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Abstract

Developing renewable energy technologies that meet human needs is essential for1

climate change mitigation, reducing air and water pollution, conserving natural2

resources, and enhancing energy security. We focus on electrocatalysts, specifically3

Spinel oxides in hydrogen fuel cells for sustainable energy conversion, where we4

evaluate electrochemical properties related to ions with varying charges or positions5

within the catalysts. One standout predictor of catalytic performance is the ionic6

Lewis acid strength of 2+ ions. Surprisingly, linear regression models using this7

descriptor perform well in cross-validation, nearly matching the performance of8

more complex linear and nonlinear methods with richer feature sets.9

1 Introduction10

The world’s energy consumption heavily relies on fossil fuels, including coal, oil, and natural gas11

[1]. Additionally, refined products derived from fossil fuels, e.g., petroleum, serve as raw materials12

for a wide range of products such as fertilizers [2], plastics [3], medicines [4], textiles [5], and food13

additives [6]. With much of the world grappling with energy shortages, there has been a notable surge14

in the costs of oil, gas, and electricity, also resulting in record-high prices for consumer goods. In15

addition, the production and combustion of fossil fuels stand as the primary source of greenhouse gas16

emissions, including carbon dioxide and methane, which contribute to global warming [7].17

In contrast, chemical fuels like hydrogen boasts three times the energy density of gasoline, and can18

be generated from renewable energy sources, such as the sun and wind, which naturally replenish19

on the human time scale [8], making it an ideal energy carrier. In this work, we center our attention20

on a specific type of hydrogen fuel cell known as alkaline anion exchange membrane fuel cells21

(AEMFCs) [8], a relatively recent technology receiving increasing interest over the past two decades.22

These fuel cells operate in alkaline media, enabling the use of non-precious-group-metal (non-PGM)23

electrocatalysts, which can potentially reduce costs by up to 40% compared to commercially available24

fuel cells with similar or even superior performance. However, the design of electrocatalysts remains25

a challenge in this field.26

A commonly used crystal structure known as Spinel oxides follows a formula of AB2O4, where A27

and B represent metal cations having four or six coordination numbers, respectively, and O denotes28

oxygen anion. The available choices for cations are vast, with roughly 50 candidates for the A and B29

sites and the possibility of multiple cations coexisting in an AB2O4 structure, resulting in thousands30

of potential combinations. Various physical properties are important: ionic Lewis acid strength (iLas),31

electronegativity (en), ionization potential (ip), and ionic radius (r). Determining which properties32

predominantly influence catalyst behavior further complicates catalyst design efforts. Our analysis33

builds upon the work of scientists over the past decade, who have synthesized a limited number of34

Spinel oxides and evaluated their performance in oxygen reduction reactions (ORR) for hydrogen35
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fuel cells. We aim to narrow down the feature set based on physical knowledge unravel the key36

factors governing catalyst behavior in AEMFCs.37

2 Results and Discussion38

We aim to create a simple interpretable machine learning model to help explain how the choice of39

cation influences a spinel oxide’s performance as a catalyst. We compiled a dataset consisting of 5940

Spinel oxide catalysts from studies in the past decade. A key metric for catalyst, half-wave potential41

[8], is used as our performance outcome of interest. To simplify the dataset, we calculated the average42

half-wave potentials for catalysts with the same composition, resulting in 38 data points. Chemical43

elements in the dataset I = {Mn, Fe, Co, Ni, Cu, Zn} can gain positive charges of 2 or 3, and form44

ions. Note that all elements in I can have 2 charges, whereas {Mn, Fe, Co} can only have 3-charge45

states. The site and charge were assigned based on the crystal field stabilization energy (CFSE) [9].46

To describe ions, we rely on a set of key electrochemical properties P = {ilas, en, r, ip}. We made47

the assumption that ion properties are additive, allowing us to create linear models that describe an48

ion and its site (A or B) or oxidation states (2+ or 3+) with a collection of features. The value of49

feature j ∈ {1, . . . , J} for ion k is wk,j . The presence of ion k in spinel oxide i is indicated by a50

binary variable xi,k. We indicate the halfwave potential for spinel oxide i by yi. A linear model with51

a set of features is then indicated by the assumption that52

yi = β0 +

J∑
j=1

βj

∑
k

wk,jxi,k, (1)

where the parameters β0, . . . , βJ are fit via linear regression.53

2.1 Linear regression results for electrochemical properties associated with site or ion charge54

We fit two linear regression models to assess how well electrochemical properties predict half-wave55

potentials. We hypothesized that these properties alone might not provide a complete description,56

so we introduced interactions of these properties with other ion characteristics in two different57

models. In the first model, we interacted four electrochemical features {ilas, en, r, ip} with the ion’s58

site occupation, examining whether the effect of each property varies depending on the ion’s site59

within the crystal lattice, which can influence catalytic reactions. The second model interacted the60

same electrochemical features with the ion’s charge, exploring whether the impact of each property61

differs based on the ion’s charge. We expected this second model to offer greater interpretability,62

as electrochemical properties are inherently influenced by the ion’s charge, as opposed to the site.63

Results from these two models are pictured below in Tables 1 and 2.64

Table 1: Model incorporating features derived from combining ion properties by sites.
coefficient standard error t P>|t|

Intercept 1.63 2.90 0.56 0.58
A_ilas -1.63 1.57 -1.03 0.31
B_ilas -1.47 1.12 -1.31 0.20
A_en 0.94 0.58 1.64 0.11
B_en -0.26 0.39 -0.68 0.50
A_r 0.56 0.54 1.03 0.31
B_r -0.12 0.42 -0.31 0.76
A_ip -0.01 0.01 -0.39 0.70
B_ip 0.003 0.01 0.26 0.80

R2 = 0.64

Although the R2 values for these two models are comparable, the second model demonstrates slightly65

better performance, evident in its better p−value for the ilas_2 feature. This observation stands in66

contrast to previous studies involving other crystal structures, such as perovskites [10], where sites67

were considered a major influencing factor. It is worth noting that in Spinel structures, elements68

can occupy the A or B sites, or even both A and B sites [8], while in perovskites, elements (or69

ions) occupying different sites typically differ significantly in terms of species and size [10]. These70
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Table 2: Model incorporating features derived from combining ion properties by oxidation states
(charge).

coefficient standard error t P>|t|
Intercept -0.05 0.10 -0.47 0.64

ilas_2 -1.89 0.97 -1.95 0.06
ilas_3 -0.08 0.14 -0.55 0.59
en_2 0.55 0.55 0.99 0.33
en_3 0.05 0.20 0.26 0.80
r_2 0.26 0.39 0.66 0.51
r_3 -0.20 0.38 -0.54 0.60
ip_2 -0.005 0.01 -0.50 0.62
ip_3 0.003 0.004 0.91 0.37

R2 = 0.60

results suggest that although the roles of different sites in crystal structures may appear important, the71

catalytic properties in the case of Spinel or perovskite structures may not be strongly dependent on72

the type of coordination but rather on the nature of the ions themselves.73

2.2 Investigation of pairwise correlation between model features74

Recognizing that upon inspecting the p−values, a substantial number of features do not appear to75

be statistically significant in the previously fitted models, and considering our chemical knowledge76

indicating that several electrochemical descriptors may be correlated, we hypothesized that these77

features exhibit collinearity. To explore this further, we computed pairwise correlations for the above78

two models as shown in Tables 3 and 4.79

Table 3: Pairwise correlations between features by combining properties of ions based on A or B site
they are occupying.

Features A_ilas B_ilas A_en B_en A_r B_r A_ip B_ip
A_ilas 1.00 -0.96 0.92 -0.92 -0.31 0.23 0.99 -0.96
B_ilas -0.96 1.00 -0.97 0.94 0.44 -0.26 -0.97 0.99
A_en 0.92 -0.97 1.00 -0.95 -0.56 0.27 0.94 -0.97
B_en -0.92 0.94 -0.95 1.00 0.42 -0.45 -0.93 0.96
A_r -0.31 0.44 -0.56 0.42 1.00 -0.10 -0.35 0.43
B_r 0.23 -0.26 0.27 -0.45 -0.10 1.00 0.24 -0.32
A_ip 0.99 -0.97 0.94 -0.93 -0.35 0.24 1.00 -0.96
B_ip -0.96 0.99 -0.97 0.96 0.43 -0.32 -0.96 1.00

Specifically, we observed correlations among three features {ilas, en, ip} for {A,B} sites. Surprisingly,80

in Table 3, these features also exhibit correlations across A and B sites. This finding suggests that81

although multicollinearity may not affect the accuracy of the model, combining ions based on their82

sites in Spinel structures does not reliably capture the effects of individual independent properties on83

the dependent feature in the model.84

Table 4: Pairwise correlations of all features by combining properties of ions based on oxidation state.
Features ilas_2 ilas_3 en_2 en_3 r_2 r_3 ip_2 ip_3
ilas_2 1.00 -0.58 -0.27 0.54 0.06 0.12 0.90 -0.52
ilas_3 -0.58 1.00 0.03 -0.89 0.24 -0.31 -0.62 0.93
en_2 -0.27 0.03 1.00 -0.02 -0.75 -0.02 -0.16 0.03
en_3 0.54 -0.89 -0.02 1.00 -0.22 -0.16 0.55 -0.66
r_2 0.06 0.24 -0.75 -0.22 1.00 -0.06 -0.05 0.22
r_3 0.12 -0.31 -0.02 -0.16 -0.06 1.00 0.20 -0.63
ip_2 0.90 -0.62 -0.16 0.55 -0.05 0.20 1.00 -0.58
ip_3 -0.52 0.93 0.03 -0.66 0.22 -0.63 -0.58 1.00
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We also examined the pairwise correlations among all features in this model, as illustrated in Table 4.85

Generally, we observed that features show weaker correlations between 2+ and 3+ oxidation states86

compared to those based on A/B sites. This assessment suggests that the influence of oxidation states87

on catalytic performance may be easier to understand than the influence of the coordination of ions.88

2.3 Single-feature models: development and validation of accuracy89

Notably, the feature "ilas_2" stands out as the most influential one in the second model. We also90

trained a separate linear model using only "ilas_2", and it achieved a R2-value of 0.56, indicating91

a roughly linear correlation with catalyst performance. Subsequently, we employed ten distinct92

regression methods from scikit-learn [11] to fit the preprocessed dataset with either eight features93

combined based on oxidation states or only the "ilas_2", as shown in Table 5. We utilized the94

leave-one-out cross-validation strategy, which involves iteratively training a model on all training95

samples except one and assessing its performance on the omitted sample.96

Table 5: Comparison of performance of various regression models

Model 8 features 1 feature
MAE
(Volt) std MAE

(Volt) std

Linear OLS 0.051 0.043 0.049 0.039
Ridge 0.050 0.042 0.048 0.039
Lasso 0.050 0.042 0.048 0.039
Elastic net 0.050 0.042 0.048 0.039

Nonlinear

RF 0.035 0.041 0.043 0.042
KRR 0.042 0.044 0.042 0.044
SVR 0.048 0.052 0.045 0.045
GPR(kernel=DotProduct+WhiteKernel) 0.048 0.045 0.046 0.043
GPR (kernel=RationalQuadratic) 0.042 0.043 0.043 0.042
ANN (hidden_layer_sizes=2,
activation=’tanh’) 0.046 0.043 0.057 0.052

MAE, mean absolute error; std, standard deviation; OLS, ordinary least-squares;
Ridge regression (\alpha=0.5); Lasso (\alpha=0.01 (8 features) or 0.0001 (1 feature));
Elastic net (\alpha=0.01 (8 features) or 0.0001 (1 feature));
KRR, kernel ridge regression (\alpha=0.05, kernel=’rbf’, \gamma=0.012);
SVR, supporting vector regression (kernel=’rbf’, C=2, \epsilon=0.001)
RF, random forest; GPR, Gaussian process regression;
ANN, artificial neural network using multi-layer Perceptron regressor.

We employed mean absolute error (MAE) as the evaluation metric, where lower MAE values indicate97

better performance. Surprisingly, linear regression using the single descriptor "ilas_2" is nearly as98

predictive in cross-validation as a range of linear and nonlinear supervised learning methods, despite99

the latter benefiting from a significantly richer feature set.100

The initial results took us by surprise because, in our experimental evaluations, we typically placed101

emphasis on ions with higher oxidation states, specifically those with a 3+ charge [12]. However,102

upon closer examination, these results appear to be quite reasonable. During catalytic processes,103

there is a preference for binding energies to species (characterized by "ilas") to fall within a specific104

range—not too small and not too large [13]. This allows reactants to effectively bind to the catalyst105

while enabling products to readily detach from the catalyst surface, thereby preventing poisoning.106

One possible explanation is that metal cations tend to form strong bonds with reactants and products,107

making ions with lower binding energies more favorable.108

An alternative explanation could be that our dataset only considered the initial states of ions within109

the catalysts before any experiments were conducted. In real operating conditions, it is common for110

the oxidation states of ions to undergo changes. These findings suggest that ions with a 2+ charge111

and low "ilas" values may have a greater propensity to alter their oxidation state. According to the112

model’s predictions, ions like Mn2+, which exhibit low "ilas" values compared to other ions, have113

the potential to enhance the performance of fuel cells. This aligns with our prior knowledge, which114
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suggests that incorporating Mn as Mn2+ by adding Fe into the catalyst typically results in catalysts115

with exceptional performance.116

3 Conclusion117

We found that linear regression using a single descriptor, ionic Lewis acid strength for 2+ ions,118

provides a highly interpretable model for catalytic performance. However, the model selection and119

accuracy are constrained by the dataset’s small size, a common challenge in energy science. In the120

future, we intend to enhance the models’ robustness and predictive power by employing multi-task121

representation learning across multiple relevant datasets.122
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