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Abstract
We study nonlinear dynamics of the Earth’s tropical climate
system. For that, we apply a recently developed technique
for feature extraction and mode decomposition of spatiotem-
poral data generated by ergodic dynamical systems. The
method relies on constructing low-dimensional representa-
tions (temporal patterns) of signals using eigenfunctions of
Koopman operators governing the evolution of observables
in ergodic dynamical systems. We apply this technique to a
variety of tropical climate datasets and extract a multiscale
hierarchy of spatiotemporal patterns on diurnal to interan-
nual timescales. In particular, we detect without prefilter-
ing the input data modes operating on intraseasonal and
shorter timescales that correspond to propagation of orga-
nized convection. We discuss the salient properties of these
propagating features and in particular we focus on how the
activity of certain types of these traveling patterns is related
to lower-frequency dynamics. As an extension of this work,
we discuss their potential predictability based on a range
of nonparametric techniques and potential advances related
to understanding the deterministic and stochastic aspects of
the variability of these modes.

1 Introduction

The Earth’s tropical climate system consists of many
components that evolve in time over convective to plan-
etary scales and are coupled with each other. For ex-
ample, the tropical atmosphere of the Indo-Pacific basin
incorporates the Walker cell [28], which consists of a
planetary-scale horizontal flow (zonal extent of order
104 km) and vertical motions embedded within the tro-
posphere (depth of order 10 km). Moreover, the specific
spatial structure of the Walker cell is determined by its
boundary (oceanic) conditions, which are spatially in-
homogeneous. In particular, the Western Pacific ‘Warm
Pool’ is climatologically characterized by higher sea sur-
face temperature (SST), roughly 10 K more than over
the eastern tropical Pacific basin that constitutes the
eastern edge of the Walker cell (∼ 100◦E longitude). Im-
portantly, tropical Pacific SST fluctuates around its cli-
matological values over many timescales. The most pro-
nounced anomalies reach an amplitude of 3–4 K and are
observed quasi-periodically every 3-8 years. It has been
recognized that atmosphere-ocean couplings [4, 44, 7],
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are at the heart of this interannual variability, known
commonly as the El Niño-Southern Oscillation (ENSO).

The atmospheric component of the tropical cli-
mate consists predominantly of convective processes
[16]. In particular, individual convective events are trig-
gered by turbulent plumes of moist air rising intermit-
tently from the atmospheric boundary layer, which is
heated from below by warm oceanic waters. Such lo-
calized perturbations can evolve into convective cells
varying greatly in size and shape, with some reaching
the spatial scale of the tropospheric depth (tens of km)
and lasting for a few hours. These individual clouds
arrange themselves spatially into progressively larger
structures from mesoscale, to synoptic, and planetary
scales [30, 31]. Frequently, numerous organized convec-
tive systems propagate zonally [36], some of them being
associated with convectively coupled equatorial waves
(CCEWs)[26], or with intraseasonal oscillations such as
the Madden-Julian oscillation (MJO) [29, 27]. The tem-
poral evolution of all scales depends crucially on convec-
tive scale processes that, through various positive and
negative feedbacks and with different temporal lags, en-
hance and suppress fluctuations associated with a given
scale [37].

Understanding the Earth’s tropical climate requires
better understanding of underlying nonlinearities. Clas-
sical linear techniques, such as empirical orthogonal
function (EOF) analysis, typically require filtering or
detrending of the data to isolate the timescale of inter-
est and thus have a risk of extracting modes of limited
physical significance. In this work, we demonstrate the
potential of recently introduced methods in decompos-
ing high-dimensional time series into dominant patterns
associated with its dynamical evolution. These meth-
ods, introduced briefly in section 2, take advantage of
the framework of ergodic theory and are implemented
using machine learning tools (e.g., kernel methods). Un-
like classical approaches, they allow for simultaneous
extraction of many timescales with no ad hoc prepro-
cessing of the input data. Section 3 demonstrates the
utility of these methods applied to the Earth’s tropical
climate, and section 4 discussed examples of important
physical questions that can be addressed in future work.



2 Data-driven spectral methods for dynamical
systems

2.1 Introduction to Koopman operators Our
approach for extracting coherent spatiotemporal pat-
terns combines aspects of spectral theory of dynami-
cal systems [2, 21, 22, 10] with kernel algorithms for
machine learning [18, 19, 20]. In particular, con-
sider a dataset consisting of time-ordered observations
x0, x1, . . . , xN−1 of a climatic variable taken at times
t0, t1, . . . , tN−1 with tn = nτ for a fixed sampling inter-
val τ . In the applications studied here, xn ∈ Rd cor-
responds to cloud top temperatures measurements over
tropical band sampled at d gridpoints. Here, we view
the xn as the values of an observable, i.e., a function of
the state, of an abstract ergodic dynamical system (in
this case, the Earth’s tropical climate system); that is,
we consider that there exists a mapping F : A 7→ Rd
from the state space A of the dynamical system such
that xn = F (an), where an ∈ A is the state at time tn.
Moreover, the dynamics on A are described by a (gen-
erally nonlinear) mapping Φt : A 7→ A, t ∈ R, such that
an = Φnτ (a0) for an initial state a0. That mapping is
assumed to be ergodic for an invariant probability mea-
sure α; in particular, for any observable f ∈ L1(A,α)
and α-a.e. starting state a0 we have

(2.1) lim
N→∞

1

N

N−1∑
n=0

f(an) =

∫
A

f dα.

Ergodicity is a key property that allows the data-driven
implementation of our techniques. Note that besides
this property we do not assume that we have a priori
knowledge of the state space A or the dynamical flow
Φt.

Unlike traditional modeling approaches based on
the state-space representation of dynamical systems,
the spectral theory of dynamical system is based on
an equivalent representation involving the action of the
dynamics on spaces of observables. For our purposes, it
suffices to consider the Hilbert space H = L2(A,α) of
complex-valued square-integrable functions on A with
respect to the invariant measure α, equipped with the
inner product 〈f1, f2〉 =

∫
A
f∗1 f2 dα. Note that this

inner product can be approximated from time series of
the values of f1 and f2 using (2.1) with f = f∗1 f2. On
H, the dynamical system acts via Koopman operators,
that is, unitary operators Ut : H 7→ H, t ∈ R, defined
by Utf = f ◦ Φt. These operators form a group with
UtUs = Ut+s. A key property of this representation
is that the space H and the operators Ut are linear
(without approximation) even if A and Φt are nonlinear.
In effect, we are trading off a nonlinear dynamical
evolution law (Φt) on a finite-dimensional state space

(A) by a group of linear operators (Ut) on an infinite-
dimensional linear space of observables (H).

While the fact that H is infinite-dimensional might
appear at first as a significant drawback, this space and
the corresponding Koopman operators Ut are amenable
to study and approximation from data using the full
machinery of functional analysis, ergodic theory, and
harmonic analysis, and are useful for carrying out tasks
such as pattern extraction and prediction. Historically,
this line of research was initiated in [11, 32, 33, 35], and
has evolved into a rich area with many domain applica-
tions in science and engineering (e.g., [5] and references
therein). The papers [2, 21, 22, 10] have continued on
this program by leveraging kernel algorithms for ma-
chine learning to enable efficient and robust approxi-
mation of Koopman and related operators from high-
dimensional time series with rigorous convergence guar-
antees.

In this work, we take advantage of the observation
made in [22, 10] that a class of kernel operators (de-
fined in a suitable space of delay-embedded data as de-
scribed below), commutes, and therefore has common
eigenfunctions, with the Koopman operator Ut. This is
a particularly desirable property for the purpose of pat-
tern extraction since it is a standard property of Koop-
man eigenfunctions of measure preserving systems that
they evolve periodically in time, even if the dynamical
system itself is non-periodic. In particular, if z ∈ H is
an eigenfunction of Ut, we have

(2.2) Utz = eiωtz,

where ω ∈ R is an intrinsic frequency of the dynami-
cal system. Thus, one can view Koopman eigenfunction
decomposition as a generalized Fourier analysis for a
frequency spectrum that is intrinsic to the dynamical
system generating the data. Typically, for sufficiently
complex (mixing) systems Ut will also have continuous
spectrum, and for this part of the spectrum a notion of
approximate Koopman eigenfunctions can also be de-
fined by adding a small amount of diffusion [22], yielding
quasiperiodic observables with high temporal coherence.
Another advantage of Koopman eigenfunctions is that
they do not depend on the observation function F ; this
enables fusion of data acquired from different sensors
in terms of a universal set of coordinates obtained from
Koopman eigenfunctions.

2.2 Data-driven approximation We now describe
our approach for computing Koopman eigenfunctions
from the time-ordered observations x1, . . . , xN−1. First,
we embed the input data into a higher-dimensional
space using Takens’ method of delays [34], viz.

xn 7→ yn = (xn, xn−1, . . . , xn−q+1) ∈ Rqd,



where q is the number of delays. Note that the time
series y0, y1, . . . , yN−1 obtained in this way can also be
described in terms of an observable Fq : A 7→ Rqd of
the dynamical system such that yn = Fq(an). Second,
we introduce a kernel function K : Rqd × Rqd 7→ R+

that operates on data in delay-embedding space. A
wide class of kernels could be used for that purpose,
but in what follows we work with the class of variable-
bandwidth kernels introduced in [3],

(2.3) K(ym, yn) = exp

(
− ‖ym − yn‖2

εr−1/dA(ym)r−1/dA(yn)

)
,

where r(ym) =
∑N−1
n=0 e

−‖ym−yn‖2/ε and dA are esti-
mates of the sampling density of the data in delay-
embedding space and the dimension of A, respectively;
see [2] for details. Note that this bandwidth function is
important for ensuring orthogonality of the kernel eigen-
functions with respect to the invariant measure α of the
dynamics. Note also that the kernel in (2.3) implicitly
pulls back to a kernel KA : A × A 7→ R+ on the state
space such that KA(am, an) = K(ym, yn).

Next, we define a kernel integral operator G : RN 7→
RN acting on observables f of the dynamical system
sampled at the N states; in particular, we set

Gf =
1

N

N−1∑
n=0

K(·, an)f(an).

By ergodicity, G approximates the action of an integral
operator G : H 7→ H on the Hilbert space associated
with the invariant measure of the dynamics; that is,
according to (2.1),

Gf
a.s.−→ Gf =

∫
A

KA(·, a)f(a) dα(a).

Finally, we normalize G to a Markov operator P : RN →
RN by applying the kernel normalization procedure
introduced in the diffusion maps algorithm [8], and
compute the eigenvalues and eigenfunctions of this
operator, P ~φk = λk~φk, k ∈ {0, 1, . . . , N − 1}. By
convention, we order the eigenvalues in non-increasing
order (the top eigenvalue λ0 is always equal to 1 since
P is Markov).

The eigenfunctions ~φk = (φ0k, . . . , φN−1,k) ∈ RN of
P correspond to the values of an observable φk : A 7→ R
on the sampled states a0, . . . , aN−1; specifically, φnk =
φk(an). In [22, 10] it was shown that as the number
of delays q increases, φk lies increasingly in a subspace
of H corresponding to a single Koopman eigenspace.
As a result, the time series ~φk becomes increasingly
monochromatic, with its frequency spectral power in-
creasingly concentrated around a single frequency ωk

in the Koopman spectrum. In other words, the ker-
nel eigenfunctions obtained via this approach acquire a
property that can be thought of as timescale separation;
that is, they are able to decompose a broadband input
signal (xn) into a set of temporally coherent modes with
frequencies intrinsic to the dynamical system. This ker-
nel delay-embedding approach also improves robustness
to observational noise [22]. As stated earlier, the key
ingredient in the technique that ensures convergence to
a single Koopman eigenspace is delay embeddings with
many delays. A similar asymptotic behavior should hold
for other classes of kernels besides the specific example
in (2.3).

While kernel eigenfunctions computed via this ap-
proach have been found useful for mode decomposition
[19, 6, 41, 42, 39] and prediction [45, 1, 9] in a vari-
ety of atmosphere ocean science applications, they can
also be used in data-driven Galerkin schemes target-
ing Koopman eigenfunctions directly [21, 22, 10]. In
effect, the kernel eigenfunctions obtained from delay-
coordinate mapped data are already preconditioned to
lie close to individual Koopman eigenspaces, and thus
form a highly efficient basis for Koopman eigenfunction
approximation.

For the purpose of computing Koopman eigenfunc-
tions it is natural to consider the generator u of the
Koopman group, defined as u(f) = d

dtUtf |t=0. For
measure-preserving systems, this operator is a skew-
adjoint, unbounded operator defined on a dense domain
D(u) ⊂ H whose spectrum lies entirely on the imagi-
nary line. Expressed in terms of u, the Koopman eigen-
value problem reads u(z) = iωz; comparing this equa-
tion with (2.2) it is evident that the eigenvalues of Ut
are exponentials of the eigenvalues of u.

As discussed in [21, 22, 10], working with the bare
generator u in data-driven schemes can be problematic
for a number of reasons, including that it can have
continuous spectrum and/or non-isolated eigenvalues.
As a result, we solve instead the eigenvalue problem for
the regularized generator,

Lz = λz, L = u− η∆,

where η is a positive number and ∆ a diffusion reg-
ularization operator constructed from the kernel oper-
ator P ; specifically, given f =

∑
k ckφk, ck ∈ C, we

set ∆f =
∑
k Λ−1k ckφk. Unlike u, this operator always

has discrete spectrum consisting of isolated eigenval-
ues [17]. Galerkin methods can be used to numerically
solve the eigenvalue problem for L in variatonal (weak)
form, leading to a matrix generalized eigenvalue prob-
lem whose solutions give approximations to the Koop-
man eigenfuncions in the form z =

∑
k ckφk [22, 10].

To order these eigenfunctions, we employ the Dirich-



let energy functional E(z) associated with ∆. In par-
ticular, we order the numerically computed Koopman
eigenfunctions in order of increasing Dirichlet energy.
This minimizes the risk of overfitting the training data
since the eigenfunctions with the smallest Dirichlet en-
ergy are those exhibiting the least oscillatory behavior
(with respect to the kernel K) on state space.

3 Selected applications to tropical climate
science

In order to demonstrate the potential of our approach in
the specific case of climate application we apply it to the
high-dimensional datasets, with the particular emphasis
on high-resolution Cloud Archive User Service (CLAUS)
satellite infrared brightness temperature (Tb) data [24]
recorded over 23 years from July 1, 1983 to June 30,
2006. In the tropics, positive (negative) Tb anomalies
are associated with reduced (increased) cloudiness, thus
providing a surrogate for tropical convection. The
data is sampled over the tropical belt from 15◦S to
15◦N with a resolution of 1◦ (in both longitude and
latitude) generating 2D samples with dlong = 360
longitude and dlat = 31 latitude gridpoints. We
use the full 2D gridpoint Tb values arranged prior to
analysis into vectors of dimension d = dlong × dlat =
11,160. Observations are collected at an interval of
τ = 3 h, producing a dataset with s = 67,208 samples
over the 23 years of the CLAUS record. The data
contains the intensive observing period (IOP) of the
Tropical Ocean Global Atmosphere Coupled Ocean
Atmosphere Response Experiment (TOGA-COARE)
which took place from November 1, 1992 to February
28, 1993.

The lag-embedded data yn are constructed using
an intraseasonal embedding window of ∆t = 64 days.
The number of lags corresponding to the τ = 3 h
sampling interval is q = ∆t/τ = 64× 8 = 512, meaning
that the embedded data vectors populate a space of
dimension dq ≈ 5.7 × 106. In our analysis, we perform
no preprocessing of the input data such as bandpass
filtering or seasonal partitioning.

Despite the fact that the ambient data space is high-
dimensional, the system (i.e., tropical variability) at
large scales is characterized by a relatively small number
of patterns of interest. These patterns are well repre-
sented by eigenfunctions of the kernel operator P intro-
duced earlier. In particular, we have extracted a hierar-
chy of modes of the tropical variability that span a wide
range of timescales, such as the annual cycle and its har-
monics, interannual (e.g., El-Niño Southern oscillation,
ENSO), intraseasonal, and diurnal modes [41, 42]. One
of our main results is the extraction of two distinct fami-
lies of modes on the intraseasonal timescale – the boreal

Figure 1: Temporal snapshot of outgoing brightness
temperature [K] projection onto spatio-temporal mode
associated with intraseasonal oscillation (MJO) as ob-
tained by our analysis of ≈ 25 years of outgoing bright-
ness temperature sampled once per day.

winter Madden-Julian oscillation (MJO) and the boreal
summer intraseasonal oscillation (BSISO). It is the first
time that the two phenomena are identified as distinct
modes by a data-driven method without preprocessing
the input data by bandpass filtering and/or seasonal
partitioning. These modes have different spatiotem-
poral patterns, i.e., an eastward-propagating pattern
for MJO vs. a northeastward-propagating pattern for
BSISO, and slightly different frequencies, i.e., ∼ 1/60
days−1 for MJO vs. ∼ 1/40 days−1 for BSISO. Our
results are robust under changes of many input param-
eters, including temporal sparsity (e.g. sampling once
per day, see Figure 1) or spatial dimension of the input
signal.

The ability to simultaneously detect different
timescales of the system in a single process allows us
to further study the interaction between them for ad-
ditional analysis, e.g., predictability studies [41] and
forecasting [1]. In [41] the leading kernel eigenfunc-
tions were used as predictors to quantify the regime pre-
dictability of the MJO amplitude. Regimes are identi-
fied using a clustering method, and the information gain
of each cluster is quantified using information-theoretic
measures, such as relative entropy and mutual infor-
mation. It is found that the most predictable MJO
regimes occur in November and December, before the
MJO active season which happens in February. A large
part of the predictive information during the early sea-
son is explained by the ENSO interannual mode, and
more precisely by El Niño years with reemergence of



Figure 2: Temporal snapshot of sea surface temperature
[K] projection onto spatio-temporal mode associated
with MJO as extracted from ≈ 25 years of outgoing
brightness temperature sampled once per day.

predictability in January-February.
Improving skillful extraction of MJO signals re-

mains an important issue, as it projects strongly
on climatic impacts across a range of spatiotemporal
timescales. In particular, it is postulated that intrasea-
sonal oscillations can dynamically lead to much slower
oscillations on interannual timescales. In particular,
ENSO phase changes are hypothesized to be caused by
oceanic waves triggered by MJO. Here, we observe that
our MJO eigenfunctions successfully recover the MJO-
SST coupling (see Figure 1 and 2), with warm/cold SST
anomaly preceding/following the MJO center of con-
vection as expected [12, 13]. At the same time, other
atmospheric-oceanic couplings possibly important for
ENSO termination (e.g. enhanced westerlies in boreal
spring over the western tropical Pacific Ocean [40]) are
well-recovered in datasets simulated by models that do
not resolve many important features (e.g. MJO) ob-
served in nature [39, 23].

Koopman eigenfunctions obtained via [22] approach
are able to recover even cleaner spatiotemporal patterns
of the above temporal scales, as well as propagating sig-
nals operating on faster (daily, see Figure 3) timescales
[21, 38]. These signals likely correspond to CCEWs [26]
predicted from idealized theories of atmospheric dynam-
ics. Moreover, they are of smaller spatial scale than
MJO that in turn does not have any theoretical corre-
spondence and yet is hypothesized to be composed of
CCEWs. As the statistical relation and physical mech-
anisms behind MJO interaction with larger and smaller
spatiotemporal scales remain relatively poorly under-
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Figure 3: 5-day evolution of the cloud top temperature
anomalies associated with the 5-day westward mixed
Rossby-gravity wave, as discussed in [38].

stood, our approach offers an attractive framework for
further studies of the underlying nonlinear dynamics
with the goal of addressing current problems in atmo-
sphere ocean science.

4 Summary

This work demonstrates the potential of data-driven
techniques in extracting dominant spatio-temporal
modes from a high-dimensional datasets corresponding
to sparse observations of complex dynamical systems.
In particular, employing theoretical framework for dy-
namical systems and utilizing such data-driven metrics
as kernels or Koopman operators [20, 22] allows one
to identify several patterns that have a straightforward
correspondence to variabilities that act over a range
of timescales and are potentially associated with var-
ious nonlinear interactions that impact dynamical evo-
lution of the system. Moreover, novel nonparameteric
extensions of these tools [2, 22, 45] provide a range of
data-driven approaches that allow to improve the per-
formance of variety of predictive measures.

The Earth’s tropical climate provide one example of
dynamical system that can be studied with the above
described techniques. They provide a new opportunity
to study evolution of tropical climate and in particu-
lar the role of nonlinear interactions across a range of
spatio-temporal scales. Improved insight into physical
nature of El Niño/La Ninã (the most prominent vari-
ability of the Earth’s climate that acts on interannual
and planetary scales), and in particular seasonal locking
of its emergence and termination, provides an example
of observations that remain yet to be fully understood
theoretically. Having here demonstrated skill in captur-
ing many plausible components associated with this un-
derlying phenomena, such as zonal propagation of atmo-



spheric/oceanic waves triggered by MJO, or modulation
of large-scale circulation scales by ENSO [21, 23, 39], al-
lows one to examine their plausible/relative role in this
regard. Moreover, having established refined approach
in extracting tropical variabilities spanning a range of
timescales, we hope to offer new schemes [43] that po-
tentially allow to improve climate prediction of proba-
bilistic prediction of high-impact weather (e.g. extreme
precipitation) [25].
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