
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SELF-ATTENTION-GUIDED GENETIC PROGRAM-
MING: LEVERAGING BERT FOR ENHANCED TREE-
STRUCTURED DATA OPERATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

This study investigates the application of BERT to tree-structured data which
presents a significant challenge due to its lack of explicit sequential order and
complex topological dependencies. While BERT has demonstrated strong per-
formance in learning rich representations from sequential and grid-based inputs
like natural language and images, its extension to non-sequential topologies re-
mains an open research question. In this paper, we integrate BERT with genetic
programming whose classic data representation is tree data structure to solve the
dynamic flexible job shop scheduling (DFJSS) problem. The DFJSS problem’s
inherent computational complexity and highly dynamic, uncertain nature provide
a rigorous testbed for our methodology. Our experiments demonstrate that BERT
can effectively capture and integrate the structural information embedded in these
tree-based representations. This finding highlights the versatility and adaptability
of the self-attention mechanism, extending its utility beyond conventional sequen-
tial or grid-based data structures to a broader class of complex, non-sequential
topologies.

1 INTRODUCTION

BERT (Bidirectional Encoder Representations from Transformers) is a pre-trained language repre-
sentation model based on the Transformer architecture (Devlin et al., 2019). Unlike traditional left-
to-right or right-to-left models, BERT leverages bidirectional self-attention to jointly condition on
both left and right contexts, enabling it to capture deep contextual dependencies. Recent studies have
further extended BERT beyond textual data, demonstrating its effectiveness on non-sequential data
such as images (Dosovitskiy et al., 2021). These studies extend the potential BERT applications. For
example, a recent study (Teixeira & Pappa, 2025) employed BERT to encode sequenced tree data,
where the tree topology remained flexible while only the terminal nodes are sequenced as input to the
encoder. Inspired by this idea, we extend BERT to more flexible and dynamic tree-structured data
by considering the entire set of tree nodes, aiming to effectively extract latent information embedded
within such flexible representations.

Genetic programming (GP) (Koza, 1994) is a hyper-heuristic framework (Burke et al., 2013; Braune
et al., 2022; Planinić et al., 2021; Pillay & Qu, 2018), in which tree-based structures are among the
most commonly used representations. During evolution, GP trees are iteratively modified through
operations such as subtree swapping or replacement with newly generated subtrees, introducing
substantial flexibility and dynamic variation. This makes the GP evolutionary process a suitable
testbed for our proposed approach. To evaluate its effectiveness, we choose the DFJSS problem (Nie
et al., 2013; Zhang et al., 2020), a fundamental combinatorial optimization problem with significant
practical relevance in manufacturing and processing industries (Jamrus et al., 2020; Zhang et al.,
2021) as the primary test case for our study. The objective of DFJSS is to determine effective
schedules for processing multiple jobs on a set of machines (Hart et al., 2005), where decisions
regarding machine assignment and operation sequencing must be made in dynamic environments
with continuously arriving jobs (Jaklinović et al., 2021), thereby amplifying the complexity of the
problem.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

The goal of our proposed algorithm is to manipulate the GP tree in a more elaborate way by replacing
low-contribution subtrees identified through self-attention, our proposed framework demonstrates
that BERT is capable of capturing latent information that can guide effective tree manipulation.

To achieve this goal, two key challenges need to be solved:

1. Tree representation for neural models. Unlike fixed-length vectors typically used in neural net-
works, tree structures are hierarchical and inherently two-dimensional, making direct vectorization
challenging. Recent studies (Tan et al., 2025; Zhu et al., 2025; Teixeira & Pappa, 2025; Zhang et al.,
2025) propose various encoding strategies, many still struggle to preserve the full complexity of
hierarchical relationships, leading to information loss. For example, Tan et al. (2025) and Zhu et al.
(2025) represent GP trees using node frequency counts, which neglects the topological relationships
within the tree structure.

2. Utilizing BERT’s extracted information. Prior studies (Clark et al., 2019; Reif et al., 2019;
Dosovitskiy et al., 2021) have shown that multi-head self-attention can capture diverse patterns in
sequential (text) and grid-structured (image) data. However, how to effectively interpret and leverage
these multi-head outputs remains an open question.

Our proposed framework addresses these challenges and provides empirical evidence that BERT
not only learns meaningful structural patterns in tree-based data but also enables fine-grained tree
manipulation through attention-guided subtree replacement.

The core assumption underlying our approach is that different heads capture different patterns, and
we aggregate node-level attention scores across all heads. Nodes consistently receiving low scores
across all heads are treated as trivial, allowing their corresponding subtrees to be intelligently re-
placed with newly generated or more meaningful structures.

The main contributions of this paper are summarized as follows:

1. Tree data vector representation: We propose a novel representation that captures the hierarchical
and topological relationships within tree structure, avoiding the information loss inherent in conven-
tional methods.

2. Attention-guided genetic operators: We develop genetic operators guided by self-attention scores
extracted from BERT. By exploiting the model’s ability to identify significant and trivial substruc-
tures, our approach enables a more informed and effective search.

3. Extending attention mechanisms to complex topological data: We empirically demonstrate that
attention mechanisms can effectively extract structural features and dependencies from highly irreg-
ular, tree-structured data. This validates their utility in domains beyond sequential or spatial data.

2 RELATED WORK

GP has been widely applied to DFJSS problem, and tree-structured representation is one of most
commonly used. To vectorize the tree-structure data, a classic method is to employ phenotypic
characterization (PC), which encodes the observable behavior of individuals as feature vectors. The
underlying assumption is that individuals with similar phenotypic vectors exhibit similar fitness
values. For instance, Hildebrandt and Branke (Hildebrandt & Branke, 2015a) applied a K-Nearest
Neighbors (KNN) regression model, where the Euclidean distance between PC vectors determines
similarity, and the loss values of new individuals are estimated based on their nearest neighbors.

Beyond phenotypic approaches, recent work has explored genotypic(node) representations by con-
verting GP trees into sequential forms amenable to modern machine learning techniques. Zhang
et al. (Zhang et al., 2025) proposed a breadth-first search (BFS)–based encoding scheme for lin-
earizing trees into tokenized sequences. Building on this idea, depth-first search (DFS) traversal has
been suggested as a more natural alternative, yielding representations that better preserve structural
interpretability.

Advances in Transformer architectures (Vaswani et al., 2023) have demonstrated the power of self-
attention for extracting meaningful representations across domains from natural language processing
to computer vision (Carion et al., 2020; Dosovitskiy et al., 2021). The core strength of attention
lies in its ability to capture both local and global dependencies within tokenized sequences. Prior

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Solution Evaluation

Update KNN model

Elitism SelectionParent Selection Empty Intermediate Population

Intermediate population full ?

Estimate Fitness by Surrogate

Offspring Selection

New generation Full Fitness Evaluation

Loop

Criteria met ?
[Yes][No]

[No] [Yes]

Attention Score Crossover

Attention Score Mutation

Duplicate Removal

Fill Intermediate Population

Build BERT Model

Population Initialization

Update KNN model

Build BERT Model

Best Individuals

Figure 1: The flowchart of the proposed algorithm.

studies (Reif et al., 2019) have shown that attention layers in BERT encode linguistic information
hierarchically: lower layers primarily reflect syntactic regularities, whereas higher layers capture
semantic relationships. These findings indicate that attention mechanisms can effectively model
structured relationships and extract relevant information across diverse data types.

The applications of Transformer related techniques in GP have primarily focused on symbolic re-
gression problems (Han et al., 2025; Zhang et al., 2025), with some extensions to AutoML tasks
(Teixeira & Pappa, 2025). In both symbolic regression and AutoML, the target outputs are known in
advance. By contrast, the DFJSS problem is an optimization problem where the targets are unknown.
As a result, relying solely on fitness values to guide the search can be inefficient.

Although Zhang (Zhang et al., 2025) proposed a method for linearizing tree-structured data using
BFS, which facilitates generating replacement subtrees, this approach sacrifices some of the seman-
tic information inherent in the tree structure.

In this paper, we instead adopt a DFS traversal to linearize the tree-structured data, resulting in
sequences that better preserve semantic relationships. Furthermore, We integrate GP with the BERT
self-attention mechanism to introduce an additional metric for guiding the evolutionary process.
This approach proves to be more efficient than traditional methods that depend solely on random
search.

3 PROPOSED ALGORITHM

3.1 AN OVERVIEW

A population of N individuals is first produced as the initial generation and is subjected to a full
evaluation. This evaluated population then forms the training dataset for the BERT model, as high-
lighted by the red box in Figure 1.

The evolutionary process proceeds in iterations. At the beginning of each iteration, a check is per-
formed to determine if a predefined termination criterion has been met. If so, the process terminates,
and the best individual from the last generation is outputted. Otherwise, the iteration continues.
The previous generation undergoes GP operators for selection, self-attention score mutation and
crossover(highlighted by blue box) to produce a new intermediate population. However, rather than
randomly selecting the subtrees, our framework identifies the node with the lowest self-attention
score and treats the subtree rooted at this node as the target for modification. Specifically, mutation
replaces this subtree with a randomly generated subtree, while crossover replaces it with the sub-
tree having the highest self-attention score from another individual. Further details are provided in
Section 3.6.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Once the intermediate population is generated, a surrogate model is used to preselect the most
promising individuals for the next generation.

After the new generation is composed, its individuals are fully evaluated to acquire their true fitness
values, which are then used to update the surrogate and BERT model.

Finally, if the termination criterion has not been met, a new iteration begins.

During the iteration, a new BERT model is built in each iteration rather than updating the existing
one for the reason: The genotypic makeup of individuals tends to converge as the iterations progress.
As a result, the training parameters from earlier generations become less relevant and can negatively
impact the BERT model’s performance on the new, more converged population.

3.2 PROPOSED ARCHITECTURE

As shown in Figure 2, the proposed architecture consists of three main components: 1) the embed-
ding(embraced by dashed box) 2) the BERT encoder 3) the global pooling and feed forward neural
network. The mathematical definition is denoted as:

Score = GlobalAddPooling(BERT (Embeeding(ϕ))) ·WT (1)

Linearize and Embed: As shown in the formula (1), we denote ϕ as the linearized padded tree
representation. The input ϕ would be embedded by the process detailed in Section 3.4. By DSF,
a GP tree would be linearized as a sequence, and we combine the sequence tree and routing tree
of single individual into one sequence by concatenating them into one sequence. To distinguish
the different linearized sequences, the segmental vector is added to indicate the different trees. The
learned embedding model would be updated as the BERT model traning.

BERT Encoder: The embedded sequence would be encoded by BERT to extract the latent features
by utilizing the self-attention mechanism. Since different heads capture different patterns within the
sequence, we assume that a node with consistently low self-attention scores across all heads is less
relevant to the other nodes. Based on this assumption, we propose an attention score–based mutation
and crossover mechanism. Further details are provided in Section 3.6.

Feed Forward Neural Network: To assess an individual from semantic aspect, after the encoding, we
should integrate the information extracted from encoder. To achieve this, the global adding pooling
method is used. The detail is, the encoder output is firstly removed out the padding sequences, and
by adding all node vectors to implement the adding pooling process. The mathematical formula
is shown as r =

∑Ni

n=1 xn. Where the xn represents the n-th encoded token vector, and r is the
adding pooling output vector. Finally, each individual would be processed into a vector as the input
of the multi-layer of feed forward neural network(FFN). The the FFN would output the score which
is used to evaluate the individuals. The reasons for employing a score, rather than a direct fitness
value, are discussed in Section 3.5.

Embedding

+

X Y

+ X Y

Linearized Sequence

Multi-Head
Attention

Add&Norm

Add&Norm
Feed

Forward

N ⨉ Mask
Filtering &
Global Add

Pool

Feed
Forward Score

Embedding
Inputs

Figure 2: Neural network architecture for score generation: The input trees are first embedded using
the embedding model, as illustrated in Figure 4. The resulting representations are then processed by
the BERT encoder, followed by the removal of the padding mask. A global adding pooling operation
is applied to obtain fixed-dimensional representations, which are subsequently passed through a FFN
to produce the final scores.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 THE SEMANTIC INFORMATION IN TREE-BASED GP INDIVIDUAL

A key fact is that a tree-based GP individual possesses an inherent semantic meaning. However,
extracting this semantic content directly from its tree representation is a significant challenge. To
capture this semantic information, we propose transforming the GP tree into a text sequence, as
shown in Figure 3.

Specifically, by using DFS traversal, the GP tree in Figure 3 can be converted into the Polish notation
format (Wikipedia contributors, 2025), such as +(∗ (NIQ,PT),WINQ). Further, we can un-nest
this expression into a simplified text sequence like +, ∗, NIQ, PT,WINQ. Finally, the linearized
sequence is readable, similar to a standard sentence. Therefore, we suppose that this linearized tree-
based GP representation contains valuable semantic information, which inspires us to encode it as a
sequence.

Linearizing the GP tree offers several key advantages:

+

* WINQ

NIQ PT

Priority

+ * NIQ PT WINQ

1 2 3 4 5

(())

Figure 3: The two-dimensional GP tree can be
linearized into a one-dimensional sequence us-
ing DFS, resulting in a Polish notation forlmula
whose semantic information can be interpreted as
a text sequence.

1. Comprehensive Representation: Unlike
other methods, such as the frequency represen-
tation (Tan et al., 2025; Zhu et al., 2025) men-
tioned in a previous section, which consider
only node frequencies and ignore topology, our
sequence representation incorporates all nodes
while the linearization mechanism preserves
their topological information. This comprehen-
sive approach ensures that critical performance-
related information is retained, effectively pre-
venting information loss.

2. Compatibility with Advanced Encoders:
Text sequences are easy to manipulate and are
well-suited for state-of-the-art models like the
Transformer. Recent studies (Dosovitskiy et al.,
2021; Carion et al., 2020) have demonstrated
that the multi-head self-attention mechanism
within the Transformer architecture is excep-
tionally good at encoding informative represen-
tations from sequential data.

In summary, by linearizing the GP tree, we
leverage both of these advantages to create a
representation that is not only comprehensive in
its inclusion of all node information but is also

highly amenable to powerful and informative encoding methods.

3.4 EMBEDDING LINEARIZED GP SEQUENCE

In this paper, we use two separate trees to represent the sequencing rule and the routing rule. To
linearize these two trees into a single sequence, we concatenate them and use a segmental vector to
identify each part. The embedding schema for this process is shown in Figure 4 where each input
vector is defined as xi = si + pi + ti, with si, pi, and ti denoting the i-th segmental encoding,
positional encoding, and sequence embedding vectors, respectively.

3.5 THE SCORE AND PAIR-WISE LOSS FUNCTION

In many studies (Zhu et al., 2025; Tan et al., 2025; Pilát & Suchopárová, 2022; Zhang et al., 2023;
Hildebrandt & Branke, 2015a), the learned models are used to predict fitness values directly. How-
ever, for DFJSS problem, this approach is limited due to data instability and scarcity. Here’s a
breakdown of the challenges and our proposed solution.

Challenges with Direct Fitness Prediction:

1. The standard practice of estimating true fitness values for DFJSS using a limited number of
instances introduces significant variance. (Hildebrandt & Branke, 2015b) For example, the average

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

+

NIQ

WNIQ

-

PT NPT

SUB PT NPT

*

PT

Routing Tree

ADD MUL NIQ PT WNIQ

Sequence Tree

5 6 70 1 2 3 4

2 2 21 1 1 1 1

Embedding Model

s6 s7 s8s1 s2 s3 s4 s5

p6 p7 p8p1 p2 p3 p4 p5

t6 t7 t8t1 t2 t3 t4 t5

+

+

Embeddings

Positional Encoding

Segmental Encoding

=

x6 x7 x8x1 x2 x3 x4 x5 Input

Linearized Sequence

Positional Vector

Segmental Vector

Figure 4: The process of forming a sequence from two trees and embedding this sequence as the
input. This corresponds to the detailed steps within the dashed box of Figure 2

fitness over m instances, the fitness values is computed by a Formula 2, can fluctuate widely. Our
experiments show that this variance destabilizes the training process when employing classic loss
functions such as Mean Squared Error (MSE).

fitness =
1

m

m∑
i=1

CumulativeTardiness (2)

2. Furthermore, direct fitness prediction with MSE suffers from a data augmentation limitation.
In this method, each individual is treated as an independent data point with a unique fitness label.
This approach ignores any relative information between individuals. In our case, the total number
of individuals for training is capped at 50 × 100 = 5000 (50 individuals per generation over 100
generations). Using a point-wise loss function like MSE with such a small dataset can easily lead to
overfitting.

To address these challenges, we propose training the learned model to output a score for each indi-
vidual instead of predicting its fitness value directly. The primary objective is to align the rank of
individuals based on these scores with the rank based on their true fitness values.

This approach uses a pair-wise ranking loss function, which is more robust and generalizes better
than point-wise loss functions like MSE. For example, by sampling 20 data points from a dataset
of 50, the number of possible unique pairs is

(
50
2

)
= 50!

2!(50−2)! = 1225. This creates a much
larger set of training data points compared to the original dataset size, effectively mitigating the
risk of overfitting on a small dataset and making the training process more stable. The Algorithm 1
illustrates our procedure.

3.6 SCORE-BASED CROSSOVER AND MUTATION

In GP, crossover and mutation are used to introduce randomness and encourage exploration and
exploitation. While classical GP applies these operations to random subtrees, our approach uses the
self-attention mechanism to evaluate subtrees at the node level, providing a more informed guidance.

The different heads within a BERT model are designed to capture various patterns in sequential
data, such as focusing on specific token types, positional relationships, or the entire sequence (Clark
et al., 2019). In our work, we use 8 attention heads to capture the patterns within the linearized
Polish notation formulas. Each head assigns a score to every node, indicating how much attention it
receives from other nodes under that specific pattern. We then sum these 8 scores to get a total score
for each node, which represents its overall importance: Nscore =

∑8
i=1 Scorei, where Nscore is the

total score for a node and Scorei is the attention score from the i-th head.

Our core assumption is that a node with a very low total score is less important in all learned patterns.
This allows us to make more targeted genetic operations. Instead of random replacement, we can
replace the subtree rooted at a low-scoring node with a subtree from another individual that has

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

a high-scoring node (crossover) as shown in Figure 5, or with a new, randomly generated subtree
(mutation) as shown in Figure 6. This provides a more deliberate and efficient evolutionary search.

Routing Tree Sequence Tree

Routing Tree Sequence Tree

Parent A

Min score node

Parent B

Max score node

Min score node

Max score node

ReplaceReplace

Figure 5: The crossover operation in our al-
gorithm is guided by the attention scores de-
rived from the BERT model. This process
involves identifying the node with the mini-
mal attention score in Parent A and the node
with the maximal attention score in Parent B.
The subtree rooted at the minimal-score node
in Parent A is then replaced by the subtree
rooted at the maximal-score node from Par-
ent B.

Routing Tree Sequence Tree

Min score node
Min score node

ReplaceReplace

Figure 6: The subtree rooted at the node
with the minimal attention score is identi-
fied and then replaced with a new, randomly
generated subtree. This method ensures that
the mutation is not random but instead tar-
gets the least important parts of the genotype,
thereby providing a more informed evolu-
tionary search.

4 RESULTS AND DISCUSSIONS

4.1 EXPERIMENT DESIGN

Parameter Settings: Each individual of the algorithm is composed of terminals, as specified in
Table 2, and a set of functions, namely, {+, −, ∗, /, max, min}. A protected division operator is
used, where the function returns one if the divisor is zero. All programs are constrained to a maximal
depth of 8. Parents are selected by tournament selection of size 3 to produce offspring. The genetic
operators include crossover, mutation, and reproduction, with corresponding rates of 80%, 15%, and
5%. The algorithm terminates after a maximal number of 50 generations.

To analyze the effect of attention score-based mutation and crossover, we set up a self-attention
score utilization of 0% and 80%. The 80% self-attention score utilization means 80% probability to
take score-based mutation and crossover as described in Section 3.6. More experiment settings refer
Appendix C.

4.2 OVERALL PERFORMANCE OF PROPOSED ALGORITHM

The experimental results1 are statistically validated using Friedman’s test and the Wilcoxon rank-
sum test with a significance level of 0.05. This ensures that the observed differences are statistically
significant and not due to random chance. In the following discussion, we denote the baseline model
as KNN-GP which does not utilize self-attention scores to guide the genetic operators (mutation and
crossover). The proposed model, referred to as BERT-SSGP(self-attention-score-based GP), extends
the KNN-GP model by incorporating self-attention scores as guidance for the genetic operators.

1Code will be released upon acceptance of this paper.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 20 40
Generation

800

1000

1200

1400

1600

Fi
tn

es
s

Scenario: HH

0 20 40
Generation

300

400

500

600

700

800

900

Scenario: HL

0 20 40
Generation

1800

2000

2200

2400

2600
Scenario: LH

0 20 40
Generation

700

800

900

1000

1100

1200

1300

1400

1500

Scenario: LL

GP KNN-GP BERT-SSGP

Figure 7: The curves of average fitness values according to 30 independent runs on test instances of
GP, KNN-GP, BERT-SSGP with 50 generations.

Table 1: The mean (standard deviation) of objective values on test instances of GP, KNN-GP and
proposed BERT-SSGP with 80% self-attentuon score utilization in 50 generations according to 30
independent runs in four scenarios.

Algorithms HH HL LH LL Rank

GP 830.94(146.86)(+) 345.61(98.47)(+) 1846.50(331.78)(+) 779.18(204.86)(≈) 3.0
KNN-GP 794.20(136.84)(+) 306.43(52.92)(+) 1684.41(127.83)(≈) 698.45(71.62)(≈) 1.8
BERT-SSGP 728.91(98.57) 290.27(57.13) 1661.72(150.32) 725.13(109.05) 1.2

Specifically, in this model, there is an 80% probability that mutation and crossover are performed
under the guidance of self-attention scores.

The results shown in Figure 7 and Table 1 demonstrate the effectiveness of the proposed algorithm.

Firstly, as shown in Figure 7, in both HH and LH scenarios, BERT-SSGP achieves a faster conver-
gence rate than the baseline model. This indicates that, compared with random subtree selection,
self-attention score based subtree selection is more effective as the self-attention scores provide
informative signals that help identify inferior subtrees.

Secondly, according to Table 1, BERT-SSGP achieves the highest overall ranking among all models
and outperforms the baseline model in two out of the four scenarios. However, in LH and LL
scenarios, BERT-SSGP doesn’t outperform the baseline because of the limitation that self-attention
score mechanism could only increase the probability that the new tree generated by self-attention
score guided genetic operations is better, but it can not guarantee improvement in every case. A
more detailed discussion is in Appendix B

The results support the core hypothesis that a more guided, less random approach to mutation and
crossover operations leads to more effective and efficient search processes within a genetic program-
ming framework.

A key drawback of both the proposed algorithm and the KNN-GP approach is their sensitivity to
the reference rules. This is a known issue, as highlighted in the paper by (Hildebrandt & Branke,
2015a). This limitation points to a need for more robust, rule-independent methods for individual
evaluation and comparison.

4.3 PROBING INDIVIDUAL ATTENTION

The natural question that follows is, if the proposed algorithm works, what do the attention scores
on each node actually signify? In this experience, we use the trained single model to compute the
attention matrix on the best individual to see what information the attention matrix can express. The
results shown as Figure 8, which shows 8 heads attention wights among the input sequence.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Because the sequencing rule and routing rule(embraced by red rectangle) are concatenated into a
single sequence as Figure 4 shown, the attention heads within the BERT model exhibit distinct and
meaningful behaviors. The experimental results reveal three primary patterns of attention:

Inter-Sequence Attention: Certain attention heads, such as Head 0, 3, and 6, predominantly attend
to tokens from both sequences. This behavior suggests the model is learning the vital dependencies
and interactions between the two rules, which is crucial given their collective influence on the final
outcome.

Intra-Sequence Attention: In contrast, other heads, including Head 4, 5, and 7, tend to focus their
attention primarily within their own sequence. This indicates that these heads are specializing in
capturing the unique, inherent features and hierarchical structure of each individual rule.

Integrated Attention: A third group of heads, exemplified by Head 2, demonstrates a more balanced,
integrated approach. These heads attend to both their own sequence and the other sequence si-
multaneously, suggesting a holistic understanding of how local features and broader inter-sequence
relationships contribute to the overall representation.

This diverse range of attention patterns implies that BERT is capable of effectively identifying and
learning the most critical information—both internal to each rule and in the interactions between
them—within the combined tree-based sequences.

4.4 DOES ATTENTION SCORE CAN REALLY GUIDE THE EVOLUTION?

In previous experiments shown as the Table 1, the results from KNN-GP (with classic random sub-
tree selection) showed an inferior performance compared to algorithms with higher self-attention
score utilization. This outcome suggests that score-based mutation and crossover are effective at
guiding evolution. We provide more analysis in Appendix B.

5 CONCLUSIONS AND FUTURE WORK

Our findings reveal that attention scores hold significant meaning within the tree structure of GP
individuals. By leveraging these scores to guide genetic operations like mutation and crossover,
we can effectively elaborate individuals at the genotypic level. This advancement broadens the
methodological scope of GP evolution.

Furthermore, our experimental results demonstrate the efficiency of the self-attention mechanism on
tree structures. We show that BERT can effectively extract both the tree’s topology and the latent
information embedded within its nodes.

However, our proposed approach has several clear limitations and drawbacks.

Firstly, our algorithm still relies on phenotypic duplicate removal, a process whose effectiveness is
heavily dependent on the quality of the reference rules used for phenotype representation. Given our
novel genotypic characterization representation, a promising solution is to implement a genotype-
level similarity measure to assess the similarity between two individuals, providing a more robust
duplicate removal method.

Secondly, our model suffers from a significant increase in training time compared to classic
phenotype-based models. This drawback is particularly pronounced with BERT, as its attention
score computation complexity is O(n2), where n is the sequence length. Given that the linearized
sequence can be quite long, the computational cost is substantially higher than that of traditional
machine learning methods.

Finally, we identify a key direction for future research. While our work shows that attention scores
can guide evolution, a more advanced step is to use this insight for generative purposes. If the
attention score indicates that a specific subtree is inferior, the next logical step would be to develop
a mechanism to generate a superior subtree in a more deliberate and fine-grained way, rather than
simply replacing the inferior one with a randomly generated substitute.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Roland Braune, Frank Benda, Karl F Doerner, and Richard F Hartl. A genetic programming learn-
ing approach to generate dispatching rules for flexible shop scheduling problems. International
Journal of Production Economics, 243:108342, 2022.

Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender
Özcan, and Rong Qu. Hyper-heuristics: A survey of the state of the art. Journal of the Op-
erational Research Society, 64(12):1695–1724, 2013.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers, 2020. URL http://
arxiv.org/abs/2005.12872.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does BERT look
at? an analysis of BERT’s attention, 2019. URL http://arxiv.org/abs/1906.04341.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/
N19-1423/.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021. URL http://arxiv.org/abs/2010.11929.

Xiaoxu Han, Jinghui Zhong, Zhitong Ma, Xin Mu, and Nikola Gligorovski. Transformer-assisted
genetic programming for symbolic regression [research frontier]. Comp. Intell. Mag., 20(2):
58–79, April 2025. ISSN 1556-603X. doi: 10.1109/MCI.2025.3540742. URL https:
//doi.org/10.1109/MCI.2025.3540742.

Emma Hart, Peter Ross, and David Corne. Evolutionary scheduling: A review. Genetic Program-
ming and Evolvable Machines, 6(2):191–220, 2005.

Torsten Hildebrandt and Jürgen Branke. On using surrogates with genetic programming. Evolution-
ary Computation, 23(3):343–367, 2015a.

Torsten Hildebrandt and Jürgen Branke. On using surrogates with genetic programming. 23(3):
343–367, 2015b. ISSN 1063-6560, 1530-9304. doi: 10.1162/EVCO a 00133. URL https:
//direct.mit.edu/evco/article/23/3/343-367/996.

Kristijan Jaklinović, Marko Durasević, and Domagoj Jakobović. Designing dispatching rules with
genetic programming for the unrelated machines environment with constraints. Expert Systems
with Applications, pp. 114548, 2021.

Thitipong Jamrus, Hung-Kai Wang, and Chen-Fu Chien. Dynamic coordinated scheduling for sup-
ply chain under uncertain production time to empower smart production for industry 3.5. Com-
puters & Industrial Engineering, 142:106375, 2020.

John R Koza. Genetic programming as a means for programming computers by natural selection.
Statistics and Computing, 4(2):87–112, 1994.

Li Nie, Liang Gao, Peigen Li, and Xinyu Li. A gep-based reactive scheduling policies constructing
approach for dynamic flexible job shop scheduling problem with job release dates. Journal of
Intelligent Manufacturing, 24(4):763–774, 2013.

Martin Pilát and Gabriela Suchopárová. Using graph neural networks as surrogate models in ge-
netic programming. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion, GECCO ’22, pp. 582–585, New York, NY, USA, 2022. Association for Com-
puting Machinery. ISBN 9781450392686. doi: 10.1145/3520304.3529024. URL https:
//doi.org/10.1145/3520304.3529024.

10

http://arxiv.org/abs/2005.12872
http://arxiv.org/abs/2005.12872
http://arxiv.org/abs/1906.04341
https://aclanthology.org/N19-1423/
https://aclanthology.org/N19-1423/
http://arxiv.org/abs/2010.11929
https://doi.org/10.1109/MCI.2025.3540742
https://doi.org/10.1109/MCI.2025.3540742
https://direct.mit.edu/evco/article/23/3/343-367/996
https://direct.mit.edu/evco/article/23/3/343-367/996
https://doi.org/10.1145/3520304.3529024
https://doi.org/10.1145/3520304.3529024

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nelishia Pillay and Rong Qu. Hyper-heuristics: theory and applications. Springer, 2018.

Lucija Planinić, Marko DJurasević, and Domagoj Jakobović. On the application of ϵ-lexicase se-
lection in the generation of dispatching rules. In Proceedings of the Congress on Evolutionary
Computation, pp. 2125–2132. IEEE, 2021.

Emily Reif, Ann Yuan, Martin Wattenberg, Fernanda B Viegas, Andy Coenen, Adam
Pearce, and Been Kim. Visualizing and measuring the geometry of BERT. In Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://papers.neurips.cc/paper_files/paper/2019/hash/
159c1ffe5b61b41b3c4d8f4c2150f6c4-Abstract.html.

Leshan Tan, Chenwei Jin, Xinan Chen, Rong Qu, and Ruibin Bai. PGU-SGP: A Pheno-Geno Uni-
fied Surrogate Genetic Programming For Real-life Container Terminal Truck Scheduling, April
2025. URL http://arxiv.org/abs/2504.11280. arXiv:2504.11280 [cs].

Matheus Cândido Teixeira and Gisele Lobo Pappa. Transformers as Surrogate Models for Genetic
Programming in AutoML Tasks, pp. 472–480. Association for Computing Machinery, New York,
NY, USA, 2025. ISBN 9798400714658. URL https://doi.org/10.1145/3712256.
3726396.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need, August 2023. URL http:
//arxiv.org/abs/1706.03762. arXiv:1706.03762 [cs].

Wikipedia contributors. Polish notation — Wikipedia, the free encyclopedia, 2025. URL
https://en.wikipedia.org/w/index.php?title=Polish_notation&
oldid=1297395417. [Online; accessed 20-July-2025].

Fangfang Zhang, Yi Mei, Su Nguyen, and Mengjie Zhang. Guided subtree selection for genetic
operators in genetic programming for dynamic flexible job shop scheduling. In Proceedings of
the European Conference on Genetic Programming, pp. 262–278. Springer, 2020.

Fangfang Zhang, Su Nguyen, Yi Mei, and Mengjie Zhang. Genetic programming for production
scheduling: An evolutionary learning approach. In Machine Learning: Foundations, Methodolo-
gies, and Applications, pp. XXXIII+338. Springer, 2021.

Fangfang Zhang, Yi Mei, Su Nguyen, Kay Chen Tan, and Mengjie Zhang. Instance-Rotation-
Based Surrogate in Genetic Programming With Brood Recombination for Dynamic Job-Shop
Scheduling. IEEE Transactions on Evolutionary Computation, 27(5):1192–1206, October 2023.
ISSN 1941-0026. doi: 10.1109/TEVC.2022.3180693. URL https://ieeexplore.ieee.
org/document/9789507/.

Hengzhe Zhang, Qi Chen, Bing Xue, Wolfgang Banzhaf, and Mengjie Zhang. RAG-SR:
RETRIEVAL-AUGMENTED GENERATION FOR NEURAL SYMBOLIC REGRESSION.
2025.

Luyao Zhu, Fangfang Zhang, Xiaodong Zhu, Ke Chen, and Mengjie Zhang. Phenotype and Geno-
type Based Sample Aware Surrogate-Assisted Genetic Programming in Dynamic Flexible Job
Shop Scheduling. IEEE Transactions on Artificial Intelligence, pp. 1–15, 2025. ISSN 2691-4581.
doi: 10.1109/TAI.2025.3562161. URL https://ieeexplore.ieee.org/document/
10969605/.

11

https://papers.neurips.cc/paper_files/paper/2019/hash/159c1ffe5b61b41b3c4d8f4c2150f6c4-Abstract.html
https://papers.neurips.cc/paper_files/paper/2019/hash/159c1ffe5b61b41b3c4d8f4c2150f6c4-Abstract.html
http://arxiv.org/abs/2504.11280
https://doi.org/10.1145/3712256.3726396
https://doi.org/10.1145/3712256.3726396
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://en.wikipedia.org/w/index.php?title=Polish_notation&oldid=1297395417
https://en.wikipedia.org/w/index.php?title=Polish_notation&oldid=1297395417
https://ieeexplore.ieee.org/document/9789507/
https://ieeexplore.ieee.org/document/9789507/
https://ieeexplore.ieee.org/document/10969605/
https://ieeexplore.ieee.org/document/10969605/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A DETAILS OF PAIR-WISE LOSS FUNCTION

Our methodology begins by grouping individuals based on their fitness values. As the evolutionary
process progresses and the population converges, individuals often achieve identical fitness scores.
These individuals are partitioned into distinct groups, and we subsequently compute the score vari-
ance within each group. The underlying principle is that a well-calibrated predictive model should
assign scores with minimal variance to individuals that share the same fitness value. This approach
provides a measure of the model’s consistency and predictive reliability for equally-performing in-
dividuals.

Algorithm 1 Pairwise Loss Function
Input: scores, labels, λvar
Output: loss value L

1: L← 0
2: variation← 0
3: n← length of labels
4: mask← list of n zeros
5: unique score list← []
6: groups← unique elements in labels
7: for each g ∈ groups do
8: indices← {i | labeli = g}
9: values← {scorei | i ∈ indices}

10: L← L+ Variance(values)
11: end for
12: L← L · λvar
13: for i = 0 . . . n− 1 do
14: for j = i . . . n− 1 do
15: if labels[i] = labels[j] then
16: L← L+ |scores[i]− scores[j]|
17: else
18: if labels[i] > labels[j] then
19: sign← −1
20: else
21: sign← 0
22: end if
23: L← ReLU

(
L+ (scores[i]− scores[j]) · sign

)
24: end if
25: end for
26: end for
27: return L/(n · (n− 1)/2) + variance

Following the variance-based analysis, we employ a pairwise ranking loss function to compute the
overall loss value. The core premise of this function is to enforce a consistent relationship between
the predicted scores and the actual fitness ranks. If two individuals possess the same fitness value, the
loss function is designed to penalize any discrepancy in their predicted scores. Conversely, if there
is a rank mismatch—where the predicted rank does not align with the true fitness-based rank—the
difference between their scores is added to the total loss. This mechanism directly guides the model
to learn the correct ordinal relationships among individuals.

To ensure that only ranking errors contribute to the loss, we apply the Rectified Linear Unit (ReLU)
function to the computed loss values. This function ensures that if the predicted rank is correct
(i.e., the pairwise difference is non-positive), the resulting loss is zero. If the rank is incorrect, the
loss value remains positive, thereby penalizing the model for misordering. The complete process is
formally detailed in Algorithm 1.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B A DEMONSTRATION OF ATTENTION SCORE

In 4.4, the experiment results show that the attention score can guide the evolution. In this section,
we would discuss more details and propose an explanation.

We propose a hypothesis to explain this: by targeting and replacing nodes with the lowest aver-
age scores, we can potentially increase the lower bound of an individual’s overall score. While
this mechanism doesn’t guarantee an improvement with every operation (because new subtrees are
generated randomly), it increases the probability of improvement.

Let’s formally represent this process to understand the potential for improving an individual’s per-
formance.

Represent the entire tree structure as T , which consists of N nodes, {v1, v2, . . . , vN}. Each node vi
has a score, s(vi). The overall performance of the tree, E(T), is defined by its minimum node score
as E(T) = minNi=1 s(vi).

Let vmin be the node with the lowest score in tree T , so vmin = argmin(s(vi)), i ∈ {1, 2, . . . , n},
and its minimum score is smin = s(vmin).

In a genetic operation, we replace the subtree rooted at vmin with a new, randomly generated sub-
tree, Tnew. This new subtree contains m nodes, {u1, u2, . . . , um}, each with a score s(uj), j ∈
{1, 2, . . . ,m}.
The new tree, T ′(the new tree after the replacement), has a minimum score of:

E(T ′) = min({s(vi) | vi ∈ T, vi ̸= vmin} ∪ {s(uj) | uj ∈ Tnew})

If all node scores in the new subtree, Tnew, are greater than or equal to the original minimum score,
s(uj) ≥ smin for all j, then the new tree’s minimum score will be at least as good as the original, i.e.,
E(T ′) ≥ smin. This is the ideal scenario where the operation is guaranteed to improve or maintain
the tree’s lowest score.

However, since the new subtree is generated randomly, it might contain nodes with scores lower
than the original minimum. In this case, the new tree’s minimum score, E(T ′), could be lower
than E(T). But by targeting the original lowest-scoring node for replacement, we are increasing the
probability of generating a new subtree with a higher minimum score, thereby raising the overall
lower bound of the individual. This process offers a probabilistic mechanism for improving the
tree’s overall performance.

From the above derivation, the most significant step is to increase the probability that the randomly
generated subtree is better than the original replaced subtree.

C EXPERIMENT DESIGN

Dataset: To measure the performance of proposed algorithm, four scenarios are considered based
on three key factors.

• 1) Expected job arrival rate / system utilization level:
The system utilization level is directly relative with the job arrival rate, and we denote E(u)
as the expected utilization level, E(t) as the expected processing time of all operations on all
machines, and E(in) as the expected time interval of job arrivals. Mathematical expression
as:

E(u) =
wE(t)
kE(in)

where k represents the number of machines, and k represents the number of workcenter.
In this paper, we set the E(u) 0.9 to all four scenarios to simulate a busy factory. The
arrival intervals follow the exponential distribution, namely X(in) ∼ Exp(E(in)).

• 2) Heterogeneity of the processing time:
The processing time of any job Jj’s operation Oj,i on machine Mm tproj,i,m follows the
uniform distribution U [Lp, Hp], that is tproj,i,m ∼ U [Lp, Hp], where the Lp and Hp denote

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

g

Exported from Pencil - Wed Sep 03 2025 14:29:54 GMT+1200 (New Zealand Standard Time) - Page 1 of 1

Figure 8: BERT attention heads, In the example attention maps, the darkness of a line indicates the
strength of the attention weight.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 2: The terminal and function sets.
PART DESCRIPTION

Machine-related
NIQ The number of operations in the queue
WIQ Current work in the queue
MWT Waiting time of a machine

Operation-related
PT Processing time of an operation
NPT Median processing time for next operation
OWT Waiting time of an operation

Job-related
WKR Median amount of work remaining of a job
NOR The number of operations remaining of a job
SLACK The slack of the job Ji at time t
TIS Time in system

the lower and upper bounds of processing time respectively. We define processing time
tproj,i,m ∼ U [5, 15] as the high heterogeneity processing time, and processing time tproj,i,m ∼
U [10, 20] as the low heterogeneity processing time.

• 3) Due date tightness:
As we denote the due date of a given job Jj as tduej , we denote a due date factor αj ∼
U [Ld, Hd]. In this paper, we categorize the due date factor αj into two types of tightness
range: the high tension of due date with αj ∼ U [1, 2] and the low tension of due date with
αj ∼ U [1, 3]. The due date tduej mathematical calculation is:

tduej = tarrj + αj

qj∑
i=1

(

∑kj,i

m=1 t
pro
j,i,m

kj,i
), αj ∼ U [Ld, Hd]

The formula calculates the due time (tduej) for job Jj as its arrival time (tarrj) plus a ran-
domly generated duration. This duration is determined by a scaling factor αj , which is
drawn from a uniform distribution between Ld and Hd, multiplied by the sum of the av-

erage processing times for each operation of the job. The term
∑kj,i

m=1 tproj,i,m

kj,i
represents the

average processing time of operation Oj,i across all kj,i available machines.

Based on these descriptions, the four scenarios are:

• 1) HH: the high heterogeneity of processing time tproj,i,m ∼ U [5, 15] and high tension of
due date αj ∼ U [1, 2]

• 2) HL: the high heterogeneity of processing time tproj,i,m ∼ U [5, 15] and low tension of due
date αj ∼ U [1, 3]

• 3) LH: the low heterogeneity of processing time tproj,i,m ∼ U [10, 20] and high tension of
due date αj ∼ U [1, 2]

• 4) LL: the low heterogeneity of processing time tproj,i,m ∼ U [10, 20] and low tension of due
date αj ∼ U [1, 3]

And in our experiments, we set up three workcenters and each workcenter has two machines.

D DYNAMIC JOB FLEX SHOP SCHEDULING

In DFJSS problem, m machines denote by M = {M1,M2, ...,Mm}, and each machine belongs
to workcenters denoted as W = {W1,W2...,Ww}. n jobs J = {J1, J2, ..., Jn} would arrive

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: The parameter settings of the proposed method.

PARAMETER VALUE

Population size 50
Number of generations 100
Number of instances per generation 2
Method for initialising population Ramped-half-and-half
Initial minimum/maximum depth 1 / 6
Elitism 10
Maximal depth 8
Crossover rate 0.80
Mutation rate 0.15
Reproduction rate 0.05
Terminal/non-terminal selection rate 10% / 90%
Radius δ/capacity κ [0, 1, 2, 3, 4, 5] / 1
Parent selection Size-3 tournament selection
Self-attention score utilization 0 / 0.8

dynamically, and each job Jj has a sequence of operations Oj = {Oj1, Oj2, ..., Ojlj} that need to
be processed one by one, where lj is the number of operations of job Jj . Each completed job Jj has
a completed time denoted as tconj and a due time denoted as tduej . tard(Jj) = max{tconj − tduej , 0}
is denoted as the tardiness which is lower bounded by 0, that means if the completed time is earlier
than due time, the tardiness is 0.

Each operation Oji can be processed on more than one machine M(Oji) ⊆ π(Oji) (?). Thus, the
machine that processes an operation determines its processing time δ(Oji,M(Oji)).

Below are the main constraints of the DFJSS problems:

• 1. A machine can only process one operation at a time. For any given Mk:

tstartjik /∈ [tstartmnk , t
con
mnk], ∀j, i ̸= m,n (3)

where tstartjik represents the star time of operation Oji on machine Mk, and tstartmnk , tconmnk

represent the start time and the completion time of operation Omn on machine Mk respec-
tively.

• 2. Each operation can be handled by only one of its candidate machines.∑
k∈M(Oji)

xjik = 1,∀j, i > 1, xjik ∈ {0, 1} (4)

where xjik = 1 if operation Oji is assigned to machine Mk, otherwise, xjik = 0.
• 3. An operation cannot be handled until its precedents have been processed. For any

operation Oji and it’s preceding Oj(i−1)

tstartj,i > tconj(i−1), ∀j, i > 1 (5)

where tstartj,i represents the start time of Oji and tconj(i−1) represents the completion time of
the preceding operation Oj(i−1)

• 4. Once started, the processing of an operation cannot be stopped.

In this paper, we use the cumulative tardiness of whole evaluation process as the only measurement:

CumulativeTardiness =

n∑
j=1

tard(Jj), tard(Jj) = max{tconj − tduej , 0} (6)

where tard(Jj) represents the tardiness time of a job Jj . The objective of GP solution is to minimize
the CumulativeTardiness.

16

	Introduction
	Related Work
	Proposed Algorithm
	An Overview
	Proposed Architecture
	The Semantic Information in Tree-based GP Individual
	Embedding Linearized GP Sequence
	The Score and Pair-wise Loss Function
	Score-based Crossover and Mutation

	Results and Discussions
	Experiment Design
	Overall Performance of Proposed Algorithm
	Probing Individual Attention
	Does attention score can really guide the evolution?

	Conclusions and Future Work
	Details Of Pair-wise Loss Function
	A Demonstration of Attention Score
	Experiment Design
	Dynamic Job Flex Shop Scheduling

