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Abstract

Eye-tracking devices are convenient for interpreting human behaviours and intentions,
opening the way to contactless human-computer interaction for various application do-
mains. Recent evolutions have enhanced them into wearable eye-tracking devices that
opened the technology to the real world by allowing wearers to move freely and use them
in regular indoor or outdoor activities. However, the gaze estimate from wearable devices
remains more approximative than standard stationary eye-tracking devices due to their de-
sign constraints and a lack of interpretation of the three-dimensional scene of their wearer.
This paper proposes to improve the gaze estimation accuracy of wearable eye-tracking
devices using a framework that involves two neural networks, CorNN and CalNN. The
CorNN corrects the bias induced by the distance between the observer and the gaze loca-
tions, primarily due to the parallax and lens distortion effects. While the CalNN is used
to improve wearer-specific calibration. A robotic data collection system is implemented to
automate training data acquisition for these networks. The proposed network has been
demonstrated over a Pupil Labs Invisible eye-tracking device and tested on 11 wearers,
showing improvement in the average gaze estimation accuracy on all wearers, especially at
short-range reads.

Keywords: Head-mounted eye-tracking device, Neural Network-based Parallax Correc-
tion, Accuracy Improvement, Pupil Labs Invisible

1. Introduction

Eye gaze tracking has become a vital tool for contactless human-computer interaction. The
recent applications of eye-tracking technology have extended into various areas, including
robot-human guidance in industrial settings Shen et al. (2023); Berg et al. (2019); Di Maio
et al. (2021); Chadalavada et al. (2020); Kratzer et al. (2020), driving monitoring systems
Čegovnik et al. (2018); Xu et al. (2018); Akshay et al. (2021), and enhancing the quality of
automated medical image segmentation and analysis by assessing visual attention Khosra-
van et al. (2017); Wang et al. (2023, 2022); Ma et al. (2023). Wearable eye-tracking devices
have extended the technology to many conditions, reduced the constraints of use (e.g. they
do not require any chin-rest), and simplified their calibration protocol (e.g. the Pupil Labs
Invisible only needs a wearer-specific offset).

Wearable eye-tracking devices, such as the Pupil Labs Invisible Tonsen et al. (2020)
as illustrated in Figure 1, have especially received much attention due to their portability
and versatility. However, challenges remain in developing accurate wearable eye-tracking
devices. In particular, adapting the device to the gaze characteristics inherent to different
wearers is imperative. Pupil Labs Invisible uses a camera scene offset to correct for bias. The
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Figure 1: Pupil Labs Invisible eye tracking device. The red and blue triangles draw the
camera and wearer’s points of view, respectively. (https://pupil-labs.com/
products/invisible/)

wearer manually sets his/her specific offset, which is added to the estimated gaze location
to approximate the intended gaze location. However, this oversimplified correction cannot
reflect errors due to scene camera lens distortion and parallax effects that impact the gaze
estimation according to distance of the wearer with the gazed location.

This study proposes a correction framework for head-mounted eye-tracking devices using
neural networks. Figure 2 illustrates the outline of the proposed framework. We used
a neural network, CorNN, to correct the parallax and lens distortion effect. We used
another network, CalNN, to perform wearer-specific calibration. To automate training data
acquisition for these networks, we implemented a robotic data collection system with the
UR5e manipulator (see Fig. 3). To validate the correction framework using neural networks,
we collected gaze data from 11 participants and evaluated the gaze estimation accuracy. The
proposed method improves all wearers’ average gaze estimation accuracy compared to the
baseline.

2. Challenges in Gaze Estimation with Eye Trackers

Eye trackers are devices capable of estimating the gaze location of the users by tracking their
eye movements. The estimated gaze location is generally represented as pixel coordinates
within a monitor screen or scene camera image. Head-stabilized and remote eye-tracking
devices, such as the EyeLink 3000+ and the Tobii Pro X2-30, are widely adopted in research
and are known for their remarkable gaze estimation accuracy. However, it is also known
that these products require meticulous calibrations and involve constraints on the user’s
position to achieve this level of accuracy. These products are not portable and must be
mounted at a fixed location.

In contrast, wearable head-mounted eye trackers allow their wearers to use them while
moving freely in regular indoor and outdoor activities Cognolato et al. (2018); Franchak
and Yu (2022). An example is the Pupil Labs Invisible eye-tracker Tonsen et al. (2020). It
looks like a pair of regular eyeglasses (see Fig.1), but with two eye cameras installed in the
frame pointed towards the wearer’s eyes, capturing the pupil centre location and corneal
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Figure 2: The proposed framework for wearable eye-tracker correction. The Eye-tracker’s
scene camera image and 2D gaze location are collected using the device’s API. The
camera lens distortion is compensated on both the 2D images and corresponding
2D gaze locations. The detected 3D marker’s position and screen normal were
used for network inputs to correct the 3D gaze location. Green elements are
part of the Gaze Correction Neural Network. Orange elements are part of the
Calibration Neural Network. Dashed arrows show the data used as the ground
truth output for the corresponding networks during training. The 3D Target
location is present for training and calibration purposes only.

reflections. This allows for estimating the wearer’s gaze location relative to the device.
Additionally, a scene camera is mounted on the left side of the frame, capturing the scene
seen by the wearer and enabling the device’s self-localisation in the wearer’s environment.
The wearer’s gaze location in the environment can thus be determined using the eye and
scene cameras.

However, design constraints in hardware make it difficult to accurately estimate the
wearer’s gaze location. For example, the centre of the scene camera in the Pupil Labs
Invisible eye tracker is located approximately 70 mm to the left and 10 mm above the
centre of the wearer’s eye, resulting in a discrepancy between the scene camera’s field of
view and the wearer’s field of view. This visual effect implied by these shifted points of
view between two observers is known as the parallax effect. Moreover, when the parallax
effect combines with camera lens distortion, the gaze estimation exhibits a spinning effect
around the actual gaze location, especially when the distance is less than two meters. To
address these challenges, the proposed framework in this paper utilizes a neural network to
correct this spinning effect.

3. Method

The eye-tracking device used in our study is the Pupil Labs Invisible Tonsen et al. (2020)
(Fig. 1), a lightweight wearable device that requires only minimal calibration. The device
allows a wearer-specific offset to be added to the x- and y-coordinates of the 2D raw gaze
location estimates, correcting biases inherent to individual wearers. This offset is manually
configurable via the Pupil Labs Invisible Companion application installed on the smartphone
connected to the eye-tracking device.

Consider the scenario where a person wearing the eye tracker gazes at a specific location
on a monitor screen. The proposed framework, outlined in Figure 2, embeds the two-
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dimensional raw gaze estimation from the camera scene image into the 3D real-world scene
of the wearer. In this 3D scene, as illustrated in Figure 3, we define g as the gaze location
estimated by the eye tracking device projected on the screen, n as the normal direction of
the monitor screen plane, and t as the wearer’s actual gaze location on the screen (ground
truth for g). These quantities are measured in a three-dimensional Cartesian coordinate
system, with the origin being the centre of the scene camera and the z axis aligned with
the normal of the scene camera.

Our approach involves two neural networks: a Correction Neural Network (CorNN ) and
a Calibration Neural Network(CalNN ). The CorNN uses gaze estimation (g) and screen
orientation (n) as inputs to predict the actual gaze location (t). It is directly responsible
for correcting the gaze estimation error induced by the parallax effect and the scene camera
lens distortion. The CalNN is the reciprocal of CorNN, which predicts g from t and n.
It is used to calculate wearer-specific offsets, an input parameter required by CorNN that
captures the estimation bias inherent to individual wearers. The details of this framework
are described in the following subsections.

3.1. Data collection

To train and test the neural networks, we acquire gaze estimations gi from a set of fixation
points characterized by gaze target locations ti (ground truth for gi) and screen orientations
ni. We developed a graphical interface for data acquisition, as shown in Figure 3.

The graphical interface displayed four ArUco markers at each corner of the screen and
a visual target. The 3D location of the screen was estimated using the four ArUco markers,
while the wearers were instructed to focus on the centre of a visual target during the
data collection. The visual target was a ring-shaped animated object, consisting of two
rings, a cross, and a black dot in the centre. The cross rotated continuously to facilitate
visual attention to the central point. The dot and the inner ring were resizable, and we
adjusted their sizes to be distinctly visible at the observing distance. We used the realtime-
network-api Prietz et al. (2023) provided by Pupil Labs to access the data from the eye
tracker, including the scene camera view and a 2D raw gaze estimation in the scene camera
coordinates (in pixels). While collecting data, the wearer-specific offset on the Invisible
companion device remained at (0, 0), its default setting.

The training dataset was established on a single-wearer recording, referred to as Wearer
0. For this recording, the wearer’s head was stabilised on a chin-rest, and the monitor
screen was mounted on a UR5e robot arm facing the wearer (see Fig. 3). The robot arm
was programmed to move the screen through a regular grid of 3D way-points sequentially,
generating various fixation points within the field of view of the scene camera. Upon
arriving at each location within the grid, the robot arm remains stationary to record a new
fixation point. The eye-tracking device’s estimated 2D and 3D gaze locations and the
eventual wearer’s head moves were monitored during recording. When the wearer’s head
and gaze were observed to have stabilized according to the latest device output, we recorded
an estimated 3D gaze location g1, the actual target location t, and the camera’s relative
orientation to the screen n. Upon the completion of this recording, the robot arm moved the

1. g was obtained by offsetting the latest gaze estimation using the average difference between the device’s
outputs and the actual target locations over a window of several samples, excluding outliers.
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Figure 3: Actual gaze location vs. gaze estimation. This figure illustrates the screen pre-
sented to the eye tracker’s wearers and the schematic of the 3D gaze estimation
and scene pose reconstruction during a record. Left, the application screen with
four ArUco markers, the visual target, and the gaze estimated by the eye tracking
device. Right, a top view of the scene with the 3D locations of the screen and
the projection for the gaze estimation onto the screen plane.

screen to the next grid point. Using the robot arm, 10405 samples were recorded within a
bounding box about 1.5m wide, 1.2m high, and 1.5m deep, centred along the scene camera
axis at about 500mm from the wearer.

3.2. Pre-processing training data

Collected data are pre-processed before training the neural networks through the following
steps.

3.2.1. Converting Cartesian coordinates to angular coordinates

Let the p be either g (gaze estimate) or t (target location). The first step of pre-processing
is to convert p into angular coordinates ṗ = (θ, ϕ, d), where θ and ϕ as the angles between
p and the normal of the camera (z axis) along the axes x and y, respectively, and d as the
distance between p and the camera’s nodal point. This conversion is necessary since the
error tolerance of eye-tracking devices is associated with angles.

3.2.2. Augmenting the data set

We introduce an augmentation technique to our training data set that artificially generates
gaze estimation values with various potential screen orientations. The idea is as follows:
Suppose a fixation point (g, t, n) is recorded from the wearer, where g becomes ġ after
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conversion to angular coordinates. Consider the case where screen orientation n+ differs
from n, while the target t remains at the same location. The eye-tracking device would
return a gaze estimation g+, whose angular representation ġ+ have the same ϕ and θ values
as ġ but a different distance d+. Starting from this idea, for each t we generate 201 simulated
n+ values such that their angles with line (O, t) remain below 60◦, where O is the centre of
the camera O = (0, 0, 0). For each n+, we compute its corresponding g+, such that the ϕ
and θ components of its angular representation are the same as ġ. Only its component d is
modified so that g+ lies on the plane (t, n+).

3.2.3. Adding the wearer-specific offset

The gaze estimation in angular coordinates ġi needs adjustment through the wearer-specific
offset to account for the biases inherent to individual wearers. We define the wearer-specific
offset ρ as an angular shift along the x-axis and y-axis of the camera, (θ, ϕ). This offset is a
weighted average of the difference between ṫi and ġi, calculated according to equation (1),

ρ = (ρθ, ρϕ) =

∑
i ωi(ṫiθ − ġiθ , ṫiϕ − ġiϕ)∑

i ωi
, (1)

where ωi are weights that prioritise records closer to a defined point C = (0, 0, 2000) situated
2 metres from the device, as suggested by the manufacturer.

ωi =

(
1− ∥ti − C∥

maxj ∥tj − C∥

)2

(2)

We then compute the shifted gaze estimation set {ġ′i} = {(θ′i, ϕ′
i, d

′
i)} by adding (ρθ, ρϕ) to

the gaze estimation in angular coordinates ġi = (θi, ϕi, di) and re-projecting onto the screen
plane,

ġ′i = (θ′i, ϕ
′
i, d

′
i) = (θi + ρθ, ϕi + ρϕ, d

′
i) (3)

where d′i is calculated so that ġ′i lies on the screen plane (t, n).

Remark 1 The major issue of calculating the offset according to equations (1) and (2) is
that the offset puts much more weight on samples close to the manufacturer-specified location
C = (0, 0, 2000) than the remaining samples. However, later on, we want our calibration
process to equally consider samples from locations of different distances rather than overly
focusing on a pre-determined location. Therefore, when adjusting our framework to the
testing wearers, we use CalNN to calculate wearer-specific offset that does not bias towards
any specific location(see Section 3.4).

3.3. Networks Structure and Training

The CorNN and CalNN have identical network architectures but are trained independently.
The neural networks comprise 20 fully connected layers with 500 hidden units. Each fully
connected layer is followed by a leaky Rectified linear unit (ReLU) and dropout layer Gal
and Ghahramani (2016). We applied a dropout rate of 0.3 to obtain robustness against
noisy measurements. A residual connection between the gaze coordinates and the neural
network output was used He et al. (2016). The residual connection of angular coordinate
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(a) Calibration Neural Network (b) Gaze Correction Neural Network

Figure 4: Gaze Calibration and Correction Networks (Dashed arrows indicate the ground
truth in training).

data provides robust correction by preventing angular warping. CorNN takes (n, ġ′) as
input and is trained to predict ṫ, while CalNN takes (n, ṫ) as input and predicts ġ′. We use
the mean squared error MSE (Eq. (4) and (5)) as the loss function for training, as follows:

LCorNN (n, ġ′) =
∑
i

(ṫi − CorNN(ni, ġ
′
i))

2, (4)

LCalNN (n, ṫ) =
∑
i

(ġ′i − CalNN(ni, ṫi))
2, (5)

where LCorNN and LCalNN are losses of CorNN and CalNN, respectively. The neural
networks were implemented in Python 3.7 using Keras 2.11.0. Training, validation, and
testing were performed on a 12GB memory GTX Titan Xp workstation (NVIDIA Santa
Clara, California, USA).

3.4. Framework usages

With the networks trained, the first step of adapting the framework to a new wearer λ (who
may be different from the wearer providing the training data) is to estimate their wearer-
specific offsets ρλ = (ρλθ , ρ

λ
ϕ) as introduced in Section 3.2.3. CalNN plays an important

role in calculating the offsets for new wearers. We collect a set of calibration fixation

points on the new wearer {(gk, nk, tk)|k ∈ (Samples from λ)}, without manually setting
any offsets on the companion application. {nk, tk}k are used as inputs for the CalNN.
The wearer-specific ρλ is estimated as the average difference between CalNN(n, ṫ) and the
angular representation of the captured {gk}:

(ρλθ , ρ
λ
ϕ, ∗) =

1

m

∑
k

CalNN(nk, ṫk)− ġk, (6)

See Figure 4(a) for an illustration. Note that CalNN enables us to treat all samples with
equal weights, not biasing towards samples near any specific locations like equations (1)
and (2).

We then offset the angular representation of ġk with the ρλ value to become ġ′k. CorNN
then takes (ġ′k, n) as inputs and outputs a corrected gaze location estimate (see Fig. 4(b)).
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4. Evaluation

We evaluated the proposed framework for improving the gaze estimation accuracy. A total of
11 wearers participated in the testing experiment, including Wearer 0, who contributed to
the training data. The wearers’ heads were stabilised on a chin-rest facing the centre of the
screen. Unlike the training data collection procedure, the testing experiment used regular
monitor screens mounted on a desk: the screen was fixed while the visual target appeared
at different locations on the screen, stepping through a grid of ten columns by eight rows
sequentially in one recording. The recording is repeated for each wearer at distances 50,
65, 80, 100, and 130 centimetres from the screen, resulting in 400 samples per test wearer.
Wearers 0 to 4 had regular visions without correction and no makeup. The Wearer 5 had
regular vision and wore makeup. The Wearers 6 to 10 had vision corrections of factor −2
or lesser. The Wearer 10 wore contact lenses during the experiment. We calculated the
testing wearers’ wearer-specific offsets with the help of the calibration network CalNN(t, n)
as explained in Section 3.4. These wearer-specific offsets are then used with the CorNN to
correct the gaze estimations of the testing wearers. The gaze estimation accuracy for our
framework is compared to a baseline estimation method, where the wearer-specific offsets
are calculated using Equation (1) and the CorNN correction is not applied. Both results are
formalised in angular coordinates (θ, ϕ, d). The angular error of an estimated gaze location
γ with a given ground truth location τ is:

Angular Error(γ, τ) = ∥(θτ , ϕτ )− (θγ , ϕγ)∥ (7)

In addition to comparing the proposed framework and the baseline method, we have
also conducted an ablation study over the proposed network to observe the impact of each
component on the whole framework’s performance.

5. Results

Figure 5 shows the results of absolute angular error from 11 participants. Figure 5(d)
shows the average accuracy obtained with the baseline method and the proposed correction
framework over every testing data. Figure 5(d) shows the proposed method has improved
the average accuracy of every wearer, with an edge for wearers without vision correction and
makeup. It is also noticeable that contact lenses significantly degrade the device’s accuracy.
Wearers 1 and 4 benefit from similar improvements to the control test wearer, i.e. Wearer
0.

Figure 5(a) to 5(c) show how the estimation accuracy changes as the distance between
the wearer and the screen changes. Figure 5(a) shows that the baseline method’s accuracy
improves with the distance within a short range of [450, 1300] millimetres with improvement
factors within about 2 ∼ 3×. This tendency is also observable in CorNN ’s results but with
a lower impact, between 1 ∼ 2× (see Fig. 5(b)). Based on Figure 5(c), the correction
network had overall significantly increased the accuracy at a very short distance ≲ 1m for
most wearers, with an improvement between 0.5◦ and 2◦ and had a positive impact at a
longer range for some of them. This result matches our expectation since the lens distortion
and parallax effects are most significant at short ranges. Thus, the benefit of applying the
networks should be the most prominent. The only exceptions were the accuracy of the
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(a) (b)

(c) (d)

Figure 5: Angular distance between a target and the gaze estimations from the baseline
method and the output of the CorNN framework. (a) Angular error tendencies
of the baseline method. (b) Angular error tendencies of the CorNN. (c): Im-
provement due to the CorNN ((a) minus (b)). (d) Average accuracy per wearer.
Y-axes of the four plots are angular error values in degree. Figure (a), (b), and
(c) x-axes are distance values in millimetres.

Wearer 10’s measurements at mid-range (around 1m) and several wearers at distances over
1m. The deterioration varies between 0.1◦ and 0.3◦ approximately.

An ablation study has been conducted to evaluate the impact of each characteristic of the
proposed framework introduced in Section 3. The tables 1 and 2 report the average angular
error variations upon all testing wearers of the framework with various configurations as a
percentage between the original and modified frameworks.

This ablation study showed that, on the one hand, the angular representation, the
training data augmentation, and the number of hidden units had the most significant per-
formance impact; on the other hand, the choice of the loss function, the use of the residual
and the number of layers contributed half as much to the framework’s performance.
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Variable MAE loss Cartesian rep. w/o Residual w/o Augment.

Avg. Ang. Err. +1.7% +4.8% +3.1% +6.9%

Table 1: Average angular error variations in percentage, if mean absolute error (MAE)
loss was used instead of mean squared error (MSE), Cartesian representation was
used instead of the angular representation, the residual was not used, and the
augmentation was not used.

Layers/Hidden units 500 300 100

20 X +2.7% +6.6%

10 +1.7% +3.0% +6.6%

Table 2: Average angular error variations in percentage when using 500, 300, or 100 hidden
units and 20 or 10 layers (X marks the original configuration).

6. Conclusion

The method presented in this paper aims to improve head-mounted eye tracking devices’
accuracy by attenuation for the distortions implied essentially by the parallax effect, con-
sidering the distance between the observer and the gazed object. This method stands on
embedding gaze coordinates into the 3D real-world scene and using two neural networks,
one for the correction and one for the calibration. The method has been trained over a single
wearer data and tested on eleven wearers upon the Pupil Labs Invisible eye tracking device.
The results of those tests have shown that the proposed method could significantly improve
the device’s accuracy for every tested wearer compared to the baseline method. Further
study will include multi-wearer training and few-shot learning techniques to optimise the
correction network to its current wearer, integrating the wearer-specific parameters into the
neural network architecture.
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