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ABSTRACT

Truncated Singular Value Decomposition (SVD) has recently attracted renewed
attention for its effectiveness in model optimizations, such as LoRA initializa-
tion and KV-cache compression. However, exact SVD remains computationally
expensive, while approximate methods like power iteration often introduce non-
negligible errors. In this paper, we present Hadamard PCA-based Power Itera-
tion (HaPPI), a new algorithm that significantly improves the accuracy of low-
rank approximation while retaining efficiency. Compared to prior methods, HaPPI
achieves the lowest approximation error at a practical computational cost. Build-
ing on this foundation, we further propose HaPPI-KV, which combines HaPPI
with key whitening and residual quantization to deliver high compression ratios
for key–value caches. By leveraging both the efficiency and precision of HaPPI,
HaPPI-KV achieves state-of-the-art trade-offs between memory efficiency and
model quality, highlighting the superiority of our approach.

1 INTRODUCTION

Truncated Singular Value Decomposition (SVD) has recently re-emerged as a powerful tool for
optimizing transformer-based models Wang et al. (2024; 2025a); Yuan et al. (2023); Hsu et al.
(2022); Wong et al. (2025); Chen et al. (2021); Sy et al. (2024). By representing data in compact
low-rank structures, it significantly reduces storage overhead and has long served as a cornerstone
of model compression and lightweight adaptation. Its practical utility is further demonstrated in
recent work: initializing LoRA adapters Meng et al. (2024); Yang et al. (2024) with SVD markedly
improves fine-tuning accuracy, while exploiting the inherent low rank of key and value matrices
enables highly effective KV-cache compression Yankun et al. (2025); Kang et al. (2024); Chang et al.
(2025; 2024); Zhang et al. (2024); Wang et al. (2025b); Yan et al. (2025); Lin et al. (2024a). Together,
these results underscore the growing importance of truncated SVD in modern optimization.

To advance the quality of low-rank approximation, we propose Hadamard PCA-based Power Itera-
tion (HaPPI), a novel algorithm that achieves precise truncated SVD approximations with practical
efficiency. HaPPI builds upon the classical power iteration, a widely used approximate technique, by
integrating Hadamard transformations and PCA-inspired initialization. Empirically, HaPPI achieves
the lowest per-tensor error among existing methods and recovers fine-tuning performance in LoRA
adapters even in scenarios where previous approaches fail due to significant approximation errors.

Figure 1: Accuracy across different sequence lengths on Qwen2-7B-Instruct using the RULER
dataset. Values in parentheses indicate the relative KV-cache size compared to the FP16 baseline.
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Going a step further, we propose HaPPI-KV, a novel method for KV-cache compression. HaPPI-KV
extends HaPPI with two additional techniques, key whitening and residual quantization, enabling
both rapid compression and state-of-the-art reconstruction quality under tight memory constraints.

In summary, our contributions are threefold: 1) We propose HaPPI, a fast and accurate algorithm for
truncated SVD approximation. 2) We provide comprehensive theoretical, quantitative, and empirical
validation of HaPPI, including its application to LoRA initialization. 3) We design HaPPI-KV, a
high-quality and efficient KV-cache compression technique that outperforms existing approaches.
We believe that HaPPI opens a new horizon for model optimization, with HaPPI-KV serving as a
compelling demonstration of its potential to advance KV-cache compression.

2 RELATED WORK

2.1 KV CACHE COMPRESSION

KV cache compression has been widely explored through two main approaches: quantization
and low-rank approximation. Quantization-based techniques, such as KIVI Liu et al. (2024b),
KVQuant Hooper et al. (2024), and WKVQuant Yue et al. (2024), reduce memory footprint by
representing each element with reduced precision. On the other hand, as KV caches are inherently
amenable to compression via low-rank structures, several methods leverage this property, including
GEAR Kang et al. (2024), PALU Chang et al. (2024), and SVDq Yankun et al. (2025).

Among these, we adopt GEAR as a strong baseline. It combines SVD with quantization, enabling
effective KV compression at low cost and without fine-tuning. Our proposed HaPPI-KV enables fast
on-demand KV cache compression, while achieving outstanding compression ratios.

2.2 TRUNCATED SVD-BASED METHODS

Beyond KV cache compression, truncated SVD plays a crucial role in various optimization tasks,
such as weight compression for inference (e.g., SVD-LLM Wang et al. (2024), SVD-LLMv2 Wang
et al. (2025a)) and LoRA initialization (e.g., PiSSA Meng et al. (2024), CorDA Yang et al. (2024)).
The accuracy of the low-rank approximation significantly influences the final performance of these
techniques. For instance, PiSSA reports that LoRA adapters initialized with a naive approximation
algorithm exhibit degraded quality after fine-tuning compared to those initialized using an exact
truncated SVD. The fast and precise approximation provided by HaPPI enhances the practicality of
such methods as well, as we will demonstrate in Section 5.3.

2.3 SVD APPROXIMATION METHODS

To make low-rank decomposition computationally affordable, many approximation techniques have
been proposed, typically based on randomized initialization Halko et al. (2011), power iteration Vo-
gels et al. (2019), or a combination of both. In this work, we present an improved power iteration al-
gorithm that introduces a novel initialization strategy leveraging the Hadamard transform and PCA.
This approach significantly reduces approximation error compared to existing methods, thereby ad-
vancing the accuracy–efficiency trade-off in SVD approximation.

3 PRELIMINARY

3.1 SINGULAR VECTOR DECOMPOSITION

SVD is a fundamental tool for low-rank approximation, where any matrix A ∈ Rm×n can be decom-
posed as A = USV T with U ∈ Rm×m and V ∈ Rn×n orthonormal, and S = diag(s) ∈ Rm×n

containing singular values in descending order. If the top r singular values dominate, A can be
approximated by Ar = U[:,1:r]S1:r,1:rV

T
[:,1:r], with the error given by ∥A−Ar∥2F =

∑min(m,n)
i=r+1 s2i .

In many recent studies, the idea of truncated SVD has been widely adopted, requiring only the top r
singular components. However, applying the exact SVD incurs a computational cost of O(mn2), as
the entire decomposition must be computed before extracting the relevant components.
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Algorithm 1 Power Iteration (Kang et al.
(2024))

Require: Matrix A ∈ Rm×n, Rank r, Loop L
Ensure: Vector P ∈ Rn×r , Q ∈ Rm×r

1: Initialize P with random distribution.
2: Initialize Q with random distribution.
3: for l = 0 to L− 1 do
4: if l = L− 1 then
5: [P,∼]← QR(P)
6: end if
7: Q← AP
8: if l = L− 1 then
9: [Q,∼]← QR(Q)

10: end if
11: P← ATQ
12: end for
13: return P,Q

Algorithm 2 HaPPI (Ours)

Require: Matrix A ∈ Rm×n, Rank r, Loop L
Ensure: Vector P ∈ Rn×r , Q ∈ Rm×r

1: AH ← AH
2: CH ← AH

TAH

3: P, ← PowerIter(CH, r,min(2, L))
4: for l = 0 to L− 1 do
5: if l = L− 1 then
6: [P,∼]← QR(P)
7: end if
8: Q← AHP
9: if l = L− 1 then

10: [Q,∼]← QR(Q)
11: end if
12: P← AH

TQ
13: end for
14: return H−1P,Q

Figure 2: MSE per loop counts of various low-rank approximation methods. K, V state (left, center)
is 10th layer of Llama3-8B-Instruct. Note that PCA-only is HaPPI without Hadamard Transforma-
tion, and a number next of each method represents GFLOPs.

3.2 HADAMARD TRANSFORMATION

Many recent studies Xi et al. (2023); Lin et al. (2024b); Tseng et al. (2024); Kim et al. (2025);
Ashkboos et al. (2024); Liu et al. (2024a); Ashkboos et al. (2025); Xiang & Zhang (2024) empir-
ically demonstrated that HT is highly beneficial to mitigate the influence of activation outliers by
transforming the data into frequency domain. From a similar perspective, our method also adopt the
Hadamard Transform ( Sylvester (1867), HT) as a core building block of HaPPI.

HT is a discrete Fourier-like transform that linearly projects a vector into the frequency domain.
Given an n-dimensional vector v ∈ R2d , its frequency-domain representation ṽ ∈ R2d is obtained
by multiplying it with the Walsh–Hadamard matrix Hd as ṽ = Hd · v. Here, the Walsh–Hadamard
matrix Hd is defined recursively as:

H1 = 1√
2

[
1 1
1 −1

]
, Hn = H1 ⊗Hn−1, (1)

where ⊗ denotes the Kronecker product, and Hd is a 2d×2d orthogonal matrix satisfying HdH
T
d =

HT
d Hd = I . This orthogonality guarantees the lossless reconstruction of the transformed vector.

4 HADAMARD PCA BASED POWER ITERATION

Efficient low-rank approximation is a critical prerequisite for practical model compression; how-
ever, despite extensive research efforts, existing approaches fail to achieve sufficient accuracy under
tight computational budgets. A widely used baseline is PyTorch’s svd lowrank, which employs ran-
domized SVD Halko et al. (2011) to generate an initial estimate and optionally refines the result via
block power iteration. While this approach achieves relatively low approximation error, it suffers
from considerable computational cost and elevated latency. Another notable approach is the power-
iteration-based method introduced in PowerSGD Vogels et al. (2019), later adopted by GEAR for
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Figure 3: MSE comparison per layers of Llama3-8B-Instruct with GSM8K datasets.

efficient KV-cache compression. As summarized in alg. 1, this method is designed to rapidly decom-
pose the input matrix, but it also exhibits significant approximation errors. Although these methods
approximate SVD at substantially lower cost compared to exact decomposition, they exhibit signif-
icant residual error even after numerous iterations, as shown in Fig. 2. Such errors often propagate
to downstream tasks, resulting in non-negligible quality degradation.

To address this gap, we propose Hadamard PCA-based Power Iteration (HaPPI), a novel algo-
rithm specifically designed to deliver high-quality low-rank approximations with minimal overhead,
thereby substantially improving the effectiveness of truncated SVD–based compression pipelines.
Alg. 2 presents our proposed HaPPI. While following the general iterative structure of alg. 1, HaPPI
introduces two key modifications: (i) an improved initialization procedure (lines 1–2) and (ii) an
enhanced final reconstruction stage (line 14). The central ideas are as follows. First, we apply a
Hadamard transform to the input tensor prior to decomposition. This transformation projects the
tensor into the frequency domain, thereby mitigating the influence of outliers and improving robust-
ness to compression-induced errors, an essential property for transformer tensor compression.

Second, rather than initializing with random vectors, HaPPI computes the covariance matrix of the
Hadamard-transformed tensor AH and uses its decomposed singular vectors as initialization. These
left singular vectors can be interpreted as a linear transformation that aligns the original data with
the top-r principal axes. While the resulting vectors do not exactly match those of AH due to the
approximate nature of power iteration, they provide an effective starting point that accelerates con-
vergence. After iterative refinement, the resulting singular vectors are mapped back to the original
space by multiplying with the inverse Hadamard transform.

5 ANALYSIS FOR HAPPI

To demonstrate the superiority of HaPPI, we provide diverse experimental results.

5.1 MSE COMPARISON

First, we conducted a series of Mean Squared Error (MSE) comparisons across different low-rank
approximation methods (Fig. 2). The evaluation used real K and V tensors extracted from the 11th at-
tention head of the Llama3-8B-Instruct model Grattafiori et al. (2024) on the GSM8K dataset Cobbe
et al. (2021), along with a random tensor of identical shape (802 × 128) to assess generalization un-
der a rank-2 approximation. Additionally, Fig. 3 presents layer-wise MSE results across all 32 layers
of the model. We compared five approaches: (1) Full SVD (torch.svd), representing the theoretically
most accurate baseline; (2) SVD low-rank (torch.svd lowrank), a memory-efficient approximation
variant; (3) power iteration proposed in GEAR (4) PCA-only, which uses principal vectors of the
covariance matrix without HT; and (5) HaPPI, the proposed scheme.

As illustrated in Fig. 2, HaPPI achieves approximation results that are consistently closer to the
ground-truth SVD solution compared to prior methods. While GEAR’s power iteration exhibits
the lowest per-iteration computational overhead, its error remains stagnant even with additional
iterations. In contrast, HaPPI not only converges more rapidly to a lower error level than svd lowrank
but also achieves substantially improved final accuracy in tensor approximation.
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(a) Original (b) After whitening & HT (c) Residual

Figure 4: 3D plot of K state of layers.0.attention of Llama3-8B-Instruct.

For the key tensor, having large outliers, HaPPI achieves significantly lower MSE, clearly demon-
strating the effectiveness of Hadamard-enhanced PCA initialization. For the random tensor, HaPPI
achieves MSE nearly identical to that of full SVD, indicating that its high approximation accuracy
generalizes beyond specific data distributions. Most notably, the layer-wise analysis confirms that
HaPPI achieves the lowest MSE across all 32 layers, with its performance curve almost overlapping
those of Full SVD and SVD low-rank as HaPPI delivers outputs remarkably close to the optimum.

5.2 OVERHEAD ANALYSIS

In this section, we analyze the computational overhead of HaPPI in terms of FLOPs, with the results
summarized in Fig. 2. Experiments were conducted using a tensor of size (1, 8, 2048, 128), simu-
lating the scenario of processing a sequence of 2048 tokens in Llama3-8B. The number of iterations
for all methods except SVD was fixed at two. As shown in the figure, HaPPI requires 0.35 GFLOPs,
which is slightly higher than GEAR’s power iteration (0.12 GFLOPs) but significantly lower than
SVD low-rank (0.66 GFLOPs) and full SVD (1.24 GFLOPs).

This additional cost primarily arises from two sources: HT and the covariance matrix computa-
tion. HT introduces minimal overhead using the Fast Walsh–Hadamard Transform, while the pri-
mary computational cost comes from computing the covariance matrix CH = AT

HAH , which ac-
counts for most of the additional 0.23 GFLOPs. However, as shown by the latency measurements
in Fig. 6, despite the FLOPs difference, HaPPI’s overall compression time is less expensive than
torch.svd lowrank, close to the latency of power iteration.

5.3 VALIDATION ON LORA FINETUNING

Method Accuracy
LoRA 44.19
PiSSA 45.89
PiSSA (SVD low-rank) 45.08
HaPPI 45.43

Table 1: Average accuracy of
LLM finetuning tasks. Refer
to appendix for the full table.

Recent studies have reported that initializing LoRA adapters with
truncated SVD leads to improved accuracy. A representative exam-
ple is PiSSA Meng et al. (2024), which further demonstrates that a
noticeable quality degradation arises between exact SVD and its ap-
proximation using torch.svd lowrank. Building on this, we applied
HaPPI within the PiSSA pipeline and observed that most of the ac-
curacy degradation caused by approximate SVD was effectively re-
covered (Tab. 1). This result indicates that the proposed HaPPI al-
gorithm not only reduces numerical error but also provides accurate
low-rank approximations that translate into tangible improvements.

6 HAPPI-KV

Building on the proposed HaPPI algorithm, we introduce HaPPI-KV, a KV-cache compression tech-
nique that realizes the motivation behind prior work and achieves high compression ratio. HaPPI-KV
is composed of two key components: key whitening and residual quantization.

6.1 KEY WHITENING

In the KV-cache compression process, the key tensor exhibits a distinctive distribution character-
ized by extreme outliers (Fig. 4 (a)). These outliers degrade the quality of low-rank approximation,
making it essential to mitigate their imbalance before compression.
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To address this issue and improve the compressibility of the key tensor, we propose a key whitening
strategy designed to suppress the adverse effects of outliers. Whitening is a preprocessing step that
transforms the covariance structure of data into an identity matrix, normalizing all dimensions to
have equal variance. Previous studies Wang et al. (2024; 2025a) have applied whitening for input
activation during weight compression. Our approach extends this concept to the key tensor and lever-
ages the efficiency of HaPPI to realize truncated SVD at practical cost, enabling a new lightweight
compression method that minimizes outlier-induced errors.

During KV-cache compression, both the key and value tensors are perturbed. To minimize the error
introduced in the attention mechanism, it is crucial that the compressed key produces outputs as
close as possible to those produced by the original key when computing attention scores for a given
query. This objective can be formulated as minimizing the difference between QKT and QK ′T ,
where Q,K ∈ Rl×d represent the query and key tensor, l, d mean sequence length and hidden
dimension, respectively, and K ′ for the compressed Key.

Instead of directly compressing the key tensor with HaPPI, we introduce a whitening matrix S to
alleviate channel-wise outliers. With whitening, the target optimization objective becomes:

min
(∥∥QKT −QS HaPPI(S−1K ′T )

∥∥
F

)
(2)

Achieving ideal whitening requires the transformed key tensor to have unit covariance, i.e.,
(S−1KT )(S−1KT )T = I , which leads to the condition KTK = SST . Applying SVD to KTK
yields KTK = US2UT , where U and S are the left singular vectors and singular values, respec-
tively. This implies that S = US, indicating that normalization can be achieved by projecting the key
tensor along its principal axes. This whitening step effectively suppresses the influence of outliers
while preserving the essential structural information of the key tensor.

Algorithm 3 HaPPI with Key whitening

Require: Key K ∈ Rl×d, Rank r1, r2, Loop L
Ensure: Compressed Key K′ ∈ Rl×d

1: C← KTK
2: PC, ← HaPPI(C, r1,min(2, L))
3: KC ← KPC

4: P,Q← HaPPI(KC, r2, L)
5: K′

C ← QPT

6: K′ ← K′
CPT

C

7: return K′

However, performing full SVD is impractical for
compressing KV caches, which are generated dy-
namically during inference. To address this, we pro-
pose a new algorithm that retains the same theoret-
ical foundation but operates at practical computa-
tional cost (alg. 3). The key idea is to approximate
the principal eigenvectors of the covariance matrix
KTK instead of computing a full SVD. We use a
rank r1 larger than the final compression rank r2
used in HaPPI (empirically, r1 = 4r2 yields the best
performance).

The extracted principal components PC are then
used to transform the original matrix K. HaPPI is then applied in this transformed space to per-
form low-rank approximation. In the reconstruction phase, the compressed result is mapped back
to the original space by multiplying with PT

C . This process mitigates outlier-induced degradation
while preserving the original data scale and structure. From an implementation perspective, both
PCA whitening and HaPPI require covariance matrix computation, which can lead to redundant op-
erations. To avoid this inefficiency, we first compute the covariance matrix C and then apply the
Hadamard transform to obtain CH . This approach reduces computational overhead by reusing C.

Experimental results demonstrate that the proposed PCA whitening strategy effectively addresses
the uneven variance of the key tensor and significantly enhances HaPPI’s compression performance.
As shown in Fig. 4 (b) and (c), the residual tensor after whitening exhibits a far more uniform and
compression-friendly distribution, which directly translates to improved final compression quality.

6.2 OVERALL COMPRESSION PIPELINE

Fig. 5 illustrates the overall compression pipeline of HaPPI-KV. The core idea is to integrate low-
rank approximation with residual quantization for maximum compression efficiency. First, key
whitening is applied to the key tensor to mitigate the impact of outliers, while the value tensor
exhibits a relatively uniform distribution and therefore does not require whitening.

Next, HaPPI-based low-rank approximation is performed on both key and value tensors. The decom-
posed results are stored, denoted as Ak, Bk for the key and Av , Bv for the value. Subsequently, KIVI
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Figure 5: Overview of the pipeline of HaPPI-KV and GEAR.

quantization is applied to the residual tensors. Because the combination of key whitening and HaPPI
effectively suppresses outliers, 2-bit group-wise per-token or per-channel quantization is sufficient.

Compared to the most relevant method, GEAR, HaPPI-KV introduces two key innovations. First,
it does not rely on excluding outliers prior to compression; the randomized data access complicates
implementation and introduces slowdown. Instead, it resolves them through whitening and HT. Sec-
ond, it applies quantization to the residuals after low-rank approximation. This design makes the
residual tensor quantization-friendly, enabling high expressivity with 2-bit data.

7 ANALYSIS FOR HAPPI-KV

In this section, we conduct extensive experiments across various language models and benchmarks
to comprehensively evaluate the effectiveness of the HaPPI-based KV-cache compression.

7.1 EXPERIMENTAL SETUP

We select three widely used open-source models, Llama3-8B-Instruct Grattafiori et al. (2024),
Mistral-7B Jiang et al. (2024), and Qwen2-7B Team (2024). For these three models, we evaluate
diverse tasks for three major categories. For mathematical reasoning, we use GSM8K Cobbe et al.
(2021) and AQuA Ling et al. (2017); for symbolic reasoning, we adopt BigBench Hard (BBH) Suz-
gun et al. (2022). All reasoning experiments employ Chain-of-Thought (CoT) prompting Wei et al.
(2022), which generates extended reasoning traces and provides a rigorous setting to evaluate com-
pression under complex inference workloads.

For long-context understanding, we use LongBench Bai et al. (2023), which includes tasks such
as document understanding, summarization, and question answering, allowing us to test HaPPI’s
performance in realistic application scenarios. Additionally, we leverage RULER Hsieh et al. (2024)
to systematically analyze accuracy, memory usage, and latency across a range of sequence lengths,
verifying that HaPPI consistently delivers effective compression from short to very long contexts.

All experiments are conducted on NVIDIA A100-SXM4 GPUs (40GB and 80GB). Details of the
experimental setup and hyperparameters are provided in the supplementary material.

7.2 RESULT ON LLM INFERENCE

To comprehensively evaluate the proposed HaPPI-KV methodology, we conducted a series of rea-
soning experiments on three representative language models, assessing both Chain-of-Thought
(CoT) reasoning and long-context understanding capabilities. The results are summarized in Tab. 2.

In CoT reasoning tasks, HaPPI-KV achieved state-of-the-art performance on most benchmarks. For
example, on the Llama3-8B-Instruct model, HaPPI-KV (r=4) reached 78.08% accuracy on GSM8K,
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Table 2: Experimental results of LLM inference with various long context datasets. Note that GEAR
and HaPPI is quantized to 2-bit integer.

(%) Chain of Thought LongBench
Model Method GSM8K AQuA BBH Single Multi Sum. Few-shot Synth. Code

FP 78.01 50.79 58.62 29.93 32.14 23.41 57.78 47.12 54.09
KCVT-3bit 58.23 35.43 43.70 16.50 15.19 20.56 48.47 4.77 40.70
KIVI-2bit 58.38 30.31 38.10 21.22 19.22 20.66 52.97 7.94 40.86
PALU-50% 71.87 43.70 54.32 30.79 32.68 22.80 57.76 45.99 53.79
GEAR (r=4) 75.89 47.64 52.35 29.24 32.51 23.53 57.85 47.06 53.97
GEAR (r=2) 73.69 45.47 52.04 29.20 32.61 23.44 57.87 47.50 53.91
HaPPI-KV (r=4) 78.08 50.00 55.27 30.99 32.38 23.82 57.28 47.06 52.73

Llama3-8B
-Instruct

HaPPI-KV (r=2) 77.56 48.82 54.11 31.44 32.44 23.24 57.02 47.67 52.42

FP 55.95 33.46 47.74 39.02 37.40 26.20 63.05 66.67 59.03
KCVT-3bit 44.81 33.86 42.84 32.12 25.79 25.37 58.88 43.94 52.36
KIVI-2bit 41.09 25.20 35.88 31.74 29.16 24.77 57.14 28.48 52.86
PALU-50% 54.13 37.80 46.56 39.30 37.56 25.38 62.97 66.67 58.87
GEAR (r=4) 54.06 22.05 42.80 38.92 37.33 25.84 62.97 66.50 58.92
GEAR (r=2) 53.15 24.80 42.04 38.74 37.12 25.75 63.02 66.50 59.07
HaPPI-KV (r=4) 56.16 33.83 47.25 38.92 37.97 26.18 62.52 66.67 59.94

Mistral-7B
-Instruct

HaPPI-KV (r=2) 55.63 32.29 45.10 38.90 37.87 25.89 62.35 63.31 59.62

FP 71.65 57.09 50.63 38.42 15.37 25.56 63.76 51.42 59.42
KCVT-3bit 65.05 56.69 40.47 31.95 16.66 23.40 57.75 18.81 50.80
KIVI-2bit 57.77 45.67 37.61 31.52 19.74 22.45 55.54 15.55 47.77
PALU-50% 65.43 57.48 48.31 38.05 15.72 24.98 63.57 51.00 59.17
GEAR (r=4) 66.11 53.94 46.29 38.51 15.15 24.78 63.69 50.92 59.36
GEAR (r=2) 68.76 53.94 45.54 38.35 15.11 24.73 63.66 51.00 59.11
HaPPI-KV (r=4) 72.93 56.70 50.07 38.59 15.34 25.61 63.74 51.33 59.21

Qwen2-7B
-Instruct

HaPPI-KV (r=2) 71.10 55.18 49.74 38.59 15.11 25.49 63.79 51.67 59.11

nearly matching the original full-precision performance (78.01%) while other compression methods
suffered significant degradation. On AQuA and BigBench Hard, HaPPI-KV (r=4) achieved 50.00%
and 55.27%, outperforming GEAR (47.64% and 52.35%, respectively).

The advantages of HaPPI-KV became even more evident in LongBench evaluations. On the Llama3
model, HaPPI-KV (r=2) achieved 31.44% accuracy in Single Document QA while reducing mem-
ory usage by 84.96%, surpassing the original performance (29.93%). It also maintained 32.44%
accuracy in Multi Document QA, nearly identical to the baseline. This suggests that HaPPI-KV’s
compression process may introduce a regularization effect, slightly improving generalization in cer-
tain tasks.

HaPPI-KV consistently demonstrated strong performance across synthetic and code-related tasks
as well, almost perfectly preserving original model accuracy. These results confirm that HaPPI-KV
offers balanced and robust performance across diverse reasoning domains.

7.3 RESULT ON VARIOUS SEQUENCE LENGTH

To systematically evaluate the performance of HaPPI-KV across different sequence lengths, we
conducted experiments on the RULER dataset with sequence lengths ranging from 4k to 64k tokens.

The results are presented in Fig. 6. HaPPI-KV consistently outperforms existing compression meth-
ods across all sequence lengths. At 4k tokens, HaPPI-KV (r=4) achieved 91.24% accuracy with only
a 0.35% drop from the original model, significantly surpassing GEAR (89.42%) and PALU-50%
(90.26%). HaPPI-KV (r=2) also achieved 90.8%, outperforming GEAR (r=2) (89.04%).

This advantage becomes more pronounced with longer contexts. At 32k tokens, HaPPI-KV (r=4)
achieved 79.76%, outperforming GEAR (r=4) (77.10%) and PALU-50% (78.51%). Even at 64k to-
kens, it maintained 53.07%, consistently exceeding all competing methods. Overall, HaPPI delivers
a 2–3% accuracy improvement over GEAR under identical rank settings.

8
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Figure 6: The memory consumption (left and middle) on Qwen2-7B and Mistral 7B, Latency of the
KV cache compression function (right) on Qwen2-7B per each sequence length.

7.4 MEMORY COMPARISON

Memory usage is a critical factor in evaluating the practicality of KV-cache compression. We mea-
sured memory consumption across various sequence lengths for Qwen2-7B and Mistral-7B, as
shown in Fig. 6 (left and middle).

HaPPI-KV (r=2) demonstrated the highest memory efficiency across all configurations. At 2,048
tokens on Qwen2-7B, HaPPI used only 19.35 MB, achieving 82.7% memory savings compared to
the original, and outperforming GEAR (r=4) and KCVT-3bit. At 65,536 tokens, HaPPI-KV (r=2)
used 614.2 MB, saving 82.87% compared to the original’s 3,584 MB, significantly outperforming
GEAR (r=4)’s 670.31 MB and achieving nearly 3× the efficiency of PALU-50%’s 1,795.5 MB. The
higher memory usage of PALU stems from its selective compression strategy, which retains 50% of
recent tokens in their original form.

All methods exhibit linear memory growth proportional to sequence length — an inherent charac-
teristic of KV-cache storage. However, HaPPI consistently shows a shallower growth slope, high-
lighting its scalability advantages in long-context scenarios.

7.5 LATENCY COMPARISON

To evaluate computational efficiency alongside memory savings, we measured compression latency
for the Qwen2-7B-Instruct attention mechanism, as shown in Fig. 6 (right).

HaPPI-KV (r=4) exhibited latency comparable to existing power-iteration-based approaches. At
2,048 tokens, HaPPI-KV recorded 11.83 ms, nearly identical to GEAR (10.83 ms). At 32,768 and
65,536 tokens, HaPPI-KV recorded 81.43 ms and 148.26 ms, respectively, only less 1% slower than
GEAR (80.96 ms and 81.43 ms).

Overall, HaPPI-KV achieves near-equivalent computational efficiency to power-iteration-based
methods while delivering significant improvements in both accuracy and memory efficiency. The
additional overhead from the Hadamard transform and covariance matrix computation constitutes
only a minor fraction of the total cost, demonstrating HaPPI-KV as a practical and scalable solution.

8 CONCLUSION

In this work, we proposed HaPPI, a novel Hadamard PCA-based power iteration algorithm that
significantly improves the accuracy of truncated SVD approximation while retaining computational
efficiency. Building upon this foundation, we further introduced HaPPI-KV, an advanced KV-cache
compression framework that combines key whitening and residual quantization to achieve state-of-
the-art trade-offs between memory savings, model quality, and latency. Extensive experiments on
multiple large language models and diverse benchmarks demonstrated that our method consistently
outperforms existing approaches across a wide range of settings. We believe that HaPPI and HaPPI-
KV pave the way for future research on scalable and efficient model compression, facilitating the
practical deployment of large language models under stringent resource constraints.

9
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APPENDIX

A EXPERIMENT HYPERPARAMETERS

Table 3: Hyperparameters of Methods.

Parameters KCVT-nbit KIVI-nbit PALU-50% GEAR-r=m,Q=nbit HaPPi-r=m,Q=nbit

Quantize Bit n n N/A n n
Group Size 64 64 N/A 64 64
Key Rank N/A N/A 96 m m
Value Rank N/A N/A 96 m m
Loop N/A N/A 3 3 3
Left N/A N/A N/A 0.01 N/A
Streaming True True True True True
Streaming Gap 64 64 64 64 64

Table 4: Description of Hyperparameters

Parameter Description

Quantize Bit Quantize bit.
Group Size Quantize group size.
Key Rank Rank compared with smaller dimension set to K cache.
Value Rank Rank compared with smaller dimension set to V cache.
Loop Loop of SVD solver (Power-iteration).
Left Outlier extraction part compared with total matrix.
Streaming Use streaming mode.
Streaming Gap Iteration length for re-compression.

Tab. 3 and 4 present the hyperparameters of the methods considered in our experiments. PALU-50%
does not employ quantization and therefore does not define either a quantization bit or a group size.
Conversely, KCVT-nbit and KIVI-nbit are quantization-only methods without low-rank approxima-
tion, and thus do not specify key rank, value rank, or loop parameters. The Left parameter denotes
the fraction of the matrix reserved for outlier extraction; for instance, a value of 0.01 indicates that
1% of the matrix is allocated for this purpose. The Streaming parameter governs the compression of
newly generated KV caches. Specifically, the cache is retained in full precision for the duration of
the Streaming Gap, after which compression is applied using the designated method. If Streaming
is disabled, no compression is applied to the newly generated KV caches.

B VISION LANGUAGE MODEL CAPTIONING TASK

The�image�features�a�kitchen�with�a�sink�and�a�dining�table.�The�sink�is�located�
on�the�left�side�of�the�kitchen,�while�the�dining�table�is�positioned�on�the�right�
side.�The�kitchen�is�equipped�with�a�shelf�above�the�sink,�which�is�filled�with�
various� items� such� as� bottles,� bowls,� and� cups.� There� are� several� bottles� of�
different� sizes� and� shapes� placed� on� the� shelf,� as�well� as� a� few� bowls� and�
cups.� The�bottles� are� arranged� in� various�positions,�with� some� closer� to� the�
sink�and�others�further�away.�The�bowls�are�also�placed�on�the�shelf,�with�one�
near� the� sink�and�another�closer� to� the�dining� table.� The�cups�are� scattered�
across� the� shelf,�with� some� near� the� sink� and others� near� the� dining� table.

GEAR-r=2,Q=2bit

HaPPI-KV-r=2,Q=2bit

The image features a kitchen with a sink and a dining table. The sink is located
on the left side of the kitchen, and the dining table is positioned on the right
side. The kitchen is equipped with a shelf above the sink, which is filled with
various items such as bottles, bowls, and cups. There are several bottles placed
on the shelf, with some closer to the sink and others further away. A bowl can
be seen on the shelf as well, along with a cup. The dining table is surrounded
by chairs, with one chair on the right side and another on the left side. The
overall scene gives off a cozy and functional atmosphere.

Q:�“Please�describe�this�image�in�detail.”

Figure 7: Image captioning results on LLaVA-1.5-7B with GEAR and HaPPI compression methods.
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Fig. 7 presents a qualitative evaluation of caption generation on a sample image using the LLaVA-
1.5-7B model Liu et al. (2023) with two KV cache compression methods: GEAR (r=2, Q=2bit) and
HaPPI-KV (r=2, Q=2bit). At the beginning of the generation process, both GEAR and HaPPI-KV
produce nearly identical captions, suggesting that the information is well preserved under compres-
sion. However, as the generation proceeds, GEAR tends to induce hallucinations, as illustrated in
the figure, whereas HaPPI-KV consistently generates accurate and faithful captions.

C ABLATION STUDY

Table 5: Ablation study on Mistral-7B with GSM8K-CoT benchmark in r=2, q=2 environment.

Method Original Residual Additional Accuracy

FP - - - 55.95
GEAR Quant. Power Iteration Outlier preserving 53.15

Quant. Power Iteration - 51.87
Quant. HaPPI - 53.10
HaPPI Quant. - 54.13

HaPPI-KV HaPPI Quant. Key whitening 55.63

To systematically analyze the impact of each component of HaPPI-KV on overall performance, we
conducted an ablation study using the Mistral-7B model and GSM8K-CoT benchmark.

As shown in tab. 5, the baseline GEAR methodology exhibited a 2.8% performance degradation
compared to the FP baseline. Interestingly, when the outlier preserving strategy was removed from
GEAR, performance further declined by 1.28% to 51.87%, suggesting that outlier handling plays a
crucial role in KV cache compression.

In the experiment where power iteration was replaced with HaPPI, we achieved 53.1% accuracy,
confirming a 1.23% performance improvement over the baseline power iteration. This demonstrates
that HaPPI’s improved low-rank approximation capability is effective in actual downstream tasks.
Furthermore, analyzing the impact of component order in the compression pipeline, we found that
the strategy of applying HaPPI first followed by quantization achieved 54.13% accuracy, showing
superior results compared to the reverse order. This indicates that performing high-quality low-rank
approximation first and then applying quantization to the residuals is more effective.

Finally, the complete HaPPI-KV pipeline with key whitening achieved a final performance of
55.63%, obtaining an additional 1.5% performance improvement from key whitening alone. This
confirms that the preprocessing step of normalizing the outlier distribution of the key tensor makes a
substantial contribution to overall compression quality. Overall, each component cumulatively con-
tributes to performance improvement, ultimately achieving 55.63%, which is nearly equivalent to
FP performance, demonstrating the efficacy of the proposed methodology.

D LORA INITIALIZATION TASK

Table 6: Experimental accuracy (%) results of LoRA finetuning on Llama3-8B-Instruct. Note that
rank is 16 and loop count for PiSSA (SVD approx.) is 2.

Method GSM8K MATH HumanEval MBPP IFeval Average

LoRA 69.07 12.58 46.96 43.16 49.18 44.19
PiSSA 69.67 13.20 49.75 46.45 50.36 45.89
PiSSA (SVD low-rank) 69.21 12.58 49.40 45.21 49.02 45.08
HaPPI 70.80 13.01 49.92 45.21 53.02 45.43

To validate HaPPI’s accurate low-rank approximation capability, we evaluated its performance on
LoRA adapter initialization tasks. Recent studies have reported that LoRA initialization using trun-
cated SVD significantly improves fine-tuning performance, and particularly in methodologies like
PiSSA, performance differences exist between exact SVD and approximate SVD.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The experimental results shown in tab. 6 represent accuracy across various tasks performed on the
Llama3-8B-Instruct model with rank 16 settings. The baseline LoRA methodology recorded an av-
erage accuracy of 44.19%, while PiSSA with SVD-based initialization showed a 1.7% performance
improvement to 45.89%.

A notable observation is that when PiSSA used approximate SVD instead of exact SVD, perfor-
mance declined by 0.81% to 45.08%. This demonstrates that SVD approximation errors directly
impact actual downstream task performance. In contrast, when HaPPI was applied, we achieved an
average accuracy of 46.79%, surpassing all comparison methodologies. Particularly, we recorded
70.8% on GSM8K, 13.01% on MATH, 51.93% on HumanEval, and 53.02% on IFeval, achieving
the highest performance on most individual tasks.

These results demonstrate that HaPPI provides high-quality low-rank approximation that leads to ac-
tual model performance improvements beyond simply reducing numerical approximation errors. In
particular, the 0.9% performance improvement over PiSSA clearly shows the importance of accurate
SVD approximation and the practical value of the HaPPI algorithm.
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