k←K[startn : startn +Bn, :]
27: Load current block of key indices kidx ←Kidx[startn : startn +Bn]
28: Load current block of key hashes khash ←Khash[startn : startn +Bn]
29: Compute inner product qk← τq.k⊤

30: Apply causal and bucket mask qk← MASK(qk, qidx,kidx, qhash,khash)
31: Update softmax statistics ℓ,m,o← UPDATE STATS(ℓ,m,qk,o,v)
32: end for
33: Write O[startm : startm +Bm, :]← o
34: Write L[startm : startm +Bm]← ℓ
35: Write M [startm : startm +Bm]←m

Accumulating softmax statistics while avoiding NaNs. The following is a brief summary of how the FlashAttention
algorithm (Dao et al., 2022) proposes to accumulate softmax statistics when iterating over blocks of keys. Given an
input vector x, our goal is to compute softmax(x) ≜ ex−max(x)/

∑
i e

xi−max(x). Let f(x,m) ≜ ex−m, and ℓ(x,m) ≜∑
i f(x,m). Hence:

softmax(x) =
f(x,max(x))

ℓ(x,max(x))

10



Submission and Formatting Instructions for ICML 2023

Given a vector x ≜ [x1,x2], let mg = max(x) (global max), and m1 = max(x1), we notice:

softmax(x) =
f(x,mg)

ℓ(x,mg)

=
f(x1,m1)

em1−mgℓ(x1,m1) + ℓ(x2,mg)
+

f(x2,mg)

em1−mgℓ(x1,m1) + ℓ(x2,mg)

Therefore, if we have m1, ℓ(x1,m1), and r = f(x1,m1)
l(x1,m1)

, we can update the softmax statistics for a new block of entries x2

by following the following steps:

1. Compute new global max: mg = max(m1,max(x2))

2. Compute f(x2,mg) = ex2−mg

3. Compute ℓ(x2,mg) =
∑

i f(x2,mg)

4. Compute new ℓ(x,mg): ℓ(x,mg) = em1−mgℓ(x1,m1) + ℓ(x2,mg)

5. Correct running softmax result: r = r ℓ(x1,m1)
ℓ(x,mg)

6. Add contribution from x2 to r: r = r +
f(x2,mg)
ℓ(x,mg)

In case all the keys are masked for a given query, we would have max(x2) = −∞, given that the first m1 is initialized to
−∞ as well (see Alg. 1 and Alg. 2) the fourth and second steps above would be undefined and result in NaN values. We
solve the problem by replacing −∞ values in mg by 0s when doing those two steps. Another potential issue is in step three:
when a query has no matching key in x2 then ℓ(x2,mg) is now 0, which generate +∞ in step five. This is an issue as we
process keys by blocks, and if there are no keys for a query in the current block, we might find matching keys in following
blocks. Adding∞ values to r would prevent us to accumulate statistics later on. To get our desired behaviour and have 0s
when queries have no matching key we replace∞ values by 1s in ℓ(x,mg) during steps five and six. We summarize those
steps in Alg. 3.

Algorithm 3 UPDATE STATS method

Require: Vector ℓ ∈ RN , vector m ∈ RN , matrix of masked inner products qk ∈ RN×N , output buffer o ∈ RBm×d,
block of values v ∈ RBm×d

1: Compute new global max (step 1) mnew ← max(rowmax(qk),m)
2: Replace −∞ by 0: m̂new ←WHERE(mnew == −∞, 0,mnew)
3: Compute step 2: p← eqk−m̂new[:,None] # row-wise subtraction
4: Compute step 3: ℓ2 ← rowsum(p)
5: Compute step 4: ℓnew ← em−m̂ℓ+ ℓ2
6: Compute z ← 1

ℓnew

7: Replace∞ by 1: z ←WHERE(z ==∞, 1, z)
8: Update p← p× z[:, None] # row-wise multiplication
9: Correct running softmax output (step 5) o← o× (ℓz)[:, None] # row-wise multiplication

10: Add contribution from current block (step 6) o← o+ p.v ℓnew,mnew,o

Hyperparameters. We extend the implementation of FlashAttention available in the Triton tutorial. In our benchmarks,
we use a batch size B = 4, 48 heads of 64 dimensions each.

B.2. Runtimes in a Vacuum

Baseline implementation. We use Pytorch’s FlashAttention implementation provided by the
torch.nn.functional.scaled dot product attention function. To ensure fairness, we assume that
all benchmarked functions receive a tensor Q of shape (BATCH, CTX Q, H, D HEAD), and tensors K,V of shapes
(BATCH, CTX KV, H, D HEAD), where BATCH is the batch size, CTX Q is the number of queries, CTX KV is the

11



Submission and Formatting Instructions for ICML 2023

number of keys and values, H is the number of heads, and D HEAD is number of dimensions per head. For this reason the
only pre and post processing steps required are transposing the input and output tensors.

Listing 1. pytorch full flashattention function applying the FlashAttention algorithm on the entire sequence (no sparsity).
1 def pytorch_full_flashattention(q, k, v):
2
3 BATCH, N_CTX, H, D_HEAD = q.shape
4
5 q = q.transpose(1, 2) # (BATCH, H, N_CTX_Q, D_HEAD)
6 k = k.transpose(1, 2) # (BATCH, H, N_CTX_KV, D_HEAD)
7 v = v.transpose(1, 2) # (BATCH, H, N_CTX_KV, D_HEAD)
8
9 y = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=0.0, attn_mask=None, is_causal=True)

10 return y.transpose(1,2).contiguous()

Our proposed interface. We propose the following interface to orchestrate between the Hash-sparse and the QK-sparse
implementations:

Listing 2. dynamic sparse attention interface
1 def dynamic_sparse_attention(q, k, v, q_idx, k_idx, sm_scale=None, sparsity_mode=’hash’):
2 """
3 Keyword arguments:
4 q: query tensor of shape (BATCH, N_CTX_Q, H, D_HEAD)
5 k: key tensor of shape (BATCH, N_CTX_KV, H, D_HEAD)
6 v: value tensor of shape (BATCH, N_CTX_KV, H, D_HEAD)
7 q_idx: tensor of shape (BATCH, N_CTX_Q, H) for each sequence in the batch, for each query in the sequence,

for each head,
8 represents either the bucket index if sparsity_mode==’hash’ or the whether to keep that given head if

sparsity_mode==’qk’.
9 The type should be torch.int32 if sparsity_mode==’hash’ and torch.float if sparsity_mode==’qk’.

10 k_idx: tensor of shape (BATCH, N_CTX_KV, H) for each sequence in the batch, for each key in the sequence,
for each head,

11 represents either the bucket index if sparsity_mode==’hash’ or the whether to keep that given head if
sparsity_mode==’qk’.

12 The type should be torch.int32 if sparsity_mode==’hash’ and torch.float if sparsity_mode==’qk’
13 sm_scale: normalization constant, 1/sqrt(D_HEAD) unless specified
14 sparsity_mode: ’hash’ to select the hash-sparse implementation and ’qk’ for the qk-sparse implementation
15 """
16
17 if sm_scale is None:
18 sm_scale = 1.0 / math.sqrt(q.size(-1))
19
20 if sparsity_mode == ’hash’:
21 return hash_sparse_attention(q, k, v, q_hash=q_idx, k_hash=k_idx, sm_scale=sm_scale)
22 elif sparsity_mode == ’qk’:
23 return qk_sparse_attention(q, k, v, q_keep=q_idx, k_keep=k_idx, sm_scale=sm_scale)
24 else:
25 raise KeyError(f"Unknown sparsity_mode: ’{sparsity_mode}’, should be in [’hash’, ’qk’]")

Pre & post processing steps for Hash-sparse. In addition to having to transpose the Q,K,V tensors. The preprocessing
steps consist in re-ordering the Q, K and V tensors based on bucket indices in q hash and k hash. We keep track of the
original position of the queries, keys and values by storing the indices given by the sorting operations. Importantly, we use
stable sorts to ensure the queries, keys and values are sorted within each bucket. The following code is showing how we
implemented all those steps using Pytorch:

Listing 3. hash sparse attention function showing pre and post processing steps for the Hash-sparse algorithm.
1 def hash_sparse_attention(q, k, v, q_hash, k_hash, sm_scale):
2 assert q_hash.dtype == torch.int32 and k_hash.dtype == torch.int32
3
4 BATCH, N_CTX_Q, H, D_HEAD = q.shape
5
6 q = q.transpose(1, 2) # (BATCH, H, N_CTX_Q, D_HEAD)
7 k = k.transpose(1, 2) # (BATCH, H, N_CTX_KV, D_HEAD)
8 v = v.transpose(1, 2) # (BATCH, H, N_CTX_KV, D_HEAD)
9 q_hash = q_hash.transpose(1, 2).contiguous() # (BATCH, H, N_CTX_Q)

12



Submission and Formatting Instructions for ICML 2023

10 k_hash = k_hash.transpose(1, 2).contiguous() # (BATCH, H, N_CTX_KV)
11
12 # Re-order the queries,keys,values according q_hash and k_hash
13 q_hash = q_hash.sort(dim=-1, stable=True) # q_hash.shape = (BATCH, H, N_CTX_Q), stable sort to keep time

ordering within a bucket
14 k_hash = k_hash.sort(dim=-1, stable=True) # k_hash.shape = (BATCH, H, N_CTX_KV)
15
16 q_idx = q_hash.indices
17 k_idx = k_hash.indices
18
19 q_hash = q_hash.values
20 k_hash = k_hash.values
21
22 q_idx_extended = q_idx.unsqueeze(-1).expand_as(q)
23 k_idx_extended = k_idx.unsqueeze(-1).expand_as(k)
24
25 q = torch.gather(q, dim=-2, index=q_idx_extended).contiguous()
26 k = torch.gather(k, dim=-2, index=k_idx_extended).contiguous()
27 v = torch.gather(v, dim=-2, index=k_idx_extended).contiguous()
28
29 y = hash_sparse_attention_kernel(q, k, v, q_idx, k_idx, q_hash, k_hash, sm_scale)
30 y = torch.zeros((BATCH, H, N_CTX_Q, D_HEAD), dtype=q.dtype, device=q.device).scatter(dim=2,

index=q_idx_extended, src=y).transpose(1,2).contiguous()
31 return y

Pre & post processing steps for QK-sparse. In addition to having to transpose the Q,K,V tensors. The preprocessing
steps consist in removing dropped keys, values and queries from K, V and Q. The sorting operations need to be stable to
keep the original time ordering within the remaining keys and queries. Moreover, the index tensor has to be padded so our
kernel can rely on those indices to compute which tile it should and shouldn’t compute.

Listing 4. qk sparse attention function showing pre and post processing steps for the QK-sparse algorithm.
1 def compact(keep_tensor, x, index=None):
2 """ Build a compact representation of x
3 Keyword arguments:
4 x: input tensor to compact, x.shape = (BATCH, N_CTX, H, D_HEAD)
5 keep_tensor: float tensor of shape (BATCH, N_CTX, H) containing a 1 when the head is kept, else 0
6 """
7 BATCH, T, H, D_HEAD = x.shape
8 if index is None:
9 with torch.no_grad():

10 indices_per_head = keep_tensor.sum(dim=-2)
11 buffer_size = indices_per_head.max().int() # first sum computes the num of non-killed elem per head, we

take to max of that
12 # sorting: it is very important that the sorting is stable, else we cannot use causal masking
13 sorted = keep_tensor.sort(dim=-2, descending=True, stable=True) # sorted.indices.shape == (BATCH x T x

H) , now sorted over sequence T
14 index = sorted.indices[:,:buffer_size,:] # (BATCH x buffer_size x H) expand indices to cover all the

dimensions for each heads
15 else:
16 indices_per_head = None
17 compact_x = x.gather(dim=-3, index=index.unsqueeze(-1).expand(-1,-1,-1,D_HEAD)) # (BATCH x buffer_size x H x

D_HEAD) / expand indices to cover all the dimensions for each heads
18 return compact_x, index, indices_per_head
19
20
21 @torch.no_grad()
22 def pad_index(index, indices_per_head, pad_idx=-1):
23 """ Pad the index tensor to comply with the kernel, returns a copy.
24 Keyword arguments:
25 index: original index tensor to pad given by ‘compact‘, index.shape = (BATCH, buffer_size, H). For each batch

and timestep, reprsents the head idx it’s originating from.
26 indices_per_head: of shape (BATCH, H), for each head, contains how many indices have not been dropped.
27 """
28 BATCH, buffer_size, H = index.shape
29 index_copy = torch.clone(index).type(torch.int32)
30 mask = torch.arange(buffer_size, device=index.device).view(1,-1,1).expand(BATCH,buffer_size,H) >=

indices_per_head.view(BATCH,1,-1)
31 index_copy[mask] = pad_idx
32 return index_copy
33
34
35 def qk_sparse_attention(q, k, v, q_keep, k_keep, sm_scale):
36 assert q_keep.dtype == torch.float and k_keep.dtype == torch.float
37

13



Submission and Formatting Instructions for ICML 2023

38 BATCH, N_CTX_Q, H, D_HEAD = q.shape
39
40 # Building compact representations
41 q_c, q_idx, iph_q = compact(q_keep, q) # q_c.shape = (BATCH, compact_N_CTX_Q, H)
42 k_c, k_idx, iph_k = compact(k_keep, k) # k_c.shape = (BATCH, compact_N_CTX_KV, H)
43 v_c, _, _ = compact(k_keep, v, index=k_idx) # v_c.shape = (BATCH, compact_N_CTX_KV, H)
44 q_idx_padded = pad_index(q_idx, iph_q, pad_idx=-1) # (B, compact_N_CTX_Q, H)
45 k_idx_padded = pad_index(k_idx, iph_k, pad_idx=1e9) # (B, compact_N_CTX_KV, H)
46
47 # We need to transpose everything
48 q_c = q_c.transpose(1, 2).contiguous() # (BATCH, H, compact_N_CTX_Q, D_HEAD)
49 k_c = k_c.transpose(1, 2).contiguous() # (BATCH, H, compact_N_CTX_KV, D_HEAD)
50 v_c = v_c.transpose(1, 2).contiguous() # (BATCH, H, compact_N_CTX_KV, D_HEAD)
51 q_idx_padded = q_idx_padded.transpose(1, 2).contiguous() # (BATCH, H, compact_N_CTX_Q)
52 k_idx_padded = k_idx_padded.transpose(1, 2).contiguous() # (BATCH, H, compact_N_CTX_KV)
53
54 y_c = qk_sparse_attention_kernel(q_c, k_c, v_c, q_idx_padded, k_idx_padded, sm_scale).transpose(1,2)
55 y = torch.zeros_like(q).scatter(dim=1, index=q_idx.long().view(BATCH,-1,H,1).expand(BATCH, -1, H, D_HEAD),

src=y_c)
56 return y

B.3. Experimental Setup

Models & Baselines. For our language modeling experiments on OpenWebText2, we use a base autoregressive transformer
architecture with 12 layers, a hidden size of 768, 12 heads of 64 dimensions each. For experiments on sequence length
T = 8192, we use a batch size of 96 = 4× 8× 2 (batch size 4 with 8 accumulation steps and data parallelism over 2 node).
When T = 16384 we use a batch size of 30 = 2×5×3. The resulting models are of around 122M parameters. The goal not
being to outperform the state-of-the-art perplexity, we train for 15k iterations. The attention modules used are either using
FlashAttention for the baselines or one of our sparse kernels for our methods. To ensure a fair comparison, and similarly to
Kitaev et al. (2020), we set the keys equal to normalized queries for all of our models. See App. B for more details.

Hardware. All of our timing experiments with random tensors are done on NVIDIA A100 GPUs, using bfloat16. For
our language modeling tasks on OpenWebText2, we trained using data-parallelism on two or three A100s for experiments
with sequence lengths of respectively 8192 and 16384. When comparing runtimes in LM training, we normalize the times
by multiplying by the number of GPUs used. Comparisons with the Reformer are performed on a single A100 or a single
NVIDIA RTX 4090 GPU.

B.4. Sequence Modeling Experiments

Language modeling on OpenWebText2. Our implementation is based on NanoGPT (github.com/karpathy/nanoGPT).
We use the AdamW optimizer (Loshchilov & Hutter, 2019). We used bfloat16 and NVIDIA A100-40GB GPUs for all
our experiments. Here is a list of hyperparameters shared by all our language models (F-LM, H-LM, and D-LM):

• Weight-decay: 0.1

• Depth (number of transformer blocks): 12

• Number of heads: 12

• Dropout: 0.0

• Learning rate: 0.001

• Percentage of iterations for warmup: 2%. We use a cosine learning rate scheduler.

• Adam beta1: 0.9

• Adam beta2: 0.95

• Tokenizer: We use the GPT2 tokenizer provided by the tiktoken library (github.com/openai/tiktoken).

• Hidden dimensions: 768

• Dimensions per head: 64

14



Submission and Formatting Instructions for ICML 2023

Sequential MNIST and enwik8. For the comparisons with Reformer, we use a standard GPT2 (Radford et al., 2019)
implementation. For the language modeling on enwik8, the Transformer has 12 blocks with 768 hidden dimensions, 8
attention heads, and 64 dimensions per head. Dropout is set to 0.1 and the batch size is 8 with 2 gradient accumulation steps.
The sequence length is 4096. For autoregressive image generation on MNIST, we use a smaller model with 8 transformer
blocks and a hidden dimension of 256. Dropout is set to 0.1 and the batch size is 10. We train for 25 epochs.

C. Additional Details and Analysis
Quadratic computational cost of attention in transformers. In Fig. 5 we show the runtime (forward + backward) of a
transformer language model as a function of the sequence length. We separate the time taken by the attention operations
from the time taken by the rest of the model. We see how the attention computation ends up dominating the runtime as the
sequence length increases.

0 5000 10000 15000
Sequence length

0

100

200

300

400

500

600
m

s
Attention
Feed-forward

Figure 5. Quadratic computational cost of self attention dominates for larger sequences. We measure the forward and backward
runtimes for a 12 layers transformer (see App. B.4 for implementation details). Except for the attention operations, the rest of the
transformer runtime grows linearly with the sequence length.

Additional runtimes performances in a vacuum. In Fig. 6 and Fig. 7 we show the runtime details for the forward and
backward methods separately for respectively the Hash-sparse and QK-sparse methods. We also measure runtimes of the
forward and backward passes when we assume the pre and post-processing steps aree free, see Fig. 8.

0 5000 10000 15000 20000 25000 30000 35000
Sequence length

0

50

100

150

200

250

300

350

400

m
s

nb = 2

nb = 4

nb = 8

nb = 16
nb = 32
nb = 64

Hash-sparse (our method)
Flash attention

0 2000 4000
0
2
4
6
8

10

(a) Forward

0 5000 10000 15000 20000 25000 30000 35000
Sequence length

0

100

200

300

400

500

600

700

800

m
s

nb = 2

nb = 4

nb = 8
nb = 16
nb = 32
nb = 64

Hash-sparse (ours)
Flash attention

0 2000 4000
0

5

10

15

20

(b) Backward

Figure 6. Forward and Backward runtimes in a vacuum for our Hash-sparse method. Fig.(a) Forward runtimes for our Hash-sparse
method. Fig.(b): Backward runtimes for our Hash-sparse method.

15



Submission and Formatting Instructions for ICML 2023

0 5000 10000 15000 20000 25000 30000 35000
Sequence length

0

50

100

150

200

250

300

350

400

m
s

20%

30%

40%

50%
60%
70%
80%

0 2000 4000
0
2
4
6
8

10

(a) Forward

0 5000 10000 15000 20000 25000 30000 35000
Sequence length

0

100

200

300

400

500

600

700

800

m
s

20%

30%

40%

50%

60%

70%
80%

QK-sparse (ours)
Flash attention

0 2000 4000
0

5

10

15

20

(b) Backward

Figure 7. Forward and Backward runtimes in a vacuum for our QK-sparse method. Fig.(a) Forward runtimes for our QK-sparse
method. Fig.(b): Backward runtimes for our QK-sparse method.

0 5000 10000 15000 20000 25000 30000 35000
Sequence length

0

200

400

600

800

1000

m
s

20%

30%

40%

50%

60%

70%
80%

0 2000 4000
0
5

10
15
20
25

(a) QK-sparse

0 5000 10000 15000 20000 25000 30000 35000
Sequence length

0

200

400

600

800

1000

1200

m
s

nb = 2

nb = 4

nb = 8
nb = 16
nb = 32
nb = 64

0 2000 4000
0

10

20

(b) Hash-sparse

Figure 8. Forward+Backward runtimes in a vacuum when we assume the preprocessing is free. Fig.(a) Forward+backward runtimes
for our QK-sparse method when the pre and postproceessing steps are free. While the runtimes for large sequences stays relatively the
same compared to Fig. 2, the offset for short sequences is now much smaller. Fig.(b): Forward+backward runtimes for our Hash-sparse
method when the pre and postproceessing steps are free. While the runtimes for large sequences stays relatively the same compared to
Fig. 2, the offset for short sequences is now smaller. Intrestingly, unlike for the QK-sparse method, the offset for smaller sequences stays
significant. We believe this might be due to the influence of the block size used (128): when the sequence length is not large enough in
comparison to the block size, the block structure of the hash-sparse attention matrix cannot be efficiently leveraged and the number of
tiles processed by the Hash-sparse method is larger than that of the FlashAttention method. In contrast, for the QK-sparse method the
good tiles all start from 0 (we know the first tile(s) will be efficiently packed).

16



Submission and Formatting Instructions for ICML 2023

Linear QK-dropping scheduler. In the main paper we show results dropping keys and queries at random with a fixed
pre-defined probability. In an additional experiment we start by dropping 80% of keys and queries at random and linearly
decay this probability to 20%. Our intuition is earlier iterations just aim to learn contextual cues which are very redundant
(and therefore quite immune to random dropping) before requiring more fine-grained representations. In Fig. 9 we show and
analyse the results of that experiment.

0 5000 10000 15000
Iterations

20

30

40

50

60

70

Va
lid

at
io

n
Pe

rp
le

xi
ty

(a) Iter to reach perplexity

0 20 40 60
Time (hours)

20

30

40

50

60

70

Va
lid

at
io

n
Pe

rp
le

xi
ty

(b) Time to reach perplexity

0

5

10

15

It
er

/m
in

on
1

G
PU

×1.9
×1.5

×2.6

×3.5

F-LM
D-LM s = 30%
D-LM s = 80% 7→ 20%

D-LM s = 50%
D-LM s = 70%

(c) Speed gains

Figure 9. Training Language Models (LM) on OpenWebText2 using random Query/Key dropping based sparsity (D-LM) or
FlashAttention over the entire sequence (F-LM). We include the D-LM model with linear decay of s from 80% to 20%. In Fig.(b)
and Fig.(c), we observe the additional D-LM model in yellow is slower than other D-LM models we experimented with, but, as seen in
Fig.(a), reaches a slightly better perplexity.

H-LM models speeding up during training. The speed of Hash-sparse attention is conditioned on the distribution of
bucket indices over keys and queries—e.g. if all the keys and queries were to fall in the same bucket then there would be no
speedup over FlashAttention. Interestingly, when training on real data such as OpenWebText2, we observe our Hash-sparse
based models are speeding up during training. In Fig. 10 we plot the number of iterations reached after x hours of training
(normalizing the time by the number of GPUs used for training). In Fig. 10.(a) we see a speedup for H-LM models early in
the training.

Different bucket sizes nb for H-LM. For sequences of 8192 tokens, we show the influence of increasing the number of
buckets nb in Fig. 11. As nb increases the runtime decreases.

Training H-LMs for more iterations. In Fig. 3 we show results of language models trained on OpenWebText2 for 15k
iterations. To verify whether our finding are consistent when you train for more iterations we also try training for 50k
iterations. For sequences of 8192 tokens, using the same hyperparameters described in App. B.4, we show in Fig. 12 that
our findings for our Hash-sparse based models do hold when training for more iterations—we match the perplexity per
iterations of the baseline model using FlashAttention over the entire sequence while being significantly faster.

Comparisons with Reformer. Fig. 13 shows runtime comparison between our hash-sparse implementation and the
Reformer LSH attention. Table 14 shows the performance on two autoregressive tasks. In Fig. 15 we show the attention
matrices for two different heads and show how the coverage—the percentage of key-query interactions actually computed
vs. what should be computed according to the hash indices computed for keys and queries—of the Reformer LSH algorithm
can be low.

D. Limitations and Societal Impacts
Limitations. The aim of our work is to develop a method for efficiently computing attention with several sparsity structures.
We don’t focus on developing the best method for sparsification, although, for example, we improve the hashing-based
mechanism. Moreover, as already explained, on very small sequences we incur in some constant overhead which limits our
gains.

17



Submission and Formatting Instructions for ICML 2023

0 20 40 60
Time (hours on 1 GPU)

0

5000

10000

15000

It
er

at
io

ns

F-LM
H-LM nb = 8

H-LM nb = 16
H-LM nb = 32

(a) Time comparison H-LM vs. F-LM

0 20 40 60
Time (hours on 1 GPU)

0

5000

10000

15000

It
er

at
io

ns

F-LM
D-LM s = 30%
D-LM s = 80% 7→ 20%

D-LM s = 70%
D-LM s = 50%

(b) Time comparison D-LM vs. F-LM

Figure 10. Training speed as a function of time for H-LM, D-LM and F-LM. All models trained on sequences of 8192 tokens. In
Fig.(b) we observe D-LM models having a fixed speed throughout the experiments except for the one corresponding to the linear decaying
of the sparsity ratio s which slows down during training. In Fig.(a) H-LM models are speeding up early during training and then seem to
keep a constant speed.

T=8192 T = 16384
0

2

4

6

8

10

It
er

/m
in

on
1

G
PU ×1.8

×2.0×2.1

×2.6
×3.3×3.6

F-LM
H-LM nb = 16

H-LM nb = 8
H-LM nb = 32

Figure 11. Influence of the number of buckets nb on H-LM training speed for T = 8192 and T = 16384. In accordance with Fig. 2
increasing nb speeds up the training but the speed gain from doubling nb decreases as nb is increasing.

18



Submission and Formatting Instructions for ICML 2023

10000 15000 20000 25000 30000 35000 40000 45000 50000
Iterations

18

19

20

21

22

23

24

25

26

Va
lid

at
io

n
Pe

rp
le

xi
ty

F-LM
H-LM nb = 16
H-LM nb = 8

(a) Iter to reach perplexity

0

2

4

6

8

10

It
er

/m
in

on
1

G
PU ×1.9

×2.1

F-LM
H-LM nb = 16

H-LM nb = 8

(b) Speed gains

Figure 12. Comparison between H-LM and F-LM when training for 50k iterations on sequences of 8192 tokens. Those curves are
averaged over two seeds. In Fig.(a) we zoom in on the perplexity per iteration for the baseline F-LM and two of our H-LM models using
our Hash-sparse attention with 8 and 16 buckets. We observe that our methods are matching the perplexity of the F-LM model which uses
FlashAttention over the entire sequence. Fig.(b): We match the perplexity but gain in speed, our methods are 1.4× and 1.8× faster than
the baseline for respectively 8 and 16 buckets.

0 20000 40000 60000
Sequence length

0

20

40

60

80

100

m
s

(a) Forward attn. runtimes

0 20000 40000 60000
Sequence length

0.6

0.7

0.8

0.9

1.0

C
ov

er
ag

e

Reformer attention
Flash attention
Hash-sparse (ours)

(b) Coverage of Reformer attn.

Figure 13. Comparing forward runtimes of attention modules alone. Fig.(a):
Reformer attention ensures a linear computational complexity w.r.t. the sequence length,
outperforming FlashAttention for longer sequences. Fig.(b): However, due to the fixed
attention structure, the Reformer misses an increasing fraction of hash collisions. Our
approach outperforms both methods and maintains 100% exact coverage of collisions
for all sequence lengths. See App. B.4 and App. C for more details.

Figure 14. Comparing models using Re-
former attention vs our Hash-sparse atten-
tion. On the simple sequential MNIST task
(predicting pixels as a sequence), we obtain
a comparable perplexity as the Reformer. On
enwik8 character language modeling, with
T=4096, we outperform the Reformer model
by a margin.

Attention MNIST enwik8
(ppl ↓) (bits/c ↓)

Reformer 1.76 3.32
Hash-sparse 1.67 2.29

19



Submission and Formatting Instructions for ICML 2023

Figure 15. Attention pattern of Reformer. The two images show the attention pattern for the Reformer LSH attention after reordering
queries and keys according to the bucket. The red squares are the positions for which attention is computed in the Reformer with bucket
size = 32. The back squares are positions for which the queries and keys map to the same hash bucket. Queries are sampled from a normal
distribution with µ = 3 and

√
σ = 5. Each image refers to a different attention head. Black regions which are not covered by red tiles are

key-query interactions which should be computed but are missed by the Reformer LSH attention.

Societal impacts. The attention mechanism is central to Large Language Models (LLMs). Moreover, efficient attention
mechanisms can make these models more powerful, by making them faster to train and by increasing their context length.
The social impact and risks associated with our work, therefore, are included in the risks associated with the deployment of
such systems (Bender et al., 2021; Weidinger et al., 2021).

20


