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ABSTRACT

We propose a new method for controlling linear dynamical systems under adversarial disturbances and
cost functions. Our algorithm achieves a running time that scales polylogarithmically with the inverse
of the stability margin, improving upon prior methods with polynomial dependence maintaining the
same regret guarantees. The technique, which may be of independent interest, is based on a novel
convex relaxation that approximates linear control policies using spectral filters constructed from the
eigenvectors of a specific Hankel matrix.

1 INTRODUCTION

Controlling linear dynamical systems (LDS) under adversarial disturbances is a core challenge at the interface of control
and online learning, with direct relevance to reinforcement learning, robotics, and sequential decision making. Formally,
given control inputs ut ∈ Rn and disturbances wt ∈ Rd, the state xt ∈ Rd evolves as

xt+1 = Axt +But +wt . (1.1)

At each step a convex cost ct(xt,ut) is revealed, and the learner must choose controls ut to minimize cumulative loss.

The classical Linear Quadratic Regulator (LQR) assumes quadratic costs and i.i.d. stochastic noise Kalman (1960).
These assumptions rarely hold in modern applications, where disturbances and costs may be structured, correlated,
or even adversarial. Consider flying a drone in the wild: the dynamics (A,B) follow physics, but disturbances such
as wind or malfunction are unpredictable. The cost captures both the control objective and the environment, and our
immediate actions must adapt over time. For instance, reaching a target location requires adjusting turns on the fly in
response to other drones, birds, trees, or buildings. Such scenarios call for a more general and robust model of control.
We therefore study the fully adversarial setting, with known time-invariant dynamics, full state observation, and convex
Lipschitz costs, commonly referred to as online control Hazan & Singh (2025).

Minimizing Regret in Control. In adversarial settings, minimizing cumulative cost is generally intractable, as the
decision maker only observes the loss after choosing the control input. Instead, following the standard approach in
online decision making, we aim to compete with the best stationary policy π ∈ Π in hindsight. This is captured by the
notion of regret, defined as

RegretT (A,Π) =

T∑
t=1

ct
(
xA
t ,u

A
t

)
−min

π∈Π

T∑
t=1

ct (x
π
t ,u

π
t ) ,

where xA
t is the state induced by the algorithm’s controls uA

t , and xπ
t is the state under the fixed policy π.

A natural choice for Π is the class of linear state-feedback policies ut = Kxt, standard in control. While optimal
in certain settings, finding the best such controller is a nonconvex problem. We therefore adopt improper learning,
competing with the best linear policy using a broader class.

To enable efficient learning and analysis, it is common to impose structure on the comparator class—for instance, strong
stability (Cohen et al., 2018) or diagonal strong stability (Agarwal et al., 2019b). Following this line, we define in
Definition 3.4 the class of diagonalizably stable policies, which preserves sufficient expressiveness for general LDS
control.
Marginally Stable Comparators: For linear policies ut = Kxt, stability is determined by the spectral radius ρ of
the closed-loop matrix A + BK, with state evolution xt =

∑t
i=1(A + BK)i−1wt−i . While small ρ ensures rapid

decay of disturbances, many applications favor marginal stability, where ρ = 1− γ for small γ. This regime preserves
long-term memory and yields smoother, more energy-efficient control, useful in settings like robotics, thermal systems,
and satellite dynamics. See Section E for an example.
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1.1 OUR CONTRIBUTIONS

Spectral Representation for Control: We introduce Online Spectral Control (OSC), which compresses past distur-
bances into a low-dimensional spectral representation. This viewpoint provides a universal feature map for online
control: it reduces the problem to regression on compact spectral features, enabling a provably more efficient algorithm
that achieves logarithmic dependence on the stability margin while retaining optimal regret guarantees.

Exponential Runtime Improvement: We prove that

RegretT (OSC) ≤ Õ(γ−4
√
T ),

where γ is the stability margin. The runtime scales only polylogarithmically in 1/γ, improving on the polynomial
dependence of GPC (Agarwal et al., 2019a) via fast online convolution (Agarwal et al., 2024a).

Method Regret Time Disturbances Costs

LQR O(1) O(1) i.i.d Fixed Known Quadratic
Online LQ (Cohen et al., 2018) O(γ−2.5

√
T ) O(1) i.i.d Online Quadratic

GPC (Agarwal et al., 2019a) Õ(γ−5.5
√
T ) O(γ−1 log T ) Adversarial Online Convex Lipschitz

OSC (our Algorithm 1) Õ(γ−4
√
T ) O

(
log4

(
γ−1T

))
Adversarial Online Convex Lipschitz

Table 1: Comparison of different control methods. The highlighted row corresponds to our proposed approach. In the
regret bounds, we hide polylogarithmic factors by the notation Õ(·). Our method is the only one to perform in the most
general setting with the best running time.

Empirical Evaluation: Section 5 presents ablations showing that OSC matches or outperforms GPC across a variety of
settings, while using far fewer parameters and integrating naturally with nonlinear models.

1.2 RELATED WORK

Control of Dynamical Systems: Control theory, grounded in deep mathematical foundations and with a long
history of practical applications, dates back to self-regulating feedback mechanisms in ancient Greece. The first
formal mathematical treatment is attributed to James Clerk Maxwell (Maxwell, 1868). For a historical perspective,
see Fernández Cara & Zuazua Iriondo (2003). The problem of stabilizing general dynamical systems has been shown
to be NP-hard (Ahmadi, 2016); see Blondel & Tsitsiklis (2000) for a comprehensive survey on the computational
complexity of control.

Linear Dynamical Systems: Even simple questions about general dynamical systems are intractable. In control,
Lyapunov pioneered the use of linearization to analyze local stability of nonlinear systems (Lyapunov, 1992). The
seminal work of Kalman (1960) introduced state-space methods and showed that any LDS can be controlled under
stochastic assumptions and known quadratic costs.

Online Stochastic Control: Early work in the ML community on control focused on the online LQR setting (Abbasi-
Yadkori & Szepesvári, 2011; Dean et al., 2018; Mania et al., 2019; Cohen et al., 2019), achieving

√
T regret with

polynomial runtime. A parallel line of work (Cohen et al., 2018) studied online LQR with adversarially chosen quadratic
losses, also achieving

√
T regret. In all of these works, regret is measured against the best linear controller in hindsight.

Online Nonstochastic Control: Recent methods for fully adversarial control are surveyed in Hazan & Singh (2025).
These approaches typically learn a parameterized mapping from past disturbances to control inputs, with the number of
parameters—and hence the runtime—scaling polynomially with the inverse of the stability margin. Our work builds on
the setting of Agarwal et al. (2019a), proposing a more efficient algorithm with similar regret guarantees.

Subsequent work has refined the regret bounds under additional assumptions. Agarwal et al. (2019b) established
logarithmic regret for strongly convex costs in the presence of stochastic or semi-adversarial noise, while Foster &
Simchowitz (2020) derived similar guarantees for known quadratic costs under fully adversarial noise.

Beyond the full-information setting, Simchowitz et al. (2020) extended the framework to partial observation, Minasyan
et al. (2022) analyzed adaptive regret in unknown and time-varying systems, and Sun et al. (2023); Suggala et al. (2024)
studied online control with bandit feedback.

Online control has also seen applications in diverse domains, including mechanical ventilation (Suo et al., 2022),
meta-optimization (Chen & Hazan, 2023), and the regulation of population dynamics (Golowich et al., 2024; Lu et al.,
2025).
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Online Convex Optimization: Our method reduces online control to online convex optimization. For background on
regret minimization and online learning, see Cesa-Bianchi & Lugosi (2006); Hazan (2016).

Learning in Linear Dynamical Systems: Hardt et al. (2016) showed that unknown linear dynamical systems (LDSs)
can be learned by applying random Gaussian inputs and optimizing via gradient descent. This approach was later
extended to higher-dimensional and marginally stable systems by Sarkar & Rakhlin (2019). More recently, Bakshi et al.
(2023a) introduced tensor-based methods for learning LDSs, and Bakshi et al. (2023b) extended these techniques to
handle mixtures of LDSs, following the formulation of Chen & Poor (2022). While these tensor-based approaches avoid
dependence on the system’s condition number, their computational complexity still scales with the hidden dimension—a
limitation addressed by recent developments in spectral filtering.

Spectral Filtering: Spectral filtering was originally introduced for sequence prediction in online learning, as a means of
bypassing the non-convexity inherent in learning linear dynamical systems (Hazan et al., 2017; Agarwal et al., 2024b).
Hazan et al. (2018) extended the method to systems with non-symmetric dynamics, though their analysis incurred a
dependence on the hidden dimension. This limitation was subsequently addressed by Marsden & Hazan (2025), who
incorporated autoregressive structure and used Chebyshev polynomial approximations to obtain dimension-free bounds.

While spectral filtering has proven effective in prediction settings, its application to control remains limited. To our
knowledge, the only prior use is by Arora et al. (2018), who applied spectral filtering as a black-box subroutine in the
offline LQR setting with unknown dynamics. In contrast, we address the online control problem, and develop a new
spectral filtering approach applicable to any controllable system (Definition 3.1), competing with the best diagonalizably
stable policy in hindsight (Definition 3.4).

The key technical difference is that, unlike in prediction settings where past responses are available, online control
requires leveraging system stability and integrating over a different set of eigenvalues, resulting in a distinct Hankel
structure (see (2.1)).

2 ALGORITHM AND MAIN RESULT

Our approach employs a convex relaxation of the linear control problem by computing universal spectral filters and
then learning a linear combination of the multiplication of past disturbances with these filters, as described in detail in
Algorithm 1. The spectral filters are universal in the sense that they are independent of the specific linear dynamical
system (LDS) at hand, the initial state, the disturbances, and the cost functions. In fact, they correspond exactly to the
top eigenvectors of the matrix H ∈ Rm×m for some memory m, whose entries are given by

Hij =
(1− γ)i+j−1

i+ j − 1
, (2.1)

where γ is an assumed bound on the system’s instability margin, formally defined in Definition 3.4. We illustrate
the filters in Figure 1. The number of required eigenvectors, denoted by h, also determines the number of learnable
parameters.

Figure 1: Entries of the first six eigenvectors of H500, plotted coordinate-wise.

2.1 ALGORITHM

In Algorithm 1 we learn a mapping from disturbances wt to controllers ut. However, instead of learning a linear
mapping of the disturbances, we learn a linear mapping of a specific matrix product involving the disturbances and the

3
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Algorithm 1 Online Spectral Control Algorithm

1: Input: Horizon T , number of parameters h, memory m, step size η, convex constraints set K ⊆ Rh×n×d.
2: Compute {(σj ,ϕj)}hj=1, the top h eigenpairs of H from Eq. (2.1).
3: Initialize M0

1:h ∈ Rh×n×d.
4: for t = 0, . . . , T − 1 do
5: Define W̃t−1:t−m = [wt−1, . . . ,wt−m] ∈ Rd×m

6: Compute control ut =
∑h

i=1 σ
1/4
i M t

i W̃t−1:t−mϕi

7: Observe the new state xt+1 and record wt = xt+1 −Axt −But.
8: Set M t+1

1:h = ΠK [M t
1:h − η∇M ℓt (M

t
1:h)]

9: end for
10: return MT

1:h

filters. Notably, in line 7 we explicitly leverage our knowledge of the system to compute the disturbances from the
observed state and the chosen controller.

Finally, Algorithm 1 is simply an instance of Projected Online Gradient Descent (Zinkevich, 2003), applied to some
convex set K in which each element is a sequence of h matrices from Rn×d, and the loss functions are the specific
memory-less loss functions ℓt, as in Definition 4.4.

2.2 MAIN RESULT

While we defer the formalization of our assumptions and notations to Section 3, we present our main result here:
Theorem 2.1 (Main Theorem). Let ct be any sequence of convex Lipschitz cost functions satisfying Assumption 3.3,
and let the LDS be controllable (Definition 3.1) and satisfy Assumption 3.2. Then, Algorithm 1 achieves the following
regret bound:

RegretT (OSC,S) = C0C1

√
T

γ4
log3

(
C1Td

γ3

)
,

where S is the class of linear policies defined in Definition 3.4. This result holds under the following choice of inputs:

(i) m =
⌈
1
γ log

(
8C1

√
T

γ3

)⌉
,

(ii) h =
⌈
4 log T log

(
900C1dT

γ3

)⌉
,

(iii) η = C2

√
γ3

Tmh ,

(iv) K is the set from Definition 4.2,

where the constants are defined as follows:

C0 ≤ 103 , C1 = GκBκ
8W 2 , C2 =

√
2κ5

3C1
.

Note that Algorithm 1 maintains at most h = O (polylog (T/γ)) parameters at each step t. Moreover, the matrix
multiplications between W̃t−1:t−m and ϕi (in line 6 of Algorithm 1) for each time step t ∈ [T ], can be computed by
zero-padding ϕi to be T -dimensional and performing online convolution with the disturbance stream {wt}t∈[T ]. Using
the efficient online convolution technique introduced in Agarwal et al. (2024a) for this task, we obtain the following
corollary:

Corollary 2.2. The average running time of each of the T executions of the inner loop in Algorithm 1 is O
(
log4 (T/γ)

)
.

Proof Roadmap. The proof of Theorem 2.1 follows a two-step strategy. First, we show that the class of diagonalizably
stable linear policies can be approximated by a family of spectral controllers with bounded parameters (Lemma 4.3).
Second, we analyze the regret of Algorithm 1, which performs projected online gradient descent over this spectral
policy class. The analysis leverages convexity of the loss functions and boundedness of the feasible set. A high-level
overview of the analysis appears in Section 4, and full proofs are provided in Sections A–D.
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3 PRELIMINARIES

3.1 NOTATION

We use x to denote states, u for control inputs, and w for disturbances. The dimensions of the state and control spaces
are denoted by d = dim(x) and n = dim(u), respectively. Matrices related to the system dynamics and control policy
are denoted by capital letters A,B,K,M . For convenience, we write wt = 0 for all t < 0.

For any t2 ≥ t1, we define W̃t2:t1 ∈ Rd×(t2−t1+1) as the matrix whose columns are wt2 , . . . ,wt1 , in that order.
Additionally, given matrices M1, . . . ,Mh ∈ Rn×d, we define M1:h ∈ Rn×d×h as their concatenation along the third
dimension.

Given a policy π, we denote the state and control at time t by (xπ
t ,u

π
t ) when following π. If π is parameterized by a

set of parameters Θ, and the context makes the inputs clear, we use (xΘ
t ,u

Θ
t ) or (xt(Θ),ut(Θ)) to refer to the same

quantities. For simplicity, we use (xt,ut) without any superscript or argument to refer to the state and control at time t
under Algorithm 1.

3.2 SETTING

We now present the key definitions and outline the assumptions used throughout the paper. Our setting considers
adversarial noise and convex cost functions. We begin by defining controllability:
Definition 3.1. An LDS as in (1.1) is controllable if the noiseless LDS given by xt+1 = Axt +But can be steered to
any target state from any initial state.

Since the disturbances are non-stochastic, we assume without loss of generality that x0 = 0. The following assumptions
formalize the notions of bounded disturbances and Lipschitz continuity of cost functions over bounded domains.
Assumption 3.2. The system matrix B is bounded, i.e., ∥B∥ ≤ κB . The disturbance at each time step is also bounded,
i.e., ∥wt∥ ≤ W .
Assumption 3.3. The cost functions ct(x,u) are convex. Moreover, as long as ∥x∥, ∥u∥ ≤ D, the gradients are
bounded:

∥∇xct(x,u)∥, ∥∇uct(x,u)∥ ≤ GD .

In Definition 3.1 of Cohen et al. (2018), the notion of a (κ, γ)-strongly stable linear policy is introduced. Since our
spectral analysis focuses on diagonalization, in Definition 3.4, we extend this to the notion of (κ, γ)-diagonalizably
stable policies.:
Definition 3.4. A linear policy K is (κ, γ)-diagonalizably stable if there exist matrices L,H satisfying A+BK =
HLH−1, such that the following conditions hold:

1. L is diagonal with nonnegative entries.

2. The spectral norm of L is strictly less than one, i.e., ∥L∥ ≤ 1− γ.

3. The controller and the transformation matrices are bounded, i.e., ∥K∥, ∥H∥, ∥H−1∥ ≤ κ.

We denote by S = {K : K is (κ, γ)-diagonalizably stable} the set of such policies, and, with slight abuse of notation,
also use S to refer to the class of linear policies ut = Sxt where S ∈ S . Each policy in S is fully parameterized by the
matrix K ∈ Rn×d.

Definition 3.4 is similar to diagonal strong stability (Definition 2.3 of Agarwal et al. (2019b)), with the key difference
that we require L to have real eigenvalues.1 Note that by Ackermann’s formula (Ackermann, 1972; Galiaskarov et al.,
2023), there always exists K ∈ S that controls the noiseless system. Finally, we introduce the following assumption for
clarity of presentation, which we later relax in Section D.
Assumption 3.5. The zero policy K = 0 lies in S.2

For simplicity, we assume that κ, κB ,W ≥ 1 and γ ≤ 2/3, without loss of generality.

1The requirement of nonnegative eigenvalues can be relaxed by integrating over a larger set; it is imposed here for ease of
presentation.

2Assumption 3.5 can be relaxed via a simple reduction, as outlined in Section D. Theorem 2.1 holds without this assumption, up
to an additional factor of κ in C1.
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4 ANALYSIS OVERVIEW

We present the proof of our main result here, while deferring the proofs of technical lemmas to the appendix. Before
proceeding, we outline the key technical considerations involved in establishing our final regret bound.

Algorithm 1 learns a convex relaxation of the policy class S , referred to as the spectral policy class, defined as follows:
Definition 4.1. [Spectral Controller] The class of Spectral Controllers with h parameters, memory m and stability γ is
defined as:

ΠSC
h,m,γ =

{
πSC
h,m,γ,M (wt−1:t−m) =

h∑
i=1

σ
1/4
i MiW̃t−1:t−mϕi

}
,

where ϕi ∈ Rm, σi ∈ R are the ith top eigenvector and eigenvalue of H ∈ Rm×m such that Hij =
(1−γ)i+j−1

i+j−1 . Any
policy in this class is fully parameterized by the matrices M1:h ∈ Rn×d×h.

To enable learning via online gradient descent, we require a bounded set of parameters:
Definition 4.2. The set of bounded spectral parameters is defined as

K =

{
M1:h ∈ Rh×n×d |

∥∥xM
t

∥∥ ,∥∥uM
t

∥∥ ≤ 3κ3W

γ
, ∥M1:h∥ ≤ κ3

√
2h

γ

}
.

In Section A, we prove that the spectral policy class can approximate S up to arbitrary accuracy. Formally, we state this
as:
Lemma 4.3. For any linear policy K ∈ S, there exists a SC policy with M ∈ K such that for any ε ∈ (0, 1):

T∑
t=1

∣∣ct(xM
t ,uM

t )− ct(x
K
t ,uK

t )
∣∣ ≤ εT ,

if (i) m =
⌈
1
γ log

(
8C1

εγ3

)⌉
and (ii) h ≥ 2 log T log

(
900C1d
εγ3 log T log1/4

(
2
γ

)
log1/2

(
8C1

εγ3

))
where C1 is as defined

in Theorem 2.1.

We further note that in Algorithm 1, online gradient descent is not performed on the actual cost function, but on a
modified cost function, referred to as the memory-less loss function:
Definition 4.4. We define the memory-less loss function at time t as

ℓt(M1:h) = ct(xt (M1:h),ut (M1:h)) . (4.1)

Classical results in online gradient descent provide a regret bound with respect to loss functions ℓt(M t
1:h). However,

our regret is defined in terms of the actual costs ct(xt,ut). Nevertheless, in Section B.3, we prove that ct(xt,ut) is
well approximated by ℓt(M

t
1:h). We formally state this result as:

Lemma 4.5. Algorithm 1 is executed with η = C2

√
γ3

Tmh . Then for every t ∈ [T ],

∣∣ct(xt,ut)− ℓt(M
t
1:h)
∣∣ ≤ 6C1

√
mh

γ7/2
√
T

log1/4
(
2

γ

)
,

where C1 and C2 are as defined in Theorem 2.1.

Proof of Theorem 2.1. For ε = 1/
√
T , observe that our choice of m and h satisfies the conditions in Lemma 4.3 (using

the fact that T, d, C ≥ 1 and 0 < γ < 1). Hence, using Lemma 4.3 and the Definition 4.4 we get:

min
M⋆∈K

T∑
t=1

ℓt(M
⋆
1:h)− min

K∈S

T∑
t=1

ct(x
K
t ,uK

t ) ≤
√
T ≤ C1

√
T

γ4
log3

(
C1Td

γ3

)
. (4.2)

We now invoke the regret of the Online Gradient Descent, stated in Theorem 3.1 in Hazan (2016). By Lemma B.1 the
set K is convex, and by Lemma B.2 the memory-less loss functions are convex functions. Furthermore, using the bound

6
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on lipschitz constant of the memory-less loss computed in Lemma B.3 and the bound of the diameter of K, for our
choice of η, we get a regret bound. For our choice of h and m, the regret bound evaluates to:

T∑
t=1

ℓt
(
M t

1:h

)
− min

M⋆∈K

T∑
t=1

ℓt (M
⋆
1:h) ≤

384C1

√
T

γ4
log3

(
900C1dT

γ3

)
. (4.3)

Next, Lemma 4.5 gives us the following bound on the difference between the memory-less loss ℓt(M t
1:h) and the cost

incurred by the algorithm ct(xt,ut) for every t ∈ [T ]. Taking the sum over all t ∈ [T ]:

T∑
t=1

ct (xt,ut)−
T∑

t=1

ℓt
(
M t

1:h

)
≤ 24C1

√
T

γ4
log3

(
900C1dT

γ3

)
. (4.4)

Finally, we add equations (4.2),(4.3),(4.4) together to obtain the result.

5 EXPERIMENTS

We compare our method to GPC. Unless otherwise noted, we control an LDS with state dimension d = 10 and a single
control input n = 1. Disturbances are Gaussian and the cost is a fixed quadratic function, randomly generated at t = 0
and normalized by the dimensions. The system matrices are sampled as follows: A is diagonal with entries drawn
uniformly from [0.5, 0.95], and B has entries i.i.d. N (0, 1). Training uses Adam Kingma & Ba (2014) with learning
rate 10−4, β1 = 0.9, β2 = 0.999, and projection onto the unit ball at each step. Performance is averaged over 20 runs,
and we report the mean of the last 100 observed costs at each time step. We report loss (rather than regret), since the
optimal comparator in hindsight is not directly observable for a realized disturbance sequence. Both methods use the
last 50 disturbances as input features; GPC therefore has 50× d parameters, while OSC uses only the top 15 Hankel
eigenvectors, totaling 15× d parameters.

5.1 COMPARISON OF DIFFERENT MODELS AND SYSTEMS

One way to view GPC is as performing linear regression on past disturbances. Analogously, Algorithm 1 can be
interpreted as linear regression on the convolution of disturbances with spectral filters. From this perspective, the
method amounts to linear regression on a more expressive set of features: the spectral filters compress the information
in the disturbances while preserving the structure most relevant for prediction. While we have a solid theoretical
understanding in the linear setting, modern deep learning methods often benefit from richer models. Motivated by
this, we replace the linear model with a neural network operating on the same spectral features, and in this section we
demonstrate the advantages that these features provide.

We evaluate GPC and OSC on both linear and nonlinear systems, and with either a simple linear regression model or an
two-layer ReLU neural network, with 100 hidden units. The nonlinear system (LDS ReLU) follows

xt+1 = ReLU(Axt +But) + wt .

Across settings, OSC uses fewer parameters yet achieves long-run performance comparable to GPC. Hidden layers
improve both methods, showing that spectral features remain effective with nonlinear models and can serve as inputs to
more powerful architectures (e.g., CNNs or Transformers), potentially amplifying their empirical benefits.

5.2 ABLATING STATE DIMENSIONALITY

We study the effect of the state dimension d with control input fixed at n = 1. Figure 3 reports results for d ∈
{2, 5, 10, 20}, with loss normalized by d. Performance degrades as d grows, consistent with the intrinsic difficulty of
controlling larger state spaces through a single input channel.

5.3 ABLATING NUMBER OF PARAMETERS IN OSC

OSC uses far fewer parameters than GPC: with memory 50, GPC requires 50d parameters, whereas OSC uses only hd,
where h is the number of Hankel eigenvectors. Figure 4 shows that performance improves with h up to about h = 20,
beyond which returns diminish. Even with h = 5, OSC is competitive with GPC, and by h = 20 their performance is
nearly identical, highlighting the compactness of spectral features.
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(a) LDS: GPC vs OSC (no hidden units)
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(b) LDS: GPC vs OSC (100 hidden units)
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(c) LDS ReLU: GPC vs OSC (no hidden units)
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(d) LDS ReLU: GPC vs OSC (100 hidden units)

Figure 2: Comparison of GPC and OSC under linear (LDS) and nonlinear (LDS ReLU) dynamics, using either a linear
head (no hidden units) or a 100-unit MLP head.

0 2000 4000 6000 8000 10000
Step

0

20

40

60

80

Lo
ss

d=2
d=5
d=10
d=20

Figure 3: Effect of state dimensionality (loss normalized
by d): higher dimensions make it harder to control an
LDS with a single input.
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Figure 4: Effect of spectral parameters h: even small h
gives strong performance, and by h = 20 OSC matches
GPC with far fewer parameters.
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5.4 ABLATING STABILITY

We now examine how system stability affects performance. We vary the distribution of the diagonal entries of A:
previously drawn uniformly from [0.5, 0.95], and now from [0.5, 0.99] and [0.5, 0.999]. Larger eigenvalues correspond
to a smaller stability margin, making the control problem harder. Figure 5 shows that while overall loss increases in the
less stable regime, OSC and GPC maintain comparable performance.
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(a) Diagonal entries in [0.5, 0.99]
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(b) Diagonal entries in [0.5, 0.999]

Figure 5: Effect of system stability on performance. Smaller stability margins (larger eigenvalues of A) make the
problem harder, but OSC remains competitive with GPC across regimes.

5.5 ABLATING DISTURBANCES

We next study the effect of the disturbance distribution. Beyond Gaussian noise, we consider Rademacher noise (i.i.d.
±1) and a deterministic sinusoid. Figure 6 shows that OSC and GPC behave similarly across disturbance types. When
disturbances follow a simple nonlinear rule (e.g., sinusoid), spectral filtering is less natural than directly learning the
rule, but OSC still remains competitive.
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(a) Rademacher disturbances
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(b) Sinusoidal disturbances

Figure 6: Effect of disturbance distribution on performance. OSC and GPC exhibit similar relative behavior under
random (Rademacher) and structured (sinusoidal) disturbances.

6 CONCLUSION AND DISCUSSION

We introduced a spectral-filtering approach for online control of linear dynamical systems with adversarial disturbances.
By relaxing linear policies into Hankel-based spectral features, we obtain an efficient convex formulation that preserves
optimal regret while greatly reducing runtime and parameters. These spectral features provide compact representations
of dynamics and open the door to integration with modern deep learning models for large-scale control.
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A APPROXIMATION RESULTS

To prove Lemma 4.3, we shall show that the class of (κ, γ)-diagonalizably stable linear policies can be approximated
using Open-Loop Optimal Controllers (Definition A.1) in Lemma A.2. We then show that the class of open-loop
optimal controllers can be approximated by the class of spectral controllers in Lemma A.3. We begin by defining the
class of open-loop optimal controllers as follows:

Definition A.1 (Open Loop Optimal Controller). The class of Open Loop Optimal Controllers of with memory m is
defined as:

ΠOLOC
m =

{
πOLOC
m,K (wt−1:t−m) = K

m∑
i=1

(A+BK)
i−1

wt−i

}
.

Any policy in this class is fully parameterized by the matrix K ∈ Rd×n and the memory m ∈ Z.

Next, we state and prove Lemma A.2, which shows that any linear policy in S can be approximated up to arbitrary
accuracy with an open-loop optimal controller of suitable memory.

Lemma A.2. Let a linear policy K ∈ S. Then, for m ≥ 1
γ log

(
8GκBκ8W 2

εγ3

)
and ε ∈ (0, 1),

T∑
t=1

∣∣∣ct(xK,m
t ,uK,m

t )− ct(x
K
t ,uK

t )
∣∣∣ ≤ ε

2
T ,

∥∥∥xK,m
t

∥∥∥ ,∥∥∥uK,m
t

∥∥∥ ≤ 2κ3W

γ
.

Proof. We begin by bounding the difference in the state and the difference in the control inputs. The difference in
cost is bounded using the fact that the cost functions are lipschitz in the control and state. We begin by unrolling the
expressions for uK

t and xK
t in terms of wt:

uK
t = K

t∑
i=1

(A+BK)i−1wt−i , xK
t =

t∑
i=1

Ai−1wt−i +

t∑
i=1

Ai−1BuK
t−i . (A.1)

Notice that for all t ≤ m, uK
t = uK,m

t and hence xK
t = xK,m

t . For t > m,∥∥∥uK
t − uK,m

t

∥∥∥ =

∥∥∥∥∥K
t∑

i=1

(A+BK)i−1wt−i −K

m∑
i=1

(A+BK)i−1wt−i

∥∥∥∥∥
=

∥∥∥∥∥K
t∑

i=m+1

(A+BK)i−1wt−i

∥∥∥∥∥
≤ κ3W

t∑
i=m+1

(1− γ)i−1 [∆− ineq., C-S]

≤ κ3W

γ
(1− γ)m .

Using this together with (A.1) and the fact that uK
t = uK,m

t for any t ≤ m, we similarly get:∥∥∥xK
t − xK,m

t

∥∥∥ =

∥∥∥∥∥
t∑

i=1

Ai−1B(uK
t−i − uK,m

t−i )

∥∥∥∥∥ =

∥∥∥∥∥
t−m∑
i=1

Ai−1B(uK
t−i − uK,m

t−i )

∥∥∥∥∥ ,
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and by using Assumption 3.5 we can write:∥∥∥xK
t − xK,m

t

∥∥∥ ≤ κBκ
2

∞∑
i=1

(1− γ)i−1
∥∥∥uK

t−i − uK,m
t−i

∥∥∥ ≤ κBκ
5W

γ2
(1− γ)m .

Using the fact that κBκ
2/γ > 1, we get the following uniform bound:

max
{∥∥∥uK

t − uK,m
t

∥∥∥ ,∥∥∥xK
t − xK,m

t

∥∥∥} ≤ κBκ
5W

γ2
(1− γ)m .

Whenever m ≥ 1
γ log

(
κBκ2

γ

)
, which is indeed true from our choice of ε and m, this implies that the∥∥∥xK

t − xK,m
t

∥∥∥ ,∥∥∥uK
t − uK,m

t

∥∥∥ ≤ κ3W/γ. Using Lemma A.4
∥∥xK

t

∥∥ ,∥∥uK
t

∥∥ ≤ κ3W/γ, by triangle inequality∥∥∥xK,m
t

∥∥∥ ,∥∥∥uK,m
t

∥∥∥ ≤ 2κ3W/γ. Thus, the sum of costs is bounded using lipschitzness of ct as follows:

T∑
t=1

∣∣∣ct(xK
t ,uK

t )− ct(x
K,m
t ,uK,m

t )
∣∣∣ ≤ 2Gκ3W

γ

T∑
t=1

(∥∥∥xK
t − xK,m

t

∥∥∥+ ∥∥∥uK
t − uK,m

t

∥∥∥)
≤ 4GκBκ

8W 2

γ3
(1− γ)m · T ≤ ε

2
T . [choice of m]

We shall now prove that every open-loop optimal controller can be approximated up to arbitrary accuracy with a spectral
controller.

Lemma A.3. For every open loop optimal controller πOLOC
K,m such that K ∈ S and

∥∥xK,m
∥∥ ,∥∥uK,m

∥∥ ≤ 2κ3W/γ,
there exists an spectral controller πSC

h,m,γ,M with M ∈ K such that:

T∑
t=1

∣∣∣ct(xM
t ,uM

t )− ct(x
K,m
t ,uK,m

t )
∣∣∣ ≤ ε

2
T .

for any ε ∈ (0, 1) and h ≥ 2 log T log
(

600GκBκ8W 2√md
εγ5/2 log T log1/4

(
2
γ

))
.

Proof. Since K ∈ S, there exists a diagonal L ∈ Rn×n as in Definition 3.4 so that:

uK,m
t = K

m∑
i=1

(A+BK)i−1wt−i = K

m∑
i=1

HLi−1H−1wt−i .

Then write Li−1 =
∑d

j=1 α
i−1
j eje

⊤
j and obtain

uK,m
t = K

m∑
i=1

H

 d∑
j=1

αi−1
j eje

⊤
j

H−1wt−i = K

d∑
j=1

Heje
⊤
j H

−1
m∑
i=1

αi−1
j wt−i .

Recall W̃t−1:t−m = [wt−1, . . . ,wt−m] ∈ Rd×m, define µα = [1, α, . . . , αm−1] ∈ Rm and get

uK,m
t = K

d∑
j=1

Heje
⊤
j H

−1W̃t−1:t−mµαj

= K

d∑
j=1

Heje
⊤
j H

−1W̃t−1:t−m

(
m∑
i=1

ϕiϕ
⊤
i

)
µαj

[
m∑
i=1

ϕiϕ
⊤
i = Im

]

= K

m∑
i=1

 d∑
j=1

Heje
⊤
j H

−1ϕ⊤
i µαj

 W̃t−1:t−mϕi .
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Let πSC
h,m,γ,M∗ be the spectral controller with M∗

i = σ
−1/4
i KH

(∑d
j=1 ϕ

⊤
i µαj

eje
⊤
j

)
H−1 for all i ∈ [h]. Note that

we have
∥M∗

i ∥ ≤ κ3 ·max
ℓ∈[d]

σ
−1/4
j ⟨ϕj ,µαl

⟩ ∀1 ≤ j ≤ m,

and from the analysis of Lemma C.4, we have that σ−1/4
j ⟨ϕj , µ(αl)⟩ ≤

√
2
γ . Thus, ∥M∗

1:h∥ ≤ κ3
√

2h
γ . Then,

∥∥∥uK,m
t − uM∗

t

∥∥∥ =

∥∥∥∥∥∥K
m∑

i=h+1

H

 d∑
j=1

ϕ⊤
i µαj

eje
⊤
j

H−1W̃t−1:t−mϕi

∥∥∥∥∥∥
≤ κ3W

√
m

m∑
i=h+1

d∑
j=1

|ϕ⊤
i µαj

|
[∥∥∥W̃t−1:t−m

∥∥∥ ≤ W
√
m
]

≤ 30κ3W
√
m

√
γ

log1/4
(
2

γ

) m∑
i=h+1

d∑
j=1

exp

(
− π2j

16 log T

)
[Lemma C.4]

≤ 30κ3W
√
md

√
γ

log1/4
(
2

γ

) ∞∫
h

exp

(
− π2j

16 log T

)
dx

≤ 50κ3W
√
md

√
γ

log T log1/4
(
2

γ

)
exp

(
− π2h

16 log T

)
,

∥∥∥xM∗

t − xK,m
t

∥∥∥ =

∥∥∥∥∥
t∑

i=1

Ai−1B(uM∗

t−i − uK,m
t−i )

∥∥∥∥∥
≤ κBκ

2
t∑

i=1

(1− γ)i−1
∥∥∥uM

t−i − uK,m
t−i

∥∥∥ [Assumption 3.5]

≤ 50κBκ
5W

√
md

γ3/2
log T log1/4

(
2

γ

)
exp

(
− π2h

16 log T

)
.

Using the fact that κBκ
2/γ > 1, we get a uniform bound:

max
{∥∥∥xK,m

t − xM∗

t

∥∥∥ ,∥∥∥uK,m
t − uM∗

t

∥∥∥} ≤ 50κBκ
5W

√
md

γ3/2
log T log1/4

(
2

γ

)
exp

(
− π2h

16 log T

)
.

Whenever h ≥ 2 log T log
(

50κBκ2√md√
γ log T log

(
2
γ

))
, which is indeed the case for our choice of ε and h, this implies

that
∥∥∥xM∗

t − xK,m
t

∥∥∥ ,∥∥∥uM∗

t − uK,m
t

∥∥∥ ≤ κ3W/γ. Hence, by triangle inequality
∥∥xM∗

t

∥∥ ,∥∥uM∗

t

∥∥ ≤ 3κ2W/γ. Thus,
the sum of costs is bounded as follows:

T∑
t=1

∣∣∣ct(xM∗

t ,uM∗

t )− ct(x
K,m
t ,uK,m

t )
∣∣∣ ≤ 3Gκ3W

γ

T∑
t=1

(∥∥∥xM∗

t − xK,m
t

∥∥∥+ ∥∥∥uM∗

t − uK,m
t

∥∥∥)
≤ 300GκBκ

8W 2
√
md

γ5/2
log T log1/4

(
2

γ

)
exp

(
− π2h

16 log T

)
· T

≤ ε

2
T . [choice of h]

We conclude the proof of Lemma 4.3 using Lemmas A.2 and A.3 as follows:

Proof of Lemma 4.3: K is a (κ, γ)−diagonalizably stable linear policy and ε ∈ (0, 1). Hence, by Lemma A.2, for the
choice of m =

⌈
1
γ log

(
8GκBκ8W 2

εγ3

)⌉
, we have that

T∑
t=1

∣∣∣ct(xK,m
t ,uK,m

t )− ct(x
K
t ,uK

t )
∣∣∣ ≤ ε

2
T ,

∥∥∥xK,m
t

∥∥∥ ,∥∥∥uK,m
t

∥∥∥ ≤ 2κ3W

γ
.
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Since
∥∥∥xK,m

t

∥∥∥ ,∥∥∥uK,m
t

∥∥∥ ≤ 2κ3W
γ , for any h ≥ 2 log T log

(
600GκBκ8W 2√md

εγ5/2 log T log1/4
(

2
γ

))
, there exists an

M ∈ K such that:
T∑

t=1

∣∣∣ct(xM
t ,uM

t )− ct(x
K,m
t ,uK,m

t )
∣∣∣ ≤ ε

2
T .

In particular, since 2x ≥ ⌈x⌉ for x > 0.5 and since 1
γ log

(
8GκBκ8W 2

εγ3

)
≥ log(8) > 0.5, m ≤ 2

γ log
(

8GκBκ8W 2

εγ3

)
.

Thus, for h ≥ 2 log T log
(

900GκBκ8W 2d
εγ3 log T log1/4

(
2
γ

)
log1/2

(
8GκBκ8W 2

εγ3

))
there exists such an M ∈ K. Using

triangle inequality, we get:
T∑

t=1

∣∣ct(xM
t ,uM

t )− ct(x
K
t ,uK

t )
∣∣ ≤ εT .

□

Finally, we derive the bound on the state and control obtained by following a linear policy from S , which we use in the
proof of Lemma A.2.
Lemma A.4. For any K ∈ S, the corresponding states xK

t and control inputs uK
t are bounded by∥∥xK

t

∥∥ ≤ κ2W

γ
,
∥∥uK

t

∥∥ ≤ κ3W

γ
.

Proof. As in many other parts of this paper, we first write the states as a linear transformation of the disturbances:∥∥xK
t

∥∥ =

∥∥∥∥∥
t∑

i=1

(A+BK)
i−1

wt−i

∥∥∥∥∥
≤

t∑
i=0

(1− γ)
i ∥wt−i−1∥

≤ κ2W

γ
.

Then, since uK
t = KxK

t with ∥K∥ ≤ κ, we obtain the result.

B LEARNING RESULTS

B.1 CONVEXITY OF LOSS FUNCTION AND FEASIBILITY SET

To conclude the analysis, we first show that the feasibility set K is convex and the loss functions are convex with respect
to the variables M1:h. This follows since the states and the controls are linear transformations of the variables.

Lemma B.1. The set K =
{
M1:h ∈ Rh×n×d |

∥∥xM
t

∥∥ ,∥∥uM
t

∥∥ ≤ 3κ3W
γ , ∥M1:h∥ ≤ κ3

√
2h
γ

}
is convex.

Proof. Since xM
t ,uM

t are linear in M1:h, from the convexity of the norm, the fact that the sublevel sets of a convex
function is convex and that the intersection of convex sets is convex, we are done.

Lemma B.2. The loss ℓt(M1:h) is convex in M1:h.

Proof. The loss function ℓt is given by ℓt(M1:h) = ct(xt(M1:h),ut(M1:h)). Since the cost ct is a convex function
with respect to its arguments, we simply need to show that xM

t and uM
t depend linearly on M1:h. The state is given by

xM
t = AxM

t−1 +BuM
t−1 +wt−1 = AxM

t−1 +B

(
h∑

i=1

σ
1/4
i MiW̃t−2:t−m−1ϕi

)
+wt−1 .

By induction, we can further simplify

xM
t =

t∑
i=1

Ai−1wt−i +

t∑
i=1

Ai−1B

h∑
j=1

σ
1/4
j MjW̃t−i−1:t−i−mϕj ,
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which is a linear function of the variables. Similarly, the control ut is given by

uM
t =

h∑
i=1

σ
1/4
i MiW̃t−1:t−mϕi .

Thus, we have shown that xt(M1:h) and ut(M1:h) are linear transformations of M1:h. A composition of convex and
linear functions is convex, which concludes our Lemma.

B.2 LIPSCHITZNESS OF ℓt(·)

The following lemma states and proves the explicit lipschitz constant of ℓt(·).
Lemma B.3. For any M1:h,M

′
1:h ∈ K it holds that,

|ℓt(M1:h)− ℓt(M
′
1:h)| ≤

6GκBκ
5W 2

√
mh

γ2
log1/4

(
2

γ

)
∥M1:h −M ′

1:h∥ .

Proof. Taking the difference in controls:

∥ut(M1:h)− ut(M
′
1:h)∥ =

∥∥∥∥∥∥
h∑

j=1

σ
1/4
j (Mj −M ′

j)W̃t−1:t−mϕj

∥∥∥∥∥∥ ≤ W
√
m log1/4

(
2

γ

) h∑
j=1

∥∥Mj −M ′
j

∥∥ .

By unrolling the recursion, we have:

xt(M1:h) =

t∑
i=1

Ai−1wt−i +

t∑
i=1

Ai−1B

h∑
j=1

σ
1/4
j MjW̃t−i−1:t−i−mϕj ,

Taking the difference,

∥xt(M1:h)− xt(M
′
1:h)∥ =

∥∥∥∥∥∥
t∑

i=1

Ai−1B

h∑
j=1

σ
1/4
j (Mj −M ′

j)W̃t−i−1:t−i−mϕj

∥∥∥∥∥∥
≤

t∑
i=1

∥∥Ai−1
∥∥ ∥B∥

h∑
j=1

|σj |1/4
∥∥Mj −M ′

j

∥∥ ∥∥∥W̃t−i−1:t−i−m

∥∥∥
≤

(
t∑

i=1

κ2(1− γ)i−1κBW
√
m log1/4

(
2

γ

)) h∑
j=1

∥∥Mj −M ′
j

∥∥
≤ W

√
m log1/4

(
2

γ

)(
κ2κB

γ

) h∑
j=1

∥∥Mj −M ′
j

∥∥ .

Using the fact that κBκ
2/γ > 1, we get a uniform bound:

max {∥xt(M1:h)− xt(M
′
1:h)∥ , ∥ut(M1:h)− ut(M

′
1:h)∥} ≤ κBκ

2W
√
m

γ
log1/4

(
2

γ

) h∑
j=1

∥∥Mj −M ′
j

∥∥ .

Using the lipschizness of the cost function from Assumption 3.3, the definition of K, we have

|ℓt(M1:h)− ℓt(M
′
1:h)| = |ct(xt(M1:h),ut(M1:h))− ct(xt(M

′
1:h),ut(M

′
1:h))|

≤ 3Gκ3W

γ
(∥xt(M1:h)− xt(M

′
1:h)∥+ ∥ut(M1:h)− ut(M

′
1:h)∥)

≤ 6GκBκ
5W 2

√
m

γ2
log1/4

(
2

γ

) h∑
j=1

∥∥Mj −M ′
j

∥∥ .

Finally, we upper bound each
∥∥Mj −M ′

j

∥∥ by ∥M1:h −M ′
1:h∥ to get the result.
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B.3 LOSS FUNCTIONS WITH MEMORY

The actual loss ct at time t is not calculated on xt(M
t
1:h), but rather on the true state xt, which in turn depends on

different parameters M i
1:h for various historical times i < t. Nevertheless, ct(xt,ut) is well approximated by ℓt(M

t
1:h),

as stated in Lemma 4.5 and proven next.

Proof of Lemma 4.5: By the choice of step size η, and by the computation of the lipschitz constant of ℓt w.r.t M1:h in
Lemma B.3, we have:

η =
2κ3

L

√
2h

γT
,

where L is the lipschitz constant of ℓt w.r.t M1:h, computed in Lemma B.3. Thus, for each j ∈ [h],

∥M t
j −M t−i

j ∥ ≤ ∥M t
1:h −M t−i

1:h ∥ ≤
t∑

s=t−i+1

∥Ms
1:h −Ms−1

1:h ∥ ≤ iηL = 2iκ3

√
2h

γT
.

Observe that ut = ut(M
t
1:h). We use the fact proved above to establish that xt and xt(M

t
1:h) are close. Observe that

xt and xt(M
t
1:h) can be written as

xt(M
t
1:h) =

t∑
i=1

Ai−1wt−i +

t∑
i=1

Ai−1B

h∑
j=1

σ
1/4
j M t

jW̃t−i−1:t−i−mϕj ,

xt =

t∑
i=1

Ai−1wt−i +

t∑
i=1

Ai−1B

h∑
j=1

σ
1/4
j M t−i

j W̃t−i−1:t−i−mϕj .

Evaluating the difference,

∥xt − xt(M
t
1:h)∥ ≤

t∑
i=1

∥Ai−1∥∥B∥
h∑

j=1

|σj |1/4∥M t−i
j −M t

j∥∥W̃t−i−1:t−i−m∥

≤ 2κ5κBW
√
m log1/4

(
2

γ

)√
2h

γT

t∑
i=1

i(1− γ)i−1

≤ 2κ5κBW
√
mh

γ5/2
√
T

log1/4
(
2

γ

)
.

By definition, ℓt(M t
1:h) = ct(xt(M

t
1:h),ut(M

t
1:h)), and by the definition of K and the projection used in Algorithm 1

we have by Assumption 3.3:∣∣ℓt(M t
1:h)− ct(xt,ut)

∣∣ = ∣∣ct(xt(M
t
1:h),ut(M

t
1:h))− ct(xt,ut)

∣∣
≤ 3Gκ3W

γ
∥xt(M

t
1:h)− xt∥

≤ 6GκBκ
8W 2

√
mh

γ7/2
√
T

log1/4
(
2

γ

)
.

□

C SPECTRAL TAIL BOUNDS

We use the following low-approximate rank property of positive semidefinite Hankel matrices, from Beckermann &
Townsend (2016):

Lemma C.1. [Corollary 5.4 in Beckermann & Townsend (2016)] Let Hn be a PSD Hankel matrix of dimension n.
Then,

σj+2k(Hn) ≤ 16

[
exp

(
π2

4 log(8⌊n/2⌋/π)

)]−2k+2

σj(Hn) .
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Define the matrix

Hm =

1−γ∫
0

µαµ
⊤
αdα ,

where µα = [1, α, . . . , αm−1] ∈ Rm, and note that (Hm)i,j =
(1−γ)i+j−1

i+j−1 . In particular, this is a PSD Hankel matrix
of dimension m. We prove the following additional properties related to it:
Lemma C.2. Let σj be the jth top singular value of Hm. Then, for all T ≥ 10, we have

σj ≤ 156800 log

(
2

γ

)
· exp

(
− π2j

4 log T

)
≤ 1

2
log

(
2

γ

)
.

Proof. We begin by noting that for any j,

σj ≤ Tr(Hm) =

m∑
i=1

(1− γ)
2i−1

2i− 1
≤ (1− γ)

∞∑
i=0

(1− γ)2i

2i+ 1
= (1− γ)

1

2
log

(
2− γ

γ

)
≤ 1

2
log

(
2

γ

)
.

Now, since T ≥ 10 implies 8⌊T/2⌋/π > T , we have by Lemma C.1 that

σ2+2k ≤ σ1+2k < 8 log

(
2

γ

)
·
[
exp

(
π2

2 log T

)]−k+1

< 1120 log

(
2

γ

)
· exp

(
− π2k

2 log T

)
.

Thus, we have that for all j,

σj < 1120 log

(
2

γ

)
· exp

(
−π2(j − 2)

2 log T

)
< 156800 log

(
2

γ

)
· exp

(
− π2j

2 log T

)
.

Lemma C.3. For all T ∈ N and 0 ≤ α ≤ 1− γ, we have:

1. ∥µα∥2 ≤ 1/γ ,

2.
∣∣∣ d
dα ∥µα∥2

∣∣∣ ≤ 2/γ2 .

Proof. The first inequality can obtained by evaluating:

∥µα∥2 =

m∑
i=1

α2i−2 =
1− α2m

1− α2
≤ 1

1− (1− γ)2
≤ 1

γ
.

To obtain the second inequality, observe that in the summation form,
∣∣∣ d
dα ∥µα∥2

∣∣∣ =∑m
i=2(2i− 2)α2i−3 and hence it

monotonically increases with m. Thus, if the limit exists for
∣∣∣ d
dα ∥µα∥2

∣∣∣ as m → ∞ then the limit is the supremum.

Evaluating the derivative for the closed form expression of ∥µα∥2, and taking the supremum, we get:∣∣∣∣ ddα ∥µα∥2
∣∣∣∣ ≤ sup

m∈N

∣∣∣∣ (−2mα2m−1)(1− α2)− (1− α2m)(−2α)

(1− α2)2

∣∣∣∣
= sup

m∈N

∣∣∣∣2α− 2mα2m−1 + 2mα2m+1 − 2α2m+1

(1− α2)2

∣∣∣∣
= lim

m→∞

∣∣∣∣2α− 2mα2m−1 + 2mα2m+1 − 2α2m+1

(1− α2)2

∣∣∣∣
=

2α

(1− α2)2
≤ 2(1− γ)

(1− (1− γ)2)2
≤ 2

γ2
.
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Lemma C.4. Let {ϕj} be the eigenvectors of Hm. Then for all j ∈ [T ], α ∈ [0, 1− γ], and γ ≤ 2/3,

|µ⊤
αϕj | ≤

√
2

γ
σ
1/4
j ≤ 30

√
γ
log1/4

(
2

γ

)
exp

(
− π2j

16 log T

)
.

Proof. Consider the scalar function g(α) = (µ⊤
αϕj)

2 over the interval [0, 1− γ]. First, notice that by definition of ϕj

as the eigenvectors of Hm, and σj as the corresponding eigenvalues, we have∫ 1−γ

0

g(α)dα =

∫ 1−γ

0

(
ϕ⊤
j µα

)2
dα =

∫ 1−γ

0

ϕ⊤
j µαµ

⊤
αϕjdα = ϕ⊤

j Zhϕj = σj .

Since ∥µα∥2 is 2/γ2-lipschitz in the interval [0, 1− γ], and g(α) is its projection on ϕj , g(α) is also 2/γ2-lipschitz.
Note that g(α) is also a non-negative function and integrates to σj over the interval [0, 1− γ]. Say R is the maximum
value achieved by g(α) for all α ∈ [0, 1− γ] then R ≤ ∥µα∥2 ≤ 1/γ. Subject to achieveing the maximum at R, the
non-negative 2/γ2-lipschitz function over [0, 1− γ] with the smallest integral is given by:

∆(α) = max

{
R− 2

γ2
α, 0

}
,

for which
∫ 1−γ

0
∆(α)dα = R2γ2/4 whenever γ ≤ 2/3. Thus, we get that R ≤ 2

γ

√
σj and hence |µ⊤

αϕj | ≤
√

2
γσ

1/4
j .

Using the upper bound on σj from lemma C.2, we get the result.

D STABILIZED SPECTRAL POLICY

Assumption 3.5 restricts us to competing only against systems for which the zero matrix is (κ, γ)-diagonalizably stable.
This implies that there exists a decomposition:

A = HLH−1,

where ∥H∥, ∥H−1∥ ≤ κ, L is diagonal, and ∥L∥ ≤ 1− γ. However, our proofs only require the bound:

∀ i ∈ N, ∥Ai∥ ≤ κ2(1− γ)i,

which holds even if L is not diagonal. In fact, it suffices for the zero matrix to be (κ, γ)-strongly stable, as defined in
Cohen et al. (2018). For completeness, we recall the definition:
Definition D.1 (Definition 3.1 in Cohen et al. (2018)). A linear policy K is (κ, γ)-strongly stable if there exist matrices
L,H such that:

A+BK = HLH−1,

and the following conditions hold:

1. The spectral norm of L is strictly smaller than unity, i.e., ∥L∥ ≤ 1− γ.

2. The controller and the transformation matrices are bounded, i.e., ∥K∥ , ∥H∥ , ∥H−1∥ ≤ κ.

However, the assumption of 0 being a (κ, γ)-strongly stable linear controller can be further relaxed by using a
precomputed (κ, γ)-strongly stable matrix K0. This can be done using an SDP relaxation as described in Cohen et al.
(2018). Given access to a (κ, γ)-strongly stable K0, we learn a stabilized spectral policy using online gradient descent
defined as follows:

uM
t := K0x

M
t +

h∑
j=1

σ
1/4
j MjW̃t−1:t−mϕj .

Consider playing ũt = ut +K0xt instead of ut at each t ∈ [T ]. Observe that the system

xt+1 = Axt +Bũt +wt , (D.1)

when controlled by ũt behaves the same as the system

xt+1 = (A+BK0)xt +But +wt , (D.2)

when controlled by ut. This means that the sequence of states in both the cases is the same. Thus, since the 0 matrix is
a (κ, γ)−strongly stable for system (D.2), the regret of our algorithm on system (D.2) is bounded by our result. By the
structure of our proofs, for system (D.2), each one of
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(i) max
{∥∥∥xK

t − xK,m
t

∥∥∥ ,∥∥∥uK
t − uK,m

t

∥∥∥} ,

(ii) max
{∥∥∥xK,m

t − xM∗

t

∥∥∥ ,∥∥∥uK,m
t − uM∗

t

∥∥∥} ,

(iii) max {∥xt(M1:h)− xt(M
′
1:h)∥ , ∥ut(M1:h)− ut(M

′
1:h)∥} ,

(iv) max {∥xt − xt(M
t
1:h)∥ , ∥ut − ut(M

t
1:h)∥} ,

remains bounded. Observe for any state x and control u, if ũ = u+K0x then:

max {∥x− x′∥ , ∥ũ− ũ′∥} ≤ max {∥x− x′∥ , ∥u− u′∥+ κ ∥x− x′∥} ≤ 2κmax {∥x− x′∥ , ∥u− u′∥} .

Thus, replacing ut(M) with ũt(M) in (iii) and (iv) yields the same bound with an additional factor of 2κ. Now, observe
that uK = Kx = K0x+ (K −K0)x = ũ(K−K0). Define

ũK,m
t := K0xt + (K −K0)

m∑
i=1

(A+BK)i−1wt−i ,

and choose

M̃∗
i = σ

−1/4
i (K −K0)H

 d∑
j=1

ϕ⊤
i µαj

eje
⊤
j

H−1 ∀ i ∈ [h] .

Now, replacing uK
t with ũ

(K−K0)
t , uK,m

t with ũK,m
t and uM∗

t with ũM̃∗

t in (i) and (ii), we get the same bounds with
an additional factor of 2κ. This allows us to conclude that, when competing against the same policy class S , we get an
upper bound on the regret with the same order of growth with respect to T and 1/γ.

E ADVANTAGE OF SMALLER γ

Previous works require a stability margin of γ = Ω(1/polylog(T )) to ensure an O(polylog(T )) running time. In
contrast, this work shows that setting γ = Ω(1/T k) for k ∈ (1, 1/12) maintains sublinear regret while still guaranteeing
an O(polylog(T )) running time. In this section, we construct an example demonstrating that choosing γ = 1/T k for
k ∈ (0, 1/12) results in significantly lower aggregate loss compared to γ = 1/polylog(T ). Consider a noiseless linear
dynamical system with parameters a, b ∈ R, governed by the update equation:

xt+1 = axt + but .

The loss function at each time step is defined as:

∀ t ∈ [T ], ct(x, u) = max{−x,−1}.

Since this is a scalar system, for sufficiently large κ, the class of (κ, γ)-diagonalizably stable controllers reduces to:

S(γ) = {k ∈ R | 0 ≤ a+ bk ≤ 1− γ} .

If the initial state x0 = 1, then:

min
k∈S(γ)

T∑
t=1

ct(xt, ut) = min
k∈S(γ)

T∑
t=1

(−xt) = − max
k∈S(γ)

T∑
t=1

(a+ bk)t−1 = −
T∑

t=1

(1− γ)t−1 = −1− (1− γ)T

γ
.

Using the fact that 0 ≤ 1− γ ≤ e−γ , we can upper and lower bound this expression as:

− 1

γ
≤ min

k∈S(γ)

T∑
t=1

ct(xt, ut) ≤ −1− e−γT

γ
.

Using the lower bound,

min
k∈S(1/polylog(T ))

T∑
t=1

ct(xt, ut) ≥ −polylog(T ) ,

and using the upper bound,

min
k∈S(1/Tk)

T∑
t=1

ct(xt, ut) ≤ −T k(1− e−T (1−k)

) ≤ −T k/2 .
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Hence, the difference in the minimum costs of the two cases is lower bounded as:

min
k∈S(1/polylog(T ))

T∑
t=1

ct(xt, ut)− min
k∈S(1/Tk)

T∑
t=1

ct(xt, ut) ≥ T k/2− polylog(T ) = Ω(T k/2) .

Thus, choosing γ = 1/T k results in a significantly lower cost for the best controller in the policy class S(γ) (which we
compete against) compared to the case when γ = 1/polylog(T ). In particular, the improvement is by a polynomial
factor in T .

F USE OF LARGE LANGUAGE MODELS

We used a large language model (ChatGPT) to assist with editing and polishing the writing of this paper. Specifically,
the model was used to improve clarity, conciseness, and readability of some sections. All technical content, proofs,
algorithms, and experiments were developed entirely by the authors. The model did not contribute to research ideation,
discovery, or experimental design.
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