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Abstract

The multivariate, asynchronous nature of real-world clin-
ical data, such as that generated in Intensive Care Units
(ICUs), challenges traditional AI-based decision-support sys-
tems. These often assume data regularity and feature indepen-
dence and frequently rely on limited data scopes and man-
ual feature engineering. The potential of generative AI tech-
nologies has not yet been fully exploited to analyze clinical
data. We introduce ICU-BERT, a transformer-based model
pre-trained on the MIMIC-IV database using a multi-task
scheme to learn robust representations of complex ICU data
with minimal preprocessing. ICU-BERT employs a multi-
token input strategy, incorporating dense embeddings from
a biomedical Large Language Model to learn a generalizable
representation of complex and multivariate ICU data. With
an initial evaluation of five tasks and four additional ICU
datasets, ICU-BERT results indicate that ICU-BERT either
compares to or surpasses current performance benchmarks
by leveraging fine-tuning. By integrating structured and un-
structured data, ICU-BERT advances the use of foundational
models in medical informatics, offering an adaptable solution
for clinical decision support across diverse applications.

Introduction
Generative AI holds great potential to revolutionize health-
care applications by enabling the processing and integration
of vast amounts of diverse medical data. These models excel
at synthesizing information from structured data like labora-
tory results, semi-structured machine outputs, and unstruc-
tured formats such as clinical notes and imaging reports.

The Intensive Care Unit (ICU) is a setting where such
innovations can be transformative. ICUs generate an im-
mense volume of high-fidelity data from monitoring equip-
ment, electronic health records (EHRs), and clinician notes.
These data streams are multivariate, asynchronous, and of-
ten multimodal, combining categorical, ordinal, and contin-
uous variables collected at different resolutions. This com-
plexity poses significant challenges to traditional Decision
Support Systems (DSS), which rely on assumptions about
data regularity and completeness (Johnson et al. 2023).
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Large ICU databases like MIMIC-IV (Johnson et al.
2023; Goldberger et al. 2000) have enabled significant re-
search progress, but existing DSS often fall short of real-
world deployment (Eini-Porat et al. 2022). Traditional ap-
proaches often employ interpolation, imputation, or resam-
pling to handle missing and irregular data, which can distort
natural patterns and relationships.

More sophisticated models have emerged since the Trans-
former (Vaswani et al. 2017), producing embeddings from
sparse longitudinal data, such as BEHRT (Li et al. 2020),
Med-BERT (Rasmy et al. 2021), ExMed-BERT (Lentzen
et al. 2023), STraTS (Tipirneni and Reddy 2022) or DuETT
(Labach et al. 2023). These models often rely on narrow
data scopes, such as International Classification of Diseases
(ICD) codes (Hirsch et al. 2016) or limited clinical variables.

In response to these challenges, we introduce ICU-BERT,
a generalizable Transformer model based on BERT (Devlin
et al. 2019) designed to handle the sparse, multivariate, ir-
regular sampling nature of ICU data. ICU-BERT processes
medical data sequentially, where each token represents a sin-
gle entry in a medical record, towards enhancing data repre-
sentation and predictive performance.

ICU-BERT introduces a novel multi-token input strategy
that more effectively captures the intricate details of med-
ical data streams. We propose a quadruplet representation
of medical registries and a multi-layer embedding structure
to improve clinical context interpretation. Furthermore, pre-
trained textual embeddings provide a sophisticated initial to-
ken representation of medical concepts, facilitating robust
generalization across varied clinical settings and data struc-
tures. To learn complex relationships, ICU-BERT employs
a novel pre-training masking task coupled with a multi-task
learning loss. We pre-trained ICU-BERT on the MIMIC-IV
database, providing it with adaptable and advanced data rep-
resentations between clinical variables and their values.

In a preliminary evaluation experiment, ICU-BERT
demonstrated robust generalization in multiple real-world
challenges. The model was fine-tuned in five tasks from
DuETT (Labach et al. 2023) and the Yet Another ICU
Benchmark (YAIB) framework (van de Water et al. 2024),
encompassing a range from classification to regression
and from single-shot evaluations to continuous monitoring.
Fine-tuning was performed on MIMIC-IV and four YAIB-



processed data sets. ICU-BERT benefits from its rich input
structure and compares favorably with existing models, un-
derscoring its potential to revolutionize DSS in critical care.

ICU-BERT contributes to the field by i) introducing a
multi-token input strategy, a novel masking technique, and
a multi-task pre-training scheme; ii) enhancing generaliza-
tion and expanding usable clinical variables through robust
pre-trained textual embeddings; and iii) outperforming mod-
els with limited features and simple data structures in real-
world tasks, surpassing benchmarks in some tasks.

Related Work
Using Machine Learning (ML) to process extensive health
data has been a long-standing effort, particularly in ICU set-
tings where data is collected from various devices at minute
or second intervals (Wiens and Shenoy 2018). Traditional
DSS require extensive preprocessing and feature extraction
(Kong, Lin, and Hu 2020). Recurrent models capture tem-
poral relationships but struggle with sparse, asynchronous
ICU data due to fixed temporal resolutions and reliance on
predefined variable matrices (Ge et al. 2018).

Advancements in Transformers improved the modeling
of longitudinal medical data. BEHRT (Li et al. 2020) pro-
cesses diagnosis codes as tokens within a limited vocabu-
lary, modeling hospital visits as sentences with age encoded
in position embeddings and pre-training through Masked
Language Modeling (MLM). Building on this, Med-BERT
(Rasmy et al. 2021) and ExMed-BERT (Lentzen et al. 2023)
extended the approach by incorporating continuous data and
adopting late fusion techniques. Models like Rare-BERT
(Prakash et al. 2021) and life2vec (Savcisens et al. 2023)
further expanded vocabularies to cover broader data types,
while ExBEHRT (Rupp, Peter, and Pattipaka 2023) and
BRLTM (Meng et al. 2021) integrated demographic and lab
data through additional embedding layers.

Hierarchical approaches such as Hi-BEHRT (Li et al.
2021) and graph-based methods like GT-BEHRT (Poulain
and Beheshti 2023) addressed challenges with large input
sequences by summarizing sets of visits before integrating
them into patient profiles. STraTS (Tipirneni and Reddy
2022) proposed a triplet embedding scheme for features, val-
ues, and time, while DuETT (Labach et al. 2023) used dual
attention to capture time- and event-based representations.

A key challenge remains the lack of standardized bench-
marks to compare. YAIB (van de Water et al. 2024) pro-
vides a reproducible framework for ICU cohort generation
and task evaluation, while EHRSHOT (Wornow et al. 2023)
enables model fine-tuning across contexts.

ICU-BERT advances these efforts by capturing the com-
plexity of ICU data through pre-trained embeddings and
modeling temporal information at the embedding level. Un-
like earlier approaches, it avoids narrow vocabularies, en-
abling generalization across datasets and achieving compet-
itive performance on YAIB and DuETT tasks.

Methods
ICU-BERT employs a bidirectional Transformer architec-
ture (Devlin et al. 2019), optimized for high-dimensional,

sparse, and multivariate ICU data with varying time resolu-
tions and sampling rates. The model uses a multi-token input
strategy, representing each medical registry as a quadruplet
of clinical variable, value, recording time, and duration.

ICU-BERT integrates pre-trained text embeddings from
BioBERT (Lee et al. 2020), a biomedical domain-specific
Large Language Model, to provide robust representations of
medical concepts and improve generalization. Unlike tradi-
tional vocabularies, which often fail to reflect nuanced clin-
ical relationships, such as differences in blood pressure def-
initions across contexts, BioBERT embeddings preserve se-
mantic meaning without extensive harmonization.

To optimize learning, ICU-BERT uses a novel masking
task and multi-task learning loss during pre-training, en-
abling effective reconstruction of clinical variables and val-
ues. Pre-training on the entire MIMIC-IV database allows
the model to develop sophisticated representations without
extensive pre-processing, including feature engineering or
semantic harmonization.

ICU-BERT enhances the interpretation of complex ICU
data, making it highly adaptable for real-world clinical ap-
plications. Figure 1 provides an overview of the architecture.

Data Representation
In ICU-BERT, we conceptualize medical data for all P pa-
tients in a database. Vp integrates all ICU stays of patient
p ∈ {1, 2, ..., P}. Each ICU stay v ∈ Vp contains a set
Rv , which includes all registries r recorded during that stay.
Each registry ri, i ∈ {1, 2, ..., N}, with N the total number
of observations, is characterized by four attributes: the data
source s, the clinical variable c, the recorded value x, and
the associated timestamp or interval t. Mathematically, we
can represent each registry as ri = (si, ci, xi, ti)

N
i=1.

To capture temporal dynamics and granular details, each
ICU stay v is divided into non-overlapping 24-hour windows
wj , j ∈ {1, 2, ...,Kv}, where Kv is the total number of win-
dows for v. Each window wj includes all data entries ri
with timestamps ti within the window’s start and end bound-
aries, along with static demographic data, admission ward,
and documented prior diagnoses.

Each registry ri within a window wj is converted into
a quadruplet representation qi = (f(s, c), x, τ(t), δ(t)),
which serves as a token. Here, f(s, c) represents the feature
derived from the textual aggregation of source s and clini-
cal variable c, τ(t) encodes the relative time since the start
of wj , and δ(t) captures the duration associated with t, de-
faulting to 0 for discrete events. A classification token [CLS]
and padding tokens [PAD] are added, maintaining the same
quadruplet structure.

Multi-Token Embeddings
To enhance the representational power of ICU-BERT and
the ability to interpret and process medical terminology and
context effectively, each f(s, c) within the quadruplets qi is
enriched with BioBERT pre-trained embeddings, extracted
from the token [CLS] from the last hidden state, such as:

PreEf = BioBERT(f(s, c))[CLS] (1)
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Figure 1: ICU-BERT scheme. Complex, multivariate, and sparse medical registries ri are processed by a multi-token embedding
structure that combines embeddings from feature names f , categorical or numerical values x, timestamps τ , and durations δ.
Pre-trained embeddings enhance the representations of features and categorical values, and a novel pre-training multi-task loss
optimizes the simultaneous reconstruction of both features and values.

For each quadruplet qi, a Boolean mask mi is defined
to denote whether the corresponding value x is continuous
(mi = 1). BioBERT embeddings are extracted for cate-
gorical values, while a repetition of the continuous values
matches the 768 dimension of the pre-trained embedding:

PreEx =

{
fill(x), if mi = 1
BioBERT(x)[CLS], if mi = 0

(2)

Following the initial extraction of pre-trained embed-
dings, ICU-BERT employs a refined embedding layer to
adapt these embeddings for ICU data analysis. Pre-trained
embeddings of features f and values v undergo a dense
transformation to d, the input dimension of the BERT block:

ef = Wf · PreEf + bf (3)

ex = Wx · PreEx + bx (4)

Wf and Wx represent the weight matrices for features and
values, respectively, and bf and bx are the bias terms.

For encoding temporal information such as timestamps
and durations, ICU-BERT employs an embedding layer that
maps each discrete time-related input, in minutes, to a high-
dimensional continuous vector. Specifically, the embedding
for time τ(t) and duration δ(t) are obtained by indexing into
a pre-defined embedding matrix of input size 1,440 (minute-
level in 24 hours), which transforms into d, represented as:

eτ = Embedding(τ(t)) (5)

eδ = Embedding(δ(t)) (6)

The embeddings ef , ex, eτ and eδ are summed to produce
the composite embedding of ri:

ei = ef + ex + eτ + eδ (7)

The resulting vector is subjected to dropout followed by
layer normalization to ensure that the embeddings have a
consistent scale and distribution. ei thus encapsulates a de-
tailed and nuanced representation of static and dynamic pa-
tient data, enabling precise and context-aware predictions.

BERT Configuration
ICU-BERT uses a BERT architecture (Devlin et al. 2019),
adopting the original configuration of six transformer layers,
each comprising multi-head self-attention mechanisms and
fully connected networks. By applying this well-established
architecture to ICU data, ICU-BERT benefits from BERT’s
powerful feature extraction capabilities, making it effective
for interpreting complex medical data.

Pre-training Approach
Pre-training ICU-BERT is critical for adapting BERT’s lan-
guage capabilities to ICU data. ICU-BERT introduces a
novel pre-training strategy, Masked Language-Value Mod-
elling (MLVM), that selects 15% of the quadruplets for
masking. To enhance the model’s ability to reconstruct clin-
ical features and their values, among the selected quadru-
plets, 50% have both their feature name and value masked,
25% have only the value masked, and 25% have only the
feature name masked. Similar to MLM, masked elements
are replaced with a [MASK] token, substituted with a ran-
dom token, or left unchanged in an 80%-10%-10% ratio.

MLVM reconstruction uses three output heads with sep-
arate vocabularies. The feature name vocabulary comprises
all possible feature names, with size F , while the value vo-
cabulary includes all possible categorical values, with size
V . The feature classification head predicts the identity of
masked features using an output dimension equal to the
size of the feature name vocabulary. Instead, the categori-
cal value classification head predicts the identity of masked
categorical values. Lastly, the continuous value regression



head is designed to predict continuous values and outputs a
single scalar directly.

Multi-Task Loss
ICU-BERT employs distinct loss functions in a multi-task
framing to optimally train each of its classification heads, re-
flecting the varied nature of the medical data. Cross-entropy
loss is used to predict masked features and categorical val-
ues. However, the loss of categorical values must account for
the continuous mask, m:

Lf = − 1

K

K∑
k=1

F∑
c=1

yk,clog(ŷk,c) (8)

Lcat = − 1

K −
∑K

k=1 mk

K∑
k=1

(1−mk)

V∑
c=1

yk,clog(ŷk,c)

(9)
K is the total number of tokens in the batch. The recon-

struction loss of continuous values uses the Mean Absolute
Error (MAE):

Lcont = − 1∑K
k=1 mk

K∑
k=1

mk|yk − ŷk| (10)

Given the losses for features Lf , categorical Lcat, and
continuous values Lcont, the multi-task loss Ltotal becomes:

Ltotal = Lf + β × Lcat ×Ncat + α× Lcont ×Ncont

Ncat +Ncont
(11)

α and β are parameterized weights to balance the con-
tribution of value losses, while Ncont =

∑K
k=1 mk and

Ncat = K − Ncont. This strategy not only challenges the
model to predict the missing parts but also encourages it to
learn robust associations between features and values.

Fine-Tuning
While the rich reconstructions from pre-training do not have
direct clinical value, ICU-BERT can be fine-tuned to specific
tasks. The original classification head needs to be replaced
with an appropriate one, along with a suitable loss function.
Outputs for fine-tuning are derived from the [CLS] token
of the final transformer layer, which encapsulates the entire
input sequence’s contextual information. This ensures that
the predictions are based on comprehensive patient data, im-
proving the applicability of ICU-BERT in clinical settings.

Experiments
Despite the limited availability of benchmarks to evaluate
ICU-BERT (van de Water et al. 2024), we conducted a set
of experiments to assess its robustness and applicability.

ICU-BERT was pre-trained on the MIMIC-IV v2.2 data-
set (Johnson et al. 2023), with the relational database struc-
tured into a hierarchical schema of timestamped entries for
each clinical variable and data source. Data from the hosp
and icu tables were used, partitioned into train, validation,

and test sets in a 70%-15%-15% split, following DuETT’s
(Labach et al. 2023) methodology.

For fine-tuning, ICU-BERT was adapted to a diverse set
of clinical tasks, including two from DuETT and three from
YAIB (van de Water et al. 2024), chosen to demonstrate the
model’s versatility. To assess generalization, we conducted
zero-shot external evaluations and fine-tuned the model
across four additional datasets. A 5-fold cross-validation
(CV) approach was used, resampling train and validation
sets for robust performance assessment.

Datasets and Real-World Tasks
We extracted structured datasets from HiRID v1.1.1 (Fal-
tys et al. 2021), eICU v2.0 (Pollard et al. 2018), MIMIC-
III v1.4 (Johnson et al. 2016), and again MIMIC-IV v2.2
but with a limited feature set, using YAIB standards. These
datasets are configured to include 52 features that encom-
pass static and time series data, such as vital signs, labora-
tory results, and input/output. The ricu R package (Bennett
et al. 2022) is used within the framework to homogeneously
process ICU databases, from which specific cohorts are ex-
tracted and structured in a tabular format.

The fine-tuning process was carried out in five distinct
classification and regression tasks to assess the model’s pre-
dictive power and applicability to real-world clinical scenar-
ios. Cohorts and targets for YAIB datasets are predefined,
and the same rationale was applied in creating MIMIC-IV’s
fine-tuning samples.

Hospital Mortality From DuETT, this task is predicted as
a binary outcome based on the first 48 hours of data, using
the remaining stay until death or discharge as the target.

Phenotyping A multi-label classification task is defined
from DuETT that consists of phenotyping 25 diseases, eval-
uated at discharge, based on the first 24 hours of ICU stay.

ICU Mortality From YAIB, predicting ICU mortality
within the first 24 hours is adopted as a binary classification.

Kidney Function This regression task involves predicting
the median creatinine levels on day two after ICU admission,
based on the first 24 hours.

AKI Onset The onset of acute kidney injury (AKI) is
predicted using the KDIGO 2012 criteria (KDIGO 2012).
While YAIB uses a recurrent many-to-many approach pre-
dicting hourly onset from all prior data, ICU-BERT employs
a rolling 24-hour window with a 6-hour step to accommo-
date sequence length limits.

Table 1 shows the summary of learning samples in each
dataset from the cohort extraction for each task, displaying
the high imbalance common in ICU-related tasks.

Implementation Details
ICU-BERT was developed using PyTorch 2.3.0 and the
HuggingFace Transformers 4.40.2 (Wolf et al. 2020), on
Linux with CUDA 12.2. Pre-training was performed on
eight 40GB NVIDIA Tesla A100 GPUs (1.9 TB VRAM)
using SMX4 protocol, while fine-tuning utilized NVIDIA
Tesla A10 GPUs (205.4 GB VRAM).



MIMIC-IV YAIB: MIMIC-IV YAIB: MIMIC-III YAIB: eICU YAIB: HiRID

Patients 50,920 50,920 46,476 160,816 N.A.
ICU Stays 73,181 73,181 61,532 182,774 32,338

ICU Mortality 49,833 (9.1%) 49,523 (7.2%) 38,128 (8.1%) 113,381 (5.5%) 12,859 (8.5%)
Kidney Function 33,677 (1.0) 33,949 (1.0) 27,481 (1.0) 69,116 (1.0) 7,499 (0.9)
Onset AKI 314,715 (13.1%) 478,582 (11.7%) 388,951 (8.7%) 1,177,049 (11.3%) 202,681 (7.8%)
Phenotyping 48,998 (18.6%) N.A.Hospital Mortality 35,131 (14.2%)

Table 1: Summary of total samples in included datasets and fine-tuning tasks. Classification tasks include the positive rate
(incidence) of the event, while the regression task (Kidney Function) includes the median value in mg/dL.

The model follows Med-BERT specifications (Rasmy
et al. 2021), with 6 encoder layers, 768 hidden size, 6 atten-
tion heads, a 64-dimensional dense filter, and a maximum
sequence length of 512 tokens.

ICU-BERT was pre-trained on the MIMIC-IV training set
(F = 45,825; V = 1,026) for 102 epochs over 10.4 days.
Optimization used AdamW with a 5e-5 learning rate, 0.1
dropout, no weight decay, and a linear scheduler with a 40-
epoch warmup. Hyperparameters α and β were set to 3 and
1 after tuning on 10% of the training data.

Fine-tuning ran for up to 50 epochs with early stopping
after 10 epochs based on validation loss. Hyperparameter
tuning via Optuna (Akiba et al. 2019) targeted the ICU mor-
tality task over 25 epochs. The best setup used the [CLS]
token from the last layer, with the last five layers unfrozen.
The AdamW optimizer had a 1e-3 learning rate, 0.5 final
dropout, and a linear scheduler without warmup.

Results
The performance of classification tasks was measured us-
ing the Area Under the Receiver Operating Characteristic
(AUROC) and the Area Under the Precision-Recall Curve
(AUPRC). For regression, MAE was employed.

Table 2 shows that ICU-BERT achieved an AUROC of
88.9 ± 0.3% and an AUPRC of 48.5 ± 0.7% for ICU mor-
tality. The low AUPRC reflects the severe class imbalance
(9.1% incidence) despite class weight adjustments. A simi-
lar trend was observed across other tasks.

External zero-shot evaluations on YAIB datasets revealed
a drop in AUROC 64.1%-67.6% and AUPRC to 12.7%-
15.8% in ICU mortality, as seen in Figure 2. Similar declines
were noted in the AKI onset and kidney function tasks, par-
ticularly when applying the model to distinct patient popu-
lations in new datasets such as eICU and HiRID. However,
fine-tuning significantly improved results, highlighting ICU-
BERT’s potential as a foundational ICU model.

ICU-BERT’s multi-token embedding strategy effectively
captures the semantic and numerical complexity of clini-
cal variables, bypassing the need for pre-processing. This
allows the model to utilize all available data and enhance
representation learning. A comparison using two versions of
MIMIC-IV revealed a performance drop when limited to 52
features, underscoring the importance of a rich feature set.

As shown in Tables 2 and 3, ICU-BERT set new bench-

MIMIC-IV YAIB
MIMIC-IV

YAIB
MIMIC-III

YAIB
eICU

YAIB
HiRID

Datasets

0.0

0.2

0.4

0.6

0.8

1.0
External Evaluation Fine-tuning

ICU Mortality Performance

Figure 2: Results for ICU mortality as mean and standard
deviation over 5-fold CV, on external evaluation and fine-
tuning, in MIMIC-IV and the YAIB-processed datasets.

marks for ICU mortality and closely matched baselines in
kidney function and phenotyping. However, it underper-
formed in predicting AKI onset, a task requiring continu-
ous modeling. This limitation arises from BERT’s 512-token
input constraint, which we addressed by pre-training ICU-
BERT with 24-hour windows. While recurrent models per-
formed better in tasks requiring temporal continuity, they of-
ten failed to fully exploit detailed patient data.

Discussion
A foundational model must leverage all available patient
data over time. Future improvements could include hierar-
chical strategies, such as additional recurrent layers or ad-
vanced transformers like Hi-BERT, Longformer (Beltagy,
Peters, and Cohan 2020), or Mamba (Gu and Dao 2023),
to handle longer sequences and reduce the segmentation of
continuous tasks into discrete windows.

Comparing ICU-BERT to existing models is challenging.
While ICU-BERT can process granular ICU data, enabling
real-time applications, Med-BERT is limited to processing



Model Mortality ICU Onset AKI Kidney Function

AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑ MAE ↓
ICU-BERT 0.889 ± 0.003 0.485 ± 0.007 0.824 ± 0.008 0.468 ± 0.017 0.248 ± 0.008

Logistic Regression 0.861 ± 0.001 0.397 ± 0.006 0.771 ± 0.002 0.377 ± 0.003 N.A.
LGBM 0.877 ± 0.002 0.442 ± 0.007 0.838 ± 0.001 0.533 ± 0.002 0.24 ± 0.00
GRU 0.876 ± 0.001 0.428 ± 0.003 0.907 ± 0.001 0.696 ± 0.002 0.30 ± 0.01
LSTM 0.867 ± 0.004 0.410 ± 0.007 0.897 ± 0.001 0.665 ± 0.002 0.28 ± 0.01
TCN 0.871 ± 0.003 0.414 ± 0.008 0.898 ± 0.001 0.668 ± 0.002 0.28 ± 0.01
Transformer 0.869 ± 0.003 0.422 ± 0.003 0.896 ± 0.001 0.656 ± 0.002 0.32 ± 0.01
Elastic Net N.A. 0.25 ± 0.00

Table 2: Performance of ICU-BERT in the YAIB tasks after fine-tuning on MIMIC-IV. The remaining models are baselines
from (van de Water et al. 2024). The best result is emboldened. N.A. indicates that the model was not trained in the task.

Model Hospital Mortality Phenotyping

AUROC ↑ AUPRC ↑ AUROC ↑ AUPRC ↑
ICU-BERT 0.875 ± 0.007 0.558 ± 0.014 0.844 ± 0.001 0.573 ± 0.003

DuETT 0.912 ± 0.020 0.627 ± 0.002 0.838 ± 0.001 0.604 ± 0.003
STraTS 0.882 ± 0.004 0.552 ± 0.013 0.820 ± 0.001 0.565 ± 0.006
Raindrop (Zhang et al. 2022) 0.878 ± 0.001 0.546 ± 0.002 0.824 ± 0.001 0.577 ± 0.002
mTAND (Shukla and Marlin 2021) 0.864 ± 0.002 0.540 ± 0.007 0.812 ± 0.001 0.553 ± 0.007
LSTM 0.881 ± 0.001 0.522 ± 0.006 0.756 ± 0.002 0.447 ± 0.002
XGBoost (Chen and Guestrin 2016) 0.886 ± 0.002 0.593 ± 0.004 0.829 ± 0.001 0.589 ± 0.009

Table 3: Performance of ICU-BERT model in the ICU tasks replicated from DuETT after fine-tuning on the MIMIC-IV dataset.
The remaining models are baselines published by (Labach et al. 2023). The best result is emboldened.

ICD codes at the visit level. In comparison with DuETT, we
replicated partitions and tasks on MIMIC-IV but could not
ensure identical cohorts or training conditions. While ICU-
BERT does not consistently surpass all models, its adapt-
ability to diverse contexts with minimal processing is a key
strength. Its multi-token input strategy and use of pre-trained
embeddings capture semantic relationships beyond the con-
straints of predefined vocabularies.

However, building a foundational ICU model remains
challenging. Limited hyperparameter tuning may have con-
strained performance. Relying solely on the [CLS] token
from the final layer might miss sequence complexities, as
pre-training did not include tasks like Next Sequence Pre-
diction. Pre-trained embeddings, while improving feature
representation and distinguishing continuous from categori-
cal variables, increase input dimensions and computational
costs. Enhancements such as pooling mechanisms, smaller
pre-trained models, or advanced continuous value embed-
dings (Gorishniy, Rubachev, and Babenko 2023) could ad-
dress these issues. Unfreezing specific BERT layers during
fine-tuning has shown promising results, though at higher
computational costs. While ICU-BERT effectively utilizes
multivariate data, it has not yet integrated multimodal infor-
mation, such as clinical notes. Future work should explore
pre-training on additional datasets to expand its capabilities.

Conclusion
ICU-BERT advances representation learning for complex
multivariate data, which is crucial for decision support in in-
tensive care. The multi-token input strategy and pre-trained
textual embeddings allow the model to implicitly capture
semantic and numerical relationships across various data
types, enhancing the performance of traditional models. This
approach overcomes the limitations of previous work that
relies on predefined vocabularies, heavily processed struc-
tures, and a restricted set of variables, allowing ICU-BERT
to efficiently process highly granular and continuous data.

These technical enhancements have implications that ex-
tend beyond the ICU settings, offering potential improve-
ments in any domain where complex data streams require
accurate and efficient interpretation. Despite these advance-
ments, developing a truly foundational ICU model remains
a challenge. Future efforts should aim to expand ICU-
BERT’s architecture to better accommodate additional data
modalities, such as unstructured clinical notes, and handle
longer sequence inputs without the need for extensive pre-
processing, potentially integrating more efficient architec-
tures to enhance its applicability and performance.
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