Under review as a conference paper at ICLR 2026

SASFT: SPARSE AUTOENCODER-GUIDED SUPER-
VISED FINETUNING TO MITIGATE UNEXPECTED
CODE-SWITCHING IN LLLMs

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have impressive multilingual capabilities, but
they suffer from unexpected code-switching, also known as language mixing,
which involves switching to unexpected languages in the model response. This
problem leads to poor readability and degrades the usability of model responses.
However, existing work on this issue lacks a mechanistic analysis and shows lim-
ited effectiveness. In this paper, we first provide an in-depth analysis of unex-
pected code-switching using sparse autoencoders and find that when LLMs switch
to a language, the features of that language exhibit excessive pre-activation val-
ues. Based on our findings, we propose Sparse Autoencoder-guided Supervised
Finetuning (SASFT), which teaches LLMs to maintain appropriate pre-activation
values of specific language features during training. Experiments on five models
across three languages demonstrate that SASFT consistently reduces unexpected
code-switching by more than 50% compared to standard supervised fine-tuning,
with complete elimination in four cases. Moreover, SASFT maintains or even
improves the models’ performance on six multilingual benchmarks, showing its
effectiveness in addressing code-switching while preserving multilingual capa-
bilities. The code and data are available at https://anonymous.4open.
science/r/SASFT-71CC.

1 INTRODUCTION

Tell me about recent advances in LLMs. LLMs are Al #%; that are trained to understand... <
0N LLaMA
Unexpected code-switching to Chinese B,
[] £V, Qwen

&deepseel(

|
5z Gemma

\

What is the purpose of artificial intelligence? The goal of Al is creating smart systems... N ‘

Unexpected code-switching to Russian

1
'
I
i
Can you explain what machine learning is? The ocHoeHas concept of machine learning involves... !
I
'
I
\

Unexpected code-switching to
Figure 1: Examples of unexpected code-switching to Chinese, Russian, and Korean.

As the demand for multilingual Large Language Models (LLMs) continues to grow (Qin et al.,
2024} Huang et al.,|2024)), researchers seek to improve the multilingual capabilities of LLMs (Team
et al., 2024; |Grattafiori et al} 2024; |Yang et al.| |2024). For example, Qwen-3 (Yang et al.| [2025)
can support 119 languages and performs well on multilingual benchmarks (He et al.| 2024a; Zhang
et al., 2024; Romanou et al., 2024). In addition, Llama-4 is pre-trained on 200 languages, where
over 100 languages have more than 1 billion tokens each (Metal 2025)). Moreover, Gemma-3 offers
out-of-the-box support for over 35 languages and pretrained support for over 140 languages (Team
et al., 2025). While multilingual capabilities are important for LL.Ms, they can lead to unexpected
code-switching or language mixing (Guo et al., 2025), where LLMs switch to unexpected languages
in their response, as shown in Figure[I] This unexpected code-switching makes it difficult for users
to understand and reduces the model’s utility (more details please refer to Appendix [A). Therefore,
addressing unexpected code-switching in LLMs is essential.

To the best of our knowledge, the only attempt to address unexpected code-switching in LLMs is
proposed by |Guo et al.| (2025), who find that DeepSeek-R1 (Guo et al., 2025) suffers from un-

https://anonymous.4open.science/r/SASFT-71CC
https://anonymous.4open.science/r/SASFT-71CC

Under review as a conference paper at ICLR 2026

expected code-switching and attempt to address it by applying GRPO (Shao et al.| 2024) with a
language consistency reward. However, their method lacks a deep understanding of unexpected
code-switching mechanisms and shows limited effectiveness. This suggests the need for better anal-
ysis and solutions.

Inspired by (Deng et al., [2025), which shows that LLMs have language-specific features through
sparse autoencoders (SAEs), we conduct preliminary experiments using SAEs and find that unex-
pected code-switching to a specific language occurs with unusually high pre-activation value of that
language’s features. Further experiments show that reducing pre-activation values of these language-
specific features during inference can mitigate unexpected code-switching. However, this approach
requires external intervention and doesn’t change the model, without solving the problem funda-
mentally.

Based on our findings, we propose Sparse Autoencoder-guided Supervised Finetuning (SASFT)
to address unexpected code-switching. The key idea is to teach LLMs to maintain appropriate
pre-activation values of irrelevant language features during training, rather than modifying them
during inference. Specifically, we introduce an auxiliary loss during supervised fine-tuning (SFT)
that encourages the model to keep pre-activation values of specific language features below certain
thresholds when generating content in other languages. Since these language features demonstrate
strong monolingual characteristics, we aim to reduce code-switching while preserving the model’s
original capabilities.

Extensive experiments on five widely used models, including the Gemma-2 series (Team et al.,
2024), Llama-3.1 series (Meta, 2024), and Qwen-3 series (Yang et al., [2025), demonstrate the ef-
fectiveness of our approach. SASFT reduces unexpected code-switching by more than 50% in most
cases, with complete elimination (100% reduction) achieved in several scenarios, particularly for
the Korean language. Our method significantly outperforms existing methods like GRPO. Notably,
SASFT maintains or even improves the models’ performance on six multilingual benchmarks, in-
cluding MMLU (Hendrycks et al.,[2021)), HumanEval (Peng et al.||2024; |Chen et al.,[2021), Flores-
200 (Goyal et al.l 2022} [Team et al.| [2022), among others. Further analysis reveals that applying
SASFT across multiple layers achieves better and more stable results compared to a single layer.

In summary, our main contributions are:

* We provide the first in-depth analysis of unexpected code-switching in LLMs using SAEs,
revealing that unexpected code-switching is closely related to unusually high pre-activation
of irrelevant language features.

* We propose Sparse Autoencoder-guided Supervised Finetuning (SASFT), a novel method
that addresses unexpected code-switching by teaching LLMs to maintain appropriate pre-
activation values of irrelevant language features during training.

* We conduct experiments across five models and six datasets, demonstrating that SASFT
effectively reduces unexpected code-switching while maintaining multilingual capabilities.

2 PRELIMINARY

Code-switching reduction. Code-switching refers to the linguistic phenomenon of alternating be-
tween two or more languages within a single text (Poplackl 1978} [Kuwanto et al., [2024; Winata
et al.l 2023)). Recent studies of code-switching in LLMs (Zhang et al.| 2023} [Yong et al.| 2023
Huzaifah et al.,2024; Winata et al., 2024;|Wang et al., [2025b; Yoo et al.,2024; |Li et al., 2024) over-
look an important issue: unexpected code-switched content generated by LLMs can confuse users
and hinder their comprehension. Therefore, we propose a new task - Code-Switching Reduction in
LLMs, which aims to minimize unexpected code-switching while preserving the multilingual ca-
pabilities of LLMs. Given a multilingual LLM L, an unexpected code-switching language [/, and
a set of prompts X = {z1, s, ... 2N} where responses should not contain language [, the goal of
Code-Switching Reduction can be denoted as:

N
1 : .
min ~ ;_1 L(CSW (I, P (x;))) s.t. Dist(L,L*) < e. (1)

Here, the function C.SW (I, y) checks if text y contains any content in language I. P« (z;) is the out-
put when prompting x; to LLM L*, and I(-) denotes indicator function. The function Dist(L, L*)

Under review as a conference paper at ICLR 2026

measures the difference between the new LLM L* and the original LLM L. We want to keep
this difference small to make sure L* stays similar to L. Since we want to minimize unexpected
code-switching while preserving the multilingual capabilities, we use the performance difference on
multilingual benchmarks as “distance”.

Code-switching ratio. We define code-switching ratio as an evaluation metric to measure unex-
pected language switching in LLM L. The ratio can be calculated as:

N
1
= NZH(CSW(LPL(%‘)))- 2
i=1
Existing tools cannot reliably detect fine-grained code-switching, such as single characters in an-
other language (Burchell et al| 2024). Thus, we use a script-based approach (see Appendix [D.3).

SAEs. Sparse Autoencoders (SAEs) are a special type of autoencoder (Hinton & Zemel, [1993).
They are used to break down the hidden states of LLMs into a sparse linear combination of learned
feature directions. Given a residual stream x € RY in a certain layer, the SAE calculates a feature
activation a € RM, where M >> N. It then uses a to reconstruct the input as %X. The typical
reconstruction process is described by the following equations:

() WeneX + bepe, 3)
a(x) := ReLU(f(x)), (4)
() W eca + byec. &)

We focus on the pre-activation value f(x) rather than the feature activation a(x), since a(x) only
considers positive values and ignores negative pre-activation values that have meaningful negative
projections along feature directions (Mayne et al., 2024). Following the notation of (Rajamanoharan
et al., 2024), we define the columns of Wy as d; for¢ = 1,..., M and refer to these columns as
“features”, which can be regarded as specific directions within the residual stream x.

3 FEASIBILITY STUDY

3.1 UNEXPECTED CODE-SWITCHING IN LLMS

Gemma-2-2b-it Qwen3-1.7B
Em Gemma-2-9b-it Qwen3-8B
l Il Llama-3.1-8B-Instruct
| ‘

Arabic Thai Enghsh French Viethamese Portuguese
Original Language

CS Ratio (%)
N W

=

o

Figure 2: The unexpected code-switching to Chinese for five LLMs in six languages. The results
suggest that unexpected code-switching is a common issue in multilingual LLM:s.

We intend to investigate whether there are unexpected code-switches to Chinese. To this end, we
select queries whose ideal responses should be in a single language without Chinese from six multi-
lingual benchmarks, E]and generate responses from Gemma-2 (Team et al., 2024), Llama-3.1 (Meta,
2024), and Qwen-3 (Yang et al.l [2025). We then measure the unexpected code-switching ratio for
Chinese according to Eq. (2). The results are shown in Figure [2] and we observe that: (1) Unex-
pected code-switching occurs in various LLMs. (2) The ratio of Thai and Arabic content switching
to Chinese is higher than others. These findings suggest that unexpected code-switching is a com-
mon issue in multilingual LLMs across different languages, and it needs to be addressed.

3.2 LANGUAGE-SPECIFIC SAE FEATURES

Deng et al.[(2025) revealed that LLMs possess language-specific features—directions in the residual
stream that have large projection values only when processing tokens from one particular language.

"More details in Appendix

Under review as a conference paper at ICLR 2026

Ablation studies show that removing these features notably impairs the model’s performance in the
corresponding language while having minimal impact on other languages. Motivated by this, we aim
to use these language-specific features to analyze the mechanism behind unexpected code-switching.

3.3 UNEXPECTED CODE-SWITCHING IS RELATED TO LANGUAGE-SPECIFIC SAE FEATURES
We aim to explore what causes unexpected code-switching. Inspired by (Deng et al., |2025), we

propose that unexpected code-switching to the target language might be due to unexpectedly high
pre-activation values of the target language feature.

3.3.1 PRE-ACTIVATION PATTERN BEFORE CODE-SWITCHING

Llama-3.1-8B-Instruct G 2-2b-it G 2-9b-it Qwen3-1.7B Qwen3-8B
wg 1 a0 a0 2.25 10
EF
s 2.00
Se 20 20 0.5
s 3 ° 1.75
5O — 0.0
sct o 1.50
£5 -20 -
O 0.5
£ 2 _20 1.25
_40 1.00 -1.0
-55-4-3-2-101 2 -5-4-3-2-101 2 -5-4-3-2-101 2 -5-4-3-2-101 2 -5-4-3-2-101 2
Token Position Token Position Token Position Token Position Token Position

Figure 3: The average pre-activation values of the Chinese feature at different token positions across
various LLMs. Position O represents the first token that switches to Chinese. Before code-switching
occurs, the pre-activation values of the Chinese feature gradually increase.

We collect all the unexpected code-switching responses in Figure [2| and calculate the average pre-
activation values of the Chinese feature for different positions near the first token that switches to
Chinese, as shown in Figure[3] We observe that the token immediately preceding the first unexpected
code-switching token shows higher pre-activation values of the Chinese feature compared to earlier
tokens. This indicates that abnormally high pre-activation of features of another language may
indicate an upcoming code-switch to that language.

3.3.2 ABLATING IRRELEVANT LANGUAGE FEATURE MITIGATES CODE SWITCHING

s Llama-3.1-8B-Instruct 2-2b-it 2-9b-it Qwen3-1.7B Qwen3-8B

lq0leS=—mm === 1.0 10—

% 1.0 1.0 1.0

%09 0.8 0.8

o« 0.8 0.9

0.8

© 0.6 0.6

3507 0.8

= 0.6 0.4

206 zh zh 0.4 o7 zh zh

o« —-= en en —-= en - en en

) 0.2

o) 5 10 15) 100 200) 100 200) 5 10 15) 5 10 15
Value of A Value of A Value of A Value of A Value of A

Figure 4: The code-switching ratio to Chinese after ablating Chinese or English features with dif-
ferent A. (1) Ablating the Chinese feature can reduce the unexpected code-switching ratio. (2) A
higher coefficient A leads to better reduction in the unexpected code-switching ratio. (3) Ablating
the English feature has little impact on the unexpected code-switching ratio to Chinese.

In Section we show that unexpected code-switching might be related to high pre-activation
values of language features. Here, we investigate how language features impact unexpected code-
switching. Specifically, we use directional ablation (Ferrando et al., 2024} |Arditi et al., [2024) to
subtract the language feature from the residual stream x € R¥ at the final layer of the token imme-
diately preceding the first unexpected code-switching token. This process can be expressed as:

x —x—)d, (6)

where d represents the language feature and A is the coefficient that controls the degree of ablation.
After obtaining x’, we replace x with x’ and continue the forward pass of the LLMs. We report the
code-switching ratio with different A in Figure [d] Our observations are as follows: (1) Ablating the
Chinese feature can reduce the unexpected code-switching ratio. (2) A higher coefficient)\ leads
to better reduction in the unexpected code-switching ratio. (3) Ablating English features has little
impact on the unexpected code-switching ratio to Chinese. These results suggest that changing
language-specific features can mitigate unexpected code-switching.

Under review as a conference paper at ICLR 2026

Ltraining = Lcross—entrapy + lLreduce

I

Lcross—entrupy Lreduce = ReLU (fs - q)

Largest!

t T Output Probabilities

Mean Activation Mean Activation
of Chinese of Other Language fs : Chinese
Feature
Chinese TTTTT S S .
Feature A

L. e.)

P4
X

SAE Encoder

- SAE Encoder

o ———————
| S —

[Multilingual Corpus]

Non-Chinese Input

Stagel: Finding Language Features Stage2: SASFT

Figure 5: SASFT operates in two steps: First, it identifies language-specific features in LLMs (left),
then leverages these features as training signals to reduce code-switching behavior (right).

4 METHOD

SASFT first identifies language-specific features in LLMs, and then uses these features as training
signals to reduce code-switching in LLMs, as shown in Figure[5] We first briefly review the process
of finding language-specific features used in (Deng et al, 2025) in Section 4.1} and then introduce
SASFT for Code-Switching Reduction in Section

4.1 FINDING LANGUAGE-SPECIFIC FEATURES

Deng et al.|(2025)) propose a metric to measure the monolinguality of a feature. Given sets of residual
streams D = {D;, ..., Dk} where D; contains the residual streams from language ¢ for a certain
layer, they compute how differently feature s activates for language L versus other languages. The
computation process is as follows:

1
L
8:7 aSX7
1 IDL\E (%)

x€Dy,
1 1
L
wE sy Y e o A®)
”)\{DLtheDwDL}””erDI
vi =pl —L, (7)

where a,(x) is the activation value of feature s for residual stream x. We then calculate v for all
languages and features. For each language, we sort all features based on their v values from highest
to lowest. The top-ranked features are identified as “language-specific features.”

4.2 SASFT

In Section [3.3] we observe that reducing the pre-activation values of language-specific features dur-
ing inference can help reduce code-switching. However, this approach has drawbacks: (1) To effec-
tively reduce code-switching, we must lower the pre-activation values of specific language features
significantly. We believe this is because specific language features aren’t just in the final layer; they
appear in earlier layers too. Changing just the final layer does not affect features from previous lay-
ers, so a big reduction is needed. But making large changes or modifying multiple layers can harm
the model’s other abilities (Deng et al.|[2025), making this method impractical. (2) This method re-
quires external intervention and doesn’t fundamentally change the model, leading to extra overhead
and complexity during inference.

Considering the effectiveness of reducing the pre-activation values of specific language features and
its drawbacks during inference, we propose a method to teach LLLMs when to lower the pre-activation

Under review as a conference paper at ICLR 2026

values of these features during the training process. Specifically, we introduce an auxiliary loss
during supervised fine-tuning (SFT) to ensure that LLMs keep the pre-activation values of specific
language features below a certain threshold across several layers. Formally, consider a language
L that we aim to avoid code-switching to. We have sets of residual streams D = {Dy,..., Dk},
where each D; contains the residual streams from training data in language ¢ for a specific layer.
The auxiliary loss can be defined as follows:

Lieduce = EDJ-~D\{DL} Ewaj

> ReLU (f,(x) — aj)H : ®)

SESL

where f,(x) is the pre-activation values of feature s for the residual stream x. The set Sy, denotes the
language-specific features for language L. For each feature s in language j, we use «; to represent
its pre-estimated average pre-activation value. We don’t set o; to zero because the pre-estimated
average pre-activation value can be negative. In such cases, zero would be too large as a baseline
value. Additionally, Dy, is the set of residual streams for language L, which we exclude because
generating language L from language L does not count as code-switching.

For SASFT, we combine two losses to get the final training loss:

Ltraining = Lcross—entropy +)\Lreduce (9)
where)\ is a hyperparameter we can adjust to control how much L4, contributes to the total loss.

Another straightforward idea is to enhance the pre-activation values of original language features,
which might reduce the ratio of code-switching from this language to others. However, our experi-
ments in Appendix [E]show that this method is less effective than reducing the pre-activation values
of unexpected language features. Therefore, we mainly focus on the “reducing” approach.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Training data. We study unexpected code-switching to Chinese, Korean, and Russian. Specifi-
cally, we construct six SFT datasets using open-source data (see Appendix [B]for details). For each
language (Chinese, Korean, and Russian), we create two datasets: a larger dataset with 210k sam-
ples (100k English, 100k target language, 10k others) and a smaller dataset with 110k samples (50k
English, 50k target language, 10k others).

Models. We use base models for our experiment as they are suitable for further fine-tuning. Our
study includes five models of different sizes and series: Gemma-2-2B, Gemma-2-9B (Team et al.,
2024)), Llama-3.1-8B (Meta, [2024), Qwen3-1.7B-Base, and Qwen3-8B-Base (Yang et al., [2025)).
For Gemma-2 models, we use SAEs from Gemma Scope (Lieberum et al.,[2024), while for Llama-
3.1, we use SAEs from Llama Scope (He et al.|[2024b)). For Qwen3 models, we train our own set of
SAEs on the residual stream of each layer.

Baselines. We compare our method with two baseline methods. The first baseline is SFT, which uses
standard cross-entropy loss for training. Following the work of |Guo et al.| (2025)), who use GRPO to
handle unexpected code-switching in DeepSeek-R1 (Guo et al.,2025)), we apply GRPO (Shao et al.,
2024) with a language consistency reward on an SFT-trained model. The language consistency
reward is computed as the percentage of target language words in the model’s output. We refer to
this baseline as SFT+GRPO.

Implementation. We use identical hyperparameters for SFT and SASFT. For GRPO, we use a total
of 10k samples, consisting of 1k samples for each of the 10 languages. Detailed hyperparameter
settings can be found in Appendix [D}

Evaluation. Our evaluation focuses on two key aspects: (1) the code-switching ratio as defined
in Eq. 2} and (2) the model’s performance on multilingual benchmarks. The code-switching ratio
is calculated using the same query set as described in Section while the benchmarks include
the multilingual versions of MMLU (Hendrycks et al.| 2021)), HumanEval (Peng et al., [2024; (Chen
et al., |2021), Flores-200 (Goyal et al. [2022} [Team et al., [2022), HellaSwag (Zellers et al.l |2019),
LogiQA (Liu et al.,[2020) and IFEval (Zhou et al., 2023) from pmmeval (Zhang et al.,|2024).

Under review as a conference paper at ICLR 2026

5.2 MAIN RESULTS

Table 1: Comparison of code-switching ratios (%) across different methods and models. For
each target language (Chinese, Russian, and Korean), we train models on two dataset settings: a
210k dataset and a 110k dataset, then evaluate their code-switching ratio to Chinese, Russian, and
Korean. Bold numbers indicate the best results. Results show SASFT consistently outperforms
baseline and GRPO, achieving over 60% reduction in most cases.

Model Method Training Data 210k Training Data 110k
CS:any - zh CS:any -ru CS:any —-ko CS:any —zh CS:any —ru CS:any — ko
SFT (Baseline) 0.82 0.35 3.78 0.55 0.58 1.26

SFT+GRPO 0.70 (-15%) 0.49 (+40%) 3.35 (-11%) 0.58 (+5%) 0.35 (-40%) 1.16 (-8%)

Gemma-2-2B SFT+Penalty 0.61 (-26%) 044 (+26%) 141 (-63%) 0.52 (-6%) 032 (45%) 091 (:28%)
SASFT 0.29 (-65%) 0.09 (-74%) 077 (:80%) 032 (42%) 0.2 (-19%) 035 (-72%)
SET (Bascline) 0.84 0.15 0.84 0.84 0.06 0.54

Gomma .98 SET+GRPO 0.64 (-24%) 006 (-60%) 071 (-16%) 073 (-13%) 003 (-50%) 0.54 (0%)
SET+Penalty 090 (+7%) 006 (-60%) 076 (-10%) 055 (-35%) 012 (+100%) 0.37 (-31%)
SASFT 0.46 (-45%) 003 (-80%) 0.17 (:80%) 0.35 (-58%) 0.03 (-50%) 047 (-13%)
SET (Bascline) 137 0.93 0.74 0.46 0.61 022

Llamas, LSE SET+GRPO 093 (-32%) 073 (-22%) 0.52 (:30%) 049 (+7%) 048 (-21%) 0.94 (+327%)

: SET+Penalty 049 (-64%) 067 (-28%) 049 (:34%) 038 (-17%) 041 (-33%) 0.37 (+68%)

SASFT 0.26 (-81%) 035 (-62%) 037 (-50%) 0.7 (-63%) 026 (-57%) 0.15 (-32%)
SET (Bascline) 0.46 0.15 0.22 0.55 0.15 0.22

SFT+GRPO 0.73 (+59%) 0.12 (-20%) 0.27 (+23%) 0.47 (-15%) 0.15 (0%) 0.12 (-45%)
SFT+Penalty 0.52 (+13%) 0.15 (0%) 0.17 (-23%) 0.49 (-11%) 0.09 (-40%) 0.20 (-9%)
SASFT 0.17 (-63%) 0.06 (-60%) 0.00 (-100%) 0.18 (-67%) 0.03 (-80%) 0.02 (-91%)

SFT (Baseline) 0.81 0.15 0.30 0.90 0.17 0.15

SFT+GRPO 0.70 (-14%) 0.09 (-40%) 0.22 (-27%) 0.67 (-26%) 0.06 (-65%) 0.12 (-20%)
SFT+Penalty 0.73 (-10%) 0.15 (0%) 0.20 (-33%) 0.64 (-29%) 0.15 (-12%) 0.10 (-33%)
SASFT 0.55 (-32%) 0.03 (-80%) 0.02 (-93%) 0.46 (-49%) 0.06 (-65%) 0.05 (-67%)

Qwen3-1.7B-Base

Qwen3-8B-Base

Table 2: Performance comparison on six benchmarks across different methods. We evaluate
models trained on the Chinese 110k dataset setting. Results demonstrate that SASFT successfully
maintains model capabilities while reducing code-switching, even showing improvements in several
cases. The red numbers indicate performance improvements compared to the SFT. More results are
provided in Appendix

Model Method MMLU HumanEval Flores HellaSwag LogiQA IFEval MGSM
Acc (%) Acc (%) Bleu (%) Acc (%) Acc (%) Acc (%) Acc (%)
SFT 29.88 76.63 22.56 24.97 28.00 14.86 12.05
Gemma-2-2B SFT+GRPO 29.66 (-0.22) 76.35(-0.28) 22.80 (+0.24) 26.41 (+1.44) 26.62 (-1.38) 14.71 (-0.15) 10.99 (-1.06)
SFT+Penalty 30.81 (+0.93) 80.62 (+3.99) 22.87 (+0.31) 26.91 (+1.94) 27.38(-0.62) 15.28 (+0.42) 11.97 (-0.08)
SASFT 30.24 (+0.36) 79.09 (+2.46) 22.28 (-0.28) 24.75(-0.22) 25.75(-2.25) 15.18 (+0.32) 12.24 (+0.19)
SFT 4431 95.62 30.59 32.95 34.12 21.61 44.61

SFT+GRPO 44.21 (-0.10) 95.72 (+0.10) 30.71 (+0.12) 33.86 (+0.91) 31.63 (-2.49) 21.80 (+0.19) 45.84 (+1.23)

Gemma-2-9B SFT+Penalty 46.39 (+2.08) 97.02 (+1.40) 30.09 (-0.50) 3237 (-0.58) 34.63 (+0.51) 21.26 (-0.35) 46.35 (+1.74)
SASFT 4591 (+1.60) 95.67 (+0.05) 29.41 (-1.18) 32.18 (-0.77) 3438 (+0.26) 22.44 (+0.83) 44.96 (+0.35)

SFT 29.99 87.74 2281 32.39 32.88 20.08 19.92
Liama.3.1.8B SFT+GRPO 29.67 (-0.32) 85.58 (-2.16) 22.34 (-0.47) 28.17(-4.22) 32.12(-0.76) 18.91 (-1.17) 22.83 (+2.91)
: SFT+Penalty 29.70 (-0.29) 85.43 (-2.31) 24.36 (+1.55) 28.63(-3.76) 30.37 (-2.51) 20.00 (-0.08) 15.81 (-4.11)
SASFT 33.12 (+3.13) 91.88 (+4.14) 23.73 (+0.92) 33.46(+1.07) 30.63 (-2.25) 19.85(-0.23) 18.35(-1.57)

SFT 3747 90.29 23.70 3353 3238 20.27 3291

SFT+GRPO 37.80 (+0.33) 90.48 (+0.19) 23.45(-0.25) 35.74 (+2.21) 3137 (-1.01) 20.19 (-0.08) 32.67 (-0.24)
SFT+Penalty 37.78 (+0.31) 89.13 (-1.16) 23.55 (-0.15) 36.24 (+2.71) 33.00 (+0.62) 20.44 (+0.17) 33.60 (+0.69)
SASFT 38.38 (+0.91) 89.04 (-1.25) 23.67 (-0.03) 33.71 (+0.18) 32.38(0.00) 20.22 (-0.05) 30.85 (-2.06)

SFT 52.15 95.87 29.99 42.48 4225 33.64 58.03

SFT+GRPO 50.85 (-1.30) 96.44 (+0.57) 30.14 (+0.15) 44.48 (+2.00) 41.50(-0.75) 33.42(-0.22) 55.28 (-2.75)
SFT+Penalty 50.74 (-1.41) 94.71 (-1.16) 30.10 (+0.11) 34.51(-7.97) 39.88 (-2.37) 34.04 (+0.40) 56.29 (-1.74)
SASFT 50.09 (-2.06) 98.27 (+2.40) 29.97 (-0.02) 39.60 (-2.88) 42.75 (+0.50) 33.91 (+0.27) 58.45 (+0.42)

Qwen3-1.7B-Base

Qwen3-8B-Base

Code-switching ratio comparison: SASFT consistently reduces code-switching. We present
the results for code-switching ratio to Chinese (zh), Russian (ru), and Korean (ko) in Table m and
we observe that: (1) SASFT demonstrates superior performance in reducing code-switching across
all scenarios, with more than 50% reduction in 26 out of 30 cases compared to the SFT baseline.
(2) SASFT consistently outperforms GRPO across different models and languages. While GRPO
shows unstable results with both improvements and deteriorations (e.g., +327% for Llama-3.1-8B
with Korean), SASFT maintains consistent reductions across all settings. (3) The effectiveness of
SASFT is particularly evident in Qwen-3, while also showing significant improvements in other
models like Gemma-2, demonstrating its general applicability across model scales. These results
demonstrate that SASFT is a robust and effective method for reducing unexpected code-switching in

Under review as a conference paper at ICLR 2026

LLMs, consistently outperforming existing approaches while maintaining stability across different
languages and model architectures.

Performance on multilingual benchmarks: SASFT preserves multilingual capabilities. We
evaluate our method on six multilingual benchmarks to assess its impact on the multilingual capa-
bilities of LLMs, as shown in Table[2] The results demonstrate that: (1) SASFT generally maintains
or slightly improves model performance across different benchmarks. For instance, Llama-3.1-8B
with SASFT shows notable improvements on several tasks, including MMMLU (+3.13), humaneval
(+4.14), and hellaswag (+1.07) compared to the SFT baseline. (2) Even for models where slight
performance decreases are observed, the degradation is minimal (usually within 1-2%), suggesting
that SASFT effectively reduces code-switching while preserving the model’s multilingual capabil-
ities. These results indicate that our SASFT method effectively addresses the code-switching issue
without substantially affecting the model’s overall performance on multilingual tasks; in some cases,
SASFT even improves performance.

5.3 IN-DEPTH ANALYSIS

Llama-3.1-8B Gemma-2-2b 12 G 2-9b Qwen3-1.7B 1.0 Qwen3-8B
. .0
§2.51 — single 0.8 Single —— single | 0.8 Single Single
£ == Multi Multi 1.0 == Multi Multi Multi
- 0.8
0.6
0.6 0.8
0.4
0.4 0.6 iy Vi 0.6
7\ ~
NN 0.2
0.2 0.4 \, \ 04
2 4 6) 2 4 6) 2 4 6) 2 4 6) 2 4 6
Layer (reverse order) Layer (reverse order) Layer (reverse order) Layer (reverse order) Layer (reverse order)

Figure 6: Impact of layer selection on code-switching ratio across different models. Single-layer
(solid lines) represents applying SASFT to individual layers, while Multi-layer (dashed lines) rep-
resents applying SASFT to consecutive layers starting from the final layer. Layers are counted in
reverse order (0 represents the final layer). Results show that multi-layer consistently achieves bet-
ter and more stable performance than the single-layer approach, while the single-layer effectiveness
decreases when moving towards earlier layers.

Effect of layers used in SASFT: multi-layer outperforms single-layer in reducing code-
switching. We investigate how different layer selections (in reverse order from the final layer) affect
SASFT’s performance in code-switching reduction, as shown in Figure[6] The results demonstrate
that: (1) Multi-layer SASFT consistently shows better performance than the single-layer approach
across all models. This is particularly evident in Gemma-2 and Qwen3, where the multi-layer ap-
proach (dashed lines) maintains lower code-switching ratios throughout different layer selections.
(2) For single-layer SASFT, the performance generally deteriorates as we move towards earlier lay-
ers, with the code-switching ratio showing an increasing trend across most models. (3) The impact
of layer selection is more pronounced in single-layer interventions, showing higher variability in
performance, while multi-layer approaches demonstrate more stable performance across different
layer combinations, suggesting better robustness.

@ Gemma-2-2b Qwen3-1.7b 5 Gemma-2-2b Qwen3-1.7b
20.75 a 0.15
5 0.8 E 0.3
0.50
2 0.6 202 0.10
o
So0.25 0.4 = 0.05
© .]
-9 x 0.1
v 0.00 0.2 » 0.00
o o 5 o v
Chinese Feature Index Chinese Feature Index Russian Feature Index Russian Feature Index
Single Multi Single Multi Single Multi Single Multi

Figure 7: Impact of feature selection on code-switching ratio across different models. Single-feature
(solid lines) represents applying SASFT to individual features, while Multi-feature (dashed lines)
represents applying SASFT to consecutive features starting from the rank-1 language feature. 0
represents the rank-1 language feature. Results show that multi-feature intervention consistently
achieves better and more stable performance than single-feature approach.

Effect of features used in SASFT: multi-Feature outperforms single-feature in reducing code-
switching. We examine how different feature selection strategies affect SASFT’s performance in
code-switching reduction, comparing single-feature versus multi-feature approaches across models,
as shown in Figure [/} We observe that: (1) Multi-feature SASFT consistently shows better per-

Under review as a conference paper at ICLR 2026

formance than the single-feature approach for Chinese features, maintaining lower code-switching
ratios with reduced variance. (2) The performance difference between Chinese and Russian features
suggests language-dependent effectiveness, possibly due to models’ stronger Chinese language ca-
pabilities compared to Russian. (3) Notably, the optimal code-switching reduction is achieved when
applying the multi-feature approach.

5.4 ABLATION STUDY

To validate the rationality of setting a; to pre-estimated average values rather than zero in Eq. (8),
we compare SASFT,¢;, (a; = 0) with SASFT in Table We observe that: (1) SASFT,,, effectively
reduces code-switching and shows comparable performance to SFT+GRPO on Gemma-2-2B, while
achieving notably better results on Qwen3-1.7B-Base. (2) SASFT outperforms SASFT,.;, across
most configurations, demonstrating that using pre-estimated average pre-activation values is more
effective than simply setting them to zero.

Table 3: Comparison of code-switching ratios between different «v; settings. Bold numbers indicate
the best results while underlined numbers represent the second best. Both SASFT,.,, (a; = 0) and
SASFT show effectiveness in reducing code-switching, with SASFT achieving better performance
across different settings.

Model Method Training Data 210k Training Data 110k
CS:any -zh CS:any —ru CS:any - ko CS:any —zh CS:any —ru CS:any — ko
SFT (Baseline) 0.82 0.35 3.78 0.55 0.58 1.26
Gemma-2-2B SFT+GRPO 0.70 (-15%) 0.49 (+40%) 3.35 (-11%) 0.58 (+5%) 0.35 (-40%) 1.16 (-8%)
SASFT 1o 0.55 (-33%) 0.61 (+74%) 2.28 (-40%) 0.38 (-31%) 0.38 (-34%) 0.82 (-35%)
SASFT 0.29 (-65%) 0.09 (-74%) 0.77 (-80%) 0.32 (-42%) 0.12 (-79%) 0.35 (-72%)
SFT (Baseline) 0.46 0.15 0.22 0.55 0.15 0.22
Qwen3-1.7B-Base SFT+GRPO 0.73 (+59%) 0.12 (-20%) 0.27 (+23%) 0.47 (-15%) 0.15 (0%) 0.12 (-45%)
. SASFTero 0.32 (-30%) 0.00 (-100%) 0.02 (-100%) 0.20 (-64%) 0.09 (-40%) 0.02 (-91%)
SASFT 0.17 (-63%) 0.06 (-60%) 0.00 (-100%) 0.18 (-67%) 0.03 (-80%) 0.02 (-91%)

6 RELATED WORKS

Code-switching. Code-switching refers to the linguistic phenomenon of alternating between two
or more languages within a single text (Poplack, |1978} [Kuwanto et al., [2024; Winata et al., [2023).
While recent studies make significant progress in processing code-switching content (Zhang et al.|
2023; [Yong et al., [2023)) and leveraging code-switched data to enhance LLMs (Wang et al., [2025b;
Yoo et al., 2024), they overlook a critical issue: unexpected code-switched content generated by
LLMs can significantly impair user comprehension. |Guo et al.| (2025)) first attempts to tackle this
challenge by applying GRPO (Shao et al., |2024) with a language consistency reward on an SFT-
trained model. Recently, Wang et al.| (2025a) show that code-switching closely aligns with that of
the model’s internal representations.

SAEs. SAEs serve as a powerful interpretability tool by decomposing a model’s internal represen-
tations into meaningful feature directions, enabling researchers to mechanistically explain various
phenomena within LLMs (Bricken et al.| 2023 |Cunningham et al., [2023). [Ferrando et al.| (2024
employs SAEs to discover features indicating LLMs’ entity recognition, while |Cunningham et al.
(2023) identifies features associated with apostrophes. |Galichin et al.| (2025) use SAEs to identify
and validate reasoning features in reasoning models like DeepSeek-R1 (Guo et al.| 2025). Particu-
larly noteworthy is the work by [Deng et al.[(2025)), which reveals that certain features are strongly
correlated with specific languages, and ablating these features only impacts the model’s performance
in one language. Inspired by their findings on language-specific features, we employ SAEs to ana-
lyze unexpected code-switching behavior and solve it.

7 CONCLUSION

We focus on the issue of unexpected code-switching in multilingual LLMs. Through analysis with
SAEs, we discover that unexpected code-switching is linked to unusually high pre-activation val-
ues of irrelevant language features. Based on this finding, we propose SASFT, a novel approach
that guides LLLMs to maintain appropriate pre-activation values of language-specific features during

Under review as a conference paper at ICLR 2026

training. Extensive experiments on five different models demonstrate that SASFT effectively re-
duces unexpected code-switching by more than 50% while maintaining or improving performance
on various multilingual benchmarks. Our work provides a practical solution for developing more
reliable multilingual LLMs, contributing to the advancement of multilingual LLMs.

REPRODUCIBILITY STATEMENT

We ensure the reproducibility of our work by providing detailed information about the training
data in Appendix [B] and comprehensive descriptions of the test data in Section [C] All hyper-
parameter settings and experimental details for both training and testing are presented in Sec-
tion[D] Furthermore, we provide additional code for reproduction at the anonymous link: https:
//anonymous .4open.science/r/SASFT-71CC. Anexample dataset for SFT can be found
in the supplementary material.

REFERENCES

Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and Neel
Nanda. Refusal in language models is mediated by a single direction. In Amir Globersons, Lester
Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang
(eds.), Advances in Neural Information Processing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 -
15, 2024,2024. URL http://papers.nips.cc/paper_files/paper/2024/hash/
£545448535dfded£9786555403ab7c49-Abstract-Conference.html.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Laurie Burchell, Alexandra Birch, Robert Thompson, and Kenneth Heafield. Code-switched lan-
guage identification is harder than you think. In Proceedings of the 18th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
646-658. Association for Computational Linguistics, 2024. doi: 10.18653/v1/2024.eacl-long.38.
URLhttps://aclanthology.org/2024.eacl-long.38/.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

Boyi Deng, Yu Wan, Baosong Yang, Yidan Zhang, and Fuli Feng. Unveiling language-specific
features in large language models via sparse autoencoders. In Proceedings of the 63rd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 4563—
4608, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-
251-0. doi: 10.18653/v1/2025.acl-long.229.

Javier Ferrando, Oscar Obeso, Senthooran Rajamanoharan, and Neel Nanda. Do i know this entity?
knowledge awareness and hallucinations in language models. arXiv preprint arXiv:2411.14257,
2024.

10

https://anonymous.4open.science/r/SASFT-71CC
https://anonymous.4open.science/r/SASFT-71CC
http://papers.nips.cc/paper_files/paper/2024/hash/f545448535dfde4f9786555403ab7c49-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/f545448535dfde4f9786555403ab7c49-Abstract-Conference.html
https://aclanthology.org/2024.eacl-long.38/

Under review as a conference paper at ICLR 2026

Andrey Galichin, Alexey Dontsov, Polina Druzhinina, Anton Razzhigaev, Oleg Y Rogov, Elena
Tutubalina, and Ivan Oseledets. I have covered all the bases here: Interpreting reasoning features
in large language models via sparse autoencoders. arXiv preprint arXiv:2503.18878, 2025.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-Jen Chen, Guillaume Wenzek, Da Ju,
Sanjana Krishnan, Marc’ Aurelio Ranzato, Francisco Guzman, and Angela Fan. The flores-
101 evaluation benchmark for low-resource and multilingual machine translation. Trans. As-
soc. Comput. Linguistics, 10:522-538, 2022. doi: 10.1162/TACL_A_00474. URL https:
//doi.org/10.1162/tacl_a_00474.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yun He, Di Jin, Chaoqi Wang, Chloe Bi, Karishma Mandyam, Hejia Zhang, Chen Zhu, Ning Li,
Tengyu Xu, Hongjiang Lv, et al. Multi-if: Benchmarking llms on multi-turn and multilingual
instructions following. arXiv preprint arXiv:2410.15553, 2024a.

Zhengfu He, Wentao Shu, Xuyang Ge, Lingjie Chen, Junxuan Wang, Yunhua Zhou, Frances Liu,
Qipeng Guo, Xuanjing Huang, Zuxuan Wu, et al. Llama scope: Extracting millions of features
from llama-3.1-8b with sparse autoencoders. arXiv preprint arXiv:2410.20526, 2024b.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In 9th International Confer-
ence on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Geoffrey E. Hinton and Richard S. Zemel. Autoencoders, minimum description length and
helmholtz free energy. In Jack D. Cowan, Gerald Tesauro, and Joshua Alspector (eds.), Advances
in Neural Information Processing Systems 6, [7th NIPS Conference, Denver, Colorado, USA,
1993], pp. 3-10. Morgan Kaufmann, 1993. URL |http://papers.nips.cc/paper/
798—-autoencoders-minimum-description—-length—-and-helmholtz-free-enerqgy.

Kaiyu Huang, Fengran Mo, Xinyu Zhang, Hongliang Li, You Li, Yuanchi Zhang, Weijian Yi, Yulong
Mao, Jinchen Liu, Yuzhuang Xu, et al. A survey on large language models with multilingualism:
Recent advances and new frontiers. arXiv preprint arXiv:2405.10936, 2024.

Muhammad Huzaifah, Weihua Zheng, Nattapol Chanpaisit, and Kui Wu. Evaluating code-switching
translation with large language models. In Nicoletta Calzolari, Min-Yen Kan, Véronique Hoste,
Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of the 2024 Joint In-
ternational Conference on Computational Linguistics, Language Resources and Evaluation,
LREC/COLING 2024, 20-25 May, 2024, Torino, Italy, pp. 6381-6394. ELRA and ICCL, 2024.
URLhttps://aclanthology.org/2024.1lrec-main.565.

Amir Hossein Kargaran, Francois Yvon, and Hinrich Schiitze. GlotScript: A resource and tool
for low resource writing system identification. In Nicoletta Calzolari, Min-Yen Kan, Veronique
Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of the 2024
Joint International Conference on Computational Linguistics, Language Resources and Evalu-
ation (LREC-COLING 2024), pp. 7774-7784, Torino, Italia, May 2024. ELRA and ICCL. URL
https://aclanthology.org/2024.1lrec—main.687.

Garry Kuwanto, Chaitanya Agarwal, Genta Indra Winata, and Derry Tanti Wijaya. Linguistics the-
ory meets llm: Code-switched text generation via equivalence constrained large language models.
arXiv preprint arXiv:2410.22660, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

11

https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://openreview.net/forum?id=d7KBjmI3GmQ
http://papers.nips.cc/paper/798-autoencoders-minimum-description-length-and-helmholtz-free-energy
http://papers.nips.cc/paper/798-autoencoders-minimum-description-length-and-helmholtz-free-energy
https://aclanthology.org/2024.lrec-main.565
https://aclanthology.org/2024.lrec-main.687

Under review as a conference paper at ICLR 2026

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik,
Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm,
Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tiilu
3: Pushing frontiers in open language model post-training. 2024.

Jiahuan Li, Shujian Huang, Aarron Ching, Xinyu Dai, and Jiajun Chen. Prealign: Boosting
cross-lingual transfer by early establishment of multilingual alignment. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP 2024, Miami, FL, USA, November 12-
16, 2024, pp. 10246-10257. Association for Computational Linguistics, 2024. URL https:
//aclanthology.org/2024.emnlp-main.572.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, Janos Kramdr, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2. arXiv preprint arXiv:2408.05147, 2024.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning. In Christian
Bessiere (ed.), Proceedings of the Twenty-Ninth International Joint Conference on Artificial In-
telligence, IJCAI 2020, pp. 3622-3628. ijcai.org, 2020. doi: 10.24963/1JCAIL.2020/501. URL
https://doi.org/10.24963/ijcai.2020/501l

Harry Mayne, Yushi Yang, and Adam Mahdi. Can sparse autoencoders be used to decompose and
interpret steering vectors? In NeurlPS 2024 - Workshop on Foundation Model Interventions,
2024. URL https://openreview.net/forum?id=QRpzG4b5dz.

Meta. Introducing Llama 3.1: Our most capable models to date, 2024. URL https://ai.meta.
com/blog/meta-llama-3-1/.

Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation, 2025.
URLhttps://ai.meta.com/blog/llama-4-multimodal-intelligence/.

Qiwei Peng, Yekun Chai, and Xuhong Li. Humaneval-xl: A multilingual code generation bench-
mark for cross-lingual natural language generalization. arXiv preprint arXiv:2402.16694, 2024.

Shana Poplack. Syntactic structure and social function of code-switching, volume 2. Centro de
Estudios Puertorriquefios,[City University of New York], 1978.

Libo Qin, Qiguang Chen, Yuhang Zhou, Zhi Chen, Yinghui Li, Lizi Liao, Min Li, Wanxiang Che,
and Philip S Yu. Multilingual large language model: A survey of resources, taxonomy and fron-
tiers. arXiv preprint arXiv:2404.04925, 2024.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma, Janos
Kramdr, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with jumprelu sparse
autoencoders. arXiv preprint arXiv:2407.14435, 2024.

Angelika Romanou, Negar Foroutan, Anna Sotnikova, Zeming Chen, Sree Harsha Nelaturu, Shiv-
alika Singh, Rishabh Maheshwary, Micol Altomare, Mohamed A Haggag, Alfonso Amayuelas,
et al. Include: Evaluating multilingual language understanding with regional knowledge. arXiv
preprint arXiv:2411.19799, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason Wei. Lan-
guage models are multilingual chain-of-thought reasoners. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023. URL https://openreview.net/forum?id=fR3wGCk-IXp.

12

https://aclanthology.org/2024.emnlp-main.572
https://aclanthology.org/2024.emnlp-main.572
https://doi.org/10.24963/ijcai.2020/501
https://openreview.net/forum?id=QRpzG4b5dz
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/meta-llama-3-1/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://openreview.net/forum?id=fR3wGCk-IXp

Under review as a conference paper at ICLR 2026

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Ferret,
Peter Liu, Pouya Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Charline Le
Lan, Sammy Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin, Nikola
Momchev, Matt Hoffman, et al. Gemma 2: Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118, 2024.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

NLLB Team, Marta R. Costa-jussa, James Cross, Onur Celebi, Maha Elbayad, Kenneth Heafield,
Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, Anna Sun, Skyler
Wang, Guillaume Wenzek, Al Youngblood, Bapi Akula, Loic Barrault, Gabriel Mejia Gonzalez,
Prangthip Hansanti, John Hoffman, Semarley Jarrett, Kaushik Ram Sadagopan, Dirk Rowe, Shan-
non Spruit, Chau Tran, Pierre Andrews, Necip Fazil Ayan, Shruti Bhosale, Sergey Edunov, Angela
Fan, Cynthia Gao, Vedanuj Goswami, Francisco Guzman, Philipp Koehn, Alexandre Mourachko,
Christophe Ropers, Safiyyah Saleem, Holger Schwenk, and Jeff Wang. No language left be-
hind: Scaling human-centered machine translation, 2022. URL https://arxiv.org/abs/
2207.04672.

Mingyang Wang, Lukas Lange, Heike Adel, Yunpu Ma, Jannik Strétgen, and Hinrich Schiitze.
Language mixing in reasoning language models: Patterns, impact, and internal causes. arXiv
preprint arXiv:2505.14815, 2025a.

Zhijun Wang, Jiahuan Li, Hao Zhou, Rongxiang Weng, Jingang Wang, Xin Huang, Xue Han, Junlan
Feng, Chao Deng, and Shujian Huang. Investigating and scaling up code-switching for multilin-
gual language model pre-training. arXiv preprint arXiv:2504.01801, 2025b.

Xiangpeng Wei, Haoran Wei, Huan Lin, Tianhao Li, Pei Zhang, Xingzhang Ren, Mei Li, Yu Wan,
Zhiwei Cao, Binbin Xie, et al. Polylm: An open source polyglot large language model. arXiv
preprint arXiv:2307.06018, 2023.

Genta Winata, Alham Fikri Aji, Zheng Xin Yong, and Thamar Solorio. The decades progress on
code-switching research in NLP: A systematic survey on trends and challenges. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational
Linguistics: ACL 2023, pp. 2936-2978, Toronto, Canada, July 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.findings-acl.185. URL https://aclanthology.
org/2023.findings—acl.185/.

Genta Indra Winata, Ruochen Zhang, and David Ifeoluwa Adelani. MINERS: multilingual language
models as semantic retrievers. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, Florida, USA,
November 12-16, 2024, pp. 2742-2766. Association for Computational Linguistics, 2024. URL
https://aclanthology.org/2024.findings-emnlp.155!

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Zheng Xin Yong, Ruochen Zhang, Jessica Forde, Skyler Wang, Arjun Subramonian, Holy Love-
nia, Samuel Cahyawijaya, Genta Winata, Lintang Sutawika, Jan Christian Blaise Cruz, Yin Lin
Tan, Long Phan, Long Phan, Rowena Garcia, Thamar Solorio, and Alham Fikri Aji. Prompt-
ing multilingual large language models to generate code-mixed texts: The case of south East
Asian languages. In Genta Winata, Sudipta Kar, Marina Zhukova, Thamar Solorio, Mona Diab,
Sunayana Sitaram, Monojit Choudhury, and Kalika Bali (eds.), Proceedings of the 6th Work-
shop on Computational Approaches to Linguistic Code-Switching, pp. 43—63, Singapore, Decem-
ber 2023. Association for Computational Linguistics. URL https://aclanthology.org/
2023.calcs-1.5/l

13

https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
https://aclanthology.org/2023.findings-acl.185/
https://aclanthology.org/2023.findings-acl.185/
https://aclanthology.org/2024.findings-emnlp.155
https://aclanthology.org/2023.calcs-1.5/
https://aclanthology.org/2023.calcs-1.5/

Under review as a conference paper at ICLR 2026

Haneul Yoo, Cheonbok Park, Sangdoo Yun, Alice Oh, and Hwaran Lee. Code-switching curriculum
learning for multilingual transfer in llms. arXiv preprint arXiv:2411.02460, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluis Marquez
(eds.), Proceedings of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 4791—
4800. Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1472. URL
https://doi.org/10.18653/v1/pl19-1472|

Ruochen Zhang, Samuel Cahyawijaya, Jan Christian Blaise Cruz, Genta Indra Winata, and Al-
ham Fikri Aji. Multilingual large language models are not (yet) code-switchers. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023,
pp. 12567-12582. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.
EMNLP-MAIN.774. URL https://doi.orqg/10.18653/v1/2023.emnlp—-main.
774l

Yidan Zhang, Boyi Deng, Yu Wan, Baosong Yang, Haoran Wei, Fei Huang, Bowen Yu, Junyang
Lin, Fei Huang, and Jingren Zhou. P-mmeval: A parallel multilingual multitask benchmark for
consistent evaluation of 1lms. arXiv preprint arXiv:2411.09116, 2024.

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. Wildchat:
Im chatGPT interaction logs in the wild. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=B18u7ZR1bM.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

A UNEXPECTED CODE-SWITCHING IN LLMS: A GROWING CONCERN

The phenomenon of unexpected code-switching, where language models abruptly switch between
different languages during generation, has become increasingly prevalent in various open-source
LLMs. This issue significantly impacts user experience and model reliability. For instance, multiple
users have reported unexpected code-switching in models like DeepSeek and Qwen, particularly
between English and Chinese.

This phenomenon has been widely documented across different community platforms. For
DeepSeek, users have reported the code-switching issue both on GitHub, where the model occa-
sionally switches to Chinese mid-conversation ﬂ and on Reddit, where multiple users experienced
random switches to Chinese characters, particularly when generating longer responses |’} Similar
issues have been observed with the Qwen model, where Reddit users reported unexpected Chinese
outputs during other language interactions EI

B DETAILS OF SFT TRAINING DATA

We construct six SFT datasets using a variety of open-source data, with the statistics summarized
in Table [] and Table [5] Each dataset represents a distinct setting in which we carefully control
the total sample size and language composition. Specifically, in each configuration, the datasets
include either approximately 210k or 110k samples, focusing on three target languages: Korean
(ko), Russian (ru), and Chinese (zh).

https://github.com/deepseek—-ai/DeepSeek-R1l/issues/110.

3https://www.reddit.com/r/LocalLLaMA/comments/li958ii/anyone_else_
experienced_deepseek_randomly/.

“https://www.reddit.com/r/LocallLLaMA/comments/lhlitkn/qwen_often_
output_chinese/l

14

https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/2023.emnlp-main.774
https://doi.org/10.18653/v1/2023.emnlp-main.774
https://openreview.net/forum?id=Bl8u7ZRlbM
https://github.com/deepseek-ai/DeepSeek-R1/issues/110
https://www.reddit.com/r/LocalLLaMA/comments/1i958ii/anyone_else_experienced_deepseek_randomly/
https://www.reddit.com/r/LocalLLaMA/comments/1i958ii/anyone_else_experienced_deepseek_randomly/
https://www.reddit.com/r/LocalLLaMA/comments/1hlitkn/qwen_often_output_chinese/
https://www.reddit.com/r/LocalLLaMA/comments/1hlitkn/qwen_often_output_chinese/

Under review as a conference paper at ICLR 2026

Among the data sources, KULLME], Tulu3 (Lambert et al., [2024), WildChat (Zhao et al.,|2024)), and
BelleGrou[f] each provide single-language samples: specifically, KULLM for Korean, Tulu3 for
English, WildChat for Russian, and BelleGroup for Chinese. The remaining data, Multialpaca (Wei
et al.; [2023), Flores (Goyal et al., 2022)), and GSM8KInstruct (Cobbe et al., 2021ﬂ offer multilin-
gual data, contributing samples across various languages.

Table 4: Number of samples of each language in different dataset settings. Each row shows the dis-
tribution of samples across languages for different dataset sizes (either 210k or 110k). For Russian
(ru), the sample size is approximate due to limited available data.

Samples per Language

Dataset

en ko vi zh th fr ar es pt de ja id ru other

ko-210k 100000 100000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 2276
ko-110k 50000 50000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 2276
ru-210k 100000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 86354 2276
ru-110k 50000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 50000 2276
zh-210k 100000 1000 1000 100000 1000 1000 1000 1000 1000 1000 1000 1000 1000 2276
zh-110k 50000 1000 1000 50000 1000 1000 1000 1000 1000 1000 1000 1000 1000 2276

Table 5: Number of samples from each source in different dataset settings. Each row shows the
sample counts contributed by different data sources under various dataset sizes.

Samples per Source

Dataset
KULLM Tulu3 Multialpaca Flores GSMS8K BelleGroup WildChat

ko-210k 97834 97697 9774 4775 1250 985 961
ko-110k 48892 48831 8829 3691 1087 985 961
ru-210k 984 97697 10823 4878 1628 985 82635
ru-110k 984 48831 9549 3768 1296 985 47863
zh-210k 984 97697 7854 6088 1581 98111 961
zh-110k 984 48831 7854 4339 1266 49041 961

C DETAILS OF EVALUATION DATA

For the preliminary experiments presented in Figure 2| we use prompts in Arabic, Thai, English,
French, Vietnamese, and Portuguese, totaling 34,996 examples. However, we observe that some
of these languages exhibit relatively low code-switching ratios. Consequently, in our subsequent
main experiments, we replace these low-ratio languages with alternatives that demonstrate more
pronounced code-switching behavior.

For our main experiments, we use prompts from the multilingual versions of MMLU (Hendrycks
et al.,[2021), MGSM (Shi et al., 2023), HellaSwag (Zellers et al.,[2019)), LogiQA (Liu et al., |2020),
IFEval (Zhou et al., 2023), and Flores-200 (Goyal et al.| [2022; [Team et al., [2022])), all provided by
pmmeval (Zhang et al.l 2024). In total, our evaluation set comprises 1,756 examples in Chinese
(zh), 1,146 in Arabic (ar), and 1,150 examples each in Thai (th), Vietnamese (vi), Korean (ko), and
Japanese (ja).

We investigate code-switching behavior to three target languages: Chinese (zh), Russian (ru), and
Korean (ko). For each target language, we evaluate prompts from three different source languages.
Table [6] presents the composition of our code-switching evaluation dataset, where each example is
tested 4 times to ensure robust detection of code-switching patterns.

Shttps://huggingface.co/datasets/nlpai-lab/kullm-v2|
®https://huggingface.co/datasets/BelleGroup/train_0.5M CNl
"nttps://huggingface.co/datasets/Mathoctopus/GSM8KInstruct_Parallell

15

https://huggingface.co/datasets/nlpai-lab/kullm-v2
https://huggingface.co/datasets/BelleGroup/train_0.5M_CN
https://huggingface.co/datasets/Mathoctopus/GSM8KInstruct_Parallel

Under review as a conference paper at ICLR 2026

Table 6: Code-switching evaluation dataset: source-to-target language pairs and sample counts.

CS Target Prompt Source # Examples # Runs Total Samples

ar 1,146 4

zh th 1,150 4 13,784
vi 1,150 4
ar 1,146 4

ru th 1,150 4 13,784
ko 1,150 4
zh 1,756 4

ko th 1,150 4 16,224
ja 1,150 4

D IMPLEMENTATION DETAILS

D.1 TRAINING

We use the Hugging Face TRL library ﬂ in conjunction with DeepSpeedE]for SFT, and the combi-
nation of TRL and vLLM (Kwon et al., 2023)|'"|for GRPO.

For SFT, both learning rate and X in Eq. are selected via grid search over respective intervals,
with the learning rate ranging from 1 x 1076 to 2 x 10™% and A from 5 x 107° to 1 x 10~2.The
following table summarizes the optimal hyperparameters and corresponding training times for SFT
on 110k samples for each model:

Table 7: Optimal hyperparameters and SFT training time for 110k samples across different models.

Model Learning Rate A SFT Training Time Deepspeed Optimization Level
Gemma-2-2B 5.0x107° 5.0x 107* lh None
Gemma-2-9B 5.0 x 1076 1.0 x 1074 11h ZeRO2
Llama-3.1-8B 5.0x 107° 1.0x 1073 3h ZeRO1
Qwen3-1.7B 1.0 x 10~* 1.0 x 1073 40min None
Qwen3-8B 5.0 x 107° 5.0 x 1073 3.1h ZeRO1

For all experiments, the batch size is set to 256, weight decay to 0.1, warmup steps to 100, and the
cosine learning rate scheduler is employed. AdamW (fused) serves as the optimizer, and training is
performed using bf 16 precision. Further, for SASFT, we select the last two layers and the first two
features. All reported training times correspond to nodes equipped with 8§ NVIDIA A100 or H20
GPUs; times may vary based on model size and hardware.

For GRPO, we employ the TRL library in combination with vLLM, conducting a grid search for the
learning rate within the range 1 x 1078 to 1 x 10~%. We use a batch size of 256 and set the number
of rollouts to 8. The following table presents the optimal GRPO learning rates and corresponding
training times:

All GRPO experiments are performed under similar hardware configurations as SFT, utilizing 8
NVIDIA A100 or H20 GPUs, with training duration depending on model size and hardware speci-
fications.

D.2 INFERENCE

During inference, we use the following decoding parameters:

$https://github.com/huggingface/trll
‘https://github.com/deepspeedai/DeepSpeed.
Yhttps://github.com/vllm-project/v1llm

16

https://github.com/huggingface/trl
https://github.com/deepspeedai/DeepSpeed
https://github.com/vllm-project/vllm

Under review as a conference paper at ICLR 2026

Table 8: Optimal GRPO learning rates and training times.

Model GRPO Learning Rate GRPO Training Time
Gemma-2-2B 5.0 x 1077 40 min
Gemma-2-9B 7.0x 1078 35h
Llama-3.1-8B 5.0 x 1078 2h
Qwen3-1.7B 1.0x 107 35 min
Qwen3-8B 5.0 x 1077 2h

* top-p sampling: 0.8
* repetition penalty: 1.0
* temperature: 1.0

To reduce the inference time, we utilize the no-thinking mode for Qwen-3.

D.3 CODE-SWITCHING DETECTION

We use GlotScript (Kargaran et al., 2024) for code-switching detection. GlotScript identifies dif-
ferent writing systems based on Unicode character ranges. We focus on Chinese, Russian, and
Korean because their writing systems (Han, Cyrillic, and Hangul, respectively) are distinct from
other scripts. This makes them easily distinguishable, unlike languages such as English and French
that share the Latin alphabet and cannot be reliably separated based on script alone.

In our detection process, if Han characters appear in a response that should not contain Chinese,
we mark it as unexpected code-switching to Chinese. The same rule applies to Cyrillic and Hangul
characters for detecting unexpected code-switching to Russian and Korean, respectively.

E SASFT VARIANT

E.1 METHOD

Another idea is that enhancing the pre-activation values of original language features should be able
to reduce the ratio of code-switching from this language to other languages. Therefore, we extend
Eq. () to enhance the pre-activation values of original language features, which can be defined as
follows:

Lentance = Expy | Y ReLU (B — £(x)) |, (10)
SESM
where M is the language intended for enhancement, and /35, is the pre-estimated average pre-
activation values of feature s in language M. We call this variant as SASFT g, hance-

E.2 EXPERIMENTS

In this section, we focus on SASFT g, hance Which enhance original language features using Eq.

Code-Switching Ratio Comparison: Our Methods Effectively Reduce Code-Switching. Ta-
ble E] presents code-switching ratios from Arabic and Thai to Chinese, Russian, and Korean. We
observe that SASFTghance generally reduces code-switching compared to the SFT baseline, outper-
forming GRPO in most cases (7 out of 12). Importantly, SASFTgequce achieves the lowest ratios
in all settings, consistently providing the best results. Overall, both enhancement and reduction
approaches are effective, with the reduction method showing superior performance.

F LIMITATIONS AND FUTURE WORK

Our study has several limitations that we plan to address in future work: First, we only explore un-
expected code-switching to Chinese, Russian, and Korean. Adding more languages would make the

17

Under review as a conference paper at ICLR 2026

Table 9: Evaluation of code-switching reduction for Arabic and Thai as enhanced source languages.
Models are tested on their tendency to switch from these source languages to Chinese, Russian, and
Korean. Bold numbers indicate the best results while underlined numbers represent the second best
in each column.

Model Method Enhanced Language: ar Enhanced Language: th
CS:ar —-zh CS:ar—ru CS:ar ko CS:th—zh CS:th—ru CS: th — ko
SFT (Baseline) 1.14 1.22 0.17 0.43 0.43 0.00 (0%)

SFT+GRPO 0.79 (-:31%) 0.61 (-50%) 0.09 (-47%) 0.95 (+121%) 0.17 (-60%) 0.00 (0%)
SASFT gnhance 1.31 (+15%) 0.70 (-43%) 0.00 (-100%) 0.43 (0%) 0.26 (-40%) 0.00 (0%)
SASFT Reduce 0.61 (-46%) 0.26 (-79%) 0.00 (-100%) 0.17 (-60%) 0.09 (-79%) 0.00 (0%)

SFT (Baseline) 1.04 0.26 0.26 0.35 0.18 0.09
Qwen3-1.7B-Base SFT+GRPO 0.61 (-41%) 0.26 (0%) 0.26 (0%) 0.53 (+51%) 0.09 (-50%) 0.09 (0%)
’ i SASFTgnhance 0.26 (-75%) 0.17 (-35%) 0.09 (-65%) 0.44 (+26%) 0.17 (-6%) 0.09 (0%)

SASFTReguce 0.17(-84%) 0.00 (-100%) 0.00 (-100%) 0.26 (-26%) 0.00 (-100%) 0.00 (-100%)

Gemma-2-2B

study more complete. Second, while we experiment with 5 LLMs from 3 model families of different
sizes, all models are under 9B. Testing on larger models would provide a more comprehensive un-
derstanding of our method’s effectiveness. Third, theoretically, our method only requires constraints
on the model’s hidden states, so it should be possible to extend it to other fine-tuning approaches like
DPO and GRPO. We believe this is a promising direction for future research. Finally, although using
pre-estimated average pre-activation values as thresholds works well in our experiments, finding a
fine-grained token-level threshold could potentially improve performance further.

G LLM USAGE STATEMENT

In this work, LLMs are utilized as general-purpose assist tools for programming and writing. Specif-
ically, LLMs assist in code generation and debugging, checking for grammatical errors, and refining
the language of the manuscript. No novel research ideas, analyses, or conclusions are contributed
by LLMs.

H EXTENDED PERFORMANCE COMPARISONS

This section provides additional results comparing model performance across six benchmarks under
alternative settings, as shown in Tables[10[to[T4] We include detailed comparisons among different
methods to support our findings in the main text. The results further demonstrate that SASFT ef-
fectively maintains model capabilities while reducing code-switching, and in several cases, achieves
improved performance relative to SFT. These additional experiments validate the robustness and
consistency of our conclusions.

Table 10: Performance comparison on six benchmarks across different methods. We evaluate mod-
els trained on the Korean 110k dataset setting. The red numbers indicate performance improvements
compared to the SFT.

Model Method MMLU HumanEval Flores HellaSwag LogiQA IFEval MGSM
Acc (%) Acc (%) Bleu (%) Acc (%) Acc (%) Acc (%) Acc (%)
SFT 27.56 77.60 18.39 26.43 26.00 15.85 11.89
Gemma-2-2B SFT+GRPO 27.82 (+0.26) 76.25(-1.35) 18.49 (+0.10) 21.34(-5.09) 26.87 (+0.87) 16.08 (+0.23) 12.00 (+0.11)
o SFT+Penalty 26.77 (-0.79) 77.07 (-0.53) 18.48 (+0.09) 22.12(-4.31) 26.25 (+0.25) 16.26 (+0.41) 12.77 (+0.88)
SASFT 26.68 (-0.88) 7529 (-2.31) 17.96 (-0.43) 22.01 (-4.42) 26.25(+0.25) 15.81(-0.04) 11.31(-0.58)
SFT 47.56 96.63 29.23 34.52 30.87 24.54 48.67
Gemma-2-9B SFT+GRPO 47.47(-0.09) 96.35(-0.28) 29.68 (+0.45) 33.33(-1.19) 33.75(+2.88) 24.12(-0.42) 50.88 (+2.21)
SFT+Penalty 46.66 (-0.90) 95.96 (-0.67) 29.18 (-0.05) 34.38 (-0.14) 29.25(-1.62) 25.14 (+0.60) 46.37 (-2.30)
SASFT 46.85(-0.71) 94.62 (-2.01) 28.19(-1.04) 33.60(-0.92) 29.12(-1.75) 25.24 (+0.70) 47.12(-1.55)
SFT 32.07 90.14 24.73 27.60 32.25 21.99 15.92
Llama-3.1-8B SFT+GRPO 27.73 (-4.34) 77.16 (-12.98) 20.75(-3.98) 25.68 (-1.92) 30.63 (-1.62) 17.75(-4.24) 9.44 (-6.48)
ama->. SFT+Penalty 32.30 (+0.23) 89.18 (-0.96) 24.68 (-0.05) 29.20 (+1.60) 30.63 (-1.62) 22.03 (+0.04) 18.37 (+2.45)
SASFT 3240 (+0.33) 87.55(-2.59) 24.05(-0.68) 30.20 (+2.60) 32.00 (-0.25) 20.96 (-1.03) 13.49 (-2.43)
SFT 38.07 85.91 22.49 32.50 31.00 18.98 32.03

SFT+GRPO 37.47 (-0.60) 88.32 (+2.41) 23.04 (+0.55) 34.14 (+1.64) 31.62 (+0.62) 19.31 (+0.33) 32.03 (0.00)
SFT+Penalty 37.94 (-0.13) 87.02 (+1.11) 22.58 (+0.09) 33.53 (+1.03) 34.38 (+3.38) 19.17 (+0.19) 33.31 (+1.28)
SASFT 37.49 (-0.58) 86.39 (+0.48) 22.97 (+0.48) 34.15(+1.65) 34.25(+3.25) 19.12(+0.14) 32.88 (+0.85)

SFT 49.67 97.74 22.86 34.52 39.00 35.92 59.47

SFT+GRPO 4527 (-4.40) 96.35(-1.39) 24.81 (+1.95) 2253 (-11.99) 39.12 (+0.12) 34.47 (-1.45) 55.23 (-4.24)
SFT+Penalty 47.68 (-1.99) 95.10 (-2.64) 26.12 (+3.26) 30.33 (-4.19) 38.12(-0.88) 35.52(-0.40) 60.72 (+1.25)
SASFT 52.88 (+3.21) 94.90(-2.84) 18.96(-3.90) 39.20 (+4.68) 41.50 (+2.50) 34.89 (-1.03) 61.92 (+2.45)

Qwen3-1.7B-Base

Qwen3-8B-Base

18

Under review as a conference paper at ICLR 2026

Table 11: Performance comparison on six benchmarks across different methods. We evaluate mod-
els trained on the Korean 210k dataset setting. The red numbers indicate performance improvements
compared to SFT.

Model Method MMLU HumanEval Flores HellaSwag LogiQA IFEval MGSM
Acc (%) Acc (%) Bleu (%) Acc (%) Acc (%) Acc (%) Acc (%)
SFT 25.96 75.87 19.31 19.97 24.62 16.24 14.00
Gemma-2-2B SFT+GRPO 25.98 (+0.02) 7822 (+2.35) 19.35(+0.04) 19.55(-0.42) 2525 (+0.63) 16.27 (+0.03) 13.63 (-0.37)
emma SFT+Penalty 26.58 (+0.62) 79.76 (+3.89) 15.45(-3.86) 22.09 (+2.12) 29.12 (+4.50) 16.66 (+0.42) 13.76 (-0.24)
SASFT 27.17 (+1.21) 76.30 (+0.43) 18.34(-0.97) 22.08 (+2.11) 25.25(+0.63) 16.43 (+0.19) 14.08 (+0.08)
SFT 50.14 92.02 29.15 42.09 33.88 23.89 49.60
Gemma-2-9B SFT+GRPO 49.21(-0.93) 91.54 (-0.48) 28.68 (-0.47) 42.31(+0.22) 32.12(-1.76) 23.69 (-0.20) 53.44 (+3.84)
- SFT+Penalty 50.38 (+0.24) 93.22 (+1.20) 29.29 (+0.14) 47.55 (+5.46) 30.50(-3.38) 23.89(0.00) 50.43 (+0.83)
SASFT 49.33 (-0.81) 92.69 (+0.67) 28.87 (-0.28) 40.13 (-1.96) 34.75 (+0.87) 23.60(-0.29) 50.88 (+1.28)
SFT 34.98 89.57 23.68 33.72 28.50 22.29 22.67
Llama-3.1-8B SFT+GRPO 35.15(+0.17) 89.23 (-0.34) 23.79 (+0.11) 31.38(-2.34) 31.00 (+2.50) 22.61 (+0.32) 22.69 (+0.02)
. SFT+Penalty 35.26 (+0.28) 88.85(-0.72) 23.44(-0.24) 35.06 (+1.34) 30.75 (+2.25) 22.51 (+0.22) 27.44 (+4.77)
SASFT 3527 (+0.29) 86.83(-2.74) 23.25(-0.43) 33.01 (-0.71) 33.50 (+5.00) 22.03 (-0.26) 25.09 (+2.42)
SFT 37.02 85.10 22.40 31.73 31.25 20.19 36.69

SFT+GRPO 36.96 (-0.06) 85.19 (+0.09) 22.44 (+0.04) 34.47 (+2.74) 31.87 (+0.62) 20.07 (-0.12) 36.72 (+0.03)
SFT+Penalty 36.57 (-0.45) 84.13 (-0.97) 22.50 (+0.10) 35.41 (+3.68) 33.00 (+1.75) 21.01 (+0.82) 36.93 (+0.24)
SASFT 37.36 (+0.34) 85.19 (+0.09) 22.55 (+0.15) 31.17(-0.56) 31.00(-0.25) 20.14 (-0.05) 37.12 (+0.43)

SFT 49.64 96.88 26.37 37.40 39.38 3478 65.71

SFT+GRPO 48.19 (-1.45) 97.74 (+0.86) 27.07 (+0.70) 34.87 (-2.53) 41.38 (+2.00) 34.18 (-0.60) 61.87 (-3.84)
SFT+Penalty 50.80 (+1.16) 96.15(-0.73) 24.83 (-1.54) 40.32(+2.92) 40.50 (+1.12) 35.94 (+1.16) 64.13 (-1.58)
SASFT 51.36 (+1.72) 95.77 (-1.11) ~ 21.80(-4.57) 45.68 (+8.28) 42.88 (+3.50) 35.27 (+0.49) 63.92 (-1.79)

Qwen3-1.7B-Base

Qwen3-8B-Base

Table 12: Performance comparison on six benchmarks across different methods. We evaluate mod-
els trained on the Russian 110k dataset setting. The red numbers indicate performance improvements
compared to SFT.

Model Method MMLU HumanEval Flores HellaSwag LogiQA IFEval MGSM
Acc (%) Acc (%) Bleu (%) Acc (%) Acc (%) Acc (%) Acc (%)
SFT 24.74 82.45 2325 17.35 24.87 16.65 11.71

SFT+GRPO 25.14 (+0.40) 83.85 (+1.40) 23.54 (+0.29) 14.58 (-2.77) 27.25(+2.38) 16.81 (+0.16) 10.80 (-0.91)

Gemma-2-2B SFT+Penalty 26.77 (+2.03) 85.10 (+2.65) 22.18 (-1.07) 19.65 (+2.30) 29.87 (+5.00) 16.81 (+0.16) 12.11 (+0.40)
SASFT 26.01 (+1.27) 80.96 (-1.49) 23.31 (+0.06) 19.24 (+1.89) 25.50 (+0.63) 16.26(-0.39) 10.96 (-0.75)

SFT 42.97 94.23 31.82 33.84 3338 23.62 44.48
Gemma.2.9B SFT+GRPO 42.92 (-0.05) 93.89 (-0.34) 31.55(-0.27) 36.08 (+2.24) 31.75(-1.63) 23.37(-0.25) 43.63 (-0.85)
SFT+Penalty 42.18 (-0.79) 96.44 (+2.21) 30.32(-1.50) 32.08 (-1.76) 29.88 (-3.50) 21.76 (-1.86) 41.52 (-2.96)
SASFT 4076 (2.21) 96.68 (+2.45) 31.31(-0.51) 29.86(-3.98) 31.87(-1.51) 22.23(-1.39) 44.40 (-0.08)

SFT 29.96 92.40 21.45 2371 29.38 19.59 15.76
Liama.3.1.8B SFT+GRPO 29.84 (:0.12) 9149 (:0.91) 21.82 (+0.37) 21.80 (-1.91) 29.62 (+0.24) 19.19(-0.40) 15.15 (-0.61)
-1 SFT+Penalty 33.88 (+3.92) 89.23 (-3.17) 2549 (+4.04) 30.44 (+6.73) 29.75 (+0.37) 20.24 (+0.65) 17.49 (+1.73)
SASFT 32.06 (+2.10) 92.98 (+0.58) 23.52 (+2.07) 29.53 (+5.82) 32.88 (+3.50) 20.37 (+0.78) 17.44 (+1.68)

SFT 37.22 90.00 23.46 35.53 3225 19.88 3325

SFT+GRPO 37.77 (+0.55) 90.72 (+0.72) 23.84 (+0.38) 34.80(-0.73) 29.75(-2.50) 20.26 (+0.38) 32.69 (-0.56)
SFT+Penalty 37.47 (+0.25) 90.05 (+0.05) 23.68 (+0.22) 32.79 (-2.74) 31.63 (-0.62) 20.64 (+0.76) 33.47 (+0.22)
SASFT 38.20 (+0.98) 9111 (+1.11) 24.56 (+1.10) 34.92(-0.61) 33.62 (+1.37) 19.94 (+0.06) 32.43 (-0.82)

SFT 47.21 94.13 25.77 35.42 41.38 30.92 50.03
SFT+GRPO 45.04 (-2.17) 9433 (+0.20) 26.86 (+1.09) 28.03 (-7.39) 40.62 (-0.76) 29.62 (-1.30) 48.75 (-1.28)
SFT+Penalty 45.73 (-1.48) 95.00 (+0.87) 26.89 (+1.12) 28.35(-7.07) 41.00 (-0.38) 30.80 (-0.12) 50.03 (0.00)
SASFT 50.28 (+3.07) 88.89(-5.24) 26.95 (+1.18) 38.47 (+3.05) 44.50 (+3.12) 32.35(+1.43) 53.89 (+3.86)

Qwen3-1.7B-Base

Qwen3-8B-Base

19

Under review as a conference paper at ICLR 2026

Table 13: Performance comparison on six benchmarks across different methods. We evaluate mod-
els trained on the Russian 210k dataset setting. The red numbers indicate performance improvements
compared to SFT.

Model Method MMLU HumanEval Flores HellaSwag LogiQA IFEval MGSM
Acc (%) Acc (%) Bleu (%) Acc (%) Acc (%) Acc (%) Acc (%)
SFT 28.36 87.69 23.19 24.84 31.50 17.22 14.83

SFT+GRPO 28.04 (-0.32) 88.65 (+0.96) 23.35(+0.16) 25.63 (+0.79) 29.38 (-2.12) 17.17 (-0.05) 14.08 (-0.75)

Gemma-2-2B SFT+Penalty 2832 (-0.04) 86.88 (-0.81) 23.06(-0.13) 25.34 (+0.50) 27.00 (-4.50) 17.08 (-0.14) 13.84 (-0.99)
SASFT 28.09 (-0.27) 88.46 (+0.77) 23.25 (+0.06) 26.67 (+1.83) 26.75(-475) 1644 (-0.78) 13.44 (-1.39)

SFT 4555 96.78 3051 35.44 3375 22.82 50.05
Gemma.2.9B SFT+GRPO 44.99 (-0.56) 96.92 (+0.14) 30.65 (+0.14) 36.64 (+1.20) 33.25(-0.50) 22.76 (-0.06) 50.75 (+0.70)
SFT+Penalty 44.51 (-1.04) 96.83 (+0.05) 30.67 (+0.16) 36.11 (+0.67) 35.00 (+1.25) 23.18 (+0.36) 50.56 (+0.51)
SASFT 43.55(-2.00) 94.81 (-1.97) 22.93(-7.58) 32.71(-2.73) 31.87(-1.88) 21.83(-0.99) 49.79 (-0.26)

SFT 33.97 93.94 23.24 29.72 30.25 21.24 14.51
Llama3.1-8B SFT+GRPO 33.71(-026) 94.37 (+0.43) 2347 (+0.23) 3176 (+2.04) 2838 (-1.87) 20.92(-0.32) 14.35 (-0.16)
: SFT+Penalty 3329 (-0.68) 9639 (+2.45) 24.00 (+0.76) 31.31 (+1.59) 32.00 (+1.75) 22.24 (+1.00) 13.25 (-1.26)
SASFT 3453 (+0.56) 96.59 (+2.65) 23.24(0.00) 29.87 (+0.15) 30.75 (+0.50) 21.70 (+0.46) 18.88 (+4.37)

SFT 38.06 93.75 2376 33.65 3175 20.72 35.04

SFT+GRPO 37.88 (-0.18) 92.07 (-1.68) 23.41(-0.35) 35.05 (+1.40) 31.00 (-0.75) 20.89 (+0.17) 34.61 (-0.43)
SFT+Penalty 38.38 (+0.32) 94.47 (+0.72) 23.29 (-0.47) 33.55(-0.10) 36.00 (+4.25) 20.37 (-0.35) 34.99 (-0.05)
SASFT 38.23 (+0.17) 93.12(-0.63) 23.14 (-0.62) 33.96 (+0.31) 32.38 (+0.63) 21.14 (+0.42) 34.53 (-0.51)

SFT 50.73 96.44 28.31 38.99 43.12 35.08 60.27

SFT+GRPO 48.63 (-2.10) 95.14 (-1.30) 28.40 (+0.09) 34.01 (-4.98) 43.12(0.00) 33.98 (-1.10) 57.87 (-2.40)
SFT+Penalty 51.56 (+0.83) 95.72(-0.72) ~ 28.66 (+0.35) 40.60 (+1.61) 42.62 (-0.50) 34.82 (-0.26) 55.28 (-4.99)
SASFT 52.11 (+1.38) 9524 (-1.20) 26.69 (-1.62) 44.83 (+5.84) 42.62(-0.50) 35.74 (+0.66) 58.19 (-2.08)

Qwen3-1.7B-Base

Qwen3-8B-Base

Table 14: Performance comparison on six benchmarks across different methods. We evaluate mod-
els trained on the Chinese 210k dataset setting. The red numbers indicate performance improve-
ments compared to SFT.

Model Method MMLU HumanEval Flores HellaSwag LogiQA IFEval MGSM
Acc (%) Acc (%) Bleu (%) Acc (%) Acc (%) Acc (%) Acc (%)
SFT 28.58 91.25 23.68 27.47 29.50 15.65 14.61

SFT+GRPO 28.99 (+0.41) 90.87 (-0.38) 23.25(-0.43) 28.50 (+1.03) 25.75(-3.75) 16.14 (+0.49) 14.80 (+0.19)

Gemma-2-2B SFT+Penalty 28.80 (+0.22) 90.77 (-0.48) 23.42 (0.26) 27.85 (+0.38) 26.00 (:3.50) 15.94 (+0.29) 15.44 (+0.83)
SASFT 2789 (-0.69) 90.82(0.43) 22.96(-072) 2897 (+1.50) 28.12(-138) 1580 (+0.15) I14.61 (0.00)

SFT 45.77 93.70 2937 33.92 31.63 24.58 49.63
Gomma 2.8 SFT+GRPO 4622 (+045) 94.09 (+0.39) 2922 (-0.15) 3622 (+230) 29.12(251) 2424 (-0.34) 4872 (-0.91)
emma SFT+Penalty 4539 (-038) 9173 (-1.97) 2933 (-0.04) 34.78 (+0.86) 3238 (+0.75) 23.84(-0.74) 48.99 (:0.64)
SASFT 4704 (+127) 92.50 (-120) 2879 (-0.58) 34.11(+0.19) 33.13 (+1.50) 2550 (+0.92) 50.29 (+0.66)

SFT 31.53 91.35 2270 28.88 30.00 21.28 16.13
Ll 188 SFT+GRPO 3035 (-1.18) 89.33(2.02) 2242 (-0.28) 29.93 (+1.05) 30.62(+0.62) 2122(-0.06) 13.65 (-2.48)
310 SFT+Penalty 3337 (+1.84) 88.51(-2.84) 25.00(+2.39) 2979 (+091) 28.62(-138) 2232 (+1.04) 19.23 (+3.10)
SASFT 3337 (+1.84) 9538 (+4.03) 24.68 (+1.98) 33.80 (+4.92) 31.62(+1.62) 23.01 (+1.73) 20.56 (+4.43)

SFT 3727 93.22 23.59 32.30 34.00 20.53 32.48

SFT+GRPO 36.99 (-0.28) 93.12 (-0.10) 23.68 (+0.09) 34.20 (+1.90) 30.87 (-3.13) 20.78 (+0.25) 32.40 (-0.08)
SFT+Penalty 37.76 (+0.49) 92.69 (-0.53) 23.21(-0.38) 35.66 (+3.36) 31.38(-2.62) 21.07 (+0.54) 34.51 (+2.03)
SASFT 38.10 (+0.83) 92.12(-1.10) 23.56 (-0.03) 34.20 (+1.90) 33.50 (-0.50) 20.93 (+0.40) 33.01 (+0.53)

SFT 49.53 96.83 30.20 31.58 42.50 34.67 55.09

SFT+GRPO 44.85(-4.68) 96.30 (-0.53) ~ 30.81 (+0.61) 24.72(-6.86) 42.12(-0.38) 33.73(-0.94) 50.75 (-4.34)
SFT+Penalty 48.64 (-0.89) 96.83 (0.00) 30.75 (+0.55) 33.42(+1.84) 40.88(-1.62) 35.66 (+0.99) 57.25 (+2.16)
SASFT 49.60 (+0.07) 96.92 (+0.09) 30.81 (+0.61) 37.18 (+5.60) 43.38 (+0.88) 33.90 (-0.77) 51.95(-3.14)

Qwen3-1.7B-Base

Qwen3-8B-Base

20

Under review as a conference paper at ICLR 2026

I ROBUSTNESS OF LANGUAGE-SPECIFIC FEATURES ACROSS SAE
CONFIGURATIONS

To investigate the robustness of language-specific features to different SAE hyperparameters, we
conduct experiments using SAEs with varying sparsity (10) and dimensionality (width) from Gemma
Scope (Lieberum et al.,[2024). Specifically, we examine six different SAE settings: 10_38 width_16k,
10_34 width_65k, 10_73 width_16k, 10_63 width_65k, 10_158 width_16k, and 10_124 width_65k.

For each SAE configuration, we identify the rank #0 language-specific feature for Chinese and
Korean using the method described in Section 4.1. We then compute the pairwise cosine similarity
between these features across different SAE configurations for layers 19 through 25. The results are
visualized as heatmaps in Figures [8}21]

Our findings demonstrate that language-specific features exhibit remarkable consistency across dif-
ferent SAE hyperparameters. For both Chinese and Korean, the cosine similarities between rank
#0 features from different SAE configurations typically exceed 0.85, with many similarities above
0.90. This high degree of similarity persists across all examined layers (19-25), indicating that:

» Language-specific features are robust to variations in SAE sparsity targets (10 values rang-
ing from 34 to 158)

¢ Feature identification is stable across different SAE dimensionalities (16k vs. 65k width)

 The consistent patterns across multiple layers suggest that language features are fundamen-
tal properties captured by SAEs regardless of specific training configurations

These results provide strong evidence that our language feature identification method is reliable and
that SASFT’s effectiveness is not critically dependent on specific SAE hyperparameter choices.

Rank #0 Chinese Feature Similarity Across SAEs (Layer 19) 10 Rank #0 Korean Feature Similarity Across SAEs (Layer 19) 10

1.0000 .9325 0.9664 0.9618 0.9072 0.9034

1.0000 0.9300 0.9049 0.9142 0.8057

1
0.8 0.8
n
1.0000 0.7368 .932 1.0000
0.7368 1.0000

°

>
°
>

1.0000

Cosine Similarity
Cosine Similarity

0.7742 0.9264 1.0000 1.0000

°
iy

Different SAEs
°
by

1.0000 1.0000

0.2 0.2

1.0000

width_65k

0.6492 1.0000

l0_73 1063 lo_137 10_115 10_40 10_35 lo_73 10_63 lo_137 10_115
dth_16k width 65k width_16k width_65k width_16k width 65k width_16k ~ width_65k width_16k width_65k
Different SAEs Different SAEs

10_40 1035
width_16k width_65k wi

Figure 8: Similarity of rank #0 Chinese features ~ Figure 9: Similarity of rank #0 Korean features
across SAE configurations at layer 19. across SAE configurations at layer 19.

21

Under review as a conference paper at ICLR 2026

Rank #0 Chinese Feature Similarity Across SAEs (Layer 20) Rank #0 Korean Feature Similarity Across SAEs (Layer 20)

1.0 1.0
®x @x
) a8
o e 0.9475
3 3
B B
o 0.8 o 0.8
i i
S S
= 1.0000 0.9546 = 1.0000
3 3
H H
I I
9o, -06 9o, -06
L2°s 1.0000 z FEPE 09713 4 1.0000 0.9558 0.9640 2z
w3 & w 3 &
H £ H £
£ & H &
[v [~ @
g°8 £ g°8 £
Eo 1.0000 8 Eo 1.0000 0.9633 3
E°S g 8 =g Y S
a3 -04 a2 -04
H H
x x
2 2
! ! 1.0000
£ 3
= =
0.2 0.2
s <x
8 I8
=k} =k}
o's o'g'
- -1
B B
1038 1034 lo_71 10_61 10_139 10_114 0.0 1038 1034 lo_71 10_61 10_139 10114 0.0
width 16k~ width_65k width_16k width_65k width_16k width_65k : width_16k ~ width_65k width_16k width_65k width_16k width_65k .
Different SAEs Different SAEs

Figure 10: Similarity of rank #0 Chinese fea- Figure 11: Similarity of rank #0 Korean features

tures across SAE configurations at layer 20. across SAE configurations at layer 20.
Rank #0 Chinese Feature Similarity Across SAEs (Layer 21) 10 Rank #0 Korean Feature Similarity Across SAEs (Layer 21) 10
BFE 1.0000 BFE 1.0000 0.9670 0.9569 0.9493
3 3
B B
. 08 . 08
& &
8 8
= 1.0000 = 1.0000 0.9452 0.9832 22 0.9660
3 3
= =
]]
w ™S ~06 0wl -06
g4eg 1.0000 2z ERPE 09670 0.9583 2z
w 2 k] w 2 5
H T H T
£ 5 £ 5
Oax o Oox @
g 8 £ 9 °8]
Eo 1.0000 0.9779 8 £ o ' U 0 0.9814 8
a 3 -0.4 o 3 -0.4
H H
M M
& &
2 2
g 1.0000 e 1.0000
3 3
B B
02 02
o i
=t} =t
bt} bt}
o's 1.0000 o's 0.9660 0.9814 0.9527 1.0000
3 3
= B
10_38 1033 10_70 1061 10_139 10111 0.0 10_38 1033 10_70 1061 10_139 10111 0.0
width_16k width_65k width_16k width_65k width_16k width_65k width_16k width_65k width_16k width_65k width_16k width_65k
Different SAEs Different SAEs

Figure 12: Similarity of rank #0 Chinese fea- Figure 13: Similarity of rank #0 Korean features

tures across SAE configurations at layer 21. across SAE configurations at layer 21.
Rank #0 Chinese Feature Similarity Across SAEs (Layer 22) 1o Rank #0 Korean Feature Similarity Across SAEs (Layer 22) 10
it it
E¥® 10000 E¥® 1.0000 0.9550
] 3
= =
0.8 0.8
mx ~
o8 S
e 1.0000 < 1.0000
3 3
B =
R 3
] L] |
2 9‘5‘ e z geg 1.0000 06 z
w 2 2 w 2 2
P E P €
§ s § s
[v [v
9 °8 £ 9 °8]
Eeo 8 £ o' JXIE 3 0.9710 8
o B -04° o B -04°
= B
5% s
=8 2
o'c' 0.9510 1.0000 PRl (9550 6 1.0000 0.9399
- 3
B B
0.2 0.2
@x ©x
a3 ey
=t B
o' 0.9643 1.0000 o' 0.9710 .93 1.0000
2 2
= B
10_: 10 33 1072 10_62 0147 10116 0.0 10 1033 1072 10_62 0147 10116 0.0
width_16k ~ width_65k width_16k width_65k width_16k width_65k . width_16k width_65k width_16k width_65k width_16k width_65k .
Different SAEs Different SAEs

Figure 14: Similarity of rank #0 Chinese fea- Figure 15: Similarity of rank #0 Korean features
tures across SAE configurations at layer 22. across SAE configurations at layer 22.

22

Under review as a conference paper at ICLR 2026

1188 Rank #0 Chinese Feature Similarity Across SAEs (Layer 23) 10 Rank #0 Korean Feature Similarity Across SAEs (Layer 23) 10
1189 ‘ ‘
1190 gg‘ 1.0000 gg‘ 1.0000
1191 § 0s i os
1192 gé‘ 1.0000 0.9585 gé‘ 1.0000 0.9604
E E
1193
1194 g ;g\, 0.5329 1.0000 [o€ %‘ g gg‘ 0.9431 1.0000 0.9309 1.0000 09271 [oe %‘
1195 E_. O :
£33 2 £33 2
1196 % sg 10000 09601 | M?j % sg 09604 | 09309 = 10000 | 09309 09554 B 4?5
H H
1197 . .
1198 ;g’ 05329 1.0000 1.0000 ;g 1.0000 9309 10000
1199 z 02 * 02
1200 g‘g‘— 0.7217 0.9601 1.0000 g‘g 0.9271 1.0000
B E
1201 038 10 35 1074 1064 1075 10 123 00 10 38 10 35 1074 1064 1075 10 123 00
width 16k width 65k width_16k width 65k width_16k width 65 width 16k width 65k width_16k width 65k width_16k width 65
idth 16k width 65k width 16k width 65k width 16k width 65k - idth 16k width 65k width 16k width 65k width_16k width 65k -
1202 Different SAEs Different SAEs
1203
1204 Figure 16: Similarity of rank #0 Chinese fea- Figure 17: Similarity of rank #0 Korean features
1005 tures across SAE configurations at layer 23. across SAE configurations at layer 23.
1206
1207 Rank #0 Chinese Feature Similarity Across SAEs (Layer 24) 10 Rank #0 Korean Feature Similarity Across SAEs (Layer 24) 10
1208 10000 09084 09372 09253 | 0.8709 10000 | 08760 09525 | 0.9083 0.8856
g g
1209 o 08 o 08
1210 E‘;‘ 1.0000 0.9467 E‘;‘ 1.0000 0.9351
1211 E :
1212 ﬁ ;‘:‘ 1.0000 0 0.9281 [oe z ﬁ ;‘:‘ 1.0000 0.9181 [oe z
1213 % G A :
1214 8% L
a3 -04° a3 ~04°
1215 z H
1216 i\i‘ 1.0000 ﬁ‘i‘ 1.0000
1217 s 02 : 02
1218 g‘g‘ 0.9518 1.0000 g‘g‘ 1.0000
1219 : :
10 38 10 34 1073 10 63 10 158 10 124 00 10 38 10 34 1073 1063 10 158 10 124 00
1220 width 16k width 65k width_16k width 65k width_l6k widh 65k width_16k width 65k width_16k width 65k width_16k widih 65k
Different SAEs Different SAEs
1221
1222 Figure 18: Similarity of rank #0 Chinese fea- Figure 19: Similarity of rank #0 Korean features
1223 tures across SAE configurations at layer 24. across SAE configurations at layer 24.
1224
1225 Rank #0 Chinese Feature Similarity Across SAEs (Layer 25) 1o Rank #0 Korean Feature Similarity Across SAEs (Layer 25) 10
1226 83 8%
B 5 0000 0.6685 B 1 0000 0.6240
1227 g g
1228 85 08 © % 0.8
1229 9‘;‘ 1.0000 9‘;‘ 1.0000
E :
1230 23 n
1231 ﬁ 9;‘ 1.0000 [oe z ﬁ 9;‘ 1.0000 [oe z
5 : i :
B
8 %8 H g 28 3
1233 E7§ -04° E7§ ~04°
1234 g‘ih 06685 0.6051 1.0000 | 09076 g‘i‘ 1.0000
1235 H o H 02
1236
e 0.6975 1.0000 2. 06240 0.6317 06150 BT
1237 g §
1238 WOt 16k wioth 6Sk widthiisk width.esk widhlsk width sk 00 Wt 16k wioth 6sk widthiisk width.esk widihlsk width sk 00
1 239 Different SAEs Different SAEs
1240 . T . . Ce .
on Figure 20: Similarity of rank #0 Chinese fea- Figure 21: Similarity of rank #0 Korean features

tures across SAE configurations at layer 25. across SAE configurations at layer 25.

23

Under review as a conference paper at ICLR 2026

J CAUSAL EVIDENCE: ENHANCING LANGUAGE FEATURES INDUCES
CODE-SWITCHING

Llama-3.1-8B- ruct G 2-2b-it o G 2-9b-it Qwen3-1.7B Qwen3-8B
0.81 — zh 0.20 zh 0.8 zh 0.8 zh
—-= en en en en
00.6
= 0.15 0.6 0.6
Zo.4 0.10 0.4 0.4
0.2 0.05 0.2 0.2
0.0 ——— 0.00 0.0 0.0
o 50 100 o 200 400 600 o 200 400 600 o 10 20) 10 20
Value of A Value of A Value of A Value of A Value of A

Figure 22: Code-switching ratio to Chinese after enhancing Chinese or English features with dif-
ferent A values. (1) Enhancing the Chinese feature can induce unexpected code-switching. (2) A
higher coefficient A leads to higher code-switching ratio. (3) Enhancing the English feature has little
impact on the code-switching ratio to Chinese.

To establish a causal relationship between language-specific feature activation and code-switching,
we conduct the inverse experiment of Section 3.3.2. While ablation demonstrates that reducing
language feature activation decreases code-switching, we now test whether artificially increasing the
activation of a target language feature can induce code-switching. Specifically, we use directional
enhancement to add the language feature to the residual stream x € RY at the final layer of a
randomly selected token. This process can be expressed as:

x — x+ \d, (11)

where d represents the language feature and A is the coefficient that controls the degree of enhance-
ment. After obtaining x’, we replace x with x’ and continue the forward pass of the LLMs. We
test this on 100 samples that originally contained no code-switching to Chinese and report the code-
switching ratio to Chinsese with different X in Figure 22] Our observations are as follows: (1) En-
hancing the Chinese feature induces unexpected code-switching across all models. (2) A higher co-
efficient \ leads to higher code-switching ratios. (3) Enhancing English features has minimal impact
on code-switching behavior. These results, combined with our ablation experiments, provide bidi-
rectional causal evidence: artificially manipulating language-specific feature activations can both
induce and suppress code-switching behavior, strongly supporting our hypothesis that language-
specific feature activation causally determines language selection in LLM generation.

24

	Introduction
	Preliminary
	Feasibility study
	Unexpected code-switching in LLMs
	Language-specific SAE features
	Unexpected code-switching is related to language-specific SAE features
	Pre-activation pattern before code-switching
	Ablating irrelevant language feature mitigates code switching

	Method
	Finding language-specific features
	SASFT

	Experiments
	Experimental settings
	Main results
	In-depth analysis
	Ablation study

	Related works
	Conclusion
	Unexpected code-switching in LLMs: a growing concern
	Details of SFT training data
	Details of evaluation data
	Implementation details
	Training
	Inference
	Code-switching detection

	SASFT variant
	Method
	Experiments

	Limitations and future work
	LLM usage statement
	Extended performance comparisons
	Robustness of language-specific features across SAE configurations
	Causal Evidence: Enhancing Language Features Induces Code-Switching

