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Abstract

Automated reasoning with unstructured natural text is a key requirement for many
potential applications of NLP and for developing robust Al systems. Recently,
Language Models (LMs) have demonstrated complex reasoning capacities even
without any finetuning. However, existing evaluation for automated reasoning
assumes access to a consistent and coherent set of information over which models
reason. When reasoning in the real-world, the available information is frequently
inconsistent or contradictory, and therefore models need to be equipped with a
strategy to resolve such conflicts when they arise. One widely-applicable way
of resolving conflicts is to impose preferences over information sources (e.g.,
based on source credibility or information recency) and adopt the source with
higher preference. In this paper, we formulate the problem of reasoning with
contradictory information guided by preferences over sources as the classical
problem of defeasible reasoning, and develop a dataset called BoardgameQA
for measuring the reasoning capacity of LMs in this setting. BoardgameQA
also incorporates reasoning with implicit background knowledge, to better reflect
reasoning problems in downstream applications. We benchmark various LMs on
BoardgameQA and the results reveal a significant gap in the reasoning capacity
of state-of-the-art LMs on this problem, showing that reasoning with conflicting
information does not surface out-of-the-box in LMs. While performance can be
improved with finetuning, it nevertheless remains poor.

1 Introduction

A fundamental goal of Al since its early days has been automatically applying logical or deductive
reasoning to draw new conclusions from existing knowledge [29, 20]. Since a large amount of
knowledge is available in the form of natural language, tremendous effort has been put into developing
models that can understand and reason over natural language [23, 42, 54, 32, 12, 57] (see [35] for a
survey). Recent years have seen substantial improvements in this direction thanks to advancements in
pretrained language models (LMs) [8, 9] that can handle unstructured data more flexibly, combined
with advanced prompting techniques [52, 31], and modular reasoning approaches [23, 12].

Existing work in automated reasoning in natural language usually assumes that the provided knowl-
edge is consistent and reliable. But in many applications, the collection of information one has
to reason with is inconsistent and contradictory. This is the case, for instance, when reasoning
is performed with information found in different online sources or social media (e.g., retrieval-
augmented LMs [17, 3]). When input sources are contradictory, one can consider various strate-
gies to resolve the contradictions. One simple and practical formulation, which we adopt in this
work, is to resolve the conflicts based on preferences over the information sources: when a con-
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flict arises, the information from the source with a higher preference should be used to solve
the reasoning problem. Depending on the application, preferences can be assigned based on dif-
ferent criteria, e.g., based on the credibility of websites or social media users, or based on the
recency of the information with newer information being preferred over older information. Ex-
ceptions to generics can also be expressed as preferences; for example, generic knowledge such
as “birds fly” (see also [6]) should be overridden by exceptions such as “penguins are birds but
do not fly” (see also [1]) when reasoning about penguins. Figure 1 demonstrates an example of a
reasoning problem with conflicting information, where the conflict is resolved based on recency.

Reasoning Wlth COl’lﬂiCtil’lg information gu1ded Facts: Fiona wants to travel from country X to country Y and stay for 5
days. Does Fiona need to book a covid19 test appointment?

by preferences can be formulated as a form

of the classical defeasible reasoning problem [

Info. Source 1 (date: 2022-04-20) Info. Source 2 (date: 2022-04-27)
All travelers entering Y from X ] [ Travelers visiting Y for less than ]

[33, 19, 28]. In this work, we study the rea-
soning ability of LMs in this setting. Toward
this goal, we create a synthetic dataset where Reasoning: Fiona is traveling from X to Y and wants to stay for less than

: : a month so both sources apply. The conclusions from the two sources
eaCh §xample Contaln.s a defeaSIb!e theory (a conflict, but source 2 may be preferred since it is more recent. So Fiona
set of input facts, p0551b1y Contradlctory rules, doesn't need a covid test, and so does not need to book an appointment.

and preferences over the rules), and a question . . .
about that theory. Answering the questions in  Figure 1: A reasoning problem with contradictory
the dataset requires multi-hop reasoning and information (conflict resolved based on recency).
conflict resolution over the input theory. The

difficulty level (e.g., the depth, amount and type of conflicts, etc.) of the examples in the dataset can
be controlled automatically, enabling targeted comparisons of various aspects of reasoning.

need to show negative covid19 a month do not require covid19
test results. tests anymore.

We also note that while a large number of logical reasoning benchmarks provide all the knowledge
needed to answer questions [48, 41, 42, 18], such benchmarks do not reflect common real-world
scenarios where implicit background knowledge plays an important role in reasoning. Moreover,
models that translate the textual examples into logical form and then leverage off-the-shelf solvers
may excel on these datasets, which does not reflect the true performance of such models in real-world
applications. For these reasons, in BoardgameQA only part of the knowledge required to solve the
problem is provided as input to the LM; the missing knowledge has to come from the LM itself.

The problems in our dataset are formulated as scenarios of a board game, hence we name it
BoardgameQA'. A board game theme allows us to create synthetic scenarios with complex de-
feasible rules to reason about that seem natural when stated in text and hence allows background
commonsense world knowledge to also be used. To the best of our knowledge, BoardgameQA is the
first dataset for multi-hop reasoning with contradictory inputs. Figure 2 shows a sample example
from the dataset where the conflict resolution and missing knowledge have been highlighted.

We benchmark various LMs on BoardgameQA and measure their defeasible reasoning capacity.
Most notably, our results reveal that LMs perform poorly when reasoning with conflicting sources,
especially in the few-shot setting (compared to the finetuning setting) suggesting that preference
understanding and defeasible reasoning capacities do not surface out-of-the-box in pretrained LMs.
Secondly, we find that smaller LMs perform poorly when not all of the required information is
provided as input. These results highlight a critical gap in the reasoning capacity of current LMs,
considering that reasoning over contradicting and incomplete sets of information is a common
scenario in many applications, and is key for developing robust Al systems.

2 Related Work

Our work spans three dimensions: 1- text-based logical reasoning, 2- reasoning with conflicting
sources, and 3- reasoning with incomplete information. In the following section, we briefly summarize
the literature on each of these axes that relate to our work.

'All dataset variations used in our experiments can be found at: https://storage.googleapis.com/
gresearch/BoardgameQA/BoardgameQA.zip. A variation with depth 4 (not used in our experiments) can
also be found at https://storage.googleapis.com/gresearch/BoardgameQA/depth4.zip. All vari-
ations under https://storage.googleapis.com/gresearch/BoardgameQA/ (including the ones men-
tioned above) are available under the CC BY license.


https://storage.googleapis.com/gresearch/BoardgameQA/BoardgameQA.zip
https://storage.googleapis.com/gresearch/BoardgameQA/BoardgameQA.zip
https://storage.googleapis.com/gresearch/BoardgameQA/depth4.zip
https://storage.googleapis.com/gresearch/BoardgameQA/

Facts: A few players are playing a boardgame. Here is the current state of the game. The dog has $3. The lion has $48. The frog has 81
dollars, and has a knife. [...]

Rules: R1: If the frog has more money than the lion and the dog combined, then the frog builds a power plant close to the green fields of
the cat. R2: If something attacks the green fields of the cat, then it does not build a power plant near the green fields of the cat. [...]

Preferences: R2 is preferred over R1. [...]
Question: Does the frog build a power plant near the green fields of the cat?

Proof: We know the frog has $81, 81 is more than 3+48=51 which is the total money of the dog and lion combined, and according to R1
[...], and for the conflicting and higher priority rule R2 we cannot prove the antecedent "the frog attacks the green fields of the cat", so we
can conclude "the frog builds a power plant close to the green fields of the cat". So the statement “the frog builds a power plant near the
green fields of the cat” is proved and the answer is “yes”.

Figure 2: A sample example from BoardgameQA that requires one hop of reasoning. The text in
violet highlights conflict resolution and the text in blue highlights the missing information.

Text-based logical reasoning approaches: Earlier works on natural language logical reasoning
have finetuned LMs to directly provide answers to logical reasoning questions [11, 4, 40, 18]. Later
work showed that explicitly generating the entire proof leads to substantial improvements both in
the case of finetuning and in the case of few-shot learning [31, 13, 58, 60]. In addition, modular
reasoning approaches where the LM is used as a tool within a reasoning algorithm [23, 12, 51, 24]
have been shown to achieve both performance gains and more precise intermediate proof chains. In
this paper, we experiment with four types of approaches: 1- finetuning without explicit reasoning
steps, 2- finetuning with explicit reasoning steps, 3- prompt-tuning with chain-of-thought (CoT)
prompting [52], and 4- few-shot in-context learning with CoT.

Text-based logical reasoning datasets: Many datasets have been created to measure the logical
reasoning ability of NLP models [48, 42, 61, 18, 45]. In Table 1, we provide a comparison of (a
subset of) these datasets along three desired features in this work. All datasets compared contain
only facts and rules that are non-contradicting. The datasets closest to our work are CREPE [30],
FalseQA [21] and Conditional QA [47]; the first two provide false pre-suppositions in the question
which can be considered as statements that contradict the ground truth, and in last one the answers to
the questions follow a “If X then yes, if Y then no” format.

Reasoning with conflicts: From the early days of Al reasoning with conflicting information has been
an important topic and many approaches have been developed to handle such conflicts [34, 33, 37].
The problem we study in this paper is an instance of defeasible reasoning [33, 19, 28] which has
applications in various domains (especially in legal reasoning) [43, 16, 7] and has been argued to
be one of the most important future directions in a recent survey of LM reasoning literature [56]. In
defeasible reasoning, there are preferences over the rules and in the case of conflict between two rules,
the conclusion from the higher preference rule is accepted. Previous work on defeasible reasoning
with natural language has studied the problem of adjusting the probability of a conclusion based on
new (single-hop) evidence [39, 27]. Our work extends this line of work by developing a dataset for
multi-hop defeasible reasoning with preferences over sources.

Reasoning with incomplete information: Several existing reasoning benchmarks adopt a setup
where part of the required information is missing and needs to come from the model itself [46, 5, 2, 50].
Some datasets also employ a setup in which none of the required rules are provided as input
[49, 15, 45, 22]. Our work focuses mainly on cases where part of the knowledge needs to come from
the model and another part of the knowledge is provided as input.

3 Background and Notation

We let & = {e1,...,en} and P = {p1,...,pa} represent a set of entities and predicates. We
represent a fact in the logical form using the triple notation (e;, p;, e ), where e;, e, € € and p; € P,
and arule as r : r, — 13, where 7}, represents the body of the rule and r;, represents the head. We use
!'to indicate negation. A monotonic theory 7 = (F,R) is a tuple containing a set F of (positive or
negative) facts, and a set R = {ry,..., 7z} of rules. We let T F f represent that the fact f can be
derived from the theory 7 using the standard inference rules of logic (See Shoenfield [44]). For a
monotonic theory 7 = (F,R), if T F f, then for any theory 7" such that 7/ = (F U F', R), we
also have T’ E f (that is, adding new facts does not change previously derived facts).

Defeasible Theory: A defeasible theory 7(9) = (F, R, O) is a triple containing a set F of facts,
aset R = {r1,...,r g} of rules, and a set O = {ry, > r4,,...,7¢, > 11, } of pair-wise relative
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Table 1: A comparison of BoardgameQA with some of the widely-used logical reasoning datasets
(bADI 15 [53], CLUTRR [45], FOLIO [18], ProofWriter [48], PrOntoQA-OOD [42], AR-LSAT
[61], ENWN [46], leap-of-thought [50], CREPE [30], FalseQA [21], and ConditionalQA [47]) in
terms of three key features. We use ~ in the case of incomplete information for CLUTRR because
there is only a fixed set of information that needs to come from the model, in the case of automatic
difficulty control for leap-of-thought because the depth of reasoning is fixed (difficulty is added
through distractors), in the case of contradictory information for CREPE and FalseQA because the
contradiction is with the ground truth not with another source of information, and in the case of
contradictory information for Conditional QA because while the answer to a question can be yes
under one set of conditions and no under another set of conditions, the two sets of conditions are
mutually exclusive.

priorities/preferences between rules.” The rules hold defeasibly, meaning the conclusion from a
rule may be defeated by contrary evidence from a higher priority rule. This happens, for example,
when one rule implies something is true but another rule with a higher priority implies it is false; in
such cases, we accept the conclusion from the higher priority rule (see Figure 1). We let 7@ E f
represent that f can be derived from a defeasible theory 7(?) after resolving conflicts. Note that the
initial facts F are internally consistent and always have priority over the derived facts. We assume
the theory is defeasibly consistent, meaning whenever a conflict arises, the preferences can be used to
resolve it. An example of a defeasible theory 7 (%) is as follows:

Example 3.1. 7 = {Tweety is a penguin.}, R = {r1 : Penguins are birds. vo : Birds fly. r3 :
Penguins do not fly.}, O = {rs > ra}. From the theory, one can first use r1 to derive that “Tweety is
a bird”. Then, one can use o to derive that “Tweety flies”. However, one can also use r3 to derive
that “Tweety does not fly”, which is in conflict with the previous derivations. Since rs > ro, we
accept the derivation that “Tweety does not fly”.

Conflict types: Conflicts can arise for rules whose heads cannot be simultaneously true, e.g., for
two rules 7 : 7, — z and 7’ : 7, —!z. For a theory 7(%) with these two rules, 7@ F z in two cases:
(a) r has higher priority than v’ and we can prove 7, and (b) r has lower priority than " and we
can prove 1, but we cannot prove 7. In the first case, one does not need to take into account 7}, for
conflict resolution, but in the second case it is critical to take 7 into account. We name the first type
of conflict Typel conflict and the second type Type2.

4 The BoardgameQA Dataset

We now describe how we create a dataset for measuring the ability of LMs in reasoning with
conflicting inputs in a defeasible setup. Our dataset creation follows a backward story generation
strategy similar to [55, 23]. Each example in the dataset contains a (defeasible) theory 7(%) and
a question q. The goal is to predict whether T = q, or T lg, or neither. Therefore, the
label space for each question is {proved, disproved, unknown}. We next describe how we generate
examples with the label proved; examples with the label disproved or unknown are created by
modifying the examples with label proved.

The facts of each theory describe the current state of a board game, the rules of each theory represent
the rules of the board game, and the questions are about the game. In the design of BoardgameQA,
we include several variables that can be used to sample examples with varying levels of difficulty
with respect to several finer-grained properties (e.g., depth, number and types of conflicts).

*Note: Many types of preferences can be converted into pair-wise relative preferences.



Category

Description

Example Facts

Example Rule

Time Conver- Compares the age of an entity to a certain . If the dog is more than a year old, then
sion age specified with different units. The dog is 13 months and a half old
. . If the dog has a name that starts with
Orthography Asks about the letters in names. The dog is named Paco. The cat is the same letter as the name of the cat,
named Pashmak. then
Numeric Some numbers are required to be summed The dog has two friends that are If the dog has less than 10 friends,
Comparisons and then compared to other numbers. nice and five that are not then ...
Lexical Entail- The fact and the rule body are not identical . .
ment but the fact entails the rule body. The dog assassinated the mayor If the dog killed the mayor, then ...
World Knowl- Some knowledge about the world is . . If the dog is currently in Canada, then
edge needed to connect the fact to the rule body. The dog s currently in Montreal.
Event Times Knowledge about times of events is needed The dog is watching a movie that If the dog is watching a movie that was
to connect the fact to the rule body. was released in 2005. released after Covid19 started, then ...
Part Of The fact and ther;ul;etiggdy have a part of The dog is a nurse If the dog works in healthcare, then ...
The rule body is about a certain . .
Affordance feature/affordance of the fact. The dog has a knife If the dog has a sharp object, then ...
Volumes Knowledge of what objects fit in what other The dog has a ball with a radius of If the dog has a ball that fits in a 28 x
objects is required. 15 inches. 35 x 35 inches, then ...

Table 2: Categories, descriptions, and examples of incomplete information in BoardgameQA. For lex-
ical entailment, world knowledge, event times, and affordance, a list of examples is written manually
from which the sampling procedure can select. In others, examples are generated automatically.

Entities and predicates: We start with
a predefined set of entities £ (e.g., dog,
cat, lion, etc.) and a predefined set of
predicates P (e.g., invite for dinner, at-
tack the fields, etc.) that we sample from
to generate facts and rules. We use the
animals as entities and the boardgame-
inspired verbs/operations as our predicates.
Using these entities and predicates, we can
create facts such as the dog attacks the
fields of the lion. To make the problem
more challenging, we use different entities
and predicates across training and test sim-
ilar to [25]. The full list of entities and
predicates is provided in Appendix C.3.

Rule types: We adopt a set of 6 rule
templates containing existential and uni-
versal quantifiers, conjunctions, and miss-
ing information. The rules are as fol-
lows: 1- VX : (X,p1,e1) = (X,p2,€2),
2- VX (X7p17€1) A (X7p27€2) =
(X7p37€3)’ 3- (617p17€2) = (62,])2,63),
4- (e1,p1,€2) A(es, P2, e2) = (e2,p3,¢€4),
5- (elvﬁa é) = (61,172,62), and 6-
IX(X,p1,e1) = (e2,pa2,e3), where X
represents a universally or existentially
bounded variable, each e; represents an
entity, and each p; represents a predicate.
The fifth rule template corresponds to a rule
where the predicate (or object entity) in the
rule body may not be an element of P (resp.
£). For more information, see below.

Selecting a question: To generate each ex-

Algorithm 1 GenerateTheory
Input: Question g, Depth d
1: if d == 0 then

2:  addToFacts(q)
3: else
4:  Q,r = SampleRule AndSubq(q).
5:  addToRules(r)
6:  if CoinFlip(pc,ns) == Conlflict then
T Q' 1" = Sample Rule AndSubq(lq).
8: addToRules(r")
9: if CoinFlip(pconfrper) == Typel then
10: Q = Q + SubSample(Q')
11: addToPreferences(r, r')
12: else
13: Q = Q + RemoveOneSubquestion(Q’)
14: addToPreferences(r’, r)
15:  for ¢; in Q do
16: GenerateTheory(g;, d-1)

Algorithm 2 SampleRuleAndSubq
Input: Question ¢
1: r = SampleQuestion()
2: if r is a rule with incomplete info (type 5) then
3 Sample @ = {q1,....qn} and Q@ = {q1, ..., 47, }
s.t. ¢ can be derived from Q and r, and Q can be
derived from Q.
else
Sample Q@ = {q¢1,...,qn} s.t. ¢ can be derived
from Q and r.
: return Q, r

AR

=)

ample, we first sample a question ¢ = (e;, pj, e) that should be proved or disproved, where e; and
ey, are sampled from £ and p; is sampled from P. We also sample the sign of the question (positive
or negative). For example, we might sample the question /(dog, attack the fields, lion) asking whether
the dog does not attack the fields of the lion. The question is then converted into natural language

using a template (see Appendix C.3).



Theory generation: The theory generation is the main component of the dataset generation that
constructs the facts, rules and question to be used in each example. A high-level description is
provided in Algorithm 1 and an example generation is shown in Appendix C. We first sample some
sub-questions Q = {q1, ..., ¢, } and a rule r which has Q in its body and ¢ in its head, such that
g can be derived from Q and r. The sampling is done by first selecting one of the aforementioned
rule types, then matching the head of the rule to the question ¢, and then sampling sub-questions Q
based on the body of the rule. For example for the question /(dog, attack the fields, lion), we might
sample the first rule type (see the six types above), then p, will be mapped to attack the fields and
eo will be mapped to lion, and we also sample a sub-question such as (dog, unite with, cat) and add
the rule VX : (X, unite with, cat) =(X, attacks the fields, lion) to our set of rules. We then make a
recursive call for each g; to generate new rules and facts for them.

We then decide whether a conflict should be introduced or not, by using a biased coin flip with pcopr
representing the probability of conflict. If the decision is to produce conflicts, then we generate
another set of sub-questions Q' = ¢i, . .., ¢/, and another rule »’ such that !¢ can be derived from Q’
and r’. Then we probabilistically decide if we want to generate a Typel or a Type2 conflict using
a biased coin flip with probability pconmyper- If the first case is selected, then r > ' is added to the
preferences. In this case, we can make recursive calls for all or a subset of the facts in Q’. Otherwise,
r’ > r is added to the preferences. In this case, we make recursive calls for all but one of the facts in
Q’ (selecting randomly) to ensure that 7’ does not activate.

Proofs: We keep track of the facts, rules, and preferences during the generation process and turn
them into proofs for the examples.

Stopping criterion: Every time we make a recursive call to the function in Algorithm 1, the example
will contain one extra hop in its proof. We set the stopping criterion as the number of hops in the
proof. Toward this goal, we included an argument d in Algorithm 1 which corresponds to the target
maximum number of hops in the proof; d decreases by one every time we make a recursive call.
When the algorithm is called with d = 0, instead of generating rules and sub-questions for the input
question ¢, we simply add ¢ to our set of facts.

Incomplete information: We generate examples with incomplete information where part of the
knowledge should come from the LM (corresponds to rule type 5). For a question ¢ in the the-
ory generation phase, we sample sub-questions Q and rule r such that Q can be derived based
on Q and ¢ can be derived from Q and r. We then hide Q from the model so the model
has to derive it itself. Algorithm 2 describes the procedure. We use a separate body of world
knowledge, commonsense knowledge, mathematical, and orthography reasoning for generating
Q and Q (see Table 2 for a high-level description and Appendix C.2 for more details). For
example, for the goal “the dog unites with the cat” we generate the sub-question “The dog
is in Montreal.” and the rule “If the dog is in Canada, then the dog unites with the cat.”.
Then, an extra reasoning step is needed from the model to recognize that Montreal is in Canada.

knowledge and reasoning with probability pagissis; other- 2 6x10

wise, we create sub-questions and rules that require no extra 3 5x100 .

knowledge and ing. To make the probl hal- 3 T
nowledge and reasoning. To make the problem more chal- 8, 0| mm prontoga

We generate sub-questions and rules that require extra 7x10° ‘

lenging, we only include some categories of extra knowl- m BoardgameQA
edge and reasoning in the training set; this ensures that the Average Example  Average Unique
models cannot simply learn the extra knowledge from the Length Tokens

training set and use it in the test set. Figure 3: A comparison of

Conversion to natural language: Finally, once we gen- BoardgameQA  with  ProofWriter
erate the facts, rules, preferences, and question, we use [48] and PrOntoQA [41] in terms
manually constructed templates to turn each of them into of average length of examples and
a textual format. To make the problem more challenging, average number of unique tokens per
we use multiple templates per rule type and use some of the example on depth 3 of the datasets.
templates only in the test set (see Appendix C.3 for details).

A comparison of BoardgameQA with other prominent deductive reasoning datasets in terms of the
average length of examples and the average number of unique tokens per example is provided in
Figure 3.
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Figure 4: The model performances on depths 1-3 of the BoardgameQA dataset. Many models
struggle on this dataset, especially with higher depths.

Disproved and unknown examples: So far, we described how to generate examples with the label
proved. Generating examples with the label disproved can be done simply by first generating an
example with the label proved and then negating the question. Also, generating examples with the
label unknown can be done by perturbing the theory until the statement in the question cannot be
derived from the theory (e.g., reducing the amount of money of the frog to 50 dollars in the example
of Figure 2). We randomly select and apply the following perturbations to the theory and run a
defeasible solver implemented based on the scalable solver in [28] on the resulting theory until the
label becomes unknown: 1- change the predicate of a fact or a rule, 2- change the sign of a fact or an
element of the rule, 3- replace a fact with a new fact, and 4- flip the order of a preference.

5 Experiments

One of the primary goals of our experiments is to verify if LMs are capable of reasoning in a defeasible
setup. For this reason, we conduct experiments with various LM architectures (encoder-only, encoder-
decoder, and decoder-only) and various pre-training and learning paradigms (finetune with and
without proofs, prompt tuning, few-shot in-context learning, and instruction-tuned). Specifically, we
test 1) finetuning BERT-large [14] with a classification head to predict the label directly, 2) finetuning
T5 1.1 XXL [36] to generate the entire proof and then the label, 3) few-shotting PaLM 62B and
PalLM 540B [9] where we provide demonstration examples and chain-of-thought (CoT) in the prompt
(the CoT corresponds to the proof), 4) few-shotting the instruction-finetuned FLAN-PaLM 540B [10]
with CoT, and 5) soft prompt-tuning [26] PaLM 62B with CoT where instead of providing a static
prompt, we make the prompt embedding learnable and tune its parameters using the training data
(the rest of the LM parameters are frozen). We report classification accuracy as the metric. We also
report the majority class baseline (~33% since our labels are balanced).

Dataset sizes: To gain a more detailed understanding of the models’ defeasible reasoning capacity,
we create several variations of BoardgameQA. The nature of the variation will be discussed in the
remainder of this section with each experiment. For each variation, we sample 1000 examples for
train, 500 for validation, and 1000 for test. We sample an equal number of examples from each label.

5.1 Can LMs Reason with Contradictory Inputs?

As explained in Section 4, BoardgameQA makes use of a number of variables that control various
aspects of the dataset such as the amount and types of conflict and the amount of extra knowledge
required. We start by creating a default version of the dataset that exhibits each of these properties
to some degree by setting pcoyr = 0.5, peonryper = 0.5, and pusissrns, = 0.5. We then generate three
datasets with depth 1-3 (i.e., requiring 1-3 hop(s) of reasoning, respectively), and measure the
performance of our baselines on these datasets.

The results are in Figure 4. The tuned models perform reasonably on depth 1, but their performance
substantially degrades on depths 2-3. This contrasts with previous observations for monotonic
reasoning (e.g., in [11, 48]) where finetuned LMs reach near-perfect performance even on higher
depths. This indicates that reasoning with contradictory inputs is more difficult even with finetuning.
Moreover, we see that the few-shot models perform poorly across all depths showing that conflict
resolution is not achieved out-of-the-box with pretrained models. This includes both PalLM and
instruction-finetuned FLAN PalLM models. PaLM 540B performs better than PalLM 62B showing that



larger models may have higher capacity for defeasible reasoning. More insights from full confusion
matrices can be found in Appendix A.

Hereafter, due to inference costs, we only experiment with finetuned BERT and TS5, prompt-tuned
PalLM 62B, and few-shot PaLM 540B, and with examples of depth 2 to keep a medium level of
difficulty in terms of reasoning hops and enable measuring the effect of the other factors.

5.2 Does Correct Label Prediction Mean Correct Proof?

Recently, it has been shown that although large LMs achieve high accuracy on label prediction for
(monotonic) reasoning task, they do so by generating spurious proofs that do not represent valid steps
of reasoning [23]. There is also evidence that LMs frequently exploit spurious correlations in the data
distribution to achieve high label accuracy, rather than reasoning purely deductively [59]. Hence we
design evaluation metrics to reflect a more rigorous measure of accurate defeasible reasoning. In the
case where a model predicts the label correctly, and the label is one of proved or disproved (where
an actual proof exists), we measure whether the proof generated by the model is correct or not. For
this purpose, we compute two automated proof accuracy metrics (named Rule F1 and Conflict FI)
and one manual metric (named Overall Proof Accuracy) as described below. For Rule F1, we extract
the rules used in the golden proof and the ones in the proof generated by the model that are used to
derive new facts (and ultimately, the goal). Then we compute the F1-score of the overlap of the two
sets. For Conflict F1, we extract the conflict resolutions (corresponding to pairs of rules) used in
the gold proof and the ones in the proof generated by the model, and compute the F1-score of their
overlap. For Overall Proof Accuracy, we manually verify whether the proof is correct for 50 sampled
examples per model. We compute these metrics on depth 2 of the dataset.

According to the results in Figure 5, all models per-

form relatively well in selecting the correct set of rules

for the proof. The few-shot model performs poorly on

conflict resolution whereas the tuned models perform

substantially better, suggesting that preference under-

standing and conflict resolution do not surface with %" Finetuned wi proofs _Prompt-tuned wj CoT __Fewshot w/ CoT
(T5 XXL) (PaLM 62B) (PaLM 5408B)

simple few-shot prompting, and tuning is required for

models to exhibit this Capacity. SeCOHd, the models Figure 5: Proof accuracy metrics for various

often generate wrong proofs, even when they predict models on depth 2 of the dataset, when the

the label correctly. The issue is less severe in the case  Jabel is predicted correctly.

of the prompt-tuned model but becomes more severe

for the finetuned and few-shot models. We provide examples of proof failures in Appendix A.

3
S

o
S

IS
=)

F1-Score of Rules
W F1-Score of Conflicts
mmm Overall Proof Accuracy

F1-Score / Accuracy

N
5]

5.3 Do Conflicts Make Reasoning More Difficult?

We create four versions of BoardgameQA - oty Class
named NoConflict, LowConflict, Medium- 80 o o Conflct
Conflict, and HighConflict, with pc,, set to 60 m= medium Confict
0.0, 0.2, 0.5 and 0.8 respectively; other fac- 4
tors are kept the same. Note that the Medi-

umConflict corresponds to the dataset in Fig-
ure 4. The results Of the mOdels on these o Finetuned w/o proofs Finetuned w/ proofs Prompt-tuned w/ CoT ~ Fewshot w/ CoT
datasets are reported in Figure 6. The perfor- (BERT Large) (T5 XxL) (PalM 628) (PaLM 5408)
mance of all models monotonically degrades
as the number of conflicts increases, show-
ing that conflict resolution is indeed a major
factor in the difficulty of the problems. For
example, BERT performs above-random for the NoConflict and LowConflict cases, but the model
performance drops to near-random on MediumConflict and HighConflict cases.

Accuracy

Figure 6: The model performances on four versions
of the BoardgameQA dataset with various amounts of
conflicts in them.

5.4 Which Conflict Type is More Difficult to Resolve?

To test which type of conflict (See sec. 4) is more difficult for the models, we create three versions
of the dataset with varying proportions of Typel vs Type2 conflicts, by setting pconfrypes t0 0.2, 0.5,
and 0.8 respectively. The first dataset mostly contains conflicts of Typel, the second contains both



conflicts in a similar amount, and the third dataset contains mostly Type2 conflicts. The other factors
are kept constant across the datasets.

The results of the models are reported in Fig-
ure 7. We see that models perform slightly
better on the dataset with mostly Typel con-
flicts. This discrepancy between performance
on Typel and Type2 conflicts is intuitive
because in the case of Typel conflicts, the

model can ignore the conflicting rule and —= o Ty
whether its body can be proved, but in the . 1551 12
case of Type2 conflicts, the model has to el S b S e NS i
show that at least one of the elements in the

body of the conflicting rule cannot be proved. Figure 7: The model performances on three versions
In the case of tuned models, we furthermore of the BoardgameQA dataset with different distribu-
observe that biasing the dataset toward one tions on the type of conflicts.

conflict type results in better performance

overall. This might be because the model mostly needs to learn to resolve one type of conflict which
may be easier than learning both.
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5.5 Does Information Incompleteness Make Reasoning More Difficult?

As described in Section 4, we can control the amount of information incompleteness using a parameter
which we named pygignp- To test how the information incompleteness affects the performance of
various models, we create three versions of our dataset with payissago set to 0.2, 0.5 and 0.8, which we
name KnowledgeLight, KnowledgeMedium and KnowledgeHeavy, respectively.

The results are reported in Figure 8. We ob- 8
serve that as the amount of required knowl-
edge increases, the performance of the fine-
tuned models decreases accordingly. How-

3
5y

Accuracy
IS
S

ever, the performance of the prompt-tuned | iR
. . 20 nowledge Light
and few-shot models remain relatively un- m= Knowledge Medium
. . = Knowledge Heavy
changed, likely due to the larger size of the

Finetuned w/o proofs Finetuned w/ proofs Prompt-tuned w/ CoT ~ Fewshot w/ CoT
(T5 XXL)

model and the extra amount of knowledge (BERT Large) (PalM 626} (PalM 5408)
that is present in the model, as well as the
fact that working with real-world knowledge
might be easier for these models than with
artificial knowledge.

Figure 8: The model performances on three versions
of BoardgameQA with various degrees of incomplete
information.

5.6 Do Distractors Make Reasoning More Difficult?

is a distracting fact. To this end, each time . i I

we call Algorithm 1, besides the sampled sub-

. . . Finetuned w/o proofs F\netuned w/ proofs Prompt-tuned w/ CoT
questions, we also sample some distracting (BERT Large) (PalM 628}
sub-questions and add them to the set of sub-
questions. We create three versions of the
BoardgameQA dataset where we add O, 1,
and 2 distracting facts in each step, which we
name NoDistractors, SomeDistractors, and ManyDistractors, respectively.

We also measure the effect of distracting facts
and rules on model performance. A distract-
ing fact or rule is one that does not appear in
the proof and does not change the label. In
Figure 2, for example, “the frog has a knife”

70

L)
o o

Accuracy

w s
S o

=== Majority Class
No Distractors

B Some Distractors

B Many Distractors

N
5]

=
o o

Fewshot w/ CoT
(PaLM 540B)

Figure 9: The model performances on three versions
of BoardgameQA with various amounts of distracting
facts and rules.

According to the results in Figure 9, the performance of the tuned models does not substantially
degrade with a small number of distractors, potentially because the distractors can help the model
avoid learning spurious correlations. However, their performance drops substantially with more dis-
tractors. Also, with more distractors, the performance of the few-shot model decreases monotonically,



although only marginally (this observation is consistent with the results of [42]). This shows that
distractors (that are typically common in real applications) can also compound the problem difficulty.

6 Limitations

Our dataset, in its current form, focuses primarily on deductive logical entailment, where the problem
is a classification problem (label € {proved,disproved,unknown}), and the contradictions
are also binary (i.e. one rule suggesting something is True and the other suggesting it is False).
Future work can extend BoardgameQA and the analysis provided in this work to non-classification
cases where 1- one needs to apply defeasible logical reasoning to answer questions such as ‘‘Who
will be attacked by the dog?’’, 2- one needs to resolve non-binary conflicts where, e.g.,
one rule suggests ‘‘the dog is currently in Canada’’ and the other suggests ‘‘the dog
is currently in Australia’, 3- there are conflicts and preferences over facts as well, e.g.,
Factl: Fiona has travelled to every country in Europe, Fact2: Fiona has
not travelled to the Scandinavian countries, Fact2 is preferred over Factl.

The current work assumes the initial state (facts) and the rules of the game are small enough to be
included in the prompt. It is also limited to deductive reasoning with the modus ponens rule. Future
work can extend BoardgameQA and our analyses to the cases where not all the facts and rules can be
included in the prompt due to the limitation in the prompt length, as well as the case with other types
of rules such as proof by contradiction, disjunction elimination, etc (see [42]).

In this work, we only studied one simple but highly practical solution to conflict resolution (i.e. based
on preferences). Future work can extend BoardgameQA and the analysis in this paper to other natural
types of conflict resolution. Note that in some applications, preferences for conflict resolution have to
be assigned with great care and diligence to avoid unfair treatment of information sources.

7 Conclusion

In this work, we introduced BoardgameQA, a dataset for measuring the natural language reasoning
ability of language models (LMs) in the presence of conflicting input sources. Our dataset furthermore
includes scenarios in which the knowledge required for reasoning is only partially provided as input
and additional information needs to come from the model itself. We tested several types of LMs on
different variations of the dataset and observed that LMs perform poorly when reasoning with conflict-
ing inputs. In the case of smaller models, the performance was also poor when additional knowledge
from the LM is needed. Since reasoning over contradicting and incomplete sets of information is a
common scenario in real-world applications, our results highlight an important gap in the reasoning
capacity of current LMs. We hope our dataset can guide future work developing methodology to
improve the reasoning ability of LMs under this setup, or finding alternative formulations of conflict
resolution that better facilitate LM reasoning.
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Figure 10: The model performances on various depths of a binary version of the BoardgameQA
dataset.

Depth 1 Example: A few players are playing a boardgame. The current state of the game is as follows. The bee has 9 dollars. The dragon leaves the houses occupied by the
liger. The shark has 48 dollars. The vampire is currently in Cape Town. And the rules of the game are as follows. Rule1: Regarding the vampire, if it has more money than the
shark and the bee combined, then we can conclude that it disarms the bulldog. Rule2: There exists an animal which leaves the houses that are occupied by the liger? Then,
the vampire definitely does not disarm the bulldog. Rule3: Regarding the vampire, if it is in France at the moment, then we can conclude that it disarms the bulldog. Rule1 is
preferred over Rule2. Rule3 is preferred over Rule2. Based on the game state and the rules and preferences, does the vampire disarm the bulldog?

Model Output: Since the vampire has more money than the shark and the bee combined and according to Rule1 if the vampire has more money than the shark and the bee
combined then we can conclude that it disarms the bulldog and for the conflicting and lower priority rule Rule2 we cannot prove the antecedent there exists an animal which
leaves the houses that are occupied by the liger so the vampire disarms the bulldog. So the statement the vampire disarms the bulldog is proved and the answer is "yes".

Error Analysis:
. The model assumes the vampire has more money than the shark and the bee combined, but the amount of money the vampire has is not specified.
0 Since Rule1 has higher priority than Rule2, if the model believes Rule1 activates, there should be no need to show that Rule2 does not activate.
0 For Rule2, the model assumes that we cannot prove that there exists an animal which leaves the houses that are occupied by the liger, whereas we know the

\ dragon does this based on the facts. /

Figure 11: Highlighting some of the model errors for a depth 1 example when using PaLLM 540B.

A More Experimental Results and Analysis

Binary Classification: Kazemi et al. [23] observed that reasoning with unknown labels is particularly
challenging for few-shot LMs, because providing a natural chain-of-thought for unknown is difficult.
To measure if the poor performance is merely due to the existence of examples with unknown label
or due to conflict resolution being difficult for these models, we also created a binary version of the
dataset for depths 1, 2, and 3 where only examples with proved and disproved labels are included.’
The results are reported in Figure 10. We overall see similar patterns as the binary case, except for
some improvements for the TS model on depth 2.

Examples of Model Failures: To showcase some of the reasons why models struggle with the
BoardgameQA dataset, in Figure 11 13 we show some example proofs where the model made a
variaty of errors and in Figures 15-24 we provide specific examples where the model generated wrong
proofs. Some of the dominant error cases (showcased in the examples) include: 1- hallucinating
or misunderstanding conflicts and preferences, 2- not being able to correctly fill in the incomplete
information, 3- misunderstanding logical rules, 4- failing to prove both elements in a conjunction,
5- getting distracted by distracting facts and rules and going on a wrong proof path, and 6- being
unfaithful to the provided facts and rules and changing them so a proof can be found in the case
where no proof exists.

Confusion Matrices: The confusion matrices for the model predictions with respect to the golden
labels on the BoardgameQA dataset is provided in Figure 14 for various depths. One interesting
observation is that for models tuned with proofs, while the model perform well at predicting unknown
labels in lower depths, in higher depths they tend to generate proofs (with proved or disproved labels)
even when the label is unknown (e.g., for examples with label unknown in depth 1 the prompt-tuned
model predicts unknown for 268 instances, while in depth 2 it predicts unknown only for 2 instances).
This may be because when the search space for a proof increases, LMs cannot verify all possible
solutions and decide that the label is unknown. Instead, they start a path in the hopes that it ends in a
proof.

Standard Deviations: Due to the high cost of experimenting with large language models, the results
in the paper are reported based on a single run. To gain insight into the standard deviation of the

3In this case, we set Pconf = 1.0 for the first call we make to Algorithm 1; Otherwise, the dataset will have a
spurious correlation that can be exploited without doing any reasoning.
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Depth 2 Example: A few players are playing a boardgame. The current state of the game is as follows. The gorilla is watching a movie from 1952. The woodpecker has a
football with a radius of 28 inches, and swears to the duck. The zebra swims in the pool next to the house of the butterfly. And the rules of the game are as follows. Rule1:
The gorilla will not enjoy the company of the vampire if it (the gorilla) works in healthcare. Rule2: The gorilla enjoys the company of the vampire whenever at least one
animal swims inside the pool located besides the house of the butterfly. Rule3: If there is evidence that one animal, no matter which one, acquires a photograph of the
peafowl, then the woodpecker calls the vampire undoubtedly. Rule4: Here is an important piece of information about the woodpecker: if it has a football that fits in a 58.4 x
61.5 x 59.6 inches box then it does not call the vampire for sure. Rule5: If at least one animal leaves the houses that are occupied by the dragon, then the vampire does
not disarm the bulldog. Rule6: Here is an important piece of information about the gorilla: if it is watching a movie that was released after the first man landed on moon
then it does not enjoy the companionship of the vampire for sure. Rule7: If something swears to the duck, then it leaves the houses that are occupied by the dragon, too.
Rule1 is preferred over Rule2. Rule3 is preferred over Rule4. Rule6 is preferred over Rule2. Based on the game state and the rules and preferences, does the vampire
disarm the bulldog?

Model Output: Since the woodpecker has a football with a radius of 28 inches and according to Rule4 if the woodpecker has a football that fits in a 58.4 x 61.5 x 59.6
inches box then it does not call the vampire so the woodpecker does not call the vampire. Since the woodpecker does not call the vampire and according to Rule3 if there
is evidence that one animal, no matter which one, acquires a photograph of the peafowl then the woodpecker calls the vampire so the woodpecker does not acquire a
photograph of the peafowl. Since the woodpecker does not acquire a photograph of the peafowl and according to Rule5 if at least one animal leaves the houses that are
occupied by the dragon then the vampire does not disarm the bulldog so the vampire disarms the bulldog. So the statement the vampire disarms the bulldog is proved and
the answer is "yes".

Error Analysis:
. Since Rule4 acti the model assumes the w
Luckily for the model, though, Rule3 does not activate.
While Rule4 indeed activates, the model makes a planning error by starting from Rule4. The correct proof plan is to start with Rule7 followed by Rule5.
An initially wrong proof plan leads to consequent wrong steps in the proof planning (Rule4 is followed by Rule3).
The model misunderstands the antecedent and the consequent of Rule3.
The model jumps to Rule5 and arrives at a conclusion about the question, without proving the antecedent of Rule5.
The model misunderstands the sign of the consequent of Rule5.

does not call the vampire without checking whether Rule3 (the higher priority rule) activates or not.

Figure 12: Highlighting some of the model errors for a depth 2 example when using PaLM 540B.

Depth 3 Example: A few players are playing a boardgame. The current state of the game is as follows. The butterfly swears to the wolf. The cougar has 8 friends, and is
named Chickpea. The crow is named Charlie. The dove has a basketball with a diameter of 15 inches, and is named Tessa. The dove has a card that is white in color.
The monkey has a card that is white in color. The monkey is named Mojo. The shark is named Paco. The worm is named Tango. The husky does not tear down the
castle that belongs to the finch. And the rules of the game are as follows. Rule1: From observing that an animal brings an oil tank for the bison, one can conclude the
following: that animal does not smile at the beetle. Rule2: If the frog refuses to help the dalmatian, then the dalmatian is not going to invest in the company owned by the
beetle. Rule3: Are you certain that one of the animals manages to convince the ostrich and also at the same time smiles at the beetle? Then you can also be certain that
the same animal negotiates a deal with the badger. Rule4: If the monkey has a card whose color appears in the flag of Netherlands, then the monkey does not hide the
cards that she has from the pelikan. Rule5: The pelikan unquestionably shouts at the badger, in the case where the monkey does not hide her cards from the pelikan.
Rule6: If the monkey has a name whose first letter is the same as the first letter of the shark's name, then the monkey does not hide her cards from the pelikan. Rule7:
Here is an important piece of information about the cougar: if it has a name whose first letter is the same as the first letter of the crow's name then it manages to convince
the ostrich for sure. Rule8: Regarding the dove, if it has a name whose first letter is the same as the first letter of the worm's name, then we can conclude that it enjoys
the companionship of the dalmatian. Rule9: If the cougar negotiates a deal with the badger and the pelikan shouts at the badger, then the badger falls on a square of the
mouse. Rule10: One of the rules of the game is that if the dove enjoys the companionship of the ian, then the ian will, without itation, invest in the
company whose owner is the beetle. Rule11: The cougar will smile at the beetle if it (the cougar) has more than seven friends. Rule12: This is a basic rule: if the finch
negotiates a deal with the pelikan, then the conclusion that the pelikan will not shout at the badger follows immediately and effectively. Rule13: This is a basic rule: if the
husky does not tear down the castle that belongs to the finch, then the conclusion that the finch negotiates a deal with the pelikan follows immediately and effectively.
Rule1 is preferred over Rule11. Rule2 is preferred over Rule10. Rule5 is preferred over Rule12. Based on the game state and the rules and preferences, does the badger
fall on a square of the mouse?

Model Output: Since the cougar has 8 friends and according to Rule11 if the cougar has more than seven friends then the cougar will smile at the beetle so the cougar
smiles at the beetle. Since the cougar smiles at the beetle and according to Rule2 if the cougar smiles at the beetle then the cougar does not negotiate a deal with the
badger so the cougar does not negotiate a deal with the badger. Since the cougar does not negotiate a deal with the badger and according to Rule9 if the cougar
negotiates a deal with the badger and the pelikan shouts at the badger then the badger falls on a square of the mouse so the badger does not fall on a square of the
mouse. So the statement the badger falls on a square of the mouse is disproved and the answer is "no’

Error Analysis:
. Since Rule11 activates, the model assumes the cougar will smile at the beetle without checking whether Rule1 (the higher priority rule) activates or not. Luckily
for the model, though, Rule1 does not activate.
. The model hallucinates a non-existing rule instead of Rule2 which makes it shortcut to a conclusion.
. The model fails to understand conjunction and assumes Rule9 activates by only showing the first antecedent activates.
. The model misunderstands the sign of the consequent of Rule9.

Figure 13: Highlighting some of the model errors for a depth 3 example when using PaLM 540B.

results, we trained the BERT model (our cheapest baseline) 10 times on each of the datasets from the
main text and computed the standard deviations. The standard deviations ranged from 0.3 to 2.6.

B Experimental Details

We conducted our experiments on v3 TPUs for all the models, except for the 540B models where we
used v4 TPUs due to their larger size. All the experiments were done using the T5X framework [38]
available at https://github.com/google-research/t5x.

For the fewshot experiments, to ensure the demonstrations and the question fit in the prompt, due
to the large size of the examples in BoardgameQA, we only included one example per label as
demonstration (i.e. 3 examples one with label proved, one with disproved, and one with unknown
in the case of 3-way classification datasets). For each example in the test set, we selected the
demonstrations randomly from the training set, while ensuring that they contain both types of conflict
resolution. For the prompt-tuning experiments, we used a prompt-size of 100 in all experiments, as it
worked best in the experiments of [26]. We allowed a maximum of 50K training steps with a batch
size of 8, a learning rate of 0.1, and a weight decay rate of 0.0001. We evaluated the model after
each 1000 steps on the validation set and selected the checkpoint with the best validation accuracy
for testing. For the finetuning experiments, we also set the batch size to 8 but set the learning rate to
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Figure 14: Confusion matrices for various models on the BoardgameQA dataset.

0.001 and allowed 50K epochs (since it required more time to converge) and reported the results for
the epoch that achieved best validation accuracy.
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Facts: The seahorse has a basketball with a diameter of 27 inches, and is currently in Istanbul. The wolf does not take over the
emperor of the snake. And the rules of the game are as follows.

Rules: [...] Rule2: If the seahorse has a basketball that fits in a 37.1 x 37.4 x 23.9 inches box, then the seahorse surrenders to the
swan. Rule3: The seahorse will surrender to the swan if it (the seahorse) is in Turkey at the moment. [...]

Preferences: Rule5 is preferred over Rule4.
Question: Does the swan swear to the woodpecker?

Prediction: Since the seahorse is in Istanbul and according to Rule3 if the seahorse is in Turkey at the moment then the seahorse
surrenders to the swan so the seahorse surrenders to the swan. Since the seahorse surrenders to the swan and according to Rule2 if
the seahorse has a basketball that fits in a 37.1 x 37.4 x 23.9 inches box then the seahorse surrenders to the swan so the seahorse
has a basketball that fits in a 37.1 x 37.4 x 23.9 inches box. [...]

Figure 15: An example of a wrong proof generated by PaLM 540B (fewshot) where the error is due
to misunderstanding a logical rule (given a fact f and a rule f* — f the model concludes that f’
must be true.

Facts: The mule dances with the fish. [...]

Rules: [...] Rule2: There exists an animal which dances with the fish? Then, the dachshund definitely does not capture the king (i.e.
the most important piece) of the owl. Rule3: If something does not capture the king (i.e. the most important piece) of the owl and
additionally not disarm the zebra, then it disarms the woodpecker. [...]

Preferences: Rule1 is preferred over Rule5. Rule3 is preferred over Rule4.
Question: Does the dachshund disarm the woodpecker?

Prediction: [...] and according to Rule4 [...] and for the conflicting and higher priority rule Rule3 we cannot prove the antecedent "the
dachshund does not capture the king of the owl", [...].

Figure 16: An example of a wrong proof generated by PaLM 62B (prompt-tuned) where the error
is due to assuming an antecedent of a high priority rule cannot be proved, whereas it can indeed be
proved.

C BoardgameQA Details

Here, we provide more in depth details about the generation and properties of the BoardgameQA
dataset. A sample of theory and question generation from Algorithm 1 is provided in Figure 25.

C.1 Consistency of the Dataset

A defeasible theory is called consistent if whenever a conflict arises, the preferences can be used to
resolve the conflict. In BoardgameQA, we aim to produce consistent theories. To avoid inconsistencies
and loops, each time we call the function in Algorithm 1, we only allow it to sample from the entities
that have not been used in other rules and (sub-)questions. As an example, if we have a rule such as
a N\ b = ¢, then when we call the algorithm for ¢ and b recursively, we use separate entities in the
facts and rules produced for the sub-branch of a and for the sub-branch of b. This way, we ensure
that when we derive new facts in the sub-branch of a, it does not defeat some of the derivations
in the sub-branch of b (and the derivations in the later stages of the proof do not defeat the earlier
derivations). That is because the the set of facts used in the rule bodies are for separate entities, and
are therefore disjoint. We also apply defeasible reasoning on the final logical theory to ensure that the
question can be derived from the theory.

C.2 Incomplete Information

Here, we provide more information about the nature and type of incomplete information in
BoardgameQA.

o Age: We first generate a positive integer = corresponding to the age of one of the players
expressed in days. Then we decide if we want to use a more than or less than relationship.
In the case of the former, we next generate another integer y < z and in the case of the latter
y > x. Then, we randomly decide a target unit (days, weeks, months, or years) for each
integer and convert them to that unit. Let 2’ and 3’ represent the obtained values measured
with the new units. Then we add a fact [PLAYER] is =’ [unit] old and a rule if the [PLAYER]
is [more than/less than] y' [unit] old then .... The model has to be able to convert units of
time and then compare them.
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Facts: The mule dances with the fish. [...]

Rules: [...] Rule2: There exists an animal which dances with the fish? Then, the dachshund definitely does not capture the king (i.e.
the most important piece) of the owl. Rule3: If something does not capture the king (i.e. the most important piece) of the owl and
additionally not disarm the zebra, then it disarms the woodpecker. [...]

Preferences: Rule1 is preferred over Rule5. Rule3 is preferred over Rule4.
Question: Does the dachshund disarm the woodpecker?

Prediction: [...] and according to Rule4 [...] and for the conflicting and higher priority rule Rule3 we cannot prove the antecedent "the
dachshund does not capture the king of the owl", [...].

Figure 17: An example of a wrong proof generated by PaLM 62B (prompt-tuned) where the error is
due to filling the missing information incorrectly.

acts: The cougar manages to convince the ostrich, and smiles at the beetle. The dalmatian is named Chickpea. The pelikan has 8
friends. The seal is named Charlie.

Rules: Rule1: If something smiles at the beetle and manages to convince the ostrich, then it negotiates a deal with the badger.
Rule2: If the dalmatian has a name whose first letter is the same as the first letter of the seal's name, then the dalmatian invests in
the company whose owner is the beetle. [...] Rule4: From observing that an animal brings an oil tank for the shark, one can conclude
the following: that animal does not shout at the badger. Rule5: If the cougar negotiates a deal with the badger and the pelikan shouts
at the badger, then the badger falls on a square of the mouse.

Preferences: Rule4 is preferred over Rule3.

Question: Does the badger fall on a square of the mouse?

Prediction: Since the cougar manages to convince the ostrich and smiles at the beetle and according to Rule1 [...] so the cougar
negotiates a deal with the badger. Since the cougar negotiates a deal with the badger and according to Rule5 if the cougar
negotiates a deal with the badger and the pelikan shouts at the badger then the badger falls on a square of the mouse and Rule5 is

preferred over the conflicting and lower priority rule Rule4 so the badger falls on a square of the mouse. So the statement the badgey
alls on a square of the mouse is proved and the answer is "yes".

Figure 18: An example of a wrong proof (but correct label) generated by PaLLM 540B (fewshot)
where the error is due to 1- failing to prove one element of the conjunction and also identifying a
non-existence conflict between two rules.

o Affordance: We manually wrote object properties/affordances, and a list of items that have
those properties. Examples of properties include sharp, drink, and music and examples of
objects for each of these properties include knife, cappuccino, and flute respectively. The
facts are of the form The [PLAYER] has a [OBJECT] and the rules are of the form If the
[PLAYER] has [AN OBJECT WITH PROPERTY] then .... The model has to know about the
object properties to connect the facts and the rules.

e Colors: We first identify groups of colors based on some property. This includes being a
primary color, being a rainbow color, and being a color in the flag of country X. Then, we
generate facts of the form The [PLAYER] has a card which is [COLOR] in color. and rules
of the form If the [PLAYER] has a card whose color is [COLOR PROPERTY] then .... The
model has to have information about colors to connect the facts and the rules.

e Money: We first generate a positive integer x corresponding to the amount of money a
player has, then we randomly decide if we want the comparison to be between two or three
players. We also decide if we want to use a more than or less than relation. If the comparison
is between two players and more than is used, then we generate another integer y < x and
if less than is used then y > x; if the comparison is between three players and more than
is used then we generate y, z such that y + 2z < x, and if less than is used then y + z > .
We then generate facts of the form The [PLAYER i] has x dollars. and rules of the form If
[PLAYER i] has [more than/less than] than [PLAYER j] and [PLAYER k] combined, then ....
The model has to do a summation and decide which quantity is more or less.

e Textual Entailment: We manually write multiple pairs of sentences where one implies the
other. Examples include (assassinated the mayor, killed the mayor), (struggles to find food,
has difficulty to find food), and (purchased a luxury aircraft, owns a luxury aircraft). The
first element of the pair is used in the fact and the second element in the body of a rule. The
model has to identify the entailment.

e Places: We manually write a list of cities and the countries they are located in. The city
names are used in the facts (The [PLAYER] is in [CITY] right now.) and the countries are
used in the rule bodies (If the [PLAYER] is in [COUNTRY] right now, then .... The model
has to know which city is in which country.
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Facts: The monkey has a card that is orange in color. The monkey has a football with a radius of 29 inches, and is a farm worker.

Rules: [...] Rule4: If the monkey has a basketball that fits in a 26.3 x 25.6 x 24.2 inches box, then the monkey swims in the pool next
to the house of the crab. [...]

Preferences: Rule5 is preferred over Rule1.
Question: Does the monkey pay money to the rhino?

Prediction: Since the monkey has a football with a radius of 29 inches and according to Rule4 if the monkey has a basketball that fits
in a 26.3 x 25.6 x 24.2 inches box then the monkey swims in the pool next to the house of the crab [...]

Figure 19: An example of a wrong proof generated by PaLM 540B (fewshot) where the error is due
to 1- mistaking a football with a basketball, and 2- not being able to fill in the incomplete information
by realizing that a ball with a radius of 29 inches does not fit in a 26.3 x 25.6 x 24.2 inches box.

Facts: The gorilla is watching a movie from 1952. The woodpecker has a football with a radius of 28 inches, and swears to the duck.
The zebra swims in the pool next to the house of the butterfly.

Rules: Rule1: The gorilla will not enjoy the company of the vampire if it (the gorilla) works in healthcare. [...] Rule4: Here is an
important piece of information about the woodpecker: if it has a football that fits in a 58.4 x 61.5 x 59.6 inches box then it does not
call the vampire for sure. Rule5: If at least one animal leaves the houses that are occupied by the dragon, then the vampire does not
disarm the bulldog. [...] Rule7: If something swears to the duck, then it leaves the houses that are occupied by the dragon, too.

Preferences: Rule1 is preferred over Rule2. Rule3 is preferred over Rule4. Rule6 is preferred over Rule2.
Question: Does the vampire disarm the bulldog?

Prediction: Since the woodpecker has a football with a radius of 28 inches and according to Rule4 if the woodpecker has a football
that fits in a 58.4 x 61.5 x 59.6 inches box then it does not call the vampire so the woodpecker does not call the vampire. [...]

Figure 20: An example of a wrong proof generated by PaLM 540B (fewshot) where the error is due
to starting with a distracting fact that took the proof on a wrong path (the correct proof is to first use
the fact The woodpecker swears to the duck and Rule7 to conclude that The woodpecker leaves the
houses occupied by the dragon, and then use Rule5 to conclude that The vampire does not disarm the
bulldog.

o Names: We assign a name (from a list of manually written names) to two of the players and
then write rules in the form of If [PLAYER i] has a name that starts with the same letter as
[PLAYER 2], then ... .

e Jobs: We manually write a list of pairs of jobs and the industry they belong to. Examples
include (nurse, healthcare), (high school teacher, education), and (sales manager, marketing).
We use the job in the fact and the industry in the rule body. The model has to know which
job is part of which industry.

e Volume: The facts mention that one of the players has an object (a notebook or a ball)
and give the dimensions of the object (the height and width for notebook and the radius or
diameter for the ball). The rule body asks whether the object fit in a box with some given
dimensions. The model has to understand how 3D objects fit inside each other to be able to
connect the fact to the rule.

e Events: We manually write a list of world events and the year when they occurred. Examples
include (world war 1 started, 1914), (the first man landed on moon, 1969) and (Obama’s
presidency started, 2009). Then we write facts of the form The [PLAYER] is watching a
movie from [YEAR] and rules of the form If the [PLAYER] is watching a movie that was
released [before/after] [EVENT], then .... The model has to know the time for major world
events to be able to connect the fact and the rule.

o Friends: We first generate a positive integer x corresponding to the number of friends a
player has. Then, we either generate a fact such as The [PLAYER] has z friends or The
[PLAYER] has x1 friends that are [ADJECTIVE] and x5 that are not where x1 + o5 = x.
Then we decide if we want to use a more than or less than relation. In the former case, we
generate a number y < x and in the latter case y > x. Then we generate a rule of the form
If the [PLAYER] has [more than/less than] y friends, then ....

Due to the nature of the extra knowledge and reasoning cases we consider, we only add such cases at
the last theory generation step of Algorithm 1 (i.e. when d = 1); Otherwise, we will need to follow
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ﬂacts: The reindeer has three friends that are energetic and 1 friend that is not. The reindeer will turn 18 months old in a few \
minutes. The finch does not build a power plant near the green fields of the reindeer.

Rules: Rule1: For the reindeer, if the belief is that the german shepherd disarms the reindeer and the finch builds a power plant near
the green fields of the reindeer, then you can add that "the reindeer is not going to acquire a photograph of the finch" to your
conclusions. Rule2: The leopard trades one of its pieces with the cobra whenever at least one animal builds a power plant close to
the green fields of the finch. Rule3: Regarding the reindeer, if it is more than five years old, then we can conclude that it acquires a
photo of the finch. Rule4: Here is an important piece of information about the reindeer: if it has fewer than 5 friends then it acquires a
photo of the finch for sure.

Preferences: Rule3 is preferred over Rule1. Rule4 is preferred over Rule1.
Question: Does the leopard trade one of its pieces with the cobra?

Prediction: Since [...] and according to Rule1 [...] and Rule1 is preferred over Rule3 so the reindeer is not going to acquire a
Qhotograph of the finch. [...] /

Figure 21: An example of a wrong proof generated by PaLM 540B (fewshot) where the error is due
to misunderstanding a preference.

Facts: The liger has a card that is violet in color. The worm invests in the company whose owner is the mouse. The goat does not
create one castle for the pigeon.

Rules: Rule3: The living creature that does not create a castle for the pigeon will never hug the liger. [...]

Preferences: Rule2 is preferred over Rule1. Rule6 is preferred over Rule5.
Question: Does the liger invest in the company whose owner is the mermaid?

Prediction: [...] We know the goat does not hug the liger, and according to Rule3 "if the goat does not hug the liger, then the liger
does not hug the liger"

Figure 22: An example of a wrong proof generated by TS5 where the error is due to hallucinating
facts and rules.

generating sub-questions and rules for questions such as The dog is named Paco leading to unnatural
rules such as “If ... then the dog is named Paco.

C.3 Entities, Predicates, and Templates

Table 3 presents the set of entities, predicates, and templates used in BoardgameQA. To make
the problem slightly more challenging in terms of language complexity, we use different entities,
predicates and templates in the test set.

C.4 Sample Proofs

In Figure 26, we provide some sample proofs with depths 1, 2, and 3 from the dataset. It can be
observed that as the depth of the dataset increases, the length and difficulty of the proof increases
substantially.
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ﬂ’acts: The llama creates one castle for the camel. The llama has a card that is white in color. The monkey is a public relations \
specialist.

Rules: [...] Rule2: Regarding the llama, if it has a card whose color appears in the flag of Italy, then we can conclude that it does not
suspect the truthfulness of the mermaid. Rule3: If the monkey manages to convince the mermaid, then the mermaid is not going to
pay money to the seahorse. Rule4: For the mermaid, if the belief is that the dinosaur dances with the mermaid and the llama does not
suspect the truthfulness of the mermaid, then you can add "the mermaid pays some $$$ to the seahorse" to your conclusions. Rule5:
If the monkey works in marketing, then the monkey manages to convince the mermaid.

Preferences: Rule1 is preferred over Rule2. Rule4 is preferred over Rule3.

Question: Does the mermaid pay money to the seahorse?
Qrediction: We know the llama has a card that is white in color, white appears in the flag of Italy, and according to Rule2 [...] j

Figure 23: An example of a wrong proof generated by TS5 where the the model got distracted and
ended up on a wrong proof path.

Facts: The otter has a 10 x 18 inches notebook. The otter is 15 months old. The duck does not tear down the castle that belongs to
the otter.

Rules: Rule1: If the otter does not enjoy the companionship of the dugong, then the dugong captures the king (i.e. the most
important piece) of the bear. Rule2: Regarding the otter, if it is more than four years old, then we can conclude that it does not want
to see the dugong. Rule3: Regarding the otter, if it has a notebook that fits in a 18.1 x 12.8 inches box, then we can conclude that it
does not want to see the dugong.

Preferences: None
Question: Does the dugong capture the king of the bear?

Prediction: Since the otter is 15 months old and 15 months is less than 4 years and according to Rule2 if the otter is less than 4
years old then it does not want to see the dugong so the otter does not want to see the dugong. [...]

J

Figure 24: An example of a wrong proof generated by PaLM 540B (fewshot) where the error is due
to changing a rule in such a way that a proof can be found, when a proof does not exist.
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Figure 25: A sample of theory and question generation from Algorithm 1. Initially, the question has
been selected to be (dog, attack, cat). The input depth D = 1 indicates that a theory with one hop of
reasoning should be generated. Then a fact (dog, unite, lion) and a rule R1: (X, unite, lion) = (X,
attack, cat) have been generated. Notice that the combination of the fact and the rule conclude (dog,
attack, cat). Next we randomly decide if a conflict should be generated. The decision is yes, so we
generate another fact (dog, respect, cat) and rule (dog, respect, cat) = !(dog, attack, cat). Notice that
the two rules have contradictory conclusions now. We next decide randomly the type of the conflict,
and Type2 is selected in this case. Therefore, we add R2 > RI to our preferences, remove one of the
facts generated for the conflicting rule, and make recursive calls for the remaining facts, which is
only (dog, unite, lion). This call is made with D = 0, therefore the stopping criterion triggers and we
add (dog, unite, lion) to our set of facts.
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Sample Depth 1 Proof: We know the dog has a card that is white in color, white starts with "w", and according to Rule2 "if the
dog has a card whose color starts with the letter "w", then the dog prepares armor for the eel", and Rule2 has a higher
preference than the conflicting rules (Rule1), so we can conclude "the dog prepares armor for the eel". So the statement "the
dog prepares armor for the eel" is proved and the answer is "yes".

Sample Depth 2 Proof: We know the whale eats the food of the koala, and according to Rule2 "if something eats the food of
the koala, then it rolls the dice for the leopard”, so we can conclude "the whale rolls the dice for the leopard". We know the
buffalo does not know the defensive plans of the cat, and according to Rule1 "if something does not know the defensive plans of
the cat, then it doesn't attack the green fields whose owner is the leopard", so we can conclude "the buffalo does not attack the
green fields whose owner is the leopard". We know the buffalo does not attack the green fields whose owner is the leopard and
the whale rolls the dice for the leopard, and according to Rule4 "if the buffalo does not attack the green fields whose owner is
the leopard but the whale rolls the dice for the leopard, then the leopard raises a peace flag for the zander", and for the
conflicting and higher priority rule Rule3 we cannot prove the antecedent "the leopard does not respect the kudu", so we can
conclude "the leopard raises a peace flag for the zander". So the statement "the leopard raises a peace flag for the zander" is
proved and the answer is "yes".

Sample Depth 3 Proof: We know the crocodile is named Milo and the donkey is named Meadow, both names start with "M",
and according to Rule11 "if the crocodile has a name whose first letter is the same as the first letter of the donkey's name, then
the crocodile steals five points from the cockroach", and for the conflicting and higher priority rule Rule4 we cannot prove the
antecedent "at least one animal knows the defensive plans of the buffalo”, so we can conclude "the crocodile steals five points
from the cockroach". We know the crocodile steals five points from the cockroach, and according to Rule6 "if something steals
five points from the cockroach, then it does not remove from the board one of the pieces of the tiger", so we can conclude "the
crocodile does not remove from the board one of the pieces of the tiger". We know the aardvark proceeds to the spot right after
the lion, and according to Rule8 "if something proceeds to the spot right after the lion, then it does not eat the food of the
spider", and for the conflicting and higher priority rule Rule3 we cannot prove the antecedent "at least one animal attacks the
green fields whose owner is the catfish”, so we can conclude "the aardvark does not eat the food of the spider". We know the
aardvark does not hold the same number of points as the phoenix, and according to Rule7 "if something does not hold the same
number of points as the phoenix, then it doesn't give a magnifier to the eagle", so we can conclude "the aardvark does not give
a magnifier to the eagle". We know the aardvark does not give a magnifier to the eagle and the aardvark does not eat the food
of the spider, and according to Rule2 "if something does not give a magnifier to the eagle and does not eat the food of the
spider, then it knows the defensive plans of the tiger", so we can conclude "the aardvark knows the defensive plans of the tiger".
We know the aardvark knows the defensive plans of the tiger and the crocodile does not remove from the board one of the
pieces of the tiger, and according to Rule10 "if the aardvark knows the defensive plans of the tiger but the crocodile does not
remove from the board one of the pieces of the tiger, then the tiger becomes an enemy of the cheetah”, so we can conclude
"the tiger becomes an enemy of the cheetah". So the statement "the tiger becomes an enemy of the cheetah" is proved and the
answer is "yes".

Figure 26: Sample proofs from the dataset at depths 1, 2 and 3. Higher depth proofs are substantially
longer than the lower depth proofs.

cat, dog, pig, parrot, eagle, squirrel, penguin, lion, tiger, donkey, leopard, cheetah, grizzly bear, polar bear, sun
bear, panda bear, black bear, turtle, crocodile, elephant, panther, cow, rabbit, hare, buffalo, baboon, sheep,
Train enti- | whale, jellyfish, carp, goldfish, viperfish, starfish, catfish, oscar, zander, sea bass, swordfish, salmon, hal-
ties ibut, blobfish, doctorfish, tilapia, kangaroo, octopus, phoenix, aardvark, amberjack, eel, hummingbird, canary,
hippopotamus, snail, caterpillar, mosquito, bat, ferret, gecko, kudu, moose, cockroach, cricket, grasshopper,
meerkat, spider, lobster, squid, puffin, raven, kiwi, koala, wolverine

akita, bear, camel, coyote, snake, monkey, leopard, fish, ostrich, pigeon, dolphin, frog, goat, goose, wolf, go-
rilla, beaver, lizard, flamingo, swan, elk, duck, reindeer, bison, shark, mouse, owl, llama, cobra, zebra, otter,
Test enti- | crab, peafowl, rhino, dinosaur, dove, badger, chinchilla, cougar, crow, seal, worm, ant, bee, butterfly, dragonfly,
ties dragon, gadwall, mule, liger, german shepherd, bulldog, husky, poodle, chihuahua, dachshund, basenji, dalma-
tian, mermaid, seahorse, fangtooth, dugong, walrus, vampire, stork, swallow, songbird, woodpecker, starling,
mannikin, pelikan, beetle, finch

owe money to, give a magnifier to, learn the basics of resource management from, know the defensive plans of,
show all her cards to, prepare armor for, sing a victory song for, need support from, respect, raise a peace flag

;Lr:tlgspred— for, become, an enemy of, roll the dice for, hold the same number of points as, offer a job to, wink at, steal five
points from, knock down the fortress of, burn the warehouse of, eat the food of, attack the green fields whose
owner is, proceed to the spot that is right after the spot of, remove one of the pieces of
tear down the castle that belongs to, bring an oil tank for, reveal a secret to, enjoy the company of, neglect, want
to see, swear to, refuse to help, manage to convince, call, stop the victory of, dance with, shout at, smile at, pay

’ money to, unite with, hug, destroy the wall constructed by, create one castle for, disarm, acquire a photograph

Test predi- | oy f th f, fall f he truthfulness of, invest in th h

cates of, borrow one of the weapons of, fall on a square of, suspect the truthfulness of, invest in the company whose

owner is, leave the houses occupied by, hide the cards that she has from, swim in the pool next to the house
of, negotiate a deal with, trade one of its pieces with, build a power plant near the green fields of, take over the
emperor of, capture the king of, surrender to

Train tem- | Universally quantified rule: If something [A] the [B], then it does not [C] the [D].
plates Existentially quantified rule: If at least one animal [A] the [B], then the [C] [D] the [E].
(sampled) | No Quantifier: For the [A], if the belief is that the [B] does not [C] the [A] and the [D] does not [E] the [A],
then you can add "the [A] does not [F] the [G]" to your conclusions.
No Quantifier: In order to conclude that the [A] does not [B] the [C], two pieces of evidence are required: firstly

Test tem- that the [D] will not [E] the [A] and secondly the [F] [G] the [A].

plates Existential Quantifier: There exists an animal which [A] the [B]? Then, the [C] definitely does not [D] the [F].

(sampled) Universal Quantifier: From observing that one animal [A] the [B], one can conclude that it also [C] the [D],
undoubtedly.

Table 3: Categories, descriptions, and examples of incomplete information in BoardgameQA. For
lexical entailment, world knowledge, event times, and affordance, a list of examples is written
manually from which the sampling procedure can select. In the other cases, examples are generated
automatically.
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