
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HAPPI: EFFICIENT KV CACHE COMPRESSION WITH
HADAMARD PCA-BASED POWER ITERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Truncated Singular Value Decomposition (SVD) has recently attracted renewed
attention for its effectiveness in model optimizations, such as LoRA initializa-
tion and KV-cache compression. However, exact SVD remains computationally
expensive, while approximate methods like power iteration often introduce non-
negligible errors. In this paper, we present Hadamard PCA-based Power Itera-
tion (HaPPI), a new algorithm that significantly improves the accuracy of low-
rank approximation while retaining efficiency. Compared to prior methods, HaPPI
achieves the lowest approximation error at a practical computational cost. Build-
ing on this foundation, we further propose HaPPI-KV, which combines HaPPI
with key whitening and residual quantization to deliver high compression ratios
for key–value caches. By leveraging both the efficiency and precision of HaPPI,
HaPPI-KV achieves state-of-the-art trade-offs between memory efficiency and
model quality, highlighting the superiority of our approach.

1 INTRODUCTION

Truncated Singular Value Decomposition (SVD) has recently re-emerged as a powerful tool for
optimizing transformer-based models Wang et al. (2024; 2025a); Yuan et al. (2023); Hsu et al.
(2022); Wong et al. (2025); Chen et al. (2021); Sy et al. (2024). By representing data in compact
low-rank structures, it significantly reduces storage overhead and has long served as a cornerstone
of model compression and lightweight adaptation. Its practical utility is further demonstrated in
recent work: initializing LoRA adapters Meng et al. (2024); Yang et al. (2024) with SVD markedly
improves fine-tuning accuracy, while exploiting the inherent low rank of key and value matrices
enables highly effective KV-cache compression Yankun et al. (2025); Kang et al. (2024); Chang et al.
(2025; 2024); Zhang et al. (2024); Wang et al. (2025b); Yan et al. (2025); Lin et al. (2024a). Together,
these results underscore the growing importance of truncated SVD in modern optimization.

To advance the quality of low-rank approximation, we propose Hadamard PCA-based Power Itera-
tion (HaPPI), a novel algorithm that achieves precise truncated SVD approximations with practical
efficiency. HaPPI builds upon the classical power iteration, a widely used approximate technique, by
integrating Hadamard transformations and PCA-inspired initialization. Empirically, HaPPI achieves
the lowest per-tensor error among existing methods and recovers fine-tuning performance in LoRA
adapters even in scenarios where previous approaches fail due to significant approximation errors.

Figure 1: Accuracy across different sequence lengths on Qwen2-7B-Instruct using the RULER
dataset. Values in parentheses indicate the relative KV-cache size compared to the FP16 baseline.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Going a step further, we propose HaPPI-KV, a novel method for KV-cache compression. HaPPI-KV
extends HaPPI with two additional techniques, key whitening and residual quantization, enabling
both rapid compression and state-of-the-art reconstruction quality under tight memory constraints.

In summary, our contributions are threefold: 1) We propose HaPPI, a fast and accurate algorithm for
truncated SVD approximation. 2) We provide comprehensive theoretical, quantitative, and empirical
validation of HaPPI, including its application to LoRA initialization. 3) We design HaPPI-KV, a
high-quality and efficient KV-cache compression technique that outperforms existing approaches.
We believe that HaPPI opens a new horizon for model optimization, with HaPPI-KV serving as a
compelling demonstration of its potential to advance KV-cache compression.

2 RELATED WORK

2.1 KV CACHE COMPRESSION

KV cache compression has been widely explored through two main approaches: quantization
and low-rank approximation. Quantization-based techniques, such as KIVI Liu et al. (2024b),
KVQuant Hooper et al. (2024), and WKVQuant Yue et al. (2024), reduce memory footprint by
representing each element with reduced precision. On the other hand, as KV caches are inherently
amenable to compression via low-rank structures, several methods leverage this property, including
GEAR Kang et al. (2024), PALU Chang et al. (2024), and SVDq Yankun et al. (2025).

Among these, we adopt GEAR as a strong baseline. It combines SVD with quantization, enabling
effective KV compression at low cost and without fine-tuning. Our proposed HaPPI-KV enables fast
on-demand KV cache compression, while achieving outstanding compression ratios.

2.2 TRUNCATED SVD-BASED METHODS

Beyond KV cache compression, truncated SVD plays a crucial role in various optimization tasks,
such as weight compression for inference (e.g., SVD-LLM Wang et al. (2024), SVD-LLMv2 Wang
et al. (2025a)) and LoRA initialization (e.g., PiSSA Meng et al. (2024), CorDA Yang et al. (2024)).
The accuracy of the low-rank approximation significantly influences the final performance of these
techniques. For instance, PiSSA reports that LoRA adapters initialized with a naive approximation
algorithm exhibit degraded quality after fine-tuning compared to those initialized using an exact
truncated SVD. The fast and precise approximation provided by HaPPI enhances the practicality of
such methods as well, as we will demonstrate in Section 5.3.

2.3 SVD APPROXIMATION METHODS

To make low-rank decomposition computationally affordable, many approximation techniques have
been proposed, typically based on randomized initialization Halko et al. (2011), power iteration Vo-
gels et al. (2019), or a combination of both. In this work, we present an improved power iteration al-
gorithm that introduces a novel initialization strategy leveraging the Hadamard transform and PCA.
This approach significantly reduces approximation error compared to existing methods, thereby ad-
vancing the accuracy–efficiency trade-off in SVD approximation.

3 PRELIMINARY

3.1 SINGULAR VECTOR DECOMPOSITION

SVD is a fundamental tool for low-rank approximation, where any matrix A ∈ Rm×n can be decom-
posed as A = USV T with U ∈ Rm×m and V ∈ Rn×n orthonormal, and S = diag(s) ∈ Rm×n

containing singular values in descending order. If the top r singular values dominate, A can be
approximated by Ar = U[:,1:r]S1:r,1:rV

T
[:,1:r], with the error given by ∥A−Ar∥2F =

∑min(m,n)
i=r+1 s2i .

In many recent studies, the idea of truncated SVD has been widely adopted, requiring only the top r
singular components. However, applying the exact SVD incurs a computational cost of O(mn2), as
the entire decomposition must be computed before extracting the relevant components.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 Power Iteration (Kang et al.
(2024))

Require: Matrix A ∈ Rm×n, Rank r, Loop L
Ensure: Vector P ∈ Rn×r , Q ∈ Rm×r

1: Initialize P with random distribution.
2: Initialize Q with random distribution.
3: for l = 0 to L− 1 do
4: if l = L− 1 then
5: [P,∼]← QR(P)
6: end if
7: Q← AP
8: if l = L− 1 then
9: [Q,∼]← QR(Q)

10: end if
11: P← ATQ
12: end for
13: return P,Q

Algorithm 2 HaPPI (Ours)

Require: Matrix A ∈ Rm×n, Rank r, Loop L
Ensure: Vector P ∈ Rn×r , Q ∈ Rm×r

1: AH ← AH
2: CH ← AH

TAH

3: P, ← PowerIter(CH, r,min(2, L))
4: for l = 0 to L− 1 do
5: if l = L− 1 then
6: [P,∼]← QR(P)
7: end if
8: Q← AHP
9: if l = L− 1 then

10: [Q,∼]← QR(Q)
11: end if
12: P← AH

TQ
13: end for
14: return H−1P,Q

Figure 2: MSE per loop counts of various low-rank approximation methods. K, V state (left, center)
is 10th layer of Llama3-8B-Instruct. Note that PCA-only is HaPPI without Hadamard Transforma-
tion, and a number next of each method represents GFLOPs.

3.2 HADAMARD TRANSFORMATION

Many recent studies Xi et al. (2023); Lin et al. (2024b); Tseng et al. (2024); Kim et al. (2025);
Ashkboos et al. (2024); Liu et al. (2024a); Ashkboos et al. (2025); Xiang & Zhang (2024) empir-
ically demonstrated that HT is highly beneficial to mitigate the influence of activation outliers by
transforming the data into frequency domain. From a similar perspective, our method also adopt the
Hadamard Transform (Sylvester (1867), HT) as a core building block of HaPPI.

HT is a discrete Fourier-like transform that linearly projects a vector into the frequency domain.
Given an n-dimensional vector v ∈ R2d , its frequency-domain representation ṽ ∈ R2d is obtained
by multiplying it with the Walsh–Hadamard matrix Hd as ṽ = Hd · v. Here, the Walsh–Hadamard
matrix Hd is defined recursively as:

H1 = 1√
2

[
1 1
1 −1

]
, Hn = H1 ⊗Hn−1, (1)

where ⊗ denotes the Kronecker product, and Hd is a 2d×2d orthogonal matrix satisfying HdH
T
d =

HT
d Hd = I . This orthogonality guarantees the lossless reconstruction of the transformed vector.

4 HADAMARD PCA BASED POWER ITERATION

Efficient low-rank approximation is a critical prerequisite for practical model compression; how-
ever, despite extensive research efforts, existing approaches fail to achieve sufficient accuracy under
tight computational budgets. A widely used baseline is PyTorch’s svd lowrank, which employs ran-
domized SVD Halko et al. (2011) to generate an initial estimate and optionally refines the result via
block power iteration. While this approach achieves relatively low approximation error, it suffers
from considerable computational cost and elevated latency. Another notable approach is the power-
iteration-based method introduced in PowerSGD Vogels et al. (2019), later adopted by GEAR for

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 3: MSE comparison per layers of Llama3-8B-Instruct with GSM8K datasets.

efficient KV-cache compression. As summarized in alg. 1, this method is designed to rapidly decom-
pose the input matrix, but it also exhibits significant approximation errors. Although these methods
approximate SVD at substantially lower cost compared to exact decomposition, they exhibit signif-
icant residual error even after numerous iterations, as shown in Fig. 2. Such errors often propagate
to downstream tasks, resulting in non-negligible quality degradation.

To address this gap, we propose Hadamard PCA-based Power Iteration (HaPPI), a novel algo-
rithm specifically designed to deliver high-quality low-rank approximations with minimal overhead,
thereby substantially improving the effectiveness of truncated SVD–based compression pipelines.
Alg. 2 presents our proposed HaPPI. While following the general iterative structure of alg. 1, HaPPI
introduces two key modifications: (i) an improved initialization procedure (lines 1–2) and (ii) an
enhanced final reconstruction stage (line 14). The central ideas are as follows. First, we apply a
Hadamard transform to the input tensor prior to decomposition. This transformation projects the
tensor into the frequency domain, thereby mitigating the influence of outliers and improving robust-
ness to compression-induced errors, an essential property for transformer tensor compression.

Second, rather than initializing with random vectors, HaPPI computes the covariance matrix of the
Hadamard-transformed tensor AH and uses its decomposed singular vectors as initialization. These
left singular vectors can be interpreted as a linear transformation that aligns the original data with
the top-r principal axes. While the resulting vectors do not exactly match those of AH due to the
approximate nature of power iteration, they provide an effective starting point that accelerates con-
vergence. After iterative refinement, the resulting singular vectors are mapped back to the original
space by multiplying with the inverse Hadamard transform.

5 ANALYSIS FOR HAPPI

To demonstrate the superiority of HaPPI, we provide diverse experimental results.

5.1 MSE COMPARISON

First, we conducted a series of Mean Squared Error (MSE) comparisons across different low-rank
approximation methods (Fig. 2). The evaluation used real K and V tensors extracted from the 11th at-
tention head of the Llama3-8B-Instruct model Grattafiori et al. (2024) on the GSM8K dataset Cobbe
et al. (2021), along with a random tensor of identical shape (802 × 128) to assess generalization un-
der a rank-2 approximation. Additionally, Fig. 3 presents layer-wise MSE results across all 32 layers
of the model. We compared five approaches: (1) Full SVD (torch.svd), representing the theoretically
most accurate baseline; (2) SVD low-rank (torch.svd lowrank), a memory-efficient approximation
variant; (3) power iteration proposed in GEAR (4) PCA-only, which uses principal vectors of the
covariance matrix without HT; and (5) HaPPI, the proposed scheme.

As illustrated in Fig. 2, HaPPI achieves approximation results that are consistently closer to the
ground-truth SVD solution compared to prior methods. While GEAR’s power iteration exhibits
the lowest per-iteration computational overhead, its error remains stagnant even with additional
iterations. In contrast, HaPPI not only converges more rapidly to a lower error level than svd lowrank
but also achieves substantially improved final accuracy in tensor approximation.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) Original (b) After whitening & HT (c) Residual

Figure 4: 3D plot of K state of layers.0.attention of Llama3-8B-Instruct.

For the key tensor, having large outliers, HaPPI achieves significantly lower MSE, clearly demon-
strating the effectiveness of Hadamard-enhanced PCA initialization. For the random tensor, HaPPI
achieves MSE nearly identical to that of full SVD, indicating that its high approximation accuracy
generalizes beyond specific data distributions. Most notably, the layer-wise analysis confirms that
HaPPI achieves the lowest MSE across all 32 layers, with its performance curve almost overlapping
those of Full SVD and SVD low-rank as HaPPI delivers outputs remarkably close to the optimum.

5.2 OVERHEAD ANALYSIS

In this section, we analyze the computational overhead of HaPPI in terms of FLOPs, with the results
summarized in Fig. 2. Experiments were conducted using a tensor of size (1, 8, 2048, 128), simu-
lating the scenario of processing a sequence of 2048 tokens in Llama3-8B. The number of iterations
for all methods except SVD was fixed at two. As shown in the figure, HaPPI requires 0.35 GFLOPs,
which is slightly higher than GEAR’s power iteration (0.12 GFLOPs) but significantly lower than
SVD low-rank (0.66 GFLOPs) and full SVD (1.24 GFLOPs).

This additional cost primarily arises from two sources: HT and the covariance matrix computa-
tion. HT introduces minimal overhead using the Fast Walsh–Hadamard Transform, while the pri-
mary computational cost comes from computing the covariance matrix CH = AT

HAH , which ac-
counts for most of the additional 0.23 GFLOPs. However, as shown by the latency measurements
in Fig. 6, despite the FLOPs difference, HaPPI’s overall compression time is less expensive than
torch.svd lowrank, close to the latency of power iteration.

5.3 VALIDATION ON LORA FINETUNING

Method Accuracy
LoRA 44.19
PiSSA 45.89
PiSSA (SVD low-rank) 45.08
HaPPI 45.43

Table 1: Average accuracy of
LLM finetuning tasks. Refer
to appendix for the full table.

Recent studies have reported that initializing LoRA adapters with
truncated SVD leads to improved accuracy. A representative exam-
ple is PiSSA Meng et al. (2024), which further demonstrates that a
noticeable quality degradation arises between exact SVD and its ap-
proximation using torch.svd lowrank. Building on this, we applied
HaPPI within the PiSSA pipeline and observed that most of the ac-
curacy degradation caused by approximate SVD was effectively re-
covered (Tab. 1). This result indicates that the proposed HaPPI al-
gorithm not only reduces numerical error but also provides accurate
low-rank approximations that translate into tangible improvements.

6 HAPPI-KV

Building on the proposed HaPPI algorithm, we introduce HaPPI-KV, a KV-cache compression tech-
nique that realizes the motivation behind prior work and achieves high compression ratio. HaPPI-KV
is composed of two key components: key whitening and residual quantization.

6.1 KEY WHITENING

In the KV-cache compression process, the key tensor exhibits a distinctive distribution character-
ized by extreme outliers (Fig. 4 (a)). These outliers degrade the quality of low-rank approximation,
making it essential to mitigate their imbalance before compression.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

To address this issue and improve the compressibility of the key tensor, we propose a key whitening
strategy designed to suppress the adverse effects of outliers. Whitening is a preprocessing step that
transforms the covariance structure of data into an identity matrix, normalizing all dimensions to
have equal variance. Previous studies Wang et al. (2024; 2025a) have applied whitening for input
activation during weight compression. Our approach extends this concept to the key tensor and lever-
ages the efficiency of HaPPI to realize truncated SVD at practical cost, enabling a new lightweight
compression method that minimizes outlier-induced errors.

During KV-cache compression, both the key and value tensors are perturbed. To minimize the error
introduced in the attention mechanism, it is crucial that the compressed key produces outputs as
close as possible to those produced by the original key when computing attention scores for a given
query. This objective can be formulated as minimizing the difference between QKT and QK ′T ,
where Q,K ∈ Rl×d represent the query and key tensor, l, d mean sequence length and hidden
dimension, respectively, and K ′ for the compressed Key.

Instead of directly compressing the key tensor with HaPPI, we introduce a whitening matrix S to
alleviate channel-wise outliers. With whitening, the target optimization objective becomes:

min
(∥∥QKT −QS HaPPI(S−1K ′T)

∥∥
F

)
(2)

Achieving ideal whitening requires the transformed key tensor to have unit covariance, i.e.,
(S−1KT)(S−1KT)T = I , which leads to the condition KTK = SST . Applying SVD to KTK
yields KTK = US2UT , where U and S are the left singular vectors and singular values, respec-
tively. This implies that S = US, indicating that normalization can be achieved by projecting the key
tensor along its principal axes. This whitening step effectively suppresses the influence of outliers
while preserving the essential structural information of the key tensor.

Algorithm 3 HaPPI with Key whitening

Require: Key K ∈ Rl×d, Rank r1, r2, Loop L
Ensure: Compressed Key K′ ∈ Rl×d

1: C← KTK
2: PC, ← HaPPI(C, r1,min(2, L))
3: KC ← KPC

4: P,Q← HaPPI(KC, r2, L)
5: K′

C ← QPT

6: K′ ← K′
CPT

C

7: return K′

However, performing full SVD is impractical for
compressing KV caches, which are generated dy-
namically during inference. To address this, we pro-
pose a new algorithm that retains the same theoret-
ical foundation but operates at practical computa-
tional cost (alg. 3). The key idea is to approximate
the principal eigenvectors of the covariance matrix
KTK instead of computing a full SVD. We use a
rank r1 larger than the final compression rank r2
used in HaPPI (empirically, r1 = 4r2 yields the best
performance).

The extracted principal components PC are then
used to transform the original matrix K. HaPPI is then applied in this transformed space to per-
form low-rank approximation. In the reconstruction phase, the compressed result is mapped back
to the original space by multiplying with PT

C . This process mitigates outlier-induced degradation
while preserving the original data scale and structure. From an implementation perspective, both
PCA whitening and HaPPI require covariance matrix computation, which can lead to redundant op-
erations. To avoid this inefficiency, we first compute the covariance matrix C and then apply the
Hadamard transform to obtain CH . This approach reduces computational overhead by reusing C.

Experimental results demonstrate that the proposed PCA whitening strategy effectively addresses
the uneven variance of the key tensor and significantly enhances HaPPI’s compression performance.
As shown in Fig. 4 (b) and (c), the residual tensor after whitening exhibits a far more uniform and
compression-friendly distribution, which directly translates to improved final compression quality.

6.2 OVERALL COMPRESSION PIPELINE

Fig. 5 illustrates the overall compression pipeline of HaPPI-KV. The core idea is to integrate low-
rank approximation with residual quantization for maximum compression efficiency. First, key
whitening is applied to the key tensor to mitigate the impact of outliers, while the value tensor
exhibits a relatively uniform distribution and therefore does not require whitening.

Next, HaPPI-based low-rank approximation is performed on both key and value tensors. The decom-
posed results are stored, denoted as Ak, Bk for the key and Av , Bv for the value. Subsequently, KIVI

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

𝐾
:ℝ!×#

𝐻𝑎𝑃𝑃𝑖

𝐸𝑟𝑟𝑜𝑟(𝐾&)

𝐾&

R
ec
on
st
ru
ct
io
n

𝐵!
: ℝ"×$

𝐴!
: ℝ$×%

W
𝑄𝑢𝑎𝑛𝑡

: WhiteningW

𝐾$
:ℝ!×#

𝐾
:ℝ!×#

𝑄𝑢𝑎𝑛𝑡

𝐸𝑟𝑟𝑜𝑟(𝐾&)

𝐾&

O
𝑃𝑜𝑤𝑒𝑟	𝑖𝑡𝑒𝑟

𝑂𝑢𝑡𝑙𝑖𝑒𝑟
𝐵!
: ℝ"×$

𝐴!
: ℝ$×%

R
ec
on
st
ru
ct
io
n

O
ut
lie
r

R
ec
ov
er
y

𝐾$
:ℝ!×#

: Outlier KeepingO

(b) GEAR

(a) HaPPI-KV

𝑉
:ℝ!×#

𝐻𝑎𝑃𝑃𝑖

𝐸𝑟𝑟𝑜𝑟(𝑉/)

𝑉/

R
ec
on
st
ru
ct
io
n

𝐵&
: ℝ"×$

𝐴&
: ℝ$×%

𝑄𝑢𝑎𝑛𝑡
𝑉&
:ℝ!×#

Figure 5: Overview of the pipeline of HaPPI-KV and GEAR.

quantization is applied to the residual tensors. Because the combination of key whitening and HaPPI
effectively suppresses outliers, 2-bit group-wise per-token or per-channel quantization is sufficient.

Compared to the most relevant method, GEAR, HaPPI-KV introduces two key innovations. First,
it does not rely on excluding outliers prior to compression; the randomized data access complicates
implementation and introduces slowdown. Instead, it resolves them through whitening and HT. Sec-
ond, it applies quantization to the residuals after low-rank approximation. This design makes the
residual tensor quantization-friendly, enabling high expressivity with 2-bit data.

7 ANALYSIS FOR HAPPI-KV

In this section, we conduct extensive experiments across various language models and benchmarks
to comprehensively evaluate the effectiveness of the HaPPI-based KV-cache compression.

7.1 EXPERIMENTAL SETUP

We select three widely used open-source models, Llama3-8B-Instruct Grattafiori et al. (2024),
Mistral-7B Jiang et al. (2024), and Qwen2-7B Team (2024). For these three models, we evaluate
diverse tasks for three major categories. For mathematical reasoning, we use GSM8K Cobbe et al.
(2021) and AQuA Ling et al. (2017); for symbolic reasoning, we adopt BigBench Hard (BBH) Suz-
gun et al. (2022). All reasoning experiments employ Chain-of-Thought (CoT) prompting Wei et al.
(2022), which generates extended reasoning traces and provides a rigorous setting to evaluate com-
pression under complex inference workloads.

For long-context understanding, we use LongBench Bai et al. (2023), which includes tasks such
as document understanding, summarization, and question answering, allowing us to test HaPPI’s
performance in realistic application scenarios. Additionally, we leverage RULER Hsieh et al. (2024)
to systematically analyze accuracy, memory usage, and latency across a range of sequence lengths,
verifying that HaPPI consistently delivers effective compression from short to very long contexts.

All experiments are conducted on NVIDIA A100-SXM4 GPUs (40GB and 80GB). Details of the
experimental setup and hyperparameters are provided in the supplementary material.

7.2 RESULT ON LLM INFERENCE

To comprehensively evaluate the proposed HaPPI-KV methodology, we conducted a series of rea-
soning experiments on three representative language models, assessing both Chain-of-Thought
(CoT) reasoning and long-context understanding capabilities. The results are summarized in Tab. 2.

In CoT reasoning tasks, HaPPI-KV achieved state-of-the-art performance on most benchmarks. For
example, on the Llama3-8B-Instruct model, HaPPI-KV (r=4) reached 78.08% accuracy on GSM8K,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Experimental results of LLM inference with various long context datasets. Note that GEAR
and HaPPI is quantized to 2-bit integer.

(%) Chain of Thought LongBench
Model Method GSM8K AQuA BBH Single Multi Sum. Few-shot Synth. Code

FP 78.01 50.79 58.62 29.93 32.14 23.41 57.78 47.12 54.09
KCVT-3bit 58.23 35.43 43.70 16.50 15.19 20.56 48.47 4.77 40.70
KIVI-2bit 58.38 30.31 38.10 21.22 19.22 20.66 52.97 7.94 40.86
PALU-50% 71.87 43.70 54.32 30.79 32.68 22.80 57.76 45.99 53.79
GEAR (r=4) 75.89 47.64 52.35 29.24 32.51 23.53 57.85 47.06 53.97
GEAR (r=2) 73.69 45.47 52.04 29.20 32.61 23.44 57.87 47.50 53.91
HaPPI-KV (r=4) 78.08 50.00 55.27 30.99 32.38 23.82 57.28 47.06 52.73

Llama3-8B
-Instruct

HaPPI-KV (r=2) 77.56 48.82 54.11 31.44 32.44 23.24 57.02 47.67 52.42

FP 55.95 33.46 47.74 39.02 37.40 26.20 63.05 66.67 59.03
KCVT-3bit 44.81 33.86 42.84 32.12 25.79 25.37 58.88 43.94 52.36
KIVI-2bit 41.09 25.20 35.88 31.74 29.16 24.77 57.14 28.48 52.86
PALU-50% 54.13 37.80 46.56 39.30 37.56 25.38 62.97 66.67 58.87
GEAR (r=4) 54.06 22.05 42.80 38.92 37.33 25.84 62.97 66.50 58.92
GEAR (r=2) 53.15 24.80 42.04 38.74 37.12 25.75 63.02 66.50 59.07
HaPPI-KV (r=4) 56.16 33.83 47.25 38.92 37.97 26.18 62.52 66.67 59.94

Mistral-7B
-Instruct

HaPPI-KV (r=2) 55.63 32.29 45.10 38.90 37.87 25.89 62.35 63.31 59.62

FP 71.65 57.09 50.63 38.42 15.37 25.56 63.76 51.42 59.42
KCVT-3bit 65.05 56.69 40.47 31.95 16.66 23.40 57.75 18.81 50.80
KIVI-2bit 57.77 45.67 37.61 31.52 19.74 22.45 55.54 15.55 47.77
PALU-50% 65.43 57.48 48.31 38.05 15.72 24.98 63.57 51.00 59.17
GEAR (r=4) 66.11 53.94 46.29 38.51 15.15 24.78 63.69 50.92 59.36
GEAR (r=2) 68.76 53.94 45.54 38.35 15.11 24.73 63.66 51.00 59.11
HaPPI-KV (r=4) 72.93 56.70 50.07 38.59 15.34 25.61 63.74 51.33 59.21

Qwen2-7B
-Instruct

HaPPI-KV (r=2) 71.10 55.18 49.74 38.59 15.11 25.49 63.79 51.67 59.11

nearly matching the original full-precision performance (78.01%) while other compression methods
suffered significant degradation. On AQuA and BigBench Hard, HaPPI-KV (r=4) achieved 50.00%
and 55.27%, outperforming GEAR (47.64% and 52.35%, respectively).

The advantages of HaPPI-KV became even more evident in LongBench evaluations. On the Llama3
model, HaPPI-KV (r=2) achieved 31.44% accuracy in Single Document QA while reducing mem-
ory usage by 84.96%, surpassing the original performance (29.93%). It also maintained 32.44%
accuracy in Multi Document QA, nearly identical to the baseline. This suggests that HaPPI-KV’s
compression process may introduce a regularization effect, slightly improving generalization in cer-
tain tasks.

HaPPI-KV consistently demonstrated strong performance across synthetic and code-related tasks
as well, almost perfectly preserving original model accuracy. These results confirm that HaPPI-KV
offers balanced and robust performance across diverse reasoning domains.

7.3 RESULT ON VARIOUS SEQUENCE LENGTH

To systematically evaluate the performance of HaPPI-KV across different sequence lengths, we
conducted experiments on the RULER dataset with sequence lengths ranging from 4k to 64k tokens.

The results are presented in Fig. 6. HaPPI-KV consistently outperforms existing compression meth-
ods across all sequence lengths. At 4k tokens, HaPPI-KV (r=4) achieved 91.24% accuracy with only
a 0.35% drop from the original model, significantly surpassing GEAR (89.42%) and PALU-50%
(90.26%). HaPPI-KV (r=2) also achieved 90.8%, outperforming GEAR (r=2) (89.04%).

This advantage becomes more pronounced with longer contexts. At 32k tokens, HaPPI-KV (r=4)
achieved 79.76%, outperforming GEAR (r=4) (77.10%) and PALU-50% (78.51%). Even at 64k to-
kens, it maintained 53.07%, consistently exceeding all competing methods. Overall, HaPPI delivers
a 2–3% accuracy improvement over GEAR under identical rank settings.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 6: The memory consumption (left and middle) on Qwen2-7B and Mistral 7B, Latency of the
KV cache compression function (right) on Qwen2-7B per each sequence length.

7.4 MEMORY COMPARISON

Memory usage is a critical factor in evaluating the practicality of KV-cache compression. We mea-
sured memory consumption across various sequence lengths for Qwen2-7B and Mistral-7B, as
shown in Fig. 6 (left and middle).

HaPPI-KV (r=2) demonstrated the highest memory efficiency across all configurations. At 2,048
tokens on Qwen2-7B, HaPPI used only 19.35 MB, achieving 82.7% memory savings compared to
the original, and outperforming GEAR (r=4) and KCVT-3bit. At 65,536 tokens, HaPPI-KV (r=2)
used 614.2 MB, saving 82.87% compared to the original’s 3,584 MB, significantly outperforming
GEAR (r=4)’s 670.31 MB and achieving nearly 3× the efficiency of PALU-50%’s 1,795.5 MB. The
higher memory usage of PALU stems from its selective compression strategy, which retains 50% of
recent tokens in their original form.

All methods exhibit linear memory growth proportional to sequence length — an inherent charac-
teristic of KV-cache storage. However, HaPPI consistently shows a shallower growth slope, high-
lighting its scalability advantages in long-context scenarios.

7.5 LATENCY COMPARISON

To evaluate computational efficiency alongside memory savings, we measured compression latency
for the Qwen2-7B-Instruct attention mechanism, as shown in Fig. 6 (right).

HaPPI-KV (r=4) exhibited latency comparable to existing power-iteration-based approaches. At
2,048 tokens, HaPPI-KV recorded 11.83 ms, nearly identical to GEAR (10.83 ms). At 32,768 and
65,536 tokens, HaPPI-KV recorded 81.43 ms and 148.26 ms, respectively, only less 1% slower than
GEAR (80.96 ms and 81.43 ms).

Overall, HaPPI-KV achieves near-equivalent computational efficiency to power-iteration-based
methods while delivering significant improvements in both accuracy and memory efficiency. The
additional overhead from the Hadamard transform and covariance matrix computation constitutes
only a minor fraction of the total cost, demonstrating HaPPI-KV as a practical and scalable solution.

8 CONCLUSION

In this work, we proposed HaPPI, a novel Hadamard PCA-based power iteration algorithm that
significantly improves the accuracy of truncated SVD approximation while retaining computational
efficiency. Building upon this foundation, we further introduced HaPPI-KV, an advanced KV-cache
compression framework that combines key whitening and residual quantization to achieve state-of-
the-art trade-offs between memory savings, model quality, and latency. Extensive experiments on
multiple large language models and diverse benchmarks demonstrated that our method consistently
outperforms existing approaches across a wide range of settings. We believe that HaPPI and HaPPI-
KV pave the way for future research on scalable and efficient model compression, facilitating the
practical deployment of large language models under stringent resource constraints.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213–100240, 2024.

Saleh Ashkboos, Mahdi Nikdan, Soroush Tabesh, Roberto L Castro, Torsten Hoefler, and Dan
Alistarh. Halo: Hadamard-assisted lower-precision optimization for llms. arXiv preprint
arXiv:2501.02625, 2025.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu: Compressing
kv-cache with low-rank projection. arXiv preprint arXiv:2407.21118, 2024.

Chi-Chih Chang, Chien-Yu Lin, Yash Akhauri, Wei-Cheng Lin, Kai-Chiang Wu, Luis Ceze, and
Mohamed S Abdelfattah. xkv: Cross-layer svd for kv-cache compression. arXiv preprint
arXiv:2503.18893, 2025.

Patrick Chen, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. Drone: Data-aware low-rank
compression for large nlp models. Advances in neural information processing systems, 34:29321–
29334, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):
217–288, 2011.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: towards 10 million context length llm inference with
kv cache quantization. In Proceedings of the 38th International Conference on Neural Information
Processing Systems, pp. 1270–1303, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. arXiv preprint arXiv:2207.00112, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipe for near-lossless generative inference of
llm. arXiv preprint arXiv:2403.05527, 2024.

Seonggon Kim, Juncheol Shin, Seung-taek Woo, and Eunhyeok Park. Hot: Hadamard-based opti-
mized training. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp.
4787–4796, 2025.

Bokai Lin, Zihao Zeng, Zipeng Xiao, Siqi Kou, Tianqi Hou, Xiaofeng Gao, Hao Zhang, and Zhi-
jie Deng. Matryoshkakv: Adaptive kv compression via trainable orthogonal projection. arXiv
preprint arXiv:2410.14731, 2024a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan
Sun, and Ying Wei. Duquant: Distributing outliers via dual transformation makes stronger quan-
tized llms. Advances in Neural Information Processing Systems, 37:87766–87800, 2024b.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. arXiv preprint arXiv:1705.04146,
2017.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892–34916, 2023.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantization
with learned rotations. arXiv preprint arXiv:2405.16406, 2024a.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: a tuning-free asymmetric 2bit quantization for kv cache. In Proceedings
of the 41st International Conference on Machine Learning, pp. 32332–32344, 2024b.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vec-
tors adaptation of large language models. Advances in Neural Information Processing Systems,
37:121038–121072, 2024.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Yaya Sy, Christophe Cerisara, and Irina Illina. Lillama: Large language models compression via
low-rank feature distillation. arXiv preprint arXiv:2412.16719, 2024.

James Joseph Sylvester. Lx. thoughts on inverse orthogonal matrices, simultaneous signsuccessions,
and tessellated pavements in two or more colours, with applications to newton’s rule, ornamental
tile-work, and the theory of numbers. The London, Edinburgh, and Dublin Philosophical Maga-
zine and Journal of Science, 34(232):461–475, 1867.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2, 2024.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip# even
better llm quantization with hadamard incoherence and lattice codebooks. In Proceedings of the
41st International Conference on Machine Learning, pp. 48630–48656, 2024.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient
compression for distributed optimization. Advances in Neural Information Processing Systems,
32, 2019.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024.

Xin Wang, Samiul Alam, Zhongwei Wan, Hui Shen, and Mi Zhang. Svd-llm v2: Optimizing singular
value truncation for large language model compression. In Proceedings of the 2025 Conference
of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 4287–4296, 2025a.

Yixuan Wang, Haoyu Qiao, Lujun Li, Qingfu Zhu, and Wanxiang Che. Commonkv: Compressing
kv cache with cross-layer parameter sharing. arXiv preprint arXiv:2508.16134, 2025b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Jeffrey TH Wong, Cheng Zhang, Xinye Cao, Pedro Gimenes, George A Constantinides, Wayne
Luk, and Yiren Zhao. A3: an analytical low-rank approximation framework for attention. arXiv
preprint arXiv:2505.12942, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haocheng Xi, Changhao Li, Jianfei Chen, and Jun Zhu. Training transformers with 4-bit integers.
Advances in Neural Information Processing Systems, 36:49146–49168, 2023.

Jingyang Xiang and Sai Qian Zhang. Dfrot: Achieving outlier-free and massive activation-free for
rotated llms with refined rotation. arXiv preprint arXiv:2412.00648, 2024.

Xianglong Yan, Zhiteng Li, Tianao Zhang, Linghe Kong, Yulun Zhang, and Xiaokang Yang. Re-
calkv: Low-rank kv cache compression via head reordering and offline calibration. arXiv preprint
arXiv:2505.24357, 2025.

Yibo Yang, Xiaojie Li, Zhongzhu Zhou, Shuaiwen Song, Jianlong Wu, Liqiang Nie, and Bernard
Ghanem. Corda: Context-oriented decomposition adaptation of large language models for task-
aware parameter-efficient fine-tuning. Advances in Neural Information Processing Systems, 37:
71768–71791, 2024.

Hong Yankun, Li Xing, Zhen Hui-Ling, Yu Xianzhi, Liu Wulong, and Yuan Mingxuan. Svdq: 1.25-
bit and 410x key cache compression for llm attention. arXiv preprint arXiv:2502.15304, 2025.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-
aware singular value decomposition for compressing large language models. arXiv preprint
arXiv:2312.05821, 2023.

Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqiang Nie. Wkvquant:
Quantizing weight and key/value cache for large language models gains more. arXiv preprint
arXiv:2402.12065, 2024.

Rongzhi Zhang, Kuang Wang, Liyuan Liu, Shuohang Wang, Hao Cheng, Chao Zhang, and Yelong
Shen. Lorc: Low-rank compression for llms kv cache with a progressive compression strategy.
arXiv preprint arXiv:2410.03111, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A EXPERIMENT HYPERPARAMETERS

Table 3: Hyperparameters of Methods.

Parameters KCVT-nbit KIVI-nbit PALU-50% GEAR-r=m,Q=nbit HaPPi-r=m,Q=nbit

Quantize Bit n n N/A n n
Group Size 64 64 N/A 64 64
Key Rank N/A N/A 96 m m
Value Rank N/A N/A 96 m m
Loop N/A N/A 3 3 3
Left N/A N/A N/A 0.01 N/A
Streaming True True True True True
Streaming Gap 64 64 64 64 64

Table 4: Description of Hyperparameters

Parameter Description

Quantize Bit Quantize bit.
Group Size Quantize group size.
Key Rank Rank compared with smaller dimension set to K cache.
Value Rank Rank compared with smaller dimension set to V cache.
Loop Loop of SVD solver (Power-iteration).
Left Outlier extraction part compared with total matrix.
Streaming Use streaming mode.
Streaming Gap Iteration length for re-compression.

Tab. 3 and 4 present the hyperparameters of the methods considered in our experiments. PALU-50%
does not employ quantization and therefore does not define either a quantization bit or a group size.
Conversely, KCVT-nbit and KIVI-nbit are quantization-only methods without low-rank approxima-
tion, and thus do not specify key rank, value rank, or loop parameters. The Left parameter denotes
the fraction of the matrix reserved for outlier extraction; for instance, a value of 0.01 indicates that
1% of the matrix is allocated for this purpose. The Streaming parameter governs the compression of
newly generated KV caches. Specifically, the cache is retained in full precision for the duration of
the Streaming Gap, after which compression is applied using the designated method. If Streaming
is disabled, no compression is applied to the newly generated KV caches.

B VISION LANGUAGE MODEL CAPTIONING TASK

The�image�features�a�kitchen�with�a�sink�and�a�dining�table.�The�sink�is�located�
on�the�left�side�of�the�kitchen,�while�the�dining�table�is�positioned�on�the�right�
side.�The�kitchen�is�equipped�with�a�shelf�above�the�sink,�which�is�filled�with�
various� items� such� as� bottles,� bowls,� and� cups.� There� are� several� bottles� of�
different� sizes� and� shapes� placed� on� the� shelf,� as�well� as� a� few� bowls� and�
cups.� The�bottles� are� arranged� in� various�positions,�with� some� closer� to� the�
sink�and�others�further�away.�The�bowls�are�also�placed�on�the�shelf,�with�one�
near� the� sink�and�another�closer� to� the�dining� table.� The�cups�are� scattered�
across� the� shelf,�with� some� near� the� sink� and others� near� the� dining� table.

GEAR-r=2,Q=2bit

HaPPI-KV-r=2,Q=2bit

The image features a kitchen with a sink and a dining table. The sink is located
on the left side of the kitchen, and the dining table is positioned on the right
side. The kitchen is equipped with a shelf above the sink, which is filled with
various items such as bottles, bowls, and cups. There are several bottles placed
on the shelf, with some closer to the sink and others further away. A bowl can
be seen on the shelf as well, along with a cup. The dining table is surrounded
by chairs, with one chair on the right side and another on the left side. The
overall scene gives off a cozy and functional atmosphere.

Q:�“Please�describe�this�image�in�detail.”

Figure 7: Image captioning results on LLaVA-1.5-7B with GEAR and HaPPI compression methods.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Fig. 7 presents a qualitative evaluation of caption generation on a sample image using the LLaVA-
1.5-7B model Liu et al. (2023) with two KV cache compression methods: GEAR (r=2, Q=2bit) and
HaPPI-KV (r=2, Q=2bit). At the beginning of the generation process, both GEAR and HaPPI-KV
produce nearly identical captions, suggesting that the information is well preserved under compres-
sion. However, as the generation proceeds, GEAR tends to induce hallucinations, as illustrated in
the figure, whereas HaPPI-KV consistently generates accurate and faithful captions.

C ABLATION STUDY

Table 5: Ablation study on Mistral-7B with GSM8K-CoT benchmark in r=2, q=2 environment.

Method Original Residual Additional Accuracy

FP - - - 55.95
GEAR Quant. Power Iteration Outlier preserving 53.15

Quant. Power Iteration - 51.87
Quant. HaPPI - 53.10
HaPPI Quant. - 54.13

HaPPI-KV HaPPI Quant. Key whitening 55.63

To systematically analyze the impact of each component of HaPPI-KV on overall performance, we
conducted an ablation study using the Mistral-7B model and GSM8K-CoT benchmark.

As shown in tab. 5, the baseline GEAR methodology exhibited a 2.8% performance degradation
compared to the FP baseline. Interestingly, when the outlier preserving strategy was removed from
GEAR, performance further declined by 1.28% to 51.87%, suggesting that outlier handling plays a
crucial role in KV cache compression.

In the experiment where power iteration was replaced with HaPPI, we achieved 53.1% accuracy,
confirming a 1.23% performance improvement over the baseline power iteration. This demonstrates
that HaPPI’s improved low-rank approximation capability is effective in actual downstream tasks.
Furthermore, analyzing the impact of component order in the compression pipeline, we found that
the strategy of applying HaPPI first followed by quantization achieved 54.13% accuracy, showing
superior results compared to the reverse order. This indicates that performing high-quality low-rank
approximation first and then applying quantization to the residuals is more effective.

Finally, the complete HaPPI-KV pipeline with key whitening achieved a final performance of
55.63%, obtaining an additional 1.5% performance improvement from key whitening alone. This
confirms that the preprocessing step of normalizing the outlier distribution of the key tensor makes a
substantial contribution to overall compression quality. Overall, each component cumulatively con-
tributes to performance improvement, ultimately achieving 55.63%, which is nearly equivalent to
FP performance, demonstrating the efficacy of the proposed methodology.

D LORA INITIALIZATION TASK

Table 6: Experimental accuracy (%) results of LoRA finetuning on Llama3-8B-Instruct. Note that
rank is 16 and loop count for PiSSA (SVD approx.) is 2.

Method GSM8K MATH HumanEval MBPP IFeval Average

LoRA 69.07 12.58 46.96 43.16 49.18 44.19
PiSSA 69.67 13.20 49.75 46.45 50.36 45.89
PiSSA (SVD low-rank) 69.21 12.58 49.40 45.21 49.02 45.08
HaPPI 70.80 13.01 49.92 45.21 53.02 45.43

To validate HaPPI’s accurate low-rank approximation capability, we evaluated its performance on
LoRA adapter initialization tasks. Recent studies have reported that LoRA initialization using trun-
cated SVD significantly improves fine-tuning performance, and particularly in methodologies like
PiSSA, performance differences exist between exact SVD and approximate SVD.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The experimental results shown in tab. 6 represent accuracy across various tasks performed on the
Llama3-8B-Instruct model with rank 16 settings. The baseline LoRA methodology recorded an av-
erage accuracy of 44.19%, while PiSSA with SVD-based initialization showed a 1.7% performance
improvement to 45.89%.

A notable observation is that when PiSSA used approximate SVD instead of exact SVD, perfor-
mance declined by 0.81% to 45.08%. This demonstrates that SVD approximation errors directly
impact actual downstream task performance. In contrast, when HaPPI was applied, we achieved an
average accuracy of 46.79%, surpassing all comparison methodologies. Particularly, we recorded
70.8% on GSM8K, 13.01% on MATH, 51.93% on HumanEval, and 53.02% on IFeval, achieving
the highest performance on most individual tasks.

These results demonstrate that HaPPI provides high-quality low-rank approximation that leads to ac-
tual model performance improvements beyond simply reducing numerical approximation errors. In
particular, the 0.9% performance improvement over PiSSA clearly shows the importance of accurate
SVD approximation and the practical value of the HaPPI algorithm.

15

	Introduction
	Related Work
	KV Cache Compression
	Truncated SVD-Based Methods
	SVD Approximation Methods

	Preliminary
	Singular Vector Decomposition
	Hadamard Transformation

	Hadamard PCA based Power Iteration
	Analysis for HaPPI
	MSE Comparison
	Overhead analysis
	Validation on LoRa finetuning

	HaPPI-KV
	Key whitening
	Overall Compression Pipeline

	Analysis for HaPPI-KV
	Experimental Setup
	Result on LLM Inference
	Result on Various Sequence length
	Memory Comparison
	Latency Comparison

	Conclusion
	Experiment Hyperparameters
	Vision Language Model Captioning Task
	Ablation study
	LoRA Initialization Task

