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Abstract

The application of Implicit Neural Representations (INRs) to video data poses unique chal-
lenges due to the introduction of an additional temporal dimension. In the context of videos,
INRs have predominantly relied on a frame-only parameterization, which, unfortunately,
sacrifices the spatiotemporal continuity observed in pixel-level (spatial) representations.
To mitigate this, we introduce Polynomial Neural Representation for Videos (PNeRV),
a parameter-wise efficient patch-wise INR for videos that preserves spatiotemporal conti-
nuity. PNeRV leverages the modeling capabilities of Polynomial Neural Networks (PNNs)
to perform the modulation of a continuous spatial (patch) signal with a continuous time
(frame) signal. We further propose a custom Hierarchical Spatial Sampling Scheme that
ensures spatial continuity while retaining parameter efficiency. We also employ a carefully
designed Positional Embedding methodology to further enhance PNeRV’s performance. Our
extensive experimentation demonstrates that PNeRV outperforms the baselines in conven-
tional Neural Representation (NR) tasks like compression along with downstream applica-
tions that require spatiotemporal continuity in the underlying representation. PNeRV not
only addresses the challenges posed by video data in the realm of INRs but also opens new
avenues for advanced video processing and analysis.

1 Introduction

Implicit Neural Representations (INRs) have become the paradigm of choice for modelling discrete signals
such as images and videos using a continuous and differentiable neural network, for instance, a multi lay-
ered perceptron (MLP).They facilitate several important applications like super-resolution, inpainting, and
denoising (Niemeyer et al., 2019; Park et al., 2021; Pumarola et al., 2021; Tretschk et al., 2021; Xian et al.,
2021; Li et al., 2021; Du et al., 2021) for images. They offer various important benefits over discrete repre-
sentations particularly in terms of them being agnostic to resolution. Recent advancements have extended
INR to video signals, but early methods relied on utilizing 3 dimensional spatiotemporal coordinates (x, y, t)
as input and RGB values as outputs. Such straightforward extensions of INRs to videos are inefficient during
inference since they need to sample T ×H ×W times to reconstruct the entire video. For high resolution
videos, this behaviour becomes more prominent. Also, a simple MLP is unable to model the complex spatio-
temporal relationship in video pixels well. To address this issue and maintain parameter efficiency, current
state-of-the-art (SOTA) methods in the field use a frame-only parameterization as depicted in Fig. 1 (a) and
(b). These representations take the time index of a frame as input and predicts the entire frame as output.
Although SOTA INRs on video data exhibit impressive results on tasks such as video denoising and com-
pression, they suffer from two fundamental issues. Firstly, the lack of spatial parameterization renders the
representation less suitable for conventional INR applications such as video super-resolution. Secondly, they
are not equipped to capture the information pertaining to pixel-wise auto and cross correlations across time
explicitly. Hence, resulting in a suboptimal metric performance to model size ratio. Only recently, Sen et al.
(2022) have attempted to explore a spatiotemporally continuous neural representation based hypernetwork
for generating videos. However, their approach and the tasks they enable are fundamentally different1to
ours.

1We highlight these differences in section 2.
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Figure 1: PNeRV when compared to its coun-
terparts: (a) NeRV: An INR for videos with only
frame-wise parameterization that leads to loss of spa-
tial continuity. (b) E-NeRV: A step-up over NeRV with
a parameterization that employs a fixed Spatial Con-
text (SC). The fixed SC does not support spatial con-
tinuity. (c) PNeRV: An efficient NR for videos with
a PNN backbone (signified by the usage of Hadamard
Product ⊙) that supports varying SC while retaining
spatial continuity.

We utilize the following key insights to build a
spatiotemporally continuous Neural Representation
(NR) while keeping the model size in check: (1)
Achieving spatiotemporal continuity doesn’t always
require dense per-pixel sampling. A well-designed
patch-wise sampling approach (Tretschk et al., 2020;
Yuval Nirkin, 2021) can yield comparable results
for downstream tasks while processing less data.
(2) To achieve better efficiency in handling higher-
dimensional inputs with fewer learnable parame-
ters and maintaining performance, we consider us-
ing Polynomial Neural Networks (PNNs) (Chrysos
et al., 2021b; 2019) as our preferred function ap-
proximator. PNNs model the auto and cross cor-
relations within their input feature maps. (3) We
also propose a Positional Embedding (PE) method-
ology to aid the PNN backbone in learning a faithful
representation using the sampled inputs. Carefully
designed PEs (Vaswani et al., 2017; Wu et al., 2021;
Deng et al., 2022; Sitzmann et al., 2020b) are proven
to boost the performance of Deep Neural Networks.

Per our insights, we enhance NRs for videos along
the following three directions. Firstly, we adopt a
temporal as well as spatial parameterization (illustrated in Fig. 1(c)) in our light-weight representation.
We achieve this by replacing the dense pixel-wise spatial sampling with a carefully designed Hierarchical
Patch-wise Spatial Sampling approach. Our scheme (elaborated upon in section 3.1) breaks a video frame
into patches and samples coordinates from sub-patches in a recursive fashion across different levels of hier-
archy. Secondly, we leverage the properties of PNNs to build a parameter-wise efficient decoder backbone
that yields better metric performance. PNeRV also inherits some important properties of PNNs such as
non-reliance on the employment of carefully crafted non-linear activation functions. Finally, we improve the
positional embedding of input signals to align well with our PNN backbone and achieve peak metric per-
formance. Our claims are backed by consistent qualitative and quantitative results on video reconstruction
and four challenging downstream tasks i.e. Video Compression, Super-Resolution, Frame Interpolation, and
Denoising. The key contributions of this paper can be summarized as:

1. We introduce a Hierarchical Patch-wise Spatial Sampling approach in our formulation which makes
PNeRV continuous in space and time while retaining parameter efficiency.

2. We present a PNN that distinguishes itself from previous methods by specifically adapting to tem-
poral signals. Such an adaptation has not emerged in prior art. We further propose a PNN based
Higher order Multiplicative Fusion (HMF) module that is responsible for learning parametric em-
bedding.

3. We propose a new positional embedding scheme to encode and fuse spatial and temporal signals.
The scheme brings together both parametric (learnable) and functional (deterministic) embeddings,
a first in Neural Representations for videos. We show that both the embeddings complement each
other to align well with the PNN based backbone and attain peak metric performance.

4. PNeRV outperforms the SOTA in NR for videos in terms of the PSNR observed for reconstruction
and the performance attained on downstream tasks. PNeRV enables downstream tasks such as
video super-resolution that require spatiotemporal continuity in the underlying NR. Our method
uses significantly fewer parameters than the SOTA.
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Figure 2: The PNeRV Architecture: The PNeRV pipeline consists of three modules. First, the PEs of
time index t, coarse patch coordinate λij and the fine patch coordinate Λij are computed in the Positional
Embedding Module (PEM). Second, these embeddings are fused effectively in the Embedding Fusion Block
(EFB). Finally the PNN-based INR decoder reconstructs the frame patch, given a fused Positional Embed-
ding obtained via the EFB. Here FC denotes a fully connected layer of appropriate input-output dimensions.

2 Related Work

Implicit Neural Representations. INR is a method to convert conventionally discrete signal represen-
tations such as images (discrete in space) and videos (discrete in space and time) into continuous represen-
tations. Originally motivated as an alternate representation for images (Park et al., 2019; Mescheder et al.,
2019; Chen & Zhang, 2019), INR has been pushing the envelope in terms of performance on a wide array
of tasks on images such as denoising and compression (Zhu et al., 2022; Huang et al., 2022; Li et al., 2022a;
Chen et al., 2022a). INR for videos extends INR for images by a simple reparameterization in terms of
video-frame indices as well (Niemeyer et al., 2019; Park et al., 2021; Pumarola et al., 2021; Tretschk et al.,
2021; Xian et al., 2021; Li et al., 2021; Du et al., 2021; Chen et al., 2022b; Saragadam et al., 2022; Mai
& Liu, 2022). The approach of choice for such architectures entails learning an embedding for pixels and
timestamps, which are passed on to a decoder network. To expedite model training and inference with large
video tensors in such INR formulations, SOTA literature in NR for videos (Chen et al., 2021; Li et al., 2022b;
Chen et al., 2023) has introduced parameterization over frame indices only. While such formulations are
lighter and faster, they compromise spatial continuity. We aim to bring the best of both these formulations
together in this work by employing a parameterization over patches as well as frame indices, with a PNN
backbone. Consequentially, the spatial continuity achieved while keeping model parameters in check, is an
essential attribute for a faithful INR and is critical for applications such as super-resolution.

(Sen et al., 2022) have recently attempted to build a spatiotemporally continuous NR based hypernetwork
for generating videos. Their proposed method differs from ours in two key aspects. First, theirs is a video
generation pipeline and the NR is only a component of their model. Whereas ours is a vanilla NR that
serves as an alternate representation for videos while enabling interesting downstream tasks. Second, since
their model is a hypernetwork, it is not well equipped to tackle high resolution videos such as the ones found
in the UVG dataset (Mercat et al., 2020). The authors attribute this behaviour to the unstable training
routines of large hypernetworks.

Polynomial Neural Networks. PNNs (Chrysos et al., 2021b) are a new class of Neural Networks (NNs)
that model their outputs as a higher-order polynomial in the input. While the forward pass of standard NNs
consists of linear transformations with interleaved non-linear activations, a PNN’s forward pass is given by:

x = σ(W T
1 z + zT W2z + W3 ×1 z ×2 z ×3 z + ... + b), (1)

Here, x, z, σ, and b represent the output, input vector, non-linear activation and bias. Wi represents the
weight tensor for the ith order, and ×i represents the mode-i product2. The PNN paradigm’s elegance lies

2Defined in appendix A.1.
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Table 1: Overview of the nomenclature used in section 3. All PEs ∈ R1×2l, where l is a hyperparameter.

Nomenclature Pertaining to Spatial Sampling (Section 3.1) Nomenclature Pertaining to Positional Embeddings (Section 3.2)
Symbol(s) Dimension(s) Definition(s) Symbol(s) Definition(s)

V = {vt}T
t=1, vt RT ×H×D×3, RH×D×3 Complete Video, tth frame b, l Hyperparameters governing the frequency and length of the PE, respectively.

Pij R H
M × D

N ×3 (i, j)th Coarse patch. M ×N such patches are sampled ∀ vt. ΓF P E(t) Functional PE of t.
P̃kl R H

MK × D
NL ×3 (k, l)th fine patch. K × L such fine patches are sampled ∀Pij . ΓP P E(Λij) Parametric embedding of Λij

C RH×D×2 Global spatial (pixel) coordinates. ΓT SE(λij , t) Functional embedding to fuse space and time.
λij R2 Grid coordinate in C corresponding to Pij . λij =

[
λxij λyij

]
ΓHMF (Λij, t) PNN driven fusion of ΓF P E(t) and ΓP P E(Λij)

Λij RK×L×2 Tensor containing the fine coordinates in C that correspond to P̃kl. Γijt INR Decoder input: (ΓT SE(λij , t) + ΓHMF (Λij , t))

in the utilization of tensor factorization techniques to prevent an exponential increase in model parameters
with an increase in the polynomial order. We examine only the Nested Coupled CP Decomposition (NCP)
3 since our model implementation is based on its ProdPoly variant 3. Considering a 3rd order polynomial
governed by Eq. 1, the decomposed forward pass can be expressed as the following recursive relationship:

xn = (AT
[n]z)⊙ (ST

[n]xn−1 + BT
n b[n]), (2)

for n ∈ {2, 3}. Here x = Cx3 + q is the output of the 3rd order polynomial, ⊙ represents Hadamard
product and x1 = (AT

[1]z) ⊙ (BT
1 b[1]). The learnable parameters in this setup are C ∈ Ro×k, A[n] ∈

Rd×k, S[n] ∈ Rk×k, B[n] ∈ Re×k, and b[n] ∈ Re, and q ∈ Ro . The symbols d, o, e, and k represent the
decomposition’s input dimensions, output dimensions, implicit dimension, and rank. The rise of PNNs has
seen their application to an array of important deep learning regimes such as generative models (Chrysos
et al., 2021b; Choraria et al., 2022; Singh et al., 2023), attention mechanisms (Babiloni et al., 2021), and
classification models (Chrysos et al., 2022). However, their direct application to temporal signals has not
emerged, and they have only been used in a single variable setup in unconditional modeling regimes. PNeRV
builds along these new directions in its INR decoder and HMF.

Rich Positional Embeddings. PEs based on a series of sinusoidal functions much like the Fourier series,
have become an integral part of INRs. Several works (Mildenhall et al., 2021; Sitzmann et al., 2020a; Tancik
et al., 2020) have shown that in the absence of such embeddings, the output of the INR is blurry i.e. misses
the high frequency information. Thus, PEs enable INRs to capture fine-details of a signal making them
indispensable for image applications (Wu et al., 2021; Deng et al., 2022; Skorokhodov et al., 2021). INR
methods for videos have also sought to capitalize upon the advantages of an efficient PE (Sitzmann et al.,
2020b; Mai & Liu, 2022). However, SOTA in the domain (Li et al., 2022b; Chen et al., 2021) has only explored
functional (deterministic) embeddings in one input variable. In contrast, PNeRV employs both parametric
(learnable) and functional embeddings. We also introduce a PNN based fusion strategy to combine the
functional and parametric embeddings.

3 PNeRV: Polynomial Neural Representation for Videos

Overview: Let us now introduce our method. The notation and definitions for the various elements
employed in this section is encapsulated by Table 1. We denote tensors by calligraphic letters, matrices
by uppercase boldface letters and vectors by lowercase boldface letters. To enable spatial continuity while
keeping the model size in check, we propose a Hierarchical Patch-wise Spatial Sampling approach for the
input coordinates. As shown in Fig. 2, the PNeRV architecture comprises three key components, namely, a
Positional Embedding Module (PEM), an Embedding Fusion Block (EFB), and the PNN-based INR decoder.
Each frame vt in an input video V = {vt}T

t=1 is recursively divided into coarse patches and fine sub-patches.
Coordinates sampled from both the patch and sub-patch instances along with their respective frame index
(t) serve as inputs to the INR decoder. In nutshell, the PNeRV formulation can be represented as:

Pij = FΘ(Λij, λij , t), (3)

where, FΘ denotes the complete PNeRV model (having parameters Θ). As defined in Table 1, Λij denotes
a fine coordinate Tensor, λij is a coarse patch coordinate, and t is the frame index. We present a detailed
discussion on each of our model’s constituent elements in the subsections that follow.

3Definition borrowed from (Chrysos et al., 2021b).
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3.1 Hierarchical Patch-wise Spatial Sampling (HPSS)

(b)

(c)

Figure 3: Hierarchical Patch-wise Spatial Sam-
pling: (a) A Global coordinate grid C with input values
normalized to range [0, 1] is constructed for each frame.
(b) The grid is divided into M×N coarse patches of equal
size. For a coarse patch Pij, its centroid is used as a 2D
coordinate λij . (c) Each coarse patch is further divided
into K×L fine patches and a collection of the centroids of
these smaller patches is used as the fine patch coordinate
tensor Λij.

SOTA methods Chen et al. (2023; 2021); Li et al.
(2021) have drifted away from a spatial parame-
terization of their representation to ensure faster
inference. They resort to a temporal-only param-
eterization. In contrast, PNeRV gravitates back
to a spatiotemporal parameterization with fewer
parameters by employing our efficient HPSS ap-
proach (depicted in Fig. 3). We observed that
a pixel-wise formulation increases the computa-
tional complexity manifold. Hence, we opt for
a patch-wise formulation. A primitive method
to sample spatial patch coordinates would be to
assign a scalar coordinate to each patch (similar
to frame indices). However, the pitfalls of such
an approach are twofold. Firstly, scalar patch
indices lack spatial context. They do not con-
vey any sense of spatial localization. Secondly,
PEs obtained from scalars have a lower variance,
which is not ideal for training. Our analysis in
section 8 underscores these pitfalls. We have de-
signed our HPSS strategy to enrich the input to
our INR decoder with spatial information of the patches. Instead of associating just a scalar index to each
patch, we associate each patch Pij with a coarse 2D index λij and a fine index Λij ∈ RK×L×2. The process
of computing λij and Λij is illustrated in Fig. 3. Like traditional INRs Niemeyer et al. (2019); Park et al.
(2021); Pumarola et al. (2021), we first build a global coordinate grid C of size H ×D normalized to range
[0, 1] (Fig. 3 (a)). Next, each frame is divided into M × N coarse patches. The coordinates λij for these
coarse patches pij are found by computing their centroids (Fig. 3 (b)). Further, each coarse Pij is divided
into K × L fine sub-patches. The K × L × 2 dimensional tensor formed by the centroids of each of these
sub-patches is used as the fine coordinates of Pij (Fig. 3 (c)). It is imperative to note that, although we
divide a frame into patches, the normalized coordinate values are sampled from C in all cases for computa-
tion of centroids. In effect, we ensure a sense of spatial locality in all patches. The HPSS methodology is
encapsulated by Algorithm 1 in Appendix A.2.

3.2 Positional Embedding Module (PEM)

Literature on INRs (Sitzmann et al., 2020b; Tancik et al., 2020) dictates that rich positional embeddings
(PEs) are central to the performance of INR methods. Fourier series like PEs are positively correlated
with the network’s ability to capture the high frequency information Tancik et al. (2020). Although the
field has witnessed several advances toward the development of optimal functional (fixed) embeddings of
signals and their parametric (learnable) fusion, functional fusion and parametric embeddings remain under
explored. In this work, we exploit the combination of functional PEs, parametric PEs, functional PE fusion,
and parametric PE fusion to learn a superior NR for videos. We propose an embedding scheme wherein we
perform a temporal functional embedding in t, a spatial embedding via functional fusion, and a parametric
(multiplicative) fusion of all PEs to yield a rich spatiotemporally aware PE. We elaborate upon each of our
embeddings and their parametric fusion in the sections that follow.

Positional Encoding of Frame Index (FPE) Given a frame index t, normalized between [0, 1] as input,
we adopt the widely used Fourier series based positional encoding scheme similar to the existing methods
Chen et al. (2021); Li et al. (2022b). This embedding is given as:

ΓF P E(t) = [sin(πνit) cos(πνit) ...]l−1
i=0 , (4)

where, ν denotes the frequency governing hyperparameter and l governs the number of sinusoids.
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Parametric Embedding of Fine Coordinates (PPE) We employ a parametric positional embedding
scheme (PPE) to encode the spatial context available in the fine patch coordinates given by tensors Λij. The

Figure 4: The HMF architecture at a glance: All linear
transformation matrices represent the terms in Eq. 9. Here,
⊙ denotes the Hadamard Product,

⊕
represents feature

addition, black arrows represent inputs, and blue arrows
represent the fused entities.

PPE block in Fig. 2 illustrates the same. First,
Eq. 4 is applied to each element of Λij to map
it to R1×2l dimensional vectors. These resul-
tant embeddings are arranged side by side in
spatial order to obtain a feature map of size
RK×L×4l. Notice that each value in the K×L
grid has a 2D coordinate value corresponding
to x and y. Eq. 4 is applied individually
to the x and y coordinates and the resulting
vectors are fused across the channel dimen-
sions. Resulting in a channel dimension of 4l.
To merge these features we use a Non-Local
Block (NLB) Wang et al. (2018) followed by
a linear layer. This spatially aware attention
based fusion mechanism encourages a weighted
feature fusion between various spatial regions
where the weights are governed by the NLB.
We refer to this parameterized embedding as
ΓP P E(Λij).

Time Aware Spatial Embedding (TSE) A video can be seen as time modulated spatial signal. There-
fore, ideally, the spatial PE should be dependent on the frame-index (time) as well as patch coordinates.
To this end, we design a TSE which is inspired from Angle modulation. In analog communication, Angle
Modulation refers to the technique of varying a carrier signal’s phase in accordance with the information
content of a modulating signal. The general expression for the same is given by

yc(t) = Ampc{cos(2πfct) + ϕ(cos(2πfmt))}, (5)

where, yc is the modulated signal, Ampc is the amplitude of the carrier signal, ϕ(.) is the phase governing
function. fc and fm are the frequencies of the carrier and modulated signals, respectively. We design a TSE
to perform functional fusion of λij and t. We model a video as a time (t) modulated spatial signal (λij).
The proposed TSE given by ΓT SE is governed by Eqs. 6 and 7.

ΓT SE(λij , t) = [cos(Ωα
ijt) sin(Ωα

ijt) ...]l−1
α=0, (6)

wherein,
Ωα

ij = 2πβα + sin(2πλxijβα)
βα

+ sin(2πλyijβα)
βα

. (7)

Our ablations (Section 8) substantiate that functional fusion (ΓT SE) complements parametric fusion of
ΓF P E(t) and ΓP P E(Λij) to boost performance.

3.3 Embedding Fusion Block (EFB)

Effective fusion of all our PE elements is critical to the performance of our method. We opt for a hybrid
functional and parametric fusion module to bring together the PEs obtained via the ΓF P E(.), ΓP P E(.), and
ΓT SE(.) functions. Our fusion mechanism is split over two stages. First ΓF P E(t) and ΓP P E(Λij) are fused
using our proposed Higher-order Multiplicative Fusion (HMF) block. Then, ΓT SE(λij , t) is added to the
resulting vector, resulting in new embedding z that acts as input to the INR decoder.

Higher-order Multiplicative Fusion (HMF) We introduce the HMF which is a Nested-CoPE (Chrysos
et al., 2021a) inspired fusion mechanism, to fuse ΓF P E(t) and ΓP P E(Λij). As shown in Fig. 4, HMF entails
additive fusion of the linearly transformed fusion entities to capture first-order correlations. The additive
fusion blocks are followed by a Hadamard product operation with the previous additive fusion output in a
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recursive fashion for three iterations. The recursive structure ensures that cross-correlations are captured
well by the fused output. The fusion in effect translates to the following recursive relationship:

xn = ((AT
[n,t]ΓF P E(t) + AT

[n,Λij]ΓP P E(Λij))⊙ xn−1) + xn−1, (8)

wherein,
x1 = AT

[1,Λij]ΓP P E(Λij) + AT
[1,t]ΓF P E(t).

Here, n ∈ {2, 3}, x3 represents the fused embedding (output of HMF block), and ⊙ represents Hadamard
product. The learnable parameters in HMF are A[n,T ] ∈ R2l×k and A[n,Λij] ∈ R2l×k. The rank of the
decomposed weight matrices k, is taken to be 160. As highlighted in Chrysos et al. (2021a), the adopted
approach for fusing the frame-timestamps and patches has an advantage over a standard approach that
employs concatenation followed by downsampling. In that, concatenation amounts to the additive format
of fusion which fails to capture cross-terms in correlation. That is, multiplicative interactions of order 2 or
more are essential for capturing both auto and cross-correlations among the entities to be fused.

3.4 INR Decoder

The literature on PNNs Chrysos et al. (2021b) has shown that stacking two or more polynomials in a
multiplicative fashion leads to a desired order of the underlying polynomial with much lesser parameters.
Such an approach is termed as ProdPoly (Product of Polynomials). As defined by (Chrysos et al., 2021b),
a ProdPoly implementation entails the Hadamard product of outputs of sub-modules in the architecture to
obtain a higher order polynomial in the input. Since the order of a polynomial is directly correlated with its
modelling capabilities, the ProdPoly approach is suitable for designing our lightweight INR decoder. The
proposed INR decoder is a modified derivative of the ProdPoly formulation. In that, we design the INR
decoder as a product of three polynomials. Per our formulation, the output of the rth polynomial is given
as input to the (r + 1)th block. The advantage of such a stacking is that it leads to an exponential increase
in order of the polynomial.

Specifically, we have three Prodpoly Blocks (PBs) in a hierarchy. The first PB accepts as the fused embedding
z as input. The other two PBs take the output feature map from their preceding ProdPoly block, or−1 as their
input (Fig. 2). Each PB in INR decoder is an adapted implementation of an NCP decomposed PNN variant
tailored to our model’s requirement. The NCP-polynomial in each prodpoly block is implemented using two
convolutional blocks F . The design of these blocks is inspired by Chen et al. (2021); Li et al. (2022b). Each
F block entails an Adaptive Instance Normalization layer (AdaIn) Karras et al. (2019), Convolution, pixel
shuffle operation and a GeLU Hendrycks & Gimpel (2016) activation layer. This operation is denoted as
F (.). The AdaIn layer takes z as input and normalizes the feature distribution with spatio-temporal context
embedded in the input vector z. In essence, we adapt Eq. 2 the following, for our decoder where S and A
are implemented as F and Φ :

yrm = Frm(yrm−1)⊙ (ΨT
[rm]ri) ; m ∈ {1, 2}, (9)

wherein,
yr1 = (Fr1(UT or))⊙ (ΨT

[r1]z),

or = yr2 is the output of rth PB. U is a set of three transpose convolutional layers applied only before
the first PB to obtain a 2D feature map from the input vector z. o3 is the final output (i.e. reconstructed
patch p̂ij) of the INR decoder. Ψ1m’s in the first PB are implemented as linear layers. In the remaining
blocks, transpose convolution layer is used with appropriate padding and strides. To remove the redundant
parameters, similar to Li et al. (2022b), we also replace the convolutional kernel in F1 with two consecutive
convolution kernels with small channels. The optimal rank for our resultant polynomial’s decomposition per
the NCP (Eq. 2) was found to be 324. Appendix A.3 presents a detailed study pertaining to the choice of
optimal rank for the decomposition, alongside elaborate architecture details.
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Table 2: Quantitative comparisons in terms of PSNR (dB) with respect to reconstruction on the Scikit-
Bunny video and the UVG datset. PNeRV achieves SOTA performance while maintaining significantly fewer
parameters and being up to 4× faster in terms of rate of convergence.

Method # Params (M)↓ Bunny Beauty Bosphorus Bee Jockey SetGo Shake Yacht
NeRV-L 12.57 39.63 36.06 37.35 41.23 38.14 31.86 37.22 32.45
HNeRV 11.90 36.23 36.17 30.20 41.58 28.55 29.67 32.44 25.50
E-NeRV 12.49 42.87 36.72 40.06 41.74 39.35 34.68 39.32 35.58

Ours 11.89 44.90 39.8 41.86 43.98 39.84 35.82 41.37 36.93
Gain over E-NeRV ↓ 0.6 ↑ 2.03 ↑ 3.08 ↑ 1.8 ↑ 2.24 ↑ 0.49 ↑ 1.14 ↑ 2.05 ↑ 1.35

3.5 Training

To train our network, we randomly sample a batch of frame patches Pij along with their normalized fine
coordinates, coarse coordinates, and the time indices (Λij , λij , t). These indices are then given as input to
PNeRV to predict the corresponding patches P̂ij . The model is trained by using a combination of the L1
and SSIM Wang et al. (2004) losses between the predicted frame patches and ground truth frame patches,
governed by Eq. 10

L(P̂ij , Pij) = 1
M ×N × T

T∑
t=1

M×N∑
p=1

γ||P̂ij − Pij ||1 + (1− γ)(1− SSIM(P̂ij , Pij)) (10)

Figure 5: Qualitative comparisons with prior art on Reconstruc-
tion, Compression, and Interpolation. The specific regions where
our method predicts significantly better outputs are highlighted
in red boxes.

where, M × N is the total number of
patches per frame, T denotes the total
number of frames, and γ is a hyper-
parameter to weigh the loss components.
We set γ to 0.7. We infer frame patches
at all spatiotemporal locations and con-
catenate them in a temporally consis-
tent manner to reconstruct the original
videos. Since the model learns non-
overlapping patches independently, the
intensity changes near the patch edges
may cause the reconstructed frames to
have boundary artifacts. We apply Gaus-
sian blur to the reconstructed video to
mitigate these subtle artifacts. No other
post-processing is needed to ensure con-
tinuity and coherence in the generated
frames.

4 Experiments

We split our experimental analysis of PNeRV into (1) evaluation of the representation ability using Video
Reconstruction task (2) testing the efficacy on the proposed downstream tasks (3) performing appropriate
ablation studies to assess the contributions and salience of individual design elements. The downstream tasks
we perform include (i) Video Compression to assess the applicability of PNeRV as an alternate lightweight
video representation (ii) Video Super-resolution to assess the spatial continuity of PNeRV (iii) Video Inter-
polation to assess the temporal continuity of PNeRV (iv) Video Denoising as an interesting application of
PNeRV. We also compare the rate of convergence (during training) of PNeRV vis-à-vis prior art.

Experimental Setup: We train and evaluate our model on the widely used UVG dataset (Mercat et al.,
2020) and the "Big Buck Bunny" (Bunny) video sequence from scikit-video. The UVG dataset comprises 7
videos. Each UVG video is resized to 720 × 1280 resolution and every 4th frame is sampled such that the
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entire video contains 150 frames. All 132 frames of the Bunny sequence are used at a resolution of 720×1280.
For all our experiments, we train each model for 300 epochs with a batch size 16 (unless specified otherwise)
with up-scale factors set to 5, 2, 2. The input embeddings ΓF P E , ΓT SE , and ΓP P E are computed with
ν = 1.25. We set l = 80 for ΓF P E and ΓT SE . Whereas, ΓT SE uses α = 40. The network is trained using
Adam optimizer (Kingma & Ba, 2014) with default hyperparameters, a learning rate of 5e−4, and a cosine
annealing learning rate scheduler (Loshchilov & Hutter, 2016). Following E-NeRV’s evaluation methodology,
we use PSNR (Wang et al., 2003) to evaluate the quality of the reconstructed videos.

4.1 Video Reconstruction

High fidelity video reconstruction assumes utmost importance when it comes to building a NR. We compare
PNeRV with several SOTA methods, namely NeRV (Chen et al., 2021), E-NeRV (Li et al., 2022b) and
HNeRV (Chen et al., 2023) on videos belonging to the UVG dataset and the Bunny video. The PSNR
values obtained for reconstructed videos are reported in Table 2. We observe that our model consistently
outperforms existing methods on a diverse set of videos, while employing significantly lesser number of
learnable parameters shows improvements on videos with slow moving objects like Beauty, Bee, Shake as
well as dynamic videos like Bunny, Bosphorus and Yacht. Hence, validating that the PNN-backed PNeRV is
a lightweight NR that captures the necessary spatiotemporal correlations needed to better represent videos.
This indicates that the proposed model has better modelling capabilities for spatiotemporal signals. We
present qualitative comparisons with SOTA for the task in Fig. 5 (left column). Appendix A.4 presents
additional qualitative results.

4.2 Downstream Tasks

4.2.1 Video Compression

Figure 6: Model pruning results on NeRV-L, E-NeRV
and PNeRV trained for 300 epochs on "Big Buck
Bunny" video. Sparsity represents the ratio of pruned
parameters.

Recent video compression algorithms follow a hybrid
approach where a part of the compression pipeline
consists of NNs while following the traditional com-
pression pipeline (Agustsson et al., 2020; Yang et al.,
2020; Wu et al., 2018). An INR encodes a video as
the weights of a NNs. This enables the use of stan-
dard model compression techniques for video com-
pression. Following (Chen et al., 2021), we employ
model pruning for video compression. We present
experimental results for the same on the "Big Buck
Bunny" sequence from scikit-video in Figure 6. It
can be observed that a PNeRV model of 40% spar-
sity achieves results comparable to the full model,
in terms of reconstruction accuracy and perceptual
coherence. Fig. 5 (middle column) presents qualita-
tive comparisons with SOTA for the task. For spar-
sity values less than 45%, our model outperforms
NeRV and E-NeRV. However, beyond 45% sparsity,
PNeRV’s performance degrades rapidly. This behaviour can be attributed to the use of multiplicative inter-
actions in PNeRV which cause model performance to increase rapidly with increase in model parameters.
We provide additional qualitative results, quantitative results on the UVG dataset, and comparisons with
HNeRV in Appendix A.5. From Fig. 17, it can be observed that the frames predicted by HNeRV are blurred
i.e. misses high frequency information, a typical property of autoencoder type of an architecture whereas
our method is able to preserve the fine details well.

4.2.2 Video Super-Resolution

We present qualitative results for ×4 Super-Resolution (SR) in Fig. 7. As reported in Table 3, for SR,
we compare our results with bicubic interpolation, INR-V (Sen et al., 2022), ZSSR (Assaf Shocher, 2018),
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Table 3: Quantitative compar-
isons for ×4 Super-Resolution

Method PSNR (dB) ↑
Bunny Beauty

Bicubic 29.82 34.03
ZSSR 27.53 31.96

SIREN 21.68 29.61
Ours 31.74 36.48

ZSSRZSSR SIREN OursGT

Figure 7: Qualitative Results for ×4 Super-Resolution. The
boxes illustrate PNeRV’s superior performance specifically in high
frequency regions.

Table 4: PSNR (dB) metrics for VFI

Seen Frames Unseen Frames
Method Bunny Beauty Bunny Beauty
NeRV-L 39.3 36.16 28.58 23.98
E-NeRV 42.52 36.96 33.77 26.41
Ours 43.10 38.66 33.91 28.63

Table 5: PSNR (dB) metrics for VD

Type of Noise
Method white salt & pepper
NeRV-L 38.41 39.83
E-NeRV 37.73 38.98
Ours 39.62 41.89

and SIREN (Sitzmann et al., 2020b). PNeRV outperforms these baselines in each case, which confirms that
PNeRV is a generic spatiotemporal representation that lends itself well to various downstream tasks that
require spatial continuity without the need for task-specific retraining or fine-tuning. We also provide reasons
for not comparing our results with VideoINR (Chen et al., 2022b), an important contemporary INR based
method in Video SR in Appendix (Chen et al., 2022b).

4.2.3 Video Frame Interpolation

The temporally continuous nature of PNeRV, allows us to perform the task of Video Frame Interpolation
(VFI). Following E-NeRV’s setup, we divide the training sequence in a 3:1 ("seen:unseen") ratio such that
for every four consecutive frames, the fourth frame is not used training. This "unseen" frame is interpolated
during inference to quantitatively evaluate the model’s performance. We train and evaluate PNeRV on
the "Big Buck Bunny" and "Beauty" (UVG Dataset) videos for this task. We report the quantitative and
qualitative comparisons for the task in Table 4 and Fig. 5 (right column), respectively. We observe that our
method achieves better metric performance than prior art, and excellent perceptual quality of the predicted
"unseen" frames. Hence, we infer that PNeRV better captures spatiotemporal correlations in videos with
respect to prior art. We present additional qualitative results for the task in Appendix A.9.

4.2.4 Video Denoising (VD)

INRs have been shown to be better attuned to filtering out inconsistent pixel intensities i.e. noise and per-
turbations. Hence, making it suitable for denoising videos without being explicitly trained for the task. To
test the performance of our representation on noisy videos, we applied white noise and salt and pepper noise
separately to the original videos. PNeRV was then trained on these perturbed videos in a for reconstruc-
tion. Comparisons between the reconstructed videos and the original videos (without noise) reveal that the
representation learned by PNeRV is robust to noises. It implicitly learns a regularization objective to filter
out noise better than existing methods. Quantitative comparisons with prior art (reported in Table 5) assert
the superiority of our method in this regard. We also provide qualitative results and a detailed analysis of
the same in Appendix A.8.

4.3 Ablation Studies

4.3.1 Varying the polynomial attributes of the INR Decoder

We study the impact of varying the rank and order of the polynomial formed by the PNN-based INR Decoder
architecture.

10
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Table 6: Ablation: Effect of variation of the rank
(controlled by the number of channels) of individual
ProdPoly decompositions in terms of PSNR with re-
spect to reconstruction on "bunny" video.

Rank of the Polynomial Component PSNR (dB)ProdPoly: 1 ProdPoly: 2 ProdPoly: 3
324 96 96 44.9
212 96 96 42.05
112 96 96 39.23

Table 7: Ablation: Effect of variation
of the order (controlled by the number of
ProdPoly blocks) in terms of PSNR for re-
construction on "bunny" video.

# ProdPoly
Blocks # Params PSNR

2 11.50 M 43.78
3 11.89 M 44.90
4 12.29 M 44.65

Table 8: Ablation: Effect of the individual PE
components formulation on PSNR (dB) for re-
construction.

Setup ΓP P E(.) ΓHMF (.) ΓT SE(.) Bunny Beauty
Baseline - - - 41.85 35.34

λij = Centroid(Pij) - - - 42.09 39.06
Parametric PE only 43.83 39.70

Parametric + Functional PE (Ours) 44.9 39.8

Table 9: Ablation: Characterizing the effect of
varying patch sizes in terms of #Parameters and
PSNR (dB) for reconstruction.

Patch-size # Parameters Bunny Beauty
H/8, D/8 12.37 M 42.02 37.21
H/4, D/4���PSNR 11.89 M 44.90 39.80
H/2, D/2 12.56 M 44.27 33.82
H, D 12.94 M 42.65 32.46

Rank of the Polynomial: In NCP-Polynomial formulation, the rank of the polynomial can be varied by
modifying the number of channels of the Frm module in each ProdPoly block. In general, it is expected
that a polynomial with a higher-ranked decomposition (i.e. more channels) would perform better due to
the increased expressivity of the representation learned by the model. To understand the effect of this, we
modify the rank of the first ProdPoly block (PB1) in the INR-Decoder while keeping the ranks of PB2 and
PB3 fixed. These results are reported in Tab. 6. It can be seen that the rank of the polynomial is positively
correlated to the quality of the reconstructed video.

Order of the Polynomial: Each ProdPoly block (PB) in the proposed architecture has an order of 2.
Thus, the effective order of INR-Decoder is 2R where R is the total number of PBs in the decoder. Hence,
we vary the number of PBs to change the order of INR-Decoder polynomial and report our findings in Table
7. It can be seen that the performance drops when the order is reduced. Interestingly, the PSNR value
decreases when the order is increased beyond a certain range.

We present an analysis of PNeRV’s independence to the choice of non-linear activations in Appendix A.10,
a property it inherits from the PNN paradigm.

4.3.2 Efficacy of Positional Embeddings

We demonstrate the contribution of each Positional Embedding (PE) with respect to its individual contribu-
tion toward the reconstruction quality achieved. To this end, we first propose two simple baselines as shown
in Table 8 wherein each patch is assigned a coordinate from 0 to M ×N − 1 in a row-wise fashion (row 1)
or each patch is assigned its centroid value (row 2). Then ΓF P E is used to compute the patch embeddings.
It is evident that the performance drops considerably in both these settings. Hence, motivating the need
of carefully designed positional embeddings. Next, we add the parametric PE (ΓP P E) (row 3) followed by
addition of functional PE (ΓT SE). The results show that both ΓP P E and ΓT SE contribute to the overall
network performance. For this ablation study, t is encoded using ΓF P E and fused with the spatial embedding
using the HMF block in all the experiments. Since the PNN paradigm has been shown to benefit from high
frequency information content in its inputs, our carefully crafted PE scheme contributes significantly to the
performance attained by our model.

4.3.3 Varying the Input Patch-Size

The patch-wise formulation is the key idea that enables us to model spatial continuity. Thus, we delve into
PNeRV’s performance obtained for different patchs sizes in Table 9. We found that a patch size of ( H

4 , D
4 )

performs the best. This suggests that neither a pixel-wise (dense spatial) nor frame-wise representation
(temporal-only) is optimal. We hypothesize that the surge in parameters (over-parameterization) in the
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Figure 8: Rate of Convergence (PSNR (dB) for reconstruction versus #training epochs) compared to SOTA.

pixel-wise approach might be the limiting factor that inhibits learning in such cases. We find this result
particularly insightful since we found a sweet-spot between the two parameterization methodologies.

4.3.4 HMF versus other fusion strategies

Table 10: Ablation: Assessing the efficacy of
our HMF versus other parametric PE fusion
strategies in terms of PSNR (dB) for recon-
struction.

PE Fusion Strategy Bunny Beauty
Concat + Linear 43.76 39.39
Linear + Elementwise Addition 43.28 39.39
Linear + Hadamard Product 43.06 38.92
Ours 44.9 39.80

We compare the proposed PNN-backed Higher-order Multi-
plicative Fusion(HMF) of space and time embeddings with
other fusion mechanisms as given in Table 10. As expected,
coventional concatenation, addition, or multiplication op-
erations on features fail to capture the auto and cross-
correlations of the inputs. Hence, causing a drop in per-
formance. We observe that the dip in PSNR is more pro-
nounced for the "bunny" video than the "beauty" video. We
attribute this observation to the "bunny" video having more
temporal variations. The results of this study indicate that
the proposed HMF scheme models both the structural and
the perceptual video attributes better than the prior art.

4.4 On PNeRV’s rate of convergence

Following E-NeRV’s setup, we perform reconstruction experiments with PNeRV models trained for different
number of training epochs on the "Bunny" and "Yacht" (UVG dataset) videos and report our findings in
Fig. 8. It can be seen that training for more number of epochs boosts the performance with upto 4× faster
convergence than baselines. PNeRV’s performance surpasses that of the baselines at 600 epochs on the
"Bunny" and 1200 epochs on the "Yacht". We also provide comparisons with SOTA with respect to inference
time in Appendix A.6.

5 Conclusion

In this work, we propose and validate the efficacy of PNeRV, a light-weight, spatiotemporally continuous,
fast, and generic neural representation (NR) for videos with a versatile set of practical downstream appli-
cations. We do so by building on two principal insights. First, a well-designed patch-wise spatial sampling
scheme can perform just as as good as a pixel-wise sampling. Second, replacing popular function approx-
imators by the more efficient PNNs and designing other model components to aid its learning can lead to
superior metric performance. We provide conclusive results to support our claims with analysis on several
downstream tasks and consistent ablation studies. We believe our work shall serves as a primer toward
building spatiotemporally continuous light-weight NRs for videos. As a future work, it would be interesting
to examine PNN based PEs to further improve NR for videos. Please refer to Appendix A.11 for our broader
impact statement.
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A Appendix

A.1 The mode-n product

The mode-n (matrix) product of a tensor X ∈ RI1×I2×...×IN with a matrix U ∈ RJ×In is denoted by X ×nU
and is of size I1 × . . . In−1 × J × In+1 × . . .× In. Elementwise, we have

(X ×n U)i1...in−1
jin+1 . . . iN =

In∑
in=1

xi1i2...iN
ujin .

Each mode- n fiber [of X ] is multiplied by the matrix U.

A.2 The HPSS Algorithm

Algorithm 1 Hierarchical Patch-wise Spatial Sampling

Input: C, H, D, K, L, M, N, Pij , P̃kl

Output: λij , Λij

1: function HPSS(C, Pij , P̃kl, H, D, K, L, M, N)
2: λij ← (⌊ top(Pij)+bottom(Pij)

2 ⌋, ⌊ left(Pij)+right(Pij)
2 ⌋)

3: Λij ← A matrix of dimensions K × L with k and l being the row and column index, respectively.
4: x = top(P̃kl), y = left(P̃kl), h = H

MK , d = D
NL

5: for k ← 0 to K − 1 do
6: for l← 0 to L− 1 do
7: Λij [k][l]← (⌊ 2x+h

2 ⌋, ⌊
2y+h

2 ⌋)
8: y = y+h
9: end for

10: y = left
11: x = x + d
12: end for
13: return λij , Λij

14: end function
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Figure 9: Detailed architecture of the F blocks.

Figure 10: Detailed diagram for the U block in the INR Decoder. Yellow blocks represent the transpose
convolutional layers, whereas the green rectangles are fully connected layers.

Layer Modules Upscale Factor Output Size
C ×H ×W

U MLP & TransposeConv2D & Reshape - 324× 16× 9
Φ11 MLP - 160× 324
F11 F block 5 324× 80× 45
Φ12 MLP - 160× 162
F12 F block 2 162× 160× 90
Φ21 TransposeConv2D 2 384× 320× 180
F21 F block 2 384× 320× 180
Φ22 TransposeConv2D - 96× 320× 180
F22 F block - 96× 320× 180
Φ31 TransposeConv2D - 96× 320× 180
F31 F block - 96× 320× 180
Φ32 TransposeConv2D - 96× 320× 180
F32 F block - 96× 320× 180
ToRGB Layer Convolution - 3× 320× 180

Table 11: INR-Decoder Architecture.

A.3 The INR Decoder architecture in detail

In this section, we provide the finer details of the PNeRV architecture. We then provide more details
about the implementation and training of the proposed method. PNeRV consists of three components:
the Positional Embedding Module (PE), the Embedding Fusion Block, and the INR-Decoder. Given the
coarse patch coordinate λij, fine patch coordinate Λij and the time index, we first compute the positional
embeddings ΓT SE(λij, t), ΓP P E(Λij) and ΓF P E(t). The embeddings ΓP P E(Λij) and ΓF P E(t) are fused
using a Polynomial Neural Networks (PNN) based fusion module HMF. HMF consists of a series of linear
transformations followed by Hadamard product and addition, as shown in Fig 4 of the paper. Each linear
layer, namely, A[1,t], A[2,t], A[3,t], A[1,Λij ], A[2,Λij ], A[3,Λij ] is of dimension 80×160 . The resulting embedding
is added elementwise to ΓT SE(λij, t) to obtain the fused embedding z which is given as input to the INR
Decoder. z is a vector of dimension 160.

The INR-decoder consists of a stack of 3 ProdPoly blocks (PB). Each Prodpoly block in turn is a 2nd order
NCP-Polynomial implemented using convolutional blocks Frm, where r is the index of the PB block and m
is the index corresponding to the F-block. The structure of F is illustrated in Fig. 9. To limit the increase
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in the number of parameters of the model, following (Li et al., 2022b), we employ the following design for
F11 block: Conv(C1, C0 × s × s) → pixel-shuffle(s) → Conv(C0, C2). Where, C1 = 324, C0 = 81, C2 = 324
and s = 5. The input vector z is mapped to a feature map using a 3rd-order polynomial implemented using
transpose convolutional layers as depicted in Fig. 10. This is referred to as U in Fig. 2. Table. 11 provides
the complete architecture details for INR-decoder.

A.4 Qualitative results for Video Reconstruction

We provide additional comparisons with SOTA in Fig. 16 and additional qualitative results for our method
illustrated in Fig. 14 and Fig. 15. Owing to the ensemble of design elements, PNeRV outperforms SOTA
convincingly on this task.

A.5 Additional Results for Video Compression

Table 12 (a) provides a quantitative comparison with SOTA on video compression in different sparsity
(denoted by ρ) settings. Our model outperforms prior art convincingly. Fig. 17 wherein we present qual-
itative comparisons with SOTA on the task with sparsity ρ = 0.2, further underscores PNeRV’s superior
performance.

Table 12: (a) Averaged Comparison - Model Compression (b) Quantitative Comparison - Inference
Time.

Method
(a) Compression PSNR (dB) ↑ (b) Inference Speed
ρ = 0.2 ρ = 0.4 Inference Time (ms) ↓

NeRV 32.30 31.20 153.81
E-NeRV 32.54 32.28 34.11

Ours 33.86 33.60 28.32

A.6 Quantitative Comparison: Inference time per forward pass

Table 12 (b) provides a quantitative comparison with SOTA in terms of time taken (ms) to perform one
forward pass of the model on NVIDIA GeFORCE RTX 3090 GPU. Results elucidate that our light-weight
model is faster then prior art.

A.7 Super-Resolution using PNeRV

On the comparison with VideoINR: VideoINR (Chen et al., 2022b) has two core differences from our
work. Firstly, VideoINR uses ground truth High-Resolution (HR) video frames for training, while ours is a
fully unsupervised approach utilizing only the low-resolution video for training. Secondly, our method is a
multifunctional INR. In that, it learns to represent a signal (video) as model weights. In contrast, VideoINR
is an autoencoder trained specifically for SR. Wherein, the claimed INR components function as non-linear
transformations in the intermediate feature space. Therefore, we do not compare with VideoINR. Instead,
we show qualitative results for SR (Fig. 5) and quantitative comparison with bicubic interpolation, INR-V,
ZSSR, and SIREN (Table 4) which are unsupervised models.

A.8 Video Denoising: Qualitative Results

Figure 11 shows the qualitative comparison of the output of our method with the two INR baselines NeRV
(Chen et al., 2021) and E-NeRV (Li et al., 2022b). Notice that E-NeRV fails to reconstruct the honeybee,
thus regularizing the video such that the original content is lost. NeRV can generate the honeybee but it lacks
clarity. PNeRV preserves all the content of the frames including honeybee and generates superior-quality
video. These results confirm that PNeRV learns more robust video representation.
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(a)
Salt &
Pepper
Noise

Noisy
Frame NeRV E-NeRV Ours

(b)
Gaussian

Noise

NeRV E-NeRV Ours
Noisy
Frame

Figure 11: Qualitative Comparison of denoising results obtained on "honeybee" video. (a) Salt and Pepper
Noise, (b) Gaussian Noise.

Table 13: Metrics to analyze
the effect of absence of non-
linear activations in terms of
PSNR (dB) for reconstruction.

Method Bunny Beauty
NeRV-L 31.71 27.53
E-NeRV 27.57 27.49
Ours 39.84 38.50

NeRV

Ours

E-NeRV

Figure 12: Visualization of frames reconstructed by models trained
without non-linear activation functions. The highlighted regions illus-
trate our method’s robustness to the choice activation employed.

A.9 VFI: Additional Qualitative Results

Fig. 13 provides the qualitative results for Video Frame Interpolation task on "bunny" and "beauty" videos.
It can be observed that the perceptual quality of the interpolated frame is similar to that of the ground
truth for the bunny video.

A.10 Robustness to the choice of activation function

Since PNNs (Chrysos et al., 2021b) have built-in non-linearities, they do not rely on the usage of popular
hand-crafted non-linear activation functions to yield best performance. To highlight this aspect of our
method, we test the effect of training our network and the baselines without any activation functions on
"bunny" dataset by removing activation functions from all the network layers except for the output layer. The
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Figure 13: Qualitative results for VFI on the "Bunny" (rows 1 and 2) and "Beauty" (rows 3 and 4) videos.
Columns 1 (seen, previous) and 4 (seen, next) show the seen frames used to interpolate (predict) the unseen
frame illustrated in column 2. The closeness of predicted frames (column 2) to the ground truth frames
(column 3) underscores the faithfulness of our interpolation.

quantitative and qualitative results for the same are reported in Table 13 and Fig. 12. It can be observed that
performance of the baselines NeRV (first row) and E-NeRV (second row), dropped significantly. In contrast,
the performance of our model remains comparable. It is notable that NeRV fails to learn high-frequency
information such as that in the face of the bunny (highlighted in red boxes), resulting in a worse qualitative
performance.

A.11 Broader Impact Statement

As one of the most widely consumed modality of data, videos are central to several important tasks in
the modern socio-technical context. In such a scenario, PNeRV brings in a fresh approach to tackle the
ever growing costs involved in handling such massive data by providing a method restore and compress
videos efficiently. In effect, PNeRV can potentially have a lasting positive impact on several video streaming,
communication, and storage services. As with any nascent technology, the largely positive impact areas are
accompanied by a few unforeseeable ones which are beyond the scope of this work.
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Figure 14: Visualization of few frames of the reconstructed videos on "bunny" (first row), "beauty" (second
row), "honeybee" (third row) and "bosphorus"(fourth row) videos of UVG dataset (Mercat et al., 2020).

Figure 15: Visualization of few frames of the reconstructed videos on "jockey" (first row), "shakeandry"
(second row), "yachtride" (third row) and "readysetgo" (fourth row) videos of UVG dataset (Mercat et al.,
2020).
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Figure 16: Qualitative comparisions with SOTA with respect to video reconstructuin on the "shake" (column
1), "bosphorus" (column 2), and "beauty" (column 3) videos of the UVG dataset (Mercat et al., 2020). "GT"
denotes the ground truth frames. As is evident, PNeRV outperforms SOTA, particularly in regions with
high frequency information content.

22



Under review as submission to TMLR

Figure 17: Qualitative comparison with SOTA with respect to video compression (ρ = 0.2) on the "Bunny"
video. "GT" denotes ground truth frames. The highlighted regions depict regions where PNeRV outperforms
SOTA evidently.
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