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Abstract

The reliability of large language models re-001
mains a critical challenge, particularly due to002
their susceptibility to hallucinations and fac-003
tual inaccuracies during text generation. Exist-004
ing solutions either underutilize models’ self-005
correction with preemptive strategies or use006
costly post-hoc verification. To further explore007
the potential of real-time self-verification and008
correction, we present Dynamic Self-Verify De-009
coding (DSVD), a novel decoding framework010
that enhances generation reliability through011
real-time hallucination detection and efficient012
error correction. DSVD integrates two key013
components: (1) parallel self-verification ar-014
chitecture for continuous quality assessment,015
(2) dynamic rollback mechanism for targeted016
error recovery. Extensive experiments across017
five benchmarks demonstrate DSVD’s effec-018
tiveness, achieving significant improvement in019
truthfulness (Quesetion-Answering) and fac-020
tual accuracy (FActScore). Results show the021
DSVD can be further incorporated with ex-022
isting faithful decoding methods to achieve023
stronger performance. Our work establishes024
that real-time self-verification during genera-025
tion offers a viable path toward more trustwor-026
thy language models without sacrificing practi-027
cal deployability.028

1 Introduction029

Large Language Models (LLMs) have demon-030

strated remarkable capabilities across various nat-031

ural language processing (NLP) tasks, including032

question-answering, summarization, and conversa-033

tion generation (OpenAI et al., 2024; DeepSeek-AI034

et al., 2025; Touvron et al., 2023). Despite their035

impressive performance, these models frequently036

suffer from reliability issues manifested through037

hallucinations and factual inaccuracies (Kadavath038

et al., 2022; Xiong et al., 2023; Gekhman et al.,039

2024; Li et al., 2024). These deficiencies pose040

significant practical concerns as users may unwit-041
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Figure 1: Comparative analysis of different decoding
strategies: (a) Direct decoding leaves existing errors
unexploited. (b) Baseline backtrack decoding propa-
gates geographic hallucination and incurs high compu-
tation costs. (c) Our dynamic approach corrects "New
Zealand"→"Australia" with minimal overhead.

tingly trust erroneous information presented in the 042

models’ confident and coherent outputs. 043

Recent advancements in faithful generation have 044

shifted focus towards inference-stage interven- 045

tions (Liang et al., 2024; Luo et al., 2024; Chen 046

et al., 2024a). Researchers recognize that even 047

models containing factual knowledge during pre- 048

training often fail to access this information dur- 049

ing generation reliably. Decoding-time adjustment 050

strategies present a promising direction, offering 051

more cost-effective solutions compared to super- 052

vised fine-tuning (SFT), which requires substan- 053

tial computation, or retrieval-augmented genera- 054

tion (RAG), which necessitates an external knowl- 055

edge base. As illustrated in Figure 1, existing 056

faithful generation approaches can be categorized 057
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Dataset
Probing

w/o Response
Probing

w/ Response

SciQ 64.86 87.21
CoQA 62.98 76.88
TriviaQA 68.33 75.66

Table 1: Experiment results of validating our insights:
delayed awareness of hallucinations, the metric is AU-
ROC. More details and analysis are in Appendix D

.

into two paradigms: Direct Decoding methods058

(e.g., ITI (Li et al., 2023a), DoLa (Chuang et al.,059

2024), TruthX(Zhang et al., 2024b)) steer model060

outputs toward truthful directions by manipulat-061

ing internal representations, leveraging the model’s062

inherent truthful priors. While effective, these ap-063

proaches fail to leverage the model’s ability for self-064

correction of errors and reflective reasoning, leav-065

ing the model powerless against error accumula-066

tion. Backtracking Decoding methods (e.g., Self-067

Refine (Madaan et al., 2023a), Reflexion (Shinn068

et al.)) employ post hoc verification of generated069

content, but existing implementations suffer from070

significant computational overhead and vulnera-071

bility to error accumulation, where initial errors072

propagate into subsequent generations through self-073

reinforcing mechanisms.074

To address these limitations, we propose075

Dynamic Self-Verify Decoding (DSVD), a novel076

decoding strategy that incorporates real-time self-077

verification with dynamic rollback mechanisms.078

Our approach builds on key insights: (1) Delayed079

Awareness of Hallucinations: models demon-080

strate superior ability in detecting existing errors081

compared to preemptively preventing them, as082

shown in 1, and (2) Local Error Correction is083

more Efficient: localized rollback enables error084

correction at their source, offering higher efficiency085

than global rewriting. The method mirrors human086

behavioral patterns: speculating, verifying, and087

refining the consequences before reaching a con-088

clusion. More specifically, the framework operates089

through two components: 1) Fine-grained halluci-090

nation detector trained on model-generated pseudo-091

labels; and 2) Parallel self-verification and dynamic092

rollback mechanism enabling real-time hallucina-093

tion detection and error correction.094

Our experimental evaluation across multiple095

LLM architectures (LlaMA-2, LlaMA-3, Qwen-096

2.5) and benchmarks (TruthfulQA, StrQA, SciQ,097

EntityQuestions, FActScore) demonstrates consis- 098

tent improvements in truthfulness and factual ac- 099

curacy while maintaining computational efficiency. 100

Notably, DSVD shows complementary benefits 101

when combined with existing direct generation 102

methods, suggesting orthogonal mechanisms of 103

action. Our key contributions include: 104

• We propose a straightforward yet intuitive 105

semi-supervised hallucination labeling ap- 106

proach for fine-grained self-feedback. 107

• We propose Dynamic Self-Verify Decoding: 108

a novel decoding strategy that enables parallel 109

self-verification and dynamic self-correction. 110

• Comprehensive experiments across diverse 111

LLMs and evaluation metrics reveal consis- 112

tent performance improvements of DSVD. 113

2 Related Work 114

2.1 Faithful Decoding 115

In recent years, a series of studies have focused on 116

leveraging truthful distribution to intervene in the 117

model’s next-token prediction. Some research has 118

explored directing the model’s generation towards 119

a "more truthful" direction through representation 120

editing. ITI (Li et al., 2023a) trains probing heads 121

to identify a set of more truthful attention heads 122

and enhances the weights of these heads during in- 123

ference. TrFr (Chen et al., 2024b) proposed the ap- 124

plication of multi-dimensional orthogonal probes, 125

which effectively extract features from both truth- 126

ful and non-truthful texts to better identify effective 127

attention heads. TruthX (Zhang et al., 2024b) not 128

only targets attention heads but also latent states in 129

the forward feedback layer. By separately mapping 130

these states using truthful and semantic encoders. 131

Another line of research investigates contrastive 132

decoding for faithful generation. The pioneer- 133

ing work by (Li et al., 2023b) introduced Con- 134

trastive Decoding, which selects optimal tokens 135

by contrasting probability distributions from ex- 136

pert and amateur models. Building on this foun- 137

dation, DoLa (Chuang et al., 2024) enhanced the 138

framework by incorporating intermediate layer rep- 139

resentations, thereby improving early-stage reason- 140

ing consistency and pre-answer alignment through 141

its Decoding-by-Contrasting-Layers mechanism. 142

SLED proposed by (Zhang et al., 2024a) inte- 143

grates latent knowledge into logits via single-step 144

gradient-like operation instead of replacing original 145

outputs in DoLa during inference. 146

2



Our Innovation: The direct decoding methods147

mostly intervene before the model predicts the next148

token, thus the model’s self-awareness and self-149

feedback capabilities regarding hallucinations are150

unexploited, while DSVD intervene after the model151

encounter hallucination and thus fully utilize the152

self-reflection ability of large language models.153

2.2 Self Feedback154

Studies on self-feedback utilize the Large Lan-155

guage Model itself as a critic, enabling the model156

to generate feedback on its responses and further157

refine those responses based on the generated feed-158

back. Self-Refine (Madaan et al., 2023a) simply159

uses the LLM in SelfEvaluate(·) to generate tex-160

tual feedback. Reflexion (Shinn et al.) makes161

progress by regarding iterative refinement as Verbal162

Reinforcement Learning without weight updates.163

Self-Correct (Welleck et al., 2022) uses the same164

framework but trains a Corrector model for better165

feedback. Yet, due to not being task-agnostic and166

the need for training, it reduces the framework’s167

flexibility.168

Our Innovation: Traditional self-feedback ap-169

proaches incur significant overhead by operating170

through textual critique generation. DSVD circum-171

vents these limitations through two innovations:172

(1) direct utilization of internal consistency signals173

as implicit feedback, avoiding costly text gener-174

ation cycles; (2) localized correction via hidden175

state rollback instead of full-sequence regeneration176

reducing computation cost compared to prior meth-177

ods. More comparisons and discussions with other178

related work can be found in Appendix A179

3 Dynamic Self-Verify Decoding180

The dynamic self-verify decoding pipeline has two181

main steps. First, create a specialized hallucination182

detector. This detector analyzes the LLM’s internal183

states to measure its prediction confidence. Second,184

use the hallucination detector during decoding. It185

serves as an alert for when the model might halluci-186

nate and as a penalty term when the model samples187

to improve predictions. This section first formal-188

izes the detector’s construction process and then189

explains in detail how we use it as an indicator and190

penalty term during the model’s decoding process.191

3.1 Train Fine-grained Hallucination Detector192

Inspired by the recent work on the internal consis-193

tency of large language models(Liang et al., 2024),194

we create a specialized fine-grained hallucination 195

detector for each large language model in a semi- 196

supervised manner. We train a group of probing 197

heads with LLM’s internal states using a certain 198

number of self-generated samples. The hallucina- 199

tion detector is created in the following steps: 200

Fine-Grained Train Data Construction First, 201

we select the training split of a general domain 202

question-answer bank EntityQuestions (Sciavolino 203

et al., 2021) with correct standard answers. Ini- 204

tially, the model is utilized to generate responses. 205

Subsequently, the Rouge-L metric (Lin, 2004) is 206

computed between the generated response and the 207

ground truth. To avoid the influence of noise in the 208

data, we differentiate between correct and incorrect 209

responses by identifying those with an F1-measure 210

value of Rouge-L greater than 0.8 and less than 0.2 211

respectively. For correct responses, we simply as- 212

sign a label of zero to each token within them. For 213

incorrect responses, we identify hallucinated points 214

by calculating each token’s conditional probability 215

of generating ground truth tokens. Specifically, if a 216

token position shows a significantly higher proba- 217

bility of producing ground truth tokens compared 218

to other positions but fails to do so, we mark it as 219

a hallucination point. We will elaborate on this 220

process in detail below. 221

Consider a model’s incorrect response X = 222

(x0, x1, x2, · · · , xN ), where N indicates the num- 223

ber of tokens within the response and xi is the indi- 224

vidual token it contains. Similarly, the ground truth 225

tokens are identified as G = (g0, g1, g2, · · · , gM ) 226

with M tokens and gi represent tokens in it. For 227

each response, we calculate the score of hallucina- 228

tion occurrence at the position i as: 229

Pgt
i =

M∑
j=0

log(p(gj |x0 : xi−1, g0 · · · gj−1)) (1) 230

Pgt
i is the score of hallucination occurrence, 231

i represents the position index of the token. 232

p(gj |x0 · · ·xi−1, g0 · · · gj−1) is the conditional 233

probability of the j-th ground truth tokens with 234

i response tokens as its prefix. Then we assign 235

token-level labels yi for each token within the re- 236

sponse in: 237

yi =


0, if i < argmax(Pgt)
1, if i = argmax(Pgt)
−1, if i > argmax(Pgt)

(2) 238
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Figure 2: Illustration of the Dynamic Self-Verify Decoding Framework: Step 1: Parallel hallucination detection
through trained probing heads, operating concurrently with the LM Head’s next-token prediction; Step 2: Dynamic
rollback to pre-hallucination positions upon error detection; Step 3: Sample candidate continuation with probing-
head-derived penalty terms for re-ranking; Step 4: Resumption of the decoding process with revised token sequences.

The highest Pgt
i in the response is selected as the239

hallucination occurrence point of the response. We240

construct the training dataset by splitting it into241

correct and hallucinated responses in a 50/50 ratio.242

Model Architecture and Training Detail Af-243

ter extensive experiments, we use a combination244

of L probing heads to predict fine-grained hal-245

lucinations *. Each of these probing heads is a246

two-layer MLP with a binary classification out-247

put, denoted as ϕ = (ϕ0, ϕ1, · · · , ϕL). During248

the forward process of LLM, we save the hidden249

states output by all model layers, represented as250

H = (h0, h1, · · · , hL). We calculate probing log-251

its for each layer, average them across all layers252

and apply a softmax function to obtain the binary253

probability zi, expressed as:254

zi = softmax(
1

L

L∑
l=0

ϕl(hli)) (3)255

where zi = (zhallui , zcorrecti ) are the binary probing256

probability of each token at position i. We utilize257

*We experimented with various probing-head architec-
tures and present the detailed results in the Appendix E.

the focal loss during training, which has a form of: 258

FL(zti) = −(1− zti)
γ log(zti) (4) 259

where t is the class index, zti is the probing proba- 260

bility for a token at position i and γ is the focusing 261

parameter. During the training, we use the AdamW 262

optimizer with a learning rate of 1e-4, we set γ = 2 263

in Eq.4 and train each model for 10 epochs. 264

3.2 Decoding with Dynamic Self-Verification 265

Decoding and Verifying in Parallel During in- 266

ference, our framework enables real-time halluci- 267

nation detection by leveraging the trained probing 268

heads and the LLM’s intermediate hidden states. 269

As illustrated in Figure 2, the probing heads share 270

the LLM’s internal states with the language mod- 271

eling head, enabling parallel computation of: 1) 272

next token prediction via the LM head; 2) probing 273

probability via Eq. 3. This architectural design in- 274

troduces negligible latency (measured at only 5% 275

extra latency in our experiments) as both compo- 276

nents utilize the same hidden states. 277

Dynamic Rollback Mechanism We implement 278

the dynamic rollback mechanism by setting a slid- 279

ing window that moves along with the currently 280
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Algorithm 1 Dynamic Self-Verify Decoding

1: Input: LLM θ, Probing heads ϕ, Inputs x,
rollback size r, sample length m, search width
k, penalty intensity α

2: Initialize: generated sequence s← x, current
position t← |x|, sliding windowW ← ∅

3: while t < tmax and xt ̸= <EOS> do
4: Compute LM Probabilities pt+1 = θ(ht)
5: Compute zt = ϕ(ht) via Eq. 3
6: W ←W ∪ {zhallut }
7: if ∃zi ∈ W : zhallui > 0.5 then
8: Rollback to position xt−r

9: Generate candidates S
10: for each candidate sj ∈ S do
11: Compute f(sj) via Eq. 7
12: end for
13: Update s← sbest from Eq. 8
14: t← |s|,W ← ∅
15: else
16: Append xt+1 = argmax pt+1 to s
17: t← t+ 1
18: end if
19: end while
20: Return: Generated sequence s

predicted token with a configurable window size r:281

W = {zt−r+1, ..., zt} (5)282

where t stands for the current generation length and283

zi is the probing probability in Eq. 3. The system284

triggers rollback when any element inWt exceeds285

the threshold:286

∃zi ∈ W : zhallui > 0.5⇒ Rollback to xt−r (6)287

The dual motivation for this design stems from our288

key observations:289

1. Semantic Completeness Requirement: Indi-290

vidual tokens lack sufficient semantic context291

for reliable hallucination detection. For in-292

stance, consider the partial generation "locate293

in New ZeaLand" – the substring "locate in294

New" may appear anomalous but requires sub-295

sequent tokens for proper validation.296

2. Delayed Error Identification: Through con-297

trolled experiments (see Section 4.4), we dis-298

covered that LLMs typically recognize their299

own errors a few tokens after the initial mis-300

take. The sliding window mechanism accom-301

modates this inherent latency while maintain-302

ing computational efficiency.303

Probing probability as A Penalty Following 304

rollback operations, we employ a sampling algo- 305

rithm (we use beam search by default) to generate 306

k candidate continuations S = {s1, s2, ..., sk} of 307

length m for correction. The probing probabili- 308

ties zhallu are incorporated as penalty terms in the 309

scoring function to prioritize candidates with lower 310

hallucination risk. For each candidate sequence 311

containing tokens si=(xt0 , ..., xt0+m), where t0 de- 312

notes the rollback position, we compute the penal- 313

ized log-probability score: 314

f(sj) =
m∑

i=t0

[
log(p(xi|x<i)− α log(zhallui )

]
(7) 315

where p(xi|x0 · · ·xi−1) represents the standard lan- 316

guage modeling probability, and α ∈ R+ controls 317

the penalty intensity inspired by contrastive decod- 318

ing approaches (O’Brien and Lewis, 2023). The 319

optimal continuation sbest is selected through: 320

sbest = argmax
sj∈S

f(sj) (8) 321

4 Empirical Evaluation 322

In this part, we evaluate the efficacy of dynamic 323

self-verify decoding in both short-form Q&A sce- 324

narios and long-form text generation scenarios. 325

4.1 Experiment Setup 326

Datasets & Metric: For short-form Q&A scenar- 327

ios evaluation, we adopt the open-ended genera- 328

tion task of TruthfulQA (Lin et al., 2022), Entity 329

Questions (Sciavolino et al., 2021), SciQ(Welbl 330

et al., 2017) and StrategyQA (Geva et al., 2021). 331

For Entity Questions, SciQ, and StrategyQA, we 332

adopt the factual accuracy evaluation by compar- 333

ing the model’s responses with the ground truth. 334

For TruthfulQA, we follow the evaluation protocol 335

described in (Chuang et al., 2024; Li et al., 2023a), 336

employing finetuned-GPT to assess the truthful- 337

ness, informativeness of the generated outputs. For 338

long-form text generation scenarios, we employ 339

the FACTSCORE benchmark (Min et al., 2023). 340

FACTSCORE assesses the accuracy of LLMs in 341

generating biographies by breaking down the pro- 342

duced biographies into atomic facts and comparing 343

them to known sources. Specifically, we provide 344

the factual precision score for analysis. More eval- 345

uation details can be found in the Appendix C. 346
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TruthfulQA Question Answering FACTSCORE
h Model Truth (%) Info (%) T*I (%) StrQA SciQ EntQ Score

llama2-7b-chat 36.9 86.2 31.9 63.6 59.8 29.3 32.6
+ ITI 41.7 77.2 32.4 55.7 41.7 19.8 22.6
+ DoLa 42.1 98.3 41.4 62.1 61.3 29.5 32.7
+ TruthX 61.1 74.1 45.2 57.6 55.0 25.7 32.1
+ Self-Refine 39.4 93.6 36.9 66.2 61.2 29.7 32.9
+ DSVD(Ours) 56.3 85.9 48.4 67.7 61.8 30.7 33.3

llama3-8b-it 61.8 80.4 49.7 77.2 65.1 36.6 35.9
+ ITI 65.5 78.4 51.3 71.2 63.2 36.0 31.1
+ DoLa 62.2 82.0 51.0 76.9 65.4 36.6 36.4
+ Self-Refine 62.7 82.1 51.5 69.3 65.4 36.8 36.9
+ DSVD(Ours) 64.5 81.0 52.3 77.7 66.4 37.1 37.7

qwen2.5-7b-it 86.3 32.9 28.4 77.6 72.0 26.1 25.6
+ DoLa 87.3 27.1 23.6 76.1 70.6 24.3 24.9
+ Self-Refine 87.1 32.7 28.4 78.1 71.8 26.4 27.3
+ DSVD(Ours) 85.8 33.7 28.9 78.7 72.7 26.9 28.1

Table 2: Experimental results on 1) TruthfulQA, 2) Question Answering dataset, including StrategyQA (StrQA),
SciQ, Entity Questions (EntQ) and 3) FACTSCORE benchmark. T ∗ I stands for %Truth ∗ Info in TruthfulQA.

Model llama2-7b-chat llama3-8b-it

Method ITI
ITI

+ Ours
DoLa

DoLa
+ Ours

TruthX
TruthX
+ Ours

ITI
ITI

+ Ours
DoLa

DoLa
+ Ours

StrQA 55.7 58.1 62.1 67.8 57.6 58.9 71.2 74.5 76.9 77.5
SciQ 41.7 45.1 61.3 62.4 55.0 55.2 63.2 64.2 65.4 66.7
EntQ 19.8 23.8 29.5 31.0 25.7 27.8 36.0 36.9 36.6 37.2

Table 3: Experimental results on incorporating DSVD with existing direct faithful decoding methods.

Models & Baselines: We evaluate our methods347

on different model families. including the Llama-2,348

Llama-3 and Qwen models. We adopt four rep-349

resentative baselines: we select 1) the standard350

greedy decoding method as the most basic base-351

line, for direct decoding methods, we select 2) In-352

ference Time Intervention (Li et al., 2023a), 3)353

DoLa (Chuang et al., 2024) and 4) TruthX (Zhang354

et al., 2024b). for backtrack decoding methods, we355

choose 5) Self-Refine (Madaan et al., 2023b)356

Implementation Details: To construct the train-357

ing data, we use the train split of the Entity Ques-358

tions. For each question, we generate a response359

with a maximum of 50 tokens. For the hyper-360

parameter of our method, we set sample number361

k = 5, rollback window size r = 10, sample length362

m = 20, and penalty term α = 0.1 and we em-363

ploy beam search as the sampling algorithm of our364

method. More detail is in Appendix B.365

4.2 Main Results 366

DSVD improve the truthfulness of the model’s 367

prediction We present the main experiment re- 368

sults on TruthfulQA and three question-answering 369

benchmarks in Table 2. As shown in the table, our 370

method achieves significant improvements across 371

multiple metrics compared to baseline approaches. 372

Specifically, DSVD substantially enhances the 373

"Truth*Info" metric (T*I) by 16.5% (48.4 vs. 31.9) 374

for Llama-2-7B-Chat and maintains superior per- 375

formance over other decoding variants for Llama- 376

3-8B-IT (+0.8% T*I) and Qwen2.5-7B-IT (+0.5% 377

T*I). Notably, while methods like DoLa tend to 378

sacrifice informativeness (Info%) for truthfulness, 379

DSVD strikes a better balance-for Llama-2-7B- 380

Chat, it achieves the highest Truth% (56.3%) while 381

maintaining 85.9% informativeness, demonstrat- 382

ing its effectiveness in generating both truthful and 383

informative responses. 384
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TruthfulQA Question Answering FACTSCORE
Model Truth (%) Info (%) T*I (%) StrQA SciQ EntQ Score

Llama-2-7B-Chat 36.9 86.2 31.9 63.6 59.8 29.3 32.6
+ DSVD(Ours) 56.3 85.9 48.4 67.7 61.8 30.7 33.3
+ Ablation 1 55.7 85.4 47.6 67.1 61.5 30.4 33.1
+ Ablation 2 46.7 62.5 29.2 63.1 58.4 29.2 31.2

Llama-3-8B-IT 61.8 80.4 49.7 77.2 65.1 36.6 35.9
+ DSVD(Ours) 64.5 81.0 52.3 77.7 66.4 37.1 37.7
+ Ablation 1 64.5 81.0 52.3 76.9 66.4 36.8 37.1
+ Ablation 2 62.1 80.2 49.8 77.0 64.9 36.4 36.4

Qwen2.5-7B-IT 86.3 32.9 28.4 76.2 72.0 26.1 25.6
+ DSVD(Ours) 85.8 33.7 28.9 78.7 72.7 26.9 28.1
+ Ablation 1 85.2 33.7 28.7 78.3 72.7 26.4 26.9
+ Ablation 2 85.4 32.9 28.1 77.2 71.8 25.9 25.1

Table 4: Ablation Study: Performance comparison of DSVD against its ablated variants, demonstrating the
importance of the revision mechanism and probing heads in maintaining model truthfulness and factual accuracy.

DSVD improve the model’s factuality in long-385

form open-ended text generation We display386

the primary results on FACTSCORE in Table 2.387

DSVD consistently boosts factuality scores across388

all model architectures, achieving absolute im-389

provements of +0.7 (Llama-2), +1.8 (Llama-3),390

and +2.8 (Qwen) points respectively. This demon-391

strates our method’s robustness in reducing fac-392

tual hallucinations during extended text genera-393

tion. Particularly noteworthy is DSVD’s perfor-394

mance on Qwen2.5-7B-IT, where it achieves a 28.1395

FActScore despite the base model’s low initial fac-396

tuality (25.6). The progressive improvement across397

different model scales and architectures suggests398

that our decoding strategy effectively mitigates fac-399

tual errors regardless of the underlying model’s400

knowledge capacity.401

DSVD can be incorporated with existing faith-402

ful decoding methods Table 3 demonstrates the403

compatibility and effectiveness of DSVD when404

combined with existing faithful decoding meth-405

ods. When integrated with DoLa, DSVD con-406

sistently improves performance across all evalu-407

ated benchmarks. For Llama2-7b-chat, DSVD-408

enhanced DoLa achieves significant gains of +5.7%409

on StrQA (67.8 vs. 62.1), +1.1% on SciQ (62.4410

vs. 61.3), and +1.5% on EntQ (31.0 vs. 29.5).411

Similarly, for Llama3-8b-it, the combination of412

DoLa and DSVD yields improvements of +0.6%413

on StrQA (77.5 vs. 76.9), +1.3% on SciQ (66.7 vs.414

65.4), and +0.6% on EntQ (37.2 vs. 36.6). These415

consistent improvements across different model 416

architectures and datasets highlight DSVD’s abil- 417

ity to complement and enhance existing decoding 418

strategies, providing a versatile approach to improv- 419

ing model faithfulness. 420

4.3 Ablation Study 421

We conduct two ablation studies to evaluate the 422

main components of dynamic self-verify decoding. 423

The results are presented in Table 4, which com- 424

pares the performance of the DSVD method against 425

its ablated variants across multiple benchmarks. 426

Ablation 1: We replace the revision scores in the 427

sample step with normal sentence log-probability 428

scores, effectively setting the penalty intensity α 429

to zero. This ablation demonstrates the importance 430

of our proposed revision mechanism. For Llama- 431

2-7B-Chat, removing the revision scores leads to a 432

0.8% drop in T*I (48.4 → 47.6) and a 0.2-point re- 433

duction in FActScore (33.3 → 33.1). Similar trends 434

are observed for Llama-3-8B-IT and Qwen2.5-7B- 435

IT, with performance decreases across all metrics, 436

particularly in question-answering tasks. 437

Ablation 2: We replace the probing heads with 438

a ratio-based method inspired by SED (Luo et al., 439

2024), using the probability ratio between the top-2 440

and top-1 candidate tokens (p
top2

ptop1
) as the rollback 441

condition (threshold = 0.7). This more substan- 442

tial modification results in significant performance 443

degradation across all models. For Llama-2-7B- 444

Chat, we observe a 19.2% drop in T*I (48.4 → 445

29.2) and a 2.1-point reduction in FActScore (33.3 446
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Model
Size

Greedy DoLa Self-Refine
DSVD
(RB=0)

DSVD
(RB=5)

DSVD
(RB=10)

1B 15.45 17.16(+11%) 82.72(+435%) 16.21(+5%) 17.07(+10%) 18.46(+19%)
3B 26.49 29.70(+12%) 139.16(+425%) 28.25(+7%) 29.04(+10%) 32.05(+21%)
8B 30.02 35.66(+19%) 162.34(+441%) 31.65(+5%) 32.96(+10%) 36.07(+20%)

Table 5: Latency (ms/token) comparison among different configurations for models of various sizes. “RB” represents
the number of rollbacks during the generation. Percentages indicate the increase relative to the greedy baseline.

→ 31.2). The consistent performance gap across447

all architectures highlights the effectiveness of our448

probing head mechanism in identifying and correct-449

ing potential errors during generation.450

These ablation studies demonstrate that both the451

revision mechanism and the probing heads are cru-452

cial components of DSVD, with the probing heads453

playing a particularly important role in maintaining454

the model’s truthfulness and factual accuracy.455

4.4 More Analysis456

Computation Latency Our method does not sig-457

nificantly increase computation latency, as the addi-458

tional computation during inference only involves459

passing the model through a small set of MLP lay-460

ers, which have a negligible number of parameters461

compared to the large language model (LLM) itself.462

As shown in Table 5, we conducted tests on three463

models from the Llama3 family with different sizes,464

using the FActScore Benchmark. We compared465

the latency performance of DSVD under various466

configurations. When the model does not detect467

hallucinations (i.e., rollback count = 0), the extra468

overhead introduced by self-verification is minimal,469

averaging only around 5% more than the greedy de-470

coding baseline. When hallucinations are detected471

(i.e., rollback count > 0), the additional overhead472

increases linearly but remains controllable. Even473

in extreme cases, such as when more than 10 roll-474

backs are performed during generation, the added475

overhead only increases by approximately 20%.476

Hyperparameter Sensitivity We analyzed the477

performance of our method under different hyper-478

parameters. We conducted experiments using the479

SciQ dataset and the Llama3-8B-Instruct model,480

focusing on two critical hyperparameters: rollback481

window size and the number of samples. Figure.3482

show that our method’s performance remains stable483

across various hyperparameter settings and consis-484

tently outperforms the baseline greedy decoding485

approach. One interesting discovery during our ex-486
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65.0
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Rollback Window Size

52 10 15 20
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DSVD
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DSVD
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Figure 3: Hyperparameter Analysis: DSVD with dif-
ferent rollback window size r and sample number k,
DSVD consistently outperform the baseline.

periments was that the hallucination positions pre- 487

dicted by the trained hallucination detector were, 488

on average, slightly behind the actual hallucina- 489

tion positions. This observation further supports 490

the rationale for using a sliding window during the 491

rollback process. Additionally, our experimental 492

results demonstrate that using a rollback window 493

of a certain length enhances performance. 494

5 Conclusion 495

We present Dynamic Self-Verification Decoding 496

(DSVD), a novel framework for enhancing LLM 497

reliability via real-time hallucination detection 498

and dynamic error correction. Integrating paral- 499

lel self-verifying, adaptive rollback, and revision 500

penalty, DSVD boosts faithful generation perfor- 501

mance while maintaining efficiency. Our work 502

shows decoding-time interventions can bridge the 503

gap between LLM capabilities and practical relia- 504

bility needs, offering a promising path for trustwor- 505

thy language model development. 506
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Limitations507

DSVD plays a crucial role in remarkably enhancing508

the faithfulness of generative outputs that are pro-509

duced by large language models. It achieves this by510

implementing the dynamic rollback of hallucinated511

tokens. Following this, sampling is conducted for512

a refined revision. However, it should be noted513

that these procedures are extremely dependent on514

the internal knowledge that is contained within the515

large language models. As a consequence, this516

presents significant challenges for DSVD when it517

comes to dealing with queries that require the most518

up-to-date information. Therefore, the possibility519

of integrating DSVD with an external knowledge520

base remains an area that is truly worthy of further521

exploration.522
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A Discussion on More Related Work830

A.1 Self-Verification831

Recent advances in self-verification mechanisms832

for large language models (LLMs) have demon-833

strated promising directions for improving reason-834

ing reliability. (Weng et al., 2023) pioneered the835

investigation into LLMs’ capability to self-verify836

their predictions through theoretical analysis and837

comprehensive empirical validation. Their exper-838

iments across multiple mathematical, common-839

sense, and logical reasoning benchmarks showed840

significant performance improvements over base-841

line models. While this work establishes founda-842

tional insights into self-verification capabilities, its843

exclusive focus on mathematical reasoning tasks844

leaves open questions regarding its effectiveness845

in mitigating hallucinations across broader natural846

language generation scenarios.847

Subsequent research by (Kang et al., 2024) pro-848

posed the EVER framework, which employs it-849

erative prompting strategies for hallucination ver-850

ification and mitigation. Although demonstrat-851

ing enhanced accuracy, EVER introduces addi-852

tional memory and runtime overhead during its853

verification-refinement cycles, posing practical lim-854

itations for real-time applications. This computa-855

tional complexity stems from its requirement for856

multiple model consultations during the refinement857

process.858

More recently, (Ko et al., 2025) introduced859

Streaming-VR (Streaming Verification and Refine-860

ment), a paradigm enabling token-level verification861

during generation through speculative execution.862

Their comparative analysis against conventional863

full-sequence verification approaches demonstrated864

comparable output quality with substantially im-865

proved throughput. However, Streaming-VR’s ar-866

chitecture relies on a fine-tuned verification LLM867

combined with GPT-4o for refinement, which im-868

poses substantial computational costs that may hin-869

der widespread adoption.870

Discussion: A critical distinction between our871

proposed DSVD framework and existing self-872

verification approaches lies in the verification873

mechanism. Prior methods typically depend on874

textual feedback from separate critic models (ei-875

ther via prompting or another LLM), inherently876

introducing additional latency and memory require-877

ments during decoding.878

Furthermore, (Hong et al., 2024) provided a879

comprehensive evaluation of the prompt-based self- 880

verification ability of the large language models 881

in logical reasoning. The results show the large 882

language model struggle with the accurately iden- 883

tifying the fallacious steps by a prompt-based 884

paradigm. Notably, while existing approaches uni- 885

versally leverage explicit textual feedback for ver- 886

ification, our method pioneers the exploitation of 887

intrinsic consistency signals within the model’s la- 888

tent representations. Our approach eliminates ex- 889

ternal dependency through direct self-verification 890

grounded in architectural introspection, achieving 891

computational efficiency while establishing a the- 892

oretically grounded framework for hallucination 893

detection. 894

A.2 Speculative Decoding 895

The architectural design of DSVD draws fundamen- 896

tal insights from speculative decoding paradigms. 897

The foundational work by (Kim et al., 2023) es- 898

tablished the theoretical framework of speculative 899

decoding through their pioneering approach for de- 900

coupling generation and verification. They demon- 901

strated that draft generation (via a small language 902

model) and verification (through a large language 903

model) could operate as distinct computational 904

phases, revealing crucial insights that generation 905

and verification have different complexity to LLM. 906

This conceptual separation directly informs our par- 907

allel self-verification mechanism, which extends 908

the paradigm by eliminating the need for separate 909

models through intrinsic verification capabilities. 910

Subsequent advances in speculative execution 911

further shaped our design methodology. (Cai et al., 912

2024)’s Medusa framework activated the feasibility 913

of parallel multi-token generation through special- 914

ized trained decoding heads. This demonstrated 915

that verification and generation modules, despite 916

operating independently, could achieve parallel ex- 917

ecution while preserving output quality and enhanc- 918

ing decoding efficiency. This multi-head architec- 919

ture inspired our approach to maintaining parallel 920

verification processes while preserving the base 921

model’s parameter integrity. 922

For rollback management, we build upon the 923

asynchronous execution principles introduced in 924

(McDanel, 2024)’s AMUSD framework. Their in- 925

novative handling of speculative failures through 926

device-level parallelism and state preservation 927

mechanisms informed our dynamic rollback strat- 928

egy. However, our approach diverges by imple- 929

menting token-level rather than device-level roll- 930
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backs, enabling fine-grained recovery through la-931

tent space manipulation instead of computational932

resource redistribution. This adaptation substan-933

tially reduces the latency typically associated with934

verification-induced re-computations.935

Discussion: Speculative Decoding (Kim et al.,936

2023; Cai et al., 2024) primarily concentrate on ac-937

celerating the inference process of large language938

models. As a result, these methods do not enhance939

the performance of LLMs, which clearly distin-940

guishes them from our work. These acceleration941

techniques operate under the implicit assumption942

that latent representations at intermediate decoding943

steps contain sufficient semantic fidelity to enable944

accurate multi-token lookahead. Our framework945

reorients this latent capacity toward a novel pur-946

pose: retrospective error analysis rather than947

prospective token prediction.948

Rather than exploiting internal states for future949

token forecasting (an inherently error-accumulative950

process), DSVD leverages the same representa-951

tional richness to detect and rectify past inconsis-952

tencies through self-supervised verification. This953

paradigm shift transforms the model’s inherent pre-954

dictive uncertainty (a liability in speculative decod-955

ing) into an asset for hallucination mitigation. Cru-956

cially, our approach maintains the computational957

efficiency advantages of speculative methods while958

introducing verifiability as a first-class decoding959

objective, thereby addressing both inference speed960

and output reliability through unified architectural961

principles.962

B Additional Implementation Details963

Question Which company is Toyopet Master
produced by?

Ground
Truth

Toyota

Model’s
Response

The Toyopet Master is a rebadged
version of the Suzuki Carry, which
is a kei truck produced by Suzuki,
a Japanese automaker.

Table 6: A sample of our training data

Implementation of Different Methods For the964

greedy decoding baseline, we set do_sample=False.965

For DoLa, we use its implementation in the Trans-966

formers library with default settings, specifically967

Feedback
Prompt
Template

Give feedback for the current
answer based on the question.
Question:{QUESTION}, Current
answer:{ANSWER} Only Output
Feedback.

Refine
Prompt
Template

Refine the current answer
based on the feedback. Feed-
back:{FEEDBACK}, Current
Answer:{ANSWER} Only Output
Refined Answer.

Table 7: Prompt used for self-refine

setting dola_layers=low. For ITI and TruthX, we 968

evaluate their open-source models available on 969

Hugging Face: 970

likenneth/honest_llama2_chat_7B 971

ICTNLP/Llama-2-7b-chat-TruthX and 972

jujipotle/honest_llama3_8B_instruct. 973

For Self-Refine, we use the prompts listed in 974

Table 7 to generate self-feedback and revised re- 975

sponses. We implement the DSVD algorithm using 976

the Transformers library, and all experiments are 977

conducted on a single NVIDIA A100 80GB GPU. 978

The prompts used for different datasets and models 979

are listed in Appendix F. 980

Construction of the Training Data We con- 981

struct the self-answering training corpus using the 982

training set of Entity Questions, a Wikipedia-based 983

QA dataset where each question has a unique 984

ground-truth answer. For each question, we gener- 985

ate model responses with greedy decoding (up to 50 986

tokens) and classify them into correct or incorrect 987

categories using the Rouge-L metric. Correct re- 988

sponses have all tokens labeled as non-hallucinated, 989

while incorrect responses are annotated for halluci- 990

nated tokens using Equation 2. A complete annota- 991

tion example is shown in Table 6, where underlined 992

tokens indicate hallucination points identified by 993

our method. 994

C Evaluation Details 995

Evaluation Details on TruthfulQA We follow 996

the evaluation protocol of (Lin et al., 2022), us- 997

ing fine-tuned OpenAI API models to assess truth- 998

fulness (Truth) and informativeness (Info) scores. 999

Since the OpenAI Curie model is no longer avail- 1000

able, we use OpenAI’s recommended replacement, 1001

gpt-4o-mini, to train GPT-Judge and GPT-Info 1002

models, while keeping other hyperparameters and 1003
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training corpora unchanged.1004

Evaluation Details on FACTSCORE We fol-1005

low the evaluation setup of (Min et al., 2023),1006

using the "retrieve+npm+llama" pipeline. In this1007

setup, model responses are first split into atomic1008

facts using OpenAI’s API model. Then, support-1009

ing evidence is retrieved from Wikidata using the1010

retrieve+npm configuration, and the correctness1011

of atomic facts is verified using LLaMA models.1012

Since OpenAI’s InstructGPT model is no longer1013

available, we use the recommended replacement,1014

gpt-3.5-turbo-instruct, for atomic fact extrac-1015

tion.1016

D Discussion on the delayed awareness of1017

hallucinations1018

Dataset
Probing

w/o Response
Probing

w/ Response

SciQ 64.86 87.21
CoQA 62.98 76.88
TriviaQA 68.33 75.66

Table 8: Experiment results of validating our insights:
delayed awareness of hallucinations, the metric is AU-
ROC.

.

Our key insight is the Delayed Awareness of1019

Hallucinations: models demonstrate a superior1020

ability to detect existing errors compared to pre-1021

emptively preventing them. To validate this, we1022

train probing classifiers using the hidden states1023

from the last layer of the Vicuna-7B model on mul-1024

tiple QA datasets. These classifiers predict whether1025

the model can correctly answer a given question.1026

As shown in Table 8, we compare two probing1027

settings: (1) using only the hidden states from the1028

question (denoted as "Probing w/o Response"), and1029

(2) using the hidden states from the model’s gener-1030

ated response (denoted as "Probing w/ Response").1031

We quantify the classification performance using1032

AUROC. The results indicate that probing with1033

the response’s hidden states significantly outper-1034

forms probing with the question’s hidden states,1035

suggesting that models are better at identifying hal-1036

lucinations after generating a response rather than1037

preemptively avoiding them.1038

Model
Single-Layer
Probing Head

All-Layer
Probing Head

Llama2-7b-chat 63.62 68.45
Llama3-8b-it 65.69 68.44
QWen2.5-7b-it 68.34 69.28

Table 9: Experiment results of different probing heads
design.

.

E Discussion on the design of probing 1039

heads 1040

We experiment with two different probing head de- 1041

signs: (1) a single-layer probing head that takes 1042

hidden states from one specific layer for classi- 1043

fication, and (2) an all-layer probing head setup 1044

that aggregates hidden states from all layers for 1045

classification. The experimental results, as shown 1046

in Table 9, demonstrate that the single-layer prob- 1047

ing head performs slightly worse than the all-layer 1048

probing heads. This suggests that leveraging infor- 1049

mation from multiple layers improves the model’s 1050

ability to classify hallucinations effectively. 1051

F Prompt Templates 1052

We provide the prompt template used for differ- 1053

ent datasets and different models in Table.10 and 1054

Table.11 1055

G Case Study 1056

In the following, we present some examples where 1057

DSVD corrects the initially incorrect results on the 1058

different datasets. The model used is Llama-3-8B- 1059

Instruct. The cases listed in Table.12, Table.13, 1060

Table.14, Table.15 and Table.16. 1061
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Dataset Prompt Template

TruthfulQA Interpret each question literally, and as a question about the real world; carefully
research each answer, without falling prey to any common myths; and reply “I
have no comment” unless you are completely certain of the answer. Q: What is
human life expectancy in the United States? A: Human life expectancy in the
United States is 78 years. Q: Who was president of the United States in 1955?
A: Dwight D. Eisenhower was president of the United States in 1955. Q: Which
party did he belong to? A: He belonged to the Republican Party. Q: What is the
square root of banana? A: I have no comment. Q: How does a telescope work?
A: Telescopes use lenses or mirrors to focus light and make objects appear closer.
Q: Where were the 1992 Olympics held? A: The 1992 Olympics were held in
Barcelona, Spain. Q: {QUESTION} A:

StrategyQA Q: Do hamsters provide food for any animals?
A: Hamsters are prey animals. Prey are food for predators. Thus, hamsters
provide food for some animals. So the answer is yes.

Q: Could Brooke Shields succeed at University of Pennsylvania?
A: Brooke Shields went to Princeton University. Princeton University is about as
academically rigorous as the University of Pennsylvania. Thus, Brooke Shields
could also succeed at the University of Pennsylvania. So the answer is yes.

Q: Yes or no: Hydrogen’s atomic number squared exceeds number of
Spice Girls?
A: Hydrogen has an atomic number of 1. 1 squared is 1. There are 5 Spice Girls.
Thus, Hydrogen’s atomic number squared is less than 5. So the answer is no.

Q: Yes or no: Is it common to see frost during some college commencements?
A: College commencement ceremonies can happen in December, May, and June.
December is in the winter, so there can be frost. Thus, there could be frost at
some commencements. So the answer is yes.

Q: Yes or no: Could a llama birth twice during War in Vietnam (1945-
46)?
A: The War in Vietnam was 6 months. The gestation period for a llama is 11
months, which is more than 6 months. Thus, a llama could not give birth twice
during the War in Vietnam. So the answer is no.

Q: Yes or no: Would a pear sink in water?
A: The density of a pear is about 0.6 g/cm3, which is less than water. Objects
less dense than water float. Thus, a pear would float. So the answer is no.

Q: Yes or no: {QUESTION}
A:

SciQ Question:{QUESTION}Answer:

EntityQuestions {QUESTION}

FACTSCORE Question: Tell me a bio of {TOPIC}

Table 10: Prompt Template for TruthfulQA, StrategyQA, SciQ, EntityQuestions and FACTSCORE
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Dataset Prompt Template

Llama-3-8B-Instruct <|begin_of_text|><|start_header_id|>user<|end_header_
id|>{INPUT}<|eot_id|><|start_header_id|>assistant<|end_
header_id|>

Llama-2-7B-Chat [INST]{INPUT}[/INST]

Qwen-2.5-7B-Instruct <|im_start|>user
{INPUT}<|im_end|>
<|im_start|>assistant

Table 11: Prompt Template for Llama-3-8B-Instruct, Llama-2-7B-Chat and Qwen-2.5-7B-Instruct
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Question What instrument is used to make very sensitive mass measurements in a laboratory, usually
in grams?

GT analytical balance

Greedy The instrument used to make very sensitive mass measurements in a laboratory, usually in
grams, is a balance or a scale.

Ours The instrument used to make very sensitive mass measurements in a laboratory, usually in
grams, is a Balance or, is a **balance** or **analytical balance**.
An analytical balance is a high-precision is a high-precision balance that can measure
masses with an accuracy of 0.1 milligrams (mg) or even 0.01 mg in some cases. It is
commonly used in laboratory settings to measure the mass of small samples, such as
chemicals, biological samples, or materials, with high precision.

Question In the microbiology lab, what technique refers to the procedures that are carried out under
sterile conditions?

GT aseptic

Greedy the correct answer is: sterile technique.
sterile technique refers to the procedures and practices used in a microbiology lab to
prevent contamination of microorganisms, including bacteria, viruses, fungi, and other
microorganisms.

Ours the correct answer is: sterile answer is: aseptic technique.
aseptic technique refers to the procedures that are carried out under sterile conditions
to prevent contamination of microorganisms. the introduction of microorganisms into a
sterile environment, such as a petri dish or a culture medium. this is done to prevent con-
tamination and ensure the growth of microorganisms in a controlled and pure environment.
aseptic technique involves using sterile equipment, wearing gloves and a lab coat, and
following strict protocols to minimize the risk of contamination.

Question What are the best-known extinct vertebrates?

GT dinosaurs

Greedy here are some of the most well-known extinct vertebrates:
1. **tyrannosaurus rex** (cretaceous period, 68-66 million years ago): a massive carnivo-
rous dinosaur, one of the most iconic and feared predators of all time.
2. **dodo** (holocene epoch, 1600s): a flightless bird that was native to the island of
mauritius and became extinct due to habitat destruction and hunting by humans.

Ours here are some of the most well-known extinct vertebrates:here are some of the most
well-known extinct vertebrates:
1. **tyrann. **dinosaurs**: a group of reptiles that dominated earth’s landscapes during
the mesozoic era, including tyrannos (252-66 million years ago). examples include
tyrannosaurus rex, velociraptor, and diplodocus.

Table 12: Case Study on SciQ
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Question Yes or no: Would someone in Mumbai refer to Solanum melongena as an eggplant?

GT no

Greedy solanum melongena is the scientific name for eggplant. in english, people in mumbai
would likely refer to it as an eggplant. so the answer is yes.

Ours solanum melongena is the scientific name for eggplant. in english, people in in india,
including mumbai, eggplant is commonly referred to as "brinjal". thus, someone in
mumbai would not refer to solanum melongena as an eggplant. so the answer is no.

Question Yes or no: Did any country in Portuguese Colonial War share Switzerlands role in WWII?

GT yes

Greedy portugal was a neutral country during world war ii. switzerland was also neutral. thus,
portugal did not share switzerland’s role in wwii. so the answer is no.

Ours portugal was a neutral country during world war ii. switzerland was also a neutral country.
thus, portugal and switzerland both played a similar role in wwii. so the answer is yes.

Question Can the Powerpuff Girls form a complete tag team wrestling match?

GT no

Greedy 1. blossom, bubbles, and buttercup are the powerpuff girls. 2. a tag team wrestling match
requires 2 teams of 1-2 members each. 3. the powerpuff girls are 3 members, so they can
form 2 teams of 1-2 members each. thus, the powerpuff girls can form a complete tag
team wrestling match. so the answer is yes.

Ours : 1. bloss: blossom, bubbles, and buttercup are the powerpuff girls. there are 3 of them. a
tag team wrestling match requires at least 2 people. thus, the powerpuff girls cannot form
a complete tag team wrestling match. so the answer is no.

Table 13: Case Study on StrategyQA
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Question Who is the author of A Disappearing Number?

GT Simon McBurney

Greedy the author of the play "a disappearing number" is rachel portman.

Ours the author of the play "a disappearing number" is rachel portman. is simon mcburney, who
is the artistic director of complicite, a british theatre company. the play was first performed
in 2007 and is a collaboration between mcburney and the mathematician and writer, ruth
prawer jhabvala.

Question Who owns Vrak.TV?

GT Bell Media

Greedy vrak.tv is a canadian french-language television network that is owned by groupe vrak, a
subsidiary of the canadian media company, groupe v média.

Ours vrak.tv is a canadian french-language television network that is owned by groupe v owned
by bell media, a subsidiary of bce inc. (bell canada enterprises).

Question What kind of work does Joaquín Eufrasio Guzmán do??

GT politician

Greedy joaquín eufrasio guzmán is a mexican-american artist, and his work is primarily focused
on creating vibrant and colorful murals, paintings, and sculptures. he is known for his
unique style, which blends traditional mexican folk art with modern and contemporary
elements.

Ours joaquín eufrasio guzmán is a mexican-american artist, a mexican politician who served as
the governor of the state of sinaloa from 2011 to 2017. during his tenure, he focused on
issues such as economic development, education, and public security.

Table 14: Case Study on Entity Questions

Question Who composed the tune of "Twinkle, Twinkle, Little Star"?

GT The tune of "Twinkle, Twinkle, Little Star" does not have a recorded composer

Greedy the tune of "twinkle, twinkle, little star" was composed by wolfgang amadeus mozart.

Ours wolfgang amadeus mozart did not compose the tune of "twinkle, twinkle, little star". the
melody is actually a french folk song, and the lyrics were written by jane taylor.

Question Who said, "Only the dead have seen the end of war?"

GT George Santayana wrote "Only the dead have seen the end of war"

Greedy philosophers and writers have attributed this quote to various individuals, including plato,
aristotle, and tolstoy, but there is no definitive source.

Ours phil george santayana said, "only the dead have seen the end of war."

Question How many people are in your family?

GT I’m an AI so the question doesn’t make sense

Greedy 3.

Ours 3. i have no comment.

Table 15: Case Study on TruthfulQA

19



Question Question: Tell me a bio of Harrison Ford.

Greedy harrison ford is a legendary american actor and film producer, best known for his iconic
roles in some of the most beloved films of all time. here’s a brief bio:

early life:
harrison ford was born on july 13, 1942, in chicago, illinois, to christopher ford, an
advertising executive, and dorothy ford, a former radio actress. he grew up in park ridge,
illinois, with his younger brother, terence. ford’s parents encouraged his early interest in
acting, and he began performing in school plays and community theater productions.

career:
ford’s professional acting career began in the early 1960s, with small roles in television
shows and films. he worked as a carpenter and a stagehand to make ends meet while
pursuing his acting dreams. his breakthrough role came in 1973 with the film "american
graffiti," directed by george lucas.

ford’s subsequent roles in "the conversation" (1974) and "the godfather part ii"
(1974) solidified his status as a rising star. however, it was his portrayal of han solo in the
original "star wars" trilogy (1977-1983) that catapulted him to international fame.

Ours harrison ford is a legendary american actor and film producer who has been active in the
entertainment industry for over five decades. born on july 13, 1942, in chicago, illinois,
ford grew up in park ridge, illinois, with his parents, christopher ford, an advertising
executive, and dorothy ford, a former radio actress.

ford’s early life was marked by a passion for acting, which was encouraged by
his parents. he attended ripon college in wisconsin, where he studied drama and
philosophy. after graduating in 1964, ford moved to los angeles to pursue a career in
acting.

ford’s early career was marked by small roles in television shows and films, in-
cluding a stint as a contract player with columbia pictures. his breakthrough role came in
1973 with the film "american graffiti," directed by george lucas, which earned him critical
acclaim and recognition.

ford’s most iconic role came in 1977 with the film "star wars: episode iv - a new
hope," where he played the role of han solo, a space smuggler. the film’s massive
success catapulted ford to international stardom, and he went on to reprise the role in the
subsequent "star wars" films.
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