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ABSTRACT

In the real world, a learning-enabled system usually undergoes multiple cycles of
model development to enhance the system’s ability to handle difficult or emerging
tasks, which involve collecting new data, training a new model and validating
the model. This continual model development process raises a significant issue
that the model development for acquiring new or improving existing capabilities
may inadvertently lose capabilities of the old model, also known as catastrophic
forgetting. Existing continual learning studies focus on mitigating catastrophic
forgetting by trading off performance on previous tasks and new tasks to ensure
good average performance. However, they are inadequate for many applications
especially in safety-critical domains, as failure to strictly preserve the good perfor-
mance of the old model on some tasks not only introduces risks and uncertainties
but also imposes substantial expenses in the re-improving and re-validation of
existing properties. To address this issue, we introduce model developmental
safety as a guarantee of a learning system such that in the model development
process the new model should strictly retain the existing protected capabilities of
the old model while improving its performance on target tasks. To ensure the model
developmental safety, we present a retention-centric framework by formulating
the model developmental safety as data-dependent constraints. Under this frame-
work, we study how to develop a pretrained vision-language model, specifically
the CLIP model, for acquiring new capabilities or improving existing capabilities
of image classification. We propose an efficient constrained optimization algo-
rithm with theoretical guarantee and use its insights to finetune a CLIP model
with task-dependent heads for promoting the model developmental safety. Our
experiments on improving vision perception capabilities on autonomous driving
and scene recognition datasets demonstrate the efficacy of the proposed approach.

1 INTRODUCTION

Learning-enabled systems are rapidly transforming various sectors, with applications in autonomous
vehicles, medical diagnosis, and financial prediction. These systems often rely on ML models that are
trained on vast amounts of data. However, the inherent complexity of the environments in which these
systems operate often presents critical challenges, e.g., dealing with corner cases and rare scenarios
that deviate from the norm. Additionally, real-world scenarios continuously evolve, presenting new
challenges and requiring the system to adapt. These necessitate an iterative development process
where models are constantly refined and improved based on new data. Continuously updating the
model has become a norm especially in the era of large foundation models, e.g., ChatGPT has
experienced several cycles of development from GPT3.5 to GPT4 and GPT4o and recent GPTo1.

However, this iterative model development process raises a significant issue, i.e., the model develop-
ment for improving the existing capabilities or acquiring new capabilities may inadvertently lose the
previously acquired capabilities of the old model. This issue has been widely observed and docu-
mented as catastrophic forgetting when models are trained to learn a sequence of contents (McCloskey
& Cohen, 1989). Tremendous studies have been conducted to mitigate the forgetting problem in
continual learning literature (Zhou et al., 2022; Rolnick et al., 2019; Shin et al., 2017; Li & Hoiem,
2016; Kirkpatrick et al., 2017). However, these works primarily focus on mitigating the catastrophic
forgetting problem, by trading off performance on previous tasks and new tasks to have good av-
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Figure 1: Performance of recog-
nizing 6 weather conditions for au-
tonomous driving with two rounds
of model development using new
data. The Round 1 development tar-
gets at overcast and Round 2 aims
to improve recognizing foggy. Base
refers to the CLIP model finetuned
on BDD100K data.
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erage performance (Wang et al., 2024), but do not strictly retain existing abilities (i.e., ensuring
zero forgetting) while learning new tasks. Ensuring zero forgetting is crucial for many applications
especially in safety-critical domains, as failure to ensure strict preservation of the model’s original
capabilities not only introduces safety risks and uncertainties but also imposes substantial expenses
in the re-improving and re-validation of existing measures, such as in autonomous driving, where
validation and verification are challenging and could cost billions of dollar (Rajabli et al., 2020;
Koopman & Wagner, 2016; Company, 2023). This presents a significant challenge for iterative model
development process.

To address this challenge, this paper formally introduces model developmental safety (MDS) as a
guarantee of a learning system such that in the model development process the new model should
strictly retain the existing protected capabilities of the old model while improving its performance on
target tasks. This concept subtly differs from trading off performance between previous tasks and new
tasks to have good average performance of existing continual learning approaches. Moreover, MDS
cannot be achieved by the naive weighting method that optimizes a weighted loss via combining
the losses of protected tasks and target tasks and tuning the weight to preserve existing protected
capabilities. This approach does not necessarily preserve the performance of the model on all
protected tasks even if the weight is large enough, as shown in Table 3, and will yield no improvement
on target tasks if the weight is too large. A better algorithm is required to enable an efficient search of
a model that not only retains the performance on protected tasks but also improves the performance
on target tasks. To the best of our knowledge, no such algorithm currently exists.

This paper aims to address this critical gap by introducing a novel retention-centric framework to
ensure MDS. We propose to formulate the MDS as data-dependent constraints, which offers statistical
guarantee for strict preservation of performance for all protected tasks. With this framework, we
explore developing a pretrained CLIP model for acquiring new capabilities or improving existing ones
in image classification. We propose an efficient constrained optimization algorithm with theoretical
guarantee. With insights from theoretical analysis, we finetune the CLIP model with task-dependent
heads to facilitate MDS. Finally, we demonstrate the efficacy of our approach through experiments on
enhancing vision-based perception capabilities in autonomous driving dataset and scene recognition
dataset, highlighting the practical importance of MDS in real-world scenarios. Our contributions are
summarized below:

• We introduce a retention-centric framework by formulating the MDS as data-dependent constraints,
which offer statistical guarantee for strictly preserving performance for every protected task.

• We propose an efficient constrained optimization algorithm with theoretical guarantee to develop a
pretrained vision-language model for acquiring new capabilities or improving existing capabilities
of image classification.

• We conduct comprehensive experiments to study the proposed algorithm and compare our approach
with existing baselines to demonstrate its effectiveness. An experimental result for ensuring MDS
in improving vision-based perception capabilities of autonomous driving is shown in Figure 1.

2 RELATED WORK

Continual learning. This work is closely related to Continual learning (CL), also known as lifelong
learning, yet it exhibits nuanced differences. Continual learning usually refers to learning a sequence
of tasks one by one and accumulating knowledge like human instead of substituting knowledge (Wang
et al., 2024; Qu et al., 2021). There is a vast literature of CL of deep neural networks (DNNs) (Aljundi
et al., 2018; Lopez-Paz & Ranzato, 2017a; Farajtabar et al., 2019; Lee et al., 2017; Guo et al.,
2020; Parisi et al., 2018). The core issue in CL is known as catastrophic forgetting (McCloskey &
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Cohen, 1989), i.e., the learning of the later tasks may significantly degrade the performance of the
model for the earlier tasks. Different approaches have been investigated to mitigate catastrophic
forgetting, including regularization-based approaches (Castro et al., 2018; Kirkpatrick et al., 2017;
Zenke et al., 2017; Li & Hoiem, 2016), expansion-based approaches (Zhou et al., 2022; Li et al.,
2019; Rusu et al., 2016; van de Ven et al., 2020), and memory-based approaches (Rolnick et al.,
2019; Cha et al., 2021; Guo et al., 2020; Lopez-Paz & Ranzato, 2017a; Chaudhry et al., 2019).
In the era of large language models(LLMs), another type of continual learning method, known as
knowledge/representation editing(Meng et al., 2022; Zou et al., 2023; Luo et al., 2024; Huang et al.,
2024; Liu et al., 2024), emerges to efficiently modify the behavior of LLMs with minimal impact on
unrelated inputs (Wang et al., 2023b), such as to update stale facts, eliminate unintended biases, or
reduce undesired hallucinations.

The framework proposed in this work is similar to conventional memory-based approaches in the
sense that both use examples of existing tasks to regulate learning. However, the key difference
is that most existing continual learning focuses on the trade-off between learning plasticity and
memory stability and aims to find a proper balance between performance on previous tasks and new
tasks (Wang et al., 2024). Hence, they do not provide a guarantee for MDS. A recent work (Peng
et al., 2023) has proposed an ideal continual learner that never forgets by assuming that all tasks
share the same optimal solution. However, it is not practical and not implementable for deep learning
problems. Besides, existing continual learning studies usually highlight resource efficiency when
accumulating knowledge by reducing the number of samples of previous tasks. In contrast, this work
tends to utilize more examples to construct constraints for protected tasks to facilitate MDS.

Constrained Learning. Our work is also related to constrained learning. While most traditional
constrained optimization works focus on convex objectives or convex constraints, the research interest
recently has been directed to non-convex optimization (Boob et al., 2023; Facchinei et al., 2021; Li
et al., 2024; Chamon et al., 2022; Alacaoglu & Wright, 2024), due to its increasing importance in
modern machine learning problems, such as in applications concerned with fairness (Cotter et al.,
2019), robustness (Robey et al., 2021), and safety (Paternain et al., 2019b) problems. Nevertheless,
none of existing algorithms can be directly applied to our large-scale deep learning problem (4),
due to either prohibitive running cost or failure to handle biased stochastic gradients caused by
compositional structure. We include more discussion in Appendix B.

3 NOTATIONS AND PRELIMINARIES

Notations. We consider developing a model w to improve its capabilities on a target task To while
preserving its performance on a set of protected tasks denoted by T1, . . . ,Tm. A task can be as
simple as predicting a class for multi-class classification or as complicated as coding ability of LLMs.
In the paper, we focus on classification using CLIP models and each task refers to one class. For
example, we can consider tasks of predicting different weather conditions in autonomous driving,
e.g., foggy, overcast, cloudy, clear, rainy, etc. We assume that each task is associated with a data
distribution denoted by Dk. Let (x, y) ∼ Dk denote random data of task Tk with input x ∈ X (e.g.,
an image) and output y ∈ Y (e.g., its class label). We assume that each protected task has a set
of examples denoted by Dk = {(xi, yi)}nk

i=1, sampled from Dk. Let ℓk(w,x, y) = ℓk(s(x;w), y)
denote a loss function that measures the loss of the model’s prediction s(x;w) with respect to the
groundtruth y for task k. For classification, the loss could be zero-one loss ℓ0−1 that measures the
classification error or the cross-entropy loss ℓce that is differentiable for learning. We will define
these losses shortly for using CLIP models. We denote by Lk(w,Dk) = Ex,y∼Dk

ℓk(w,x, y) as the
expected loss, and by L(w,Dk) =

1
nk

∑
(xi,yi)∼Dk

ℓk(w,xi, yi) as the empirical loss for task k.

The CLIP model and Contrastive Loss. The contrastive loss has been successfully applied to
learning the CLIP model (Radford et al., 2021a), which has exhibited remarkable performance for
classifying images. We consider optimizing a two-way contrastive loss for each image-text pair
(xi, ti) following Yuan et al. (2022):

Lctr(w;xi, ti, T −
i , I−

i ) :=− τ log
exp(E1(w,xi)

⊤E2(w, ti)/τ)∑
tj∈T −

i
exp(E1(w,xi)⊤E2(w, tj)/τ)

(1)

− τ log
exp(E2(w, ti)

⊤E1(w,xi)/τ)∑
xj∈I−

i
exp(E2(w, ti)⊤E1(w,xj)/τ)

,
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where E1(w,x) and E2(w, t) denotes a (normalized) encoded representation of a image x, and a
text t, respectively, T −

i denotes the set of all texts to be contrasted with respect to (w.r.t) xi (including
itself) and I−

i denotes the set of all images to be contrasted w.r.t ti (including itself).

To utilize a CLIP model for multi-class classification with classes C = {c1, . . . , cK}, we will convert
a class ck, e.g., "rainy", into a text description of ck, denoted by t̂k, e.g., "the weather is rainy", similar
to the zero-shot classification scheme of the well-known CLIP model (Radford et al., 2021a). Hence,
a prediction score (i.e., a logit) for an image x and a text description t̂k of class ck is calculated by
sk(x;w) = E1(w,x)

⊤E2(w, t̂k). The predicted class label is given by ŷ = argmaxck∈C sk(x;w).
Hence, given the true class y ∈ C, the zero-one loss is given by ℓ0,1(w,x, y) = I(ŷ ̸= y), and
the cross-entropy loss is given by ℓce(w,x, y) = − log

exp(sy(x;w)/τ0)∑K
ℓ=1 exp(sl(x;w)/τ0)

, where τ0 > 0 is a
temperature parameter that controls the balance between the approximation error of the zero-one loss
and the smoothness of the function. In particular, a smaller τ0 gives a smaller approximation error
and a larger τ0 indicates a smaller gradient Lipschitz constant of the loss function in terms of logits.

4 A RETENTION-CENTRIC FRAMEWORK

4.1 MODEL DEVELOPMENTAL SAFETY

To measure the model developmental safety, it is necessary to evaluate how the performance of the
model changes in protected tasks from the old model wold to a new model wnew. We introduce the
formal definition of model developmental safety (MDS) in Definition 1, which ensures the new model
strictly preserves performance on each individual protected task.

Definition 1 (Model Developmental Safety (MDS)) In model development process, the model
developmental safety is satisfied if Lk(wnew,Dk) ≤ Lk(wold,Dk),∀k ∈ {1, . . . ,m} , where
Lk(w,Dk) = Ex,y∼Dk

ℓk(w,x, y).

In practice, the developmental safety will be measured using a set of examples Sj ∼ Dj for each
protected task. Hence, we define the empirical developmental safety metric, corresponding to
Definition 1, for evaluation:

DevSafety = min
k∈{1,··· ,m}

(Lk(wold,Sk)− Lk(wnew,Sk)) . (2)

When we use the zero-one loss ℓ0−1 in the above definitions, we refer to the above developmental
safety metric as DevSafety(acc).

4.2 A RETENTION-CENTRIC APPROACH FOR MODEL DEVELOPMENTAL SAFETY

The key to our retention-centric framework is to utilize examples of protected tasks to define empirical
retention constraints when updating the model on a target task. In order to develop the model for
improving the performance on a target task To, we assume that a set of data D for To is constructed
and a proper objective is given based on application, denoted by F (w,D). Then, our retention-centric
approach for model development is imposed by solving the following problem:

wnew = argmin
w

F (w,D)

s.t. Lk(w,Dk)− Lk(wold,Dk) ≤ 0, k = 1, · · · ,m.
(3)

We will propose an algorithm to directly solve this data-dependent constrained optimization problem
with a contrastive objective in the context of developing a CLIP model in next section.

Generalization Analysis. Since we can only use empirical data D1, . . . ,Dm in (3), there exist
generalization errors between the retention constraints in (3) and the MDS we want to ensure
in Definition 1. The lemma below uses a standard tool of statistical error analysis to bound the
generalization error of retention. For simplicity, we assume each protected task is associated with
the same loss function, namely, ℓk = ℓ for k = 1, . . . ,m. In the analysis, we use the Rademacher
complexity of the loss class H = {ℓ(w, ·, ·) : X × Y → [0, 1]|w ∈ Rd} induced by the model w
on n data points, which is denoted by Rn(H). We assume that Rn(H) ≤ Cn−α for some C ≥ 0
and α ≤ 0.5. We note that α = 0.5 in the vast majority of model and loss families, including linear
models (Kakade et al., 2008), deep neural networks (Bartlett & Mendelson, 2002), and model families
with bounded VC dimension (Bartlett & Mendelson, 2002).
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Lemma 1 (Generalization Error of Rentention) Suppose that Rn(H) ≤ Cn−α for some C ≥ 0
and α ≤ 0.5. Then, with probability at least 1− δ, it holds that

Lk(wnew,Dk)− Lk(wold,Dk) ≤ Lk(wnew,Dk)− Lk(wold,Dk) +
4C

nαk
+ 2

√
ln(2m/δ)

2nk
,∀k.

Remark: The lemma indicates that as long as the empirical retention constraints are satisfied, i.e.,
Lk(wnew,Dk) − Lk(wold,Dk) ≤ 0, the model developmental safety is ensured up to a statistical
error in the order of O(n−α), where n = mink nk. Hence, the more examples used to construct the
constraints, the more likely the new model meets MDS requirement. The proof is given in C.1.

5 RETENTION-CENTRIC DEVELOPMENT OF CLIP MODELS

Based on the proposed framework above, in this section, we present an efficient algorithm for
improving a pretrained CLIP model on a target task while ensuring MDS on a set of protected tasks.
The CLIP model is of particular interest because (i) it is a foundation model that has been used
extensively in many applications; and (ii) can adapt to the open-world for handling new classes using
languages. However, existing studies have shown that directly applying a pretrained CLIP model
(e.g., OpenAI’s CLIP model) to a certain downstream application yields varying performance across
different classes (Parashar et al., 2024). Rare concepts (e.g., foggy) usually has worse performance
than frequent concepts (e.g., clear), making it necessary to continuously update.

Suppose a CLIP model wold has been trained. We aim to improve it for a target task To (e.g.,
classifying foggy). To this end, we collect a set of image-text pairs related to the target task, denoted
by D = {(xi, ti)}no

i=1. As labeled data for rare scenarios (e.g., foggy) are usually limited in practice,
we consider augmenting the dataset D by using a query prompt to search for target-related image-text
pairs from the internet (detailed in Appendix A.2). For each image-text pair, a set of negative texts
has been collected to be contrasted w.r.t. xi, which together with ti form T −

i , and a set of negative
images has been also collected to be contrasted w.r.t. ti, which together with xi form I−

i .

To develop the CLIP model in our retention-centric framework, we instantiate (3) as:

min
w

F (w,D) :=
1

no

∑
(xi,ti)∈D

Lctr(w;xi, ti, T −
i , I−

i )

s.t. hk(w) := Lk(w,Dk)− Lk(wold,Dk) ≤ 0, k = 1, · · · ,m.
(4)

5.1 EFFICIENT OPTIMIZATION AND CONVERGENCE ANALYSIS

The optimization problem in (4) is challenging for multiple reasons. First, this problem involves a
non-convex objective and non-convex constraints, so finding a global optimal solution is intractable
in general. Second, the objective and constraint functions are formulated using a large dataset, so we
need to sample from the dataset in order to construct stochastic gradients of the functions to update
the solution. Lastly, (4) may contain a large number of constraints, so updating the solutions using
the gradients of all constraints may be prohibited. Given these challenges, we need to develop a
stochastic optimization for (4) based on advanced techniques and constraint sampling.

Our method is motivated by the stochastic quadratic penalty method in (Alacaoglu & Wright, 2024),
which first converts (4) into an unconstrained problem by adding a quadratic penalty on the constraints
violation to the objective function and then solves the unconstrained problem using a variance-reduced
stochastic gradient method. Unfortunately, their method can not be directly applied to (4) because (i)
they only consider equality constraints while (4) involves inequality constraints and (ii) they require
an unbiased stochastic gradients for each update while the stochastic gradients for (4) will be biased
due to the compositional structure. Note that an augmented Lagrangian algorithm (ALA) is also
studied by Alacaoglu & Wright (2024), which has the same issue as their penalty method. We only
consider quadratic penalty method for (4) because it has the same complexity as the ALA but is more
intuitive and easier to implement.

A quadratic penalty method converts (4) into the following unconstrained problem:

min
w

Φ(w) := F (w,D) +
1

m

∑m

k=1

β

2
([hk(w)]+)

2 (5)

where [·]+ = max{·, 0} and β ≥ 0 is the penalty parameter. Under mild conditions(Bertsekas, 2014),
a large enough β will ensure the optimal solution to (5) is also an optimal solution to (4). In the
following, we introduce an efficient stochastic algorithm to solve (5). It is notable that both terms are
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of finite-sum coupled compositional structure (Wang & Yang, 2022), i.e.,
∑

i f(gi(w)), where f is
non-linear.

We discuss how to approximate the gradient of two terms of the objective using mini-batch samples
below. Define g1i(w) = 1

|T −
i |

∑
tj∈T −

i
exp

(
E1(w,xi)

⊤E2(w, tj)− E1(w,xi)
⊤E2(w, ti)/τ

)
and g2i(w) = 1

|I−
i |

∑
xj∈I−

i
exp

(
E2(w, ti)

⊤E1(w,xj)− E2(w, ti)
⊤E1(w,xi)/τ

)
. Then,

F (w,D) = 1
no

∑
(xi,ti)∈D τ log g1i(w) + τ log g2i(w) and its gradient is given by

∇F (w,D) =
τ

no

∑
(xi,ti)∈D

(
∇g1i(w)

g1i(w)
+

∇g2i(w)

g2i(w)

)
.

The major cost of computing ∇F (w;D) lies on calculating g1i(w) and g2i(w) and their gradient
for each pair, as it involves all the samples in T −

i and I−
i . Directly approximating g1i and g2i by

a mini-batch of samples from T −
i and I−

i will reduce the computational cost but lead to a biased
stochastic gradient of ∇F (w,D) due to the non-linear dependence of ∇F (w;D) on g1i and g2i,
which will cause the issue of requiring a large batch size in order to converge.

To address this issue, we employ the moving average estimators for estimating g1i and g2i which
gradually reduces the aforementioned biases to zero (Yuan et al., 2022). More specifically, let wt

be the solution at iteration t. We randomly sample a mini batch B ⊂ D, and construct mini-batch
negatives B1,i ⊂ T −

i , B2,i ⊂ I−
i for each data (xi, ti) ∈ B and construct the following stochastic

estimations of g1i(wt) and g2i(wt):

ĝ1i(w
t) :=

1

|B1,i|
∑

tj∈B1,i

exp((E1(w,xi)
⊤E2(w, tj)− E1(w,xi)

⊤E2(w, ti))/τ)

ĝ2i(w
t) :=

1

|B2,i|
∑

xj∈B2,i

exp((E2(w, ti)
⊤E1(w,xj)− E2(w, ti)

⊤E1(w,xi))/τ).

The moving averaging estimators of g1i (wt) and g2i (wt) denoted by ut1i and ut2i are updated by:
ut+1
1i = (1− γ1)u

t
1i + γ1ĝ1i

(
wt
)
, ut+1

2i = (1− γ1)u
t
2i + γ1ĝ2i

(
wt
)
, (6)

where γ1 ∈ (0, 1) is a hyper-parameter. The gradient estimator of F (wt,D) is computed by

Gt
1 =

τ

|B|
∑

i∈B

(
∇ĝ1i

(
wt
)
/ut1i +∇ĝ2i

(
wt
)
/ut2i

)
. (7)

The gradient of the quadratic penalized term at wt can be approximated similarly by

Gt
2 =

1

|Bc|
∑

k∈Bc

β[utk]+∇ĥk(wt), (8)

where Bc denotes a sampled subset of protected tasks, ĥk(wt) denotes a mini-batch estimator of
hk(w

t) using mini-batch Bk ⊂ Dk, and utk is the moving average estimator of hk(wt) computed by

ut+1
k = (1− γ2)u

t
k + γ2ĥk(w

t), ĥk(w
t) =

1

|Bk|
∑

j∈Bk

ℓce(w,xj , yj)− ℓce(wold,xj , yj).

(9)
We emphasize that the gradient estimator in (8) related to the protected tasks, where each protected
task has an effective weight β[utk]+ that is dynamically changing in the learning process, is the key
difference from the native weighting method mentioned at the beginning.

The key steps are presented in Algorithm 1. For analysis, we make the following assumptions.

Assumption 1 (a) g1(·) and g2(·) are Lg-Lipschitz continuous and L∇g-smooth. (b) There exist
Cg > 0 and cg > 0 such that cg ≤ min{g1(·), g2(·)} and max{g1(·), g2(·)} ≤ Cg. (c) hk(·) is
Lh-Lipschitz continuous and L∇h-smooth for k = 1, · · · ,m.

Assumption 2 There exists w0 such that hk(w0) ≤ 0 for k = 1, · · · ,m.

Assumption 3 (a) E[∥ĝ1i(w) − g1i(w)∥2] ≤ σ2
g/|B1i|, E[∥ĝ2i(w) − g2i(w)∥2] ≤ σ2

g/|B2i|;
(b) E[∥∇ĝ1(w) − ∇g1i(w)∥2] ≤ σ2

∇g/|B1i|, E[∥∇ĝ2i(w) − ∇g2i(w)∥2] ≤ σ2
∇g/|B2i|; (c)

E[∥∇ĥk(w)−∇hk(w)∥2] ≤ σ2
∇h/|Bk|; (d) E[∥ĥk(w)− hk(w)∥2] ≤ σ2

h/|Bk| for k = 1, · · · ,m.

Assumption 4 There exists a constant δ > 0 such that ∥∇h(wt)[h(wt)]+∥ ≥ δ∥[h(wt)]+∥ for
t = 0, · · · , T , where h(w) = [h1(w), . . . , hm(w)]⊤ and ∇h(w) = [∇h1(w), . . . ,∇hm(w)].

Remark: Assumption 1 has been justified in the earlier work (Yuan et al., 2022; Qiu et al., 2023) for
optimizing a global contrastive loss. Assumption 2 is easily satisfied with w0 = wold. Assumption 3
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Algorithm 1 Algorithm for solving (4)

1: Initialization: choose w0, β, γ1, γ2, θ and step sizes η.
2: for t = 0, 1, · · · , T − 1 do
3: Sample image-text pairs B from D and protected tasks Bc from {1, · · · ,m}.
4: for each (xi, ti) ∈ B do
5: Update ut1i and ut2i by Eqn. (6)
6: end for
7: Update the estimator of gradient ∇F (wt,D) by Gt

1 as in Eqn. (7)
8: for each k ∈ Bc do
9: Sample a minibatch of data from Dk denoted by Bk.

10: Update the estimators of hk by Eqn. (9).
11: end for
12: Compute the stochastic gradient estimator Gt

2 as in Eqn. (8)
13: Update Gradient Estimator vt+1 = (1− θ)vt + θ(Gt

1 +Gt
2)

14: Update w by wt+1 = wt − ηvt+1.
15: end for

is a standard one that bounds the variance of mini-batch estimators. Assumption 4 is also made in
many existing works on optimization with non-convex constraints (Sahin et al., 2019; Xie & Wright,
2021; Alacaoglu & Wright, 2024; Lin et al., 2022; Li et al., 2024). This assumption is equivalent to
that the quadratic penalty term H(w) := β

2m∥[h(w)]+∥2 satisfies the Polyak-Lojasiewicz inequality

at w = wt, meaning that there exists δ ≥ 0 such that ∥∇H(wt)∥2 ≥ 2δ2β
m H(wt). Without this

assumption, (4) may be intractable because there may exist an iterate wt such that H(wt) > 0 but
∇H(wt) = 0, meaning that wt is infeasible but at a flat location of H(w) so wt may get trapped at
this location forever. We will show later that a small δ in Assumption 4 will increase the complexity
of our algorithm. Hence, we will present an approach in next subsection to increase δ.

For a non-convex optimization problem like (4), finding a globally optimal solution is intractable, so
almost all numerical algorithms for non-convex problems can only guarantee a Karush-Kuhn-Tucker
(KKT) solution defined below.

Definition 2 A solution w is a KKT solution to (4) if there exist λ = (λ1, . . . , λm)⊤ ∈ Rm
+ such

that ∇F (w,D) +∇h(w)λ = 0, h(w) ≤ 0 and λkhk(w) = 0 for k = 1, . . . ,m.

We present the convergence theorem of Algorithm 1 as follows, which shows the iteration complexity
of Algorithm 1 for finding an ϵ-KKT solution, i.e., a solution satisfying the three conditions in
Definition 2 up to ϵ precision. The proof of the theorem is presented in Appendix C.3.

Theorem 1 Suppose Assumptions 1, 2, 3 and 4 hold. Also, suppose, in Algorithm 1, set β = 1
ϵδ ,

θ = min{ ϵ4δ2 min{|Bc|,|Bk|}
672(σ2

∇h+L2
h)

, ϵ
2 min{|B|,|B1i|,|B2i|}
1344L2

f (σ
2
∇g+L2

g)
}, γ1 = γ2 = min{ 5n0θ

3|B| ,
5mθ
3|Bc| ,

ϵ4δ2|Bk|
26880σ2

hC̃
2
∇h

} and

η = min
{

1
12(LF+βLH) ,

θ
8
√
3LF

, θ
8
√
3LHβ

, γ1|B|
40

√
6LgLf C̃∇gn0

, γ2|Bc|
40

√
6βLhC̃∇hm

}
, where C̃∇g := σ∇g +

Lg , C̃∇h := σ∇h+Lh, Lf := τ
cg

, L∇f := τ
c2g

, LF := 2(L∇gLf +L∇fL
2
g) and LH := 2L∇h+L

2
h.

Then there exists λ ∈ Rm
+ such that after T = O(ϵ−7δ−3) iterations Algorithm 1 satisfies

E
[
∥∇F (wt̂,D) +∇h(wt̂)λ∥

]
≤ ϵ, E[∥[h(wt̂)]+∥] ≤ ϵ, E[λ⊤[h(wt̂)]+] ≤ ϵ

where t̂ selected uniformly at random from {1, · · · , T}.

Remark: It is notable that the order of complexity in terms of ϵ is higher than that of standard
learning (i.e., O(ϵ−4)). While the complexity for a stochastic constrained optimization could be
inherently higher than unconstrained optimization (Alacaoglu & Wright, 2024), we note that the
above complexity is also weaker than the state-of-the-art complexity of stochastic constrained
optimization (Alacaoglu & Wright, 2024). We remark that this is a limitation of the present work
due to two reasons: (i) we use the moving average gradient estimator for sake of implementation;
in contrast, they use the advanced variance reduced gradient estimator (STORM), which incurs
additional overhead; (ii) we use a constant β and they use an increasing β. In our experiments shown
in ablation studies, we find that using a constant β is generally better than using an increasing β.
Additionally, the dependence on δ could also slow down the convergence. We mitigate this issue by
utilizing task-dependent heads for CLIP models justified below.
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5.2 PROMOTING DEVELOPMENTAL SAFETY VIA TASK-DEPENDENT HEADS

Below, we present a way to design the text encoder of the CLIP model such that the value of δ
could be larger. Without causing confusion, we denote by w the parameter of the text encoder,
which consists of two components u and W such that the text embedding E2(w, t) ∈ Rd2 can
be represented as E2(w, t) = W · Ē2(u, t), where Ē2(u, ·) ∈ Rd1 is a backbone encoder while
W ∈ Rd2×d1 is called the head. The idea of task-dependent heads is to let each task k have
its own head Wk = W + UkV

⊤
k using low rank matrices Uk ∈ Rd2×r and Vk ∈ Rd1×r, where

r < min(d1, d2) is the rank chosen as a hyper-parameter. The output of this class-specific text encoder
for task k is E2(u,W,Uk, Vk, tk) = (W +UkV

⊤
k ) · Ē2(u, tk). Note that ∥∇h(wt)⊤[h(wt)]+∥2 ≥

λmin(∇h(wt)⊤∇h(wt))∥[h(wt)]+∥2, where λmin(·) represents the smallest eigenvalue of a matrix.
This means mint λmin(∇h(wt)⊤∇h(wt)) is a lower bound of δ in Assumption 4. The following
lemma shows that, after expanding w with Uk and Vk, λmin(∇h(wt)⊤∇h(wt)) may increase at
some Uk and Vk, providing some insight on why the task-dependent heads help to increase the
parameter δ in Assumption 4, reducing the total complexity of our algorithm according to Theorem 1.
Lemma 2 Let U = (U1, . . . , Um) and V = (V1, . . . , Vm). Let w = (W,u), ŵ = (W,u,U,V),
hk(w) = hk(W,u), and ĥk(ŵ) = hk(W + UkV

⊤
k ,u). Suppose UkV

⊤
k = 0 for all k’s. We have

λmin

(
∇ĥ(ŵ)⊤∇ĥ(ŵ)

)
≥ λmin

(
∇h(w)⊤∇h(w)

)
+min

k

{
∥∇Whk(w)Vk∥2F ,

∥∥∥∇Whk(w)⊤Uk

∥∥∥2
F

}
,

where ĥ(ŵ) = [ĥ1(ŵ), . . . , ĥm(ŵ)]⊤ and ∇ĥ(ŵ) = [∇ĥ1(ŵ), . . . ,∇ĥm(ŵ)].

Following this lemma, in our experiments, we employ the task-dependent heads by setting the initial
value of Uk to zero so UkV

⊤
k = 0. The proof of the above lemma is given in Appendix C.2

6 EXPERIMENTS

In this section, we conduct extensive experiments to understand our proposed method, including
an overview of how our approach works, performance comparison with other strong baselines and
potential of our method in multi-round model development. Detailed ablation studies about design
choices are included in Appendix A.6.

Dataset. We experiment on the large-scale diverse driving image dataset, namely BDD100K (Seita,
2018). This dataset involves classification of six weather conditions, i.e., clear, overcast, snowy, rainy,
partly cloudy, foggy, and of six scene types, i.e., highway, residential area, city street, parking lot,
gas station, tunnel. We consider three settings with foggy, overcast and tunnel as the target class
separately and other weather conditions or scenes as protected tasks. Moreover, we experiment on
the scene recognition dataset, Places365 which has 365 classes (Zhou et al., 2017), to verify the
effectiveness of the proposed method in handling a large number of constraints. We consider dressing
room as the target class, as it has fewest samples in the dataset. More experimental settings are in A.1.

Evaluation Metrics. We measure improvement on target task with ∆Acc(Target) =
Acc(Target,wnew)− Acc(Target,wold). Besides, we utilize "DevSafety(acc)" (i.e., Eqn. 2) to mea-
sure the empirical MDS. As optimization involves randomness, we run all the experiments with five
different random seeds then calculate the average target accuracy and the percentage of times that
DevSafety(acc) is non-negative, denoted as Rentention Ratio, to measure the possibility of strictly
preserving the performance on protected tasks. (e.g., the Retention Ratio is 60% if 3 out of 5 runs of
the method preserve previous performance for all protected tasks.)

Baselines. To verify the effectiveness of our algorithms, we compare our proposed algorithm with
the following baseline methods: (1) FLYP (Goyal et al., 2023), a state-of-the-art CLIP finetuning
method that optimizes a contrastive loss on all available data including those used in our objective
and constraints. In our experiments, we utilize the same global contrastive loss (GCL) (Yuan et al.,
2022) instead of mini-batch contrastive loss; (2) Weighted Combination of Contrastive Losses
(WCCL), which utilizes a weight to combine GCL losses on protected tasks and the target task to
control the tradeoff between them to achieve model developmental safety; (3) GEM (Lopez-Paz &
Ranzato, 2017b), which is a strong CL baseline motivated by a similar idea utilizing data of previous
tasks for constraints; (4) Co2L(Cha et al., 2021), which is a recent SOTA contrastive continual
learning baseline; (5) Regularization Method (RM), as commonly adopted in continual learning
literature (Rebuffi et al., 2017; Castro et al., 2018), directly takes the constraints in Eqn. (4) as a
regularization term by adding it to the objective function with a regularization weight α. All methods
start from the same CLIP model. More details about baselines are presented in Appendix A.1.4.
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Figure 2: Visualization of the learning trajectory. Each dot denotes a solution with lighter color being
earlier iterations and darker being later iterations.
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Figure 3: Performance Comparison with Baselines. Dot lines represent the performance of the base
model on the target task. Detailed numbers are presented in Table 4, 5, 6.

6.1 VISUALIZATION OF LEARNING PROCESS

To provide a direct understanding of why and how the proposed algorithm works, we present the
learning trajectory of the algorithm in Figure 2. Each dot in this figure represents a solution during
the learning processing, with lighter colors indicating earlier stages and darker colors representing
later stages. From the top four figures for training sets, we can observe a common trend that solutions
start from the lower left and move toward the upper right, indicating the algorithm endeavors to
enhance the performance of the targeted task while improving developmental safety on protected
tasks. Similarly, this trend extends to the validation sets, shown in the bottom row, demonstrating the
generalization capability of the proposed algorithm. It is striking to see that, when targeting Dressing
Room in Places365 dataset with all other 364 classes as protected tasks, our method are still able to
achieve developmental safety in training set and generalize to validation set. These observations can
also be found in separate views of DevSafety vs epochs and ∆Acc(Target) vs epochs shown in Fig 5.

6.2 COMPARISON WITH BASELINES FOR MODEL DEVELOPMENTAL SAFETY

In this part, we compare the proposed method with baselines to demonstrate the superiority. Specifi-
cally, we focus on two metrics, i.e., Rention Ratio for measuring the possibility of strictly preserving
the performance on all protected tasks and accuracy on the target task. The details of hyperparameter
tuning is presented in Appendix A.1.3. On autonomous driving BDD100K dataset, we conduct
experiments with different numbers of data for constraints, i,e., 100, 1k, 2k, 4k from each task. The
comparison results are presented in Figure 3. The figure illustrates that improving the base model on
the target tasks is not challenging, as nearly all methods accomplish this effortlessly. However, all
baselines, including the strong continual learning baselines GEM and Co2L, exhibit a zero Rention
Ratio across almost all settings, showing the insufficiency of existing methods for ensuring zero
forgetting on protected tasks. In contrast, our method begins to ensure developmental safety with 1k
samples per protected task and even 100 samples for the target class tunnel. Besides, the Rention
Ratio increases when using more data for constraints, consistent with the result obtained in Lemma 1
(Refer to Table 7 for more results). Notably, our method achieves a 100% Rention Ratio with 4k
samples per protected task in all three settings, while improving accuracy on the target class. We also
see that the target overcast is most difficult to improve as the base model already has 73.6% accuracy.

From Figure 3, we notice that the baseline RM fails to achieve MDS, even though it has a tunable
weight parameter α for protected tasks. Comparison with RM can directly verify the advantage of our
method as the only difference between the two methods is how to handle the protected tasks. From
Eqn. (8), we can see that our algorithm has an effective weight β[utk]+ for each protected task. It is
adaptively adjusted during learning, and depends on the degree of violation of constraints, i.e., the
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Figure 4: (Left) Adaptive weight adjustments for each protected task during training (Targeting
Foggy). Weights shown are averaged over every 600 iterations for visualization. (Right) Performance
comparison with baseline RM when targeting Dresssing Room on Places365 Dataset, with 2k samples
per constraint. Red line denotes base model’s performance, green diamonds denote the target class.
RM baseline shown is for weight α = 1000 and more plots for other weights are presented in 6.

larger the violation, the larger the weight. Figure 4 (left) shows that these effective weights gradually
decrease to zero during the learning of our algorithm, which allows the model to learn from the target
task while satisfying constraints. This mechanism plays a big role in not only achieving MDS but
also improving the performance on the target task. In contrast, RM uses a constant weight α for
every protected task. Simply increasing α may not ensure MDS, due to varied learning difficulty
between protected tasks. Besides, too large α will also harm the performance of the target task. We
further investigate the phenomenon in Appendix A.4 and find that, with a uniform weight for all the
protected tasks, it might preserve previous performance on some of the protected tasks but fail to
achieve MDS for all the protected tasks, even with a very high weight α.

To further verify the effectiveness of our method in handling a large number of constraints, we
experiment on the Place365 dataset, compared with RM, targeting Dressing room class and protecting
the other 364 tasks in Figure 4 (right). It shows that even with hundreds of protected tasks, our
method is still effective in preserving their performance, whereas RM causes performance drops in
around 30 classes, failing to ensure MDS.

We include more ablation studies in Appendix A.6 to (i) demonstrate the benefit of augmenting target
dataset with retrieved target-related image-text pairs; (ii) verify the benefit of task-dependent heads;
(iii) verify theoretical result Lemma 2; (iv) compare constant β vs increasing β.

6.3 PERFORMANCE WITH MULTIPLE ROUNDS OF MODEL DEVELOPMENT

Finally, to demonstrate the effectiveness of the proposed retention-centric framework in iterative
model development process, we conduct two consecutive rounds of development on recognizing
weather conditions. Specifically, we first target at overcast task, taking all the other five weather
conditions as protected tasks, then with one selected improved model, we successively improve
the model, targeting at improving the performance of the foggy task. As shown in Fig. 1, our
method notably improves the performance of the overcast task in the first round while ensuring
the performance of other tasks does not decrease. In the second round, it continues to enhance the
performance of the foggy task. Simultaneously, it preserves the performance, if not boosts it, across
other tasks, with only a slight decrease on the snowy task, showing the effectiveness of the proposed
framework for maintaining the model developmental safety.

7 CONCLUSION

In this paper, we introduced the concept of "model developmental safety" to ensure that model devel-
opment not only acquires new capabilities but also strictly preserves those already owns, addressing
the critical developmental safety oversight in existing ML/AI studies. To ensure model developmental
safety, we proposed a retention-centric framework by formulating the model developmental safety
as data-dependent constraints. We proposed an efficient constrained optimization algorithm with
theoretical guarantees to develop a pretrained vision-language model (CLIP model) for improving
existing image classification capabilities. Comprehensive experiments demonstrate the effectiveness
of the algorithm in enhancing vision-based perception capabilities in autonomous driving and scene
recognition, showing its practical value in real-world scenarios. As the proposed framework in this
paper is a generic retention-centric optimization framework, it can be potentially extended to various
scenarios or models, such as finetuning LLMs or enhancing object detection systems and motion
prediction tasks for autonomous driving. We hope our work can inspire researchers in safety-critical
application domain for more exploration.
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A MORE EXPERIMENTAL DETAILS AND RESULTS

A.1 EXPERIMENTAL DETAILS.

All experiments in our paper are run on two High Performance Research Computing platforms. One
contains 117 GPU nodes, each with two A100 40GB GPUs. Another contains 100 GPU nodes, each
with four A40 48GB GPUs.

A.1.1 DATASET.

We choose the large-scale diverse driving image dataset, namely BDD100K (Seita, 2018), for part
of our experiments. This dataset involves six weather conditions, i.e., clear, overcast, snowy, rainy,
partly cloudy, foggy, and six scene types, i.e., highway, residential area, city street, parking lot, gas
station, tunnel. Since the labels of the official testing dataset are not released, we utilize the official
validation set for testing and partition the training dataset into training and validation sets using an
80%/20% ratio.

Moreover, we experiment on a scene recognition dataset, Places365 (Zhou et al., 2017), to verify
the effectiveness of the proposed method in handling a large number of constraints. We utilize
the standard version of the dataset (i.e., Places365-Standard), with 1.8 million training and 36500
validation images from 365 scene classes. The number of examples for each class varies between
3,068 and 5,000 in the training set. We merge the training dataset and validation dataset and randomly
split the whole set into training set, validation set and test set with an 60%/20%/20% ratio.

Table 1: Datasets Statistics for BDD100K Dataset

Weather Training Validation Testing

Clear 29865 7479 5346
Snowy 4445 1104 769
Rainy 4119 951 738
Partly Cloudy 3992 959 738
Overcast 7043 1727 1239
Foggy 57 43 43

Scene Training Validation Testing

Hightway 13952 3427 2499
Residential area 6458 1616 1253
City street 34862 8654 6112
Parking lot 297 80 49
Tunnel 62 47 47

A.1.2 EXPERIMENTAL SETTINGS.

We employ the CLIP ViT-B/16 (Radford et al., 2021b) as the backbone network in all our experiments.

For BDD100K dataset, we obtain a base model by fine-tuning the pretrained CILP model, following
the method proposed in Yuan et al. (2022), on the BDD100K training dataset without foggy and
tunnel data. Subsequently, we undertake secondary development to improve the performance of
a target class separately. We consider three settings with foggy, overcast and tunnel as the target
class. For targeting foggy, we consider other weather conditions as protected tasks, for targeting
overcast we consider other weather conditions except for foggy as protected tasks due to that there
is a lack of foggy data in BDD100k for defining a significant constraint. For the same reason, we
consider other scence types except gas station as protected tasks for targeting tunnel. The image-text
pairs for the objective function are from the training set of BDD100K and the external LAION400M
(Schuhmann et al., 2021) dataset. Specifically, for each target class, we use a query prompt (detailed
in Appendix A.2) to search for target-related image-text pairs in LAION400M to augment the set
D. Additionally, we randomly sample a set of image-text pairs from LAION400M that is 10 times
larger than target-related pairs as negative data for contrasting. The data of protected tasks used for
developmental safety constraints are sampled from the BDD100K training set with varying sizes.
Statistics for BDD100K in our experiments are shown in Appendix Table 1. The text templates used
for BDD100K dataset are "the weather is [Weather]" and "the scene is a [Scene]".
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For Places365 dataset, we directly utilize the pretrained CLIP model released by Radford et al.
(2021b) as the base mode. Then we conduct continual development to improve the performance
of dressing room class, which has the fewest samples in the dataset, and consider all the other 364
classes as protected tasks. Similar to the setting for BDD100K dataset, we also use a query prompt
(detailed in Appendix A.2) to search for target-related image-text pairs in LAION400M to augment
the set D. The data of protected tasks used for developmental safety constraints are sampled from the
Places365 training set. The text templates used for Places365 dataset are "the scene is a(n) [Scene]".

A.1.3 HYPERPARAMETER TUNING.

For all methods in our experiments, we tune the learning rate in {1e-5, 1e-6} with Cosine scheduler
and AdamW optimizer, using a weight decay of 0.1.

For BDD100K dataset, we set temperature τ0 as 0.05. We run each method for a total of 40 epochs
with a batch size of 256 and 600 iterations per epoch, except for GEM whose total epochs are tuned
in {1,2,5} with a batch size of 64 since more iterations lead to exacerbated catastrophic forgetting
problems as shown in their paper. For our method, we tune β in {100, 200, 400}, γ2 in {0.4, 0.6,
0.8} and set r = 32, |Bc| = m, |Bk| = 10. We set γ1 to 0.8, τ to 0.05 in FLYP, WCCL, RM, and our
method. For WCCL, we vary the weight parameter α in {0.5,0.9,0.99}. For GEM, we tune their
small constant γ in {0.5, 1.0}. For Co2L, we tune their τ in {0.05, 0.1}, κ in {0.1, 0.2}, κ∗ in {0.01,
0.1}, λ in {0.1, 1, 10}. For RM, we tune regularization weight α in {0.1, 1, 10}. In hyper-parameters
selection for all methods, we prioritize larger retention ratio first and consider larger ∆Acc (Target)
if there is a tie in terms of safety ratio, as we look for models that maximize ∆Acc (Target) while
satisfying DevSafety ≥ 0.

For Places365 dataset, the temperature τ0 is set as 0.01. Since there are as many as 364 constraints,
we set |Bc| = 240, |Bk| = 2. We tune β in {600, 1000, 4000} for our method and regularization
weight α in {1, 10, 100, 1000, 10000} for RM. We run each method five times for a total of 40 epochs
with 1400 iterations per epoch, with a batch size of 64.

A.1.4 DETAILS ABOUT BASELINES

FLYP. In the original FLYP paper (Goyal et al., 2023), the author presents extensive experiments
demonstrating the superiority of employing the contrastive loss used during pre-training instead of
the typical cross-entropy for finetuning image-text models for zero-shot vision classification. As the
local contrastive loss, defined over the mini-batch samples, utilized in their paper requires a very
large mini-batch size to converge, we follow Yuan et al. (2022) to employ a global constrastive loss
(GCL) as indicated in Eqn. 10 to address this issue:

min
w

1

nall

∑
(xi,ti)∈Dall

Lctr(w;xi, ti,Dall,Dall) (10)

where Dall = D ∪D− ∪D1 ∪ · · · ∪ Dm, nall = no + 10 ∗ no + n1 + · · ·+ nm, D− is the negative
data collected form LAION400M as discussed in AppendixA.2. All available data, including those
used in our objective and constraints, are utilized for fine-tuning. The simple text prompts for the
labeled BDD100k dataset are the same as those used for our method, i.e., "the weather is [Weather]"
and "the scene is a [Scene]".

WCCL. Weighted Combination of Contrastive Losses(WCCL) is a straightforward baseline that
utilizes a weight to combine GCL losses on protected tasks and the target task to balance protected
tasks and the target task and achieve model developmental safety. Specifically, the objective can be
formulated as:

min
w

α
( 1

m

m∑
k=1

1

nk

∑
(xi,ti)∈Dk

Lctr(w;xi, ti, T −
ik , I

−
ik)
)

+(1− α)

(
1

no

∑
(xi,ti)∈Do

Lctr(w;xi, ti, T −
io , I

−
io)

) (11)

where T −
ik = {tj : (xj , tj) ∈ Dall\Dk} ∪ {ti}, I−

ik = {xj : (xj , tj) ∈ Dall\Dk} ∪ {xi},
Dall\Dk denotes all training samples excluding samples from Dk. Similarly, T −

io = {tj : (xj , tj) ∈
Dall\Do} ∪ {ti}, I−

io = {xj : (xj , tj) ∈ Dall\Do} ∪ {xi}. Consistent with other methods, the
simple text prompts for this baseline are also "the weather is [Weather]" and "the scene is a [Scene]".
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GEM. GEM (Lopez-Paz & Ranzato, 2017b) is a strong continual learning baseline which motivated
by a similar idea, utilizing data of previous tasks for constraints. But it doesn’t solve the constrained
optimization problem directly but project gradients to reduce the increase in the loss of previous
tasks. For GEM, we start from pretrained image encoder of the same CLIP model and initialize the
linear classification heads W ∈ Rd×(m+1) with the representations outputted by the text encoder
with input "the weather is [Weather]" or "the scene is a [Scene]". For each task k, cross entropy loss
is employed Lk(w,W,Dk) =

1
nk

∑
(xi,yi)∼Dk

− log
exp(W⊤

k E1(w,xi)/τ0)∑m+1
ℓ=1 exp(W⊤

l E1(w,xi)/τ0)
, where τ0 > 0 is a

temperature parameter, Wk,Wl denoted the kth, lth column vector of W respectively, and E1(w,xi)
is the normalized image representation of xi. For consistency, τ0 is fixed to 0.05 as the one used
in our method. In each iteration, 10 examples are drawn from each protected task to calculate the
corresponding loss gradient vector for each task.

RM. In continual learning literature, adding explicit regularization terms is a widely used approach
to balance old and new tasks, exploiting a frozen copy of previously-learned model to help prevent
catastrophic forgetting (Rebuffi et al., 2017; Castro et al., 2018). Similarly, the Regularization
Method(RM) baseline incorporates the constraints from Eqn. (4) as a regularization term, adding it to
the objective function with an associated regularization weight:

min
w

1

no

∑
(xi,ti)∈Do

Lctr(w;xi, ti, T −
io , I

−
io) + α

 1

m

m∑
k=1

1

nk

∑
(x,y)∈Dk

ℓce(w,x, y)

 (12)

A.2 RETRIEVING EXTERNAL DATA FROM LIAON400M

To improve the performance of the CLIP model on the target task, we retrieve related image-text
pairs from an external dataset. Specifically, for each target task, we retrieve task-related image-text
pairs from Laion400M (Schuhmann et al., 2021) to improve target performance, by going through
the dataset and retrieving the image-text pairs with text containing the specific target task names,
e.g., ’foggy’, ’overcast’, ’tunnel’, ’dressing room’. Similar approaches have been used in (Liang
et al., 2024; Mitchell et al., 2018; Chen et al., 2013), where Liang et al. (2024) used this approach
to improve the detection of rare or unseen categories in object detection for autonomous driving
systems. However, their study is different from ours in the sense that they do not provide guaratnee
on the model developmental safety.

Moreover, we refine the retrieved datasets. Let’s take the task ’tunnel’ as an example. For task
‘tunnel’, the retrieved data contained excessive noise, including numerous image-text pairs unrelated
to tunnels, but contained ’tunnel’ in the text. Therefore, we employed the GPT-4o API to filter the
retrieved data with prompt "Determine whether the following caption mentions a tunnel or related
context. First provide reasoning for your answer, and then respond with ’True’ if it mentions a tunnel,
or ’False’ if it does not.", thereby decreasing the noise of our retrieved data. The statistics of obtained
task-related image-text pairs are presented in the Table 2. Additionally, for each target class, we
randomly sample a set of image-text pairs from LAION400M that is 10 times larger than the positive
set as negative data for contrasting.

Table 2: Statistics of Data Collected from LIAON400M

Task Foggy Overcast Tunnel Dressing room

Size 11415 4134 23484 6786

A.3 VISUALIZATION OF MODELS’ LEARNING CURVES

Along with the learning trajectory in the main paper, we present the training and validation curves
in Fig. 5 to further illustrate the learning process of the algorithm. From the figure, we can see
that the DevSafety(acc) fluctuates along the safety line while ∆Acc(Target) continues to increase,
which shows the model is striving to improve the model’s performance while satisfying the safety
requirements.
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DevSafety(acc)

ΔAcc (Target)

Epoch

Target: Foggy

Epoch

Target: Overcast

Epoch

Target: Tunnel

EpochEpoch Epoch

Epoch

Epoch

Target: Dressing Room

Figure 5: Models’ Training and Validation Curves

Table 3: Detailed performance comparison between our method and baseline RM on targeting Foggy
with 4k samples for each protected task. Bold numbers highlight the performance decrease over the
base model.

Protected Tasks Target Task
AverageClear Overcast Snowy Rainy Partly cloudy Foggy

Base 0.8938 0.7014 0.7503 0.7195 0.6734 0.3953 0.6889

Ours +0.0115(0.0054) +0.0831(0.0228) +0.0120(0.0079) +0.0230(0.0081) +0.1047(0.0168) 0.0326(0.0316) +0.0430(0.0027)

RM α = 0.1 -0.0189(0.0039) +0.0667(0.0392) +0.0328(0.0113) +0.0081(0.0074) +0.1253(0.0227) +0.0559(0.0617) +0.0450(0.0071)
RM α = 1 -0.0129(0.0055) +0.0910(0.0102) +0.0666(0.0139) +0.0217(0.0215) +0.1168(0.0112) -0.0604(0.0634) +0.0372(0.0114)
RM α = 10 -0.0106(0.0085) +0.1131(0.0068) +0.0656(0.0302) +0.0163(0.0182) +0.0830(0.0201) -0.1674(0.0174) +0.0167(0.0050)

A.4 DEFICIENCY OF WEIGHTING METHODS

As observed in Figure 3, the naive weighting approach RM fail to achieve model developmental
safety, even though they tradeoff the performance on the target task and protected tasks with weight
parameter α. To have a close look at why this happens, we show the detailed performance RM when
targeting foggy with 4k samples for each protected task in Table 3. We find that, with a uniform
weight for all the protected tasks, the method might preserve previous performance on some of the
protected tasks but fail to achieve MDS for all the protected tasks, even with a very high α. Moreover,
with the weight α getting larger, the performance on the target task drops dramatically while the
decrease gap goes smaller, e.g., Clear tasks for RM. In contrast, our proposed method is able to
preserve all the protected tasks’ performance and improve the target task, as the mechanism of our
algorithm is very different from using the uniform weight. In our method, weights for constraints
depend on the loss of those tasks, i.e., the larger the violation, the larger the weight. As shown in
Figure 4, the weight for each protected task is adaptively adjusted during learning and once one
protected task constraint is satisfied, it will not be penalized (weight becomes zero). This mechanism
plays a big role in enabling the model to find feasible solutions to ensure zero-forgetting on all the
protected tasks.

To further demonstrate the deficiency of the weighting method, we compare RM with our method on
the Place365 dataset, targeting Dressing room class and protecting the other 364 tasks in Figure 6.
With α = 1, 10, 100, 1000, 10000, RM causes performance drops in 50, 35, 33, 32, and 35 classes,
respectively. Although larger weights reduce the number of classes where performance drops, RM
still cannot ensure MDS for all protected tasks. In contrast, we can see that even with hundreds of
protected tasks, our method is still effective in preserving their performance whiling improving the
target task.

A.5 DETAILED PERFORMANCE COMPARISON WITH BASELINES

In this part, we present a detailed performance comparison with baselines. Specifically, we include
the DevSafety(acc) numbers for each method in Table 4, 5, 6, which directly show the largest decrease
over all the protected tasks. We can see that baselines usually lead to 3-10 percent decrease when
targeting Tunnel, 1.5-7 percent decrease when targeting Foggy, 3-30 percent decrease when targeting
Overcast. In contrast, our method demonstrates a smaller performance drop when there is insufficient
data for constraints and ensures zero forgetting on the protected task when sufficient constraint data
is available.
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Table 4: Detailed Performance Comparison on Targeting Tunnel

Method Measures 100 1k 2k 4k

Base Rentention Ratio//DevSafety(acc) 100%//0.00(0.0000) 100%//0.00(0.0000) 100%//0.00(0.0000) 100%//0.00(0.0000)
Target Tunnel 0.1064(0.0000) 0.1064(0.0000) 0.1064(0.0000) 0.1064(0.0000)

FLYP Rentention Ratio//DevSafety(acc) 0.00%//-0.0398(0.0067 0.00%//-0.0660(0.0126) 0.00%//-0.0647(0.0123) 0.00%//-0.0774(0.0069)
Target Tunnel 0.9361(0.0330) 0.9702(0.0318) 0.9915(0.0170) 0.9659(0.0170)

WCCL Rentention Ratio//DevSafety(acc) 0.00%//-0.0836(0.0164) 0.00%//-0.0756(0.0090) 0.00%//-0.0673(0.0103) 0.00%//-0.0893(0.0089)
Target Tunnel 0.9957(0.0085) 0.6000(0.1002) 0.6553(0.0282) 0.6383(0.0485)

GEM Rentention Ratio//DevSafety(acc) 0.00%//-0.1019(0.0267) 0.00%//-0.1034(0.0153) 0.00%//-0.1301(0.0169) 0.00%//-0.0873(0.0231)
Target Tunnel 0.8255(0.1214) 0.5915(0.2020) 0.6085(0.0768) 0.3915(0.1819)

RM Rentention Ratio//DevSafety(acc) 0.00%//-0.1021(0.0022) 0.00%//-0.0969(0.0036) 0.00%//-0.0955(0.0057) 0.00%//-0.0897(0.0068)
Target Tunnel 0.9574(0.0233) 0.8894(0.0340) 0.8808(0.0170) 0.8681(0.0085)

Ours Rentention Ratio//DevSafety(acc) 40.00%//-0.0050(0.0076) 60.00%//-0.0001(0.0043) 100.00%//0.0105(0.0053) 100.00%//0.0186(0.0058)
Target Tunnel 0.9362(0.0699) 0.8723(0.0233) 0.9106(0.0159) 0.8723(0.0233)

Table 5: Detailed Performance Comparison on Targeting Foggy

Method Measures 100 1k 2k 4k

Base Rentention Ratio//DevSafety(acc) 100%//0.00(0.0000) 100%//0.00(0.0000) 100%//0.00(0.0000) 100%//0.00(0.0000)
Target Foggy 0.3953(0.0000) 0.3953(0.0000) 0.3953(0.0000) 0.3953(0.0000)

FLYP Rentention Ratio//DevSafety(acc) 0.00%//-0.0590(0.0140) 20.00%//-0.0281(0.0167) 0.00%//-0.0254(0.0101) 0.00%//-0.0201(0.0105)
Target Foggy 0.5721(0.0315) 0.5209(0.0581) 0.5302(0.0228) 0.4977(0.0186)

WCCL Rentention Ratio//DevSafety(acc) 0.00%//-0.0504(0.0123) 0.00%//-0.0259(0.0080) 20.00%//-0.0141(0.0111) 0.00%//-0.0132(0.0076)
Target Foggy 0.3395(0.0865) 0.2186(0.0186) 0.2093(0.0208) 0.2000(0.0114)

GEM Rentention Ratio//DevSafety(acc) 0.00%//-0.0695(0.0099) 0.00%//-0.0339(0.0053) 0.00%//-0.0424(0.0060) 0.00%//-0.0424(0.0060)
Target Foggy 0.3349(0.0865) 0.2837(0.0271) 0.2558(0.0000) 0.2558(0.0000)

RM Rentention Ratio//DevSafety(acc) 0.00%//-0.0418(0.0062) 0.00%//-0.0173(0.0054) 0.00%//-0.0159(0.0034) 20.00%//-0.0124(0.0091)
Target Foggy 0.5674(0.0378) 0.5023(0.0186) 0.4419(0.0658) 0.2279(0.0174)

Ours Rentention Ratio//DevSafety(acc) 0.00%//-0.0241(0.0082) 60.00%//-0.0009(0.0044) 100.00%//0.0044(0.0033) 100.00%//0.0061(0.0047)
Target Foggy 0.5721(0.0406) 0.4930(0.0174) 0.4326(0.0186) 0.4279(0.0316)

Table 6: Detailed Performance Comparison on Targeting Overcast

Method Measures 100 1k 2k 4k

Base Rentention Ratio//DevSafety(acc) 100%//0.00(0.0000) 100%//0.00(0.0000) 100%//0.00(0.0000) 100%//0.00(0.0000)
Target Overcast 0.7361(0.0000) 0.7361(0.0000) 0.7361(0.0000) 0.7361(0.0000)

FLYP Rentention Ratio//DevSafety(acc) 0.00%//-0.0749(0.0049) 0.00%//-0.0449(0.0140) 0.00%//-0.0434(0.0095) 0.00%//-0.0314(0.0113)
Target Overcast 0.9143(0.0111) 0.8559(0.0241) 0.8412(0.0294) 0.8247(0.0255)

WCCL Rentention Ratio//DevSafety(acc) 0.00%//-0.1192(0.0294) 0.00%//-0.0716(0.0053) 0.00%//-0.0424(0.0091) 0.00%//-0.0414(0.0102)
Target Overcast 0.9315(0.0112) 0.9296(0.0092) 0.9207(0.0022) 0.9172(0.0064)

GEM Rentention Ratio//DevSafety(acc) 0.00%//-0.0677(0.0042) 0.00%//-0.0711(0.0050) 0.00%//-0.0807(0.0128) 0.00%//-0.0634(0.0042)
Target Overcast 0.9282(0.0051) 0.9233(0.0037) 0.9149(0.0088) 0.9165(0.0049)

RM Rentention Ratio//DevSafety(acc) 0.00%//-0.2932(0.0365) 0.00%//-0.3016(0.0228) 0.00%//-0.2444(0.0120) 0.00%//-0.2634(0.0105)
Target Overcast 0.9787(0.0050) 0.9730(0.0028) 0.9588(0.0041) 0.9647(0.0023)

Ours SafetyRatio//DevSafety(acc) 0.00%//-0.0655(0.0249) 20.00%//-0.0043(0.0037) 60.00%//0.0012(0.0029) 100.00%//0.0046(0.0016)
Target Overcast 0.8789(0.0464) 0.7827(0.0225) 0.7562(0.0167) 0.7525(0.0366)
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Figure 6: Performance comparison between our method and baseline RM when targeting Dresssing
Room on Places365 Dataset, with 2k samples per constraint. Red line denotes base model’s perfor-
mance, green diamonds denote the target class. RM baseline shown is with weight α = 1(Top Left),
weight α = 10(Top Right), weight α = 100(Middle Left), weight α = 100( Middle Right), weight
α = 10000(Bottom).

Table 7: Effect of the Number of Samples for Constraints. Numbers in parentheses denote standard
deviation.

Target Measures Base model 100 1k 2k 4k

DevSafety(acc) 0.00(0.0000) -0.0050(0.0076) -0.0001(0.0043) 0.0105(0.0053) 0.0186(0.0058)
Tunnel Rentention Ratio 100.00% 40.00% 60.00% 100.00% 100.00%

Target Acc 0.1064(0.0000) 0.9362(0.0699) 0.8723(0.0233) 0.9106(0.0159) 0.8723(0.0233)

DevSafety(acc) 0.00(0.0000) -0.0241(0.0082) -0.0009(0.0044) 0.0044(0.0033) 0.0061(0.0047)
Foggy Rentention Ratio 100.00% 0.00% 60.00% 100.00% 100.00%

Target Acc 0.3953(0.0000) 0.5721(0.0406) 0.4930(0.0174) 0.4326(0.0186) 0.4279(0.0316)

DevSafety(acc) 0.00(0.0000) -0.0655(0.0249) -0.0043(0.0037) 0.0012(0.0029) 0.0046(0.0016)
Overcast Rentention Ratio 100.00% 0.00% 20.00% 60.00% 100.00%

Target Acc 0.7361(0.0000) 0.8789(0.0464) 0.7827(0.0225) 0.7562(0.0167) 0.7525(0.0366)

A.6 DETAILED ABLATION STUDIES

A.6.1 THE EFFECT OF DIFFERENT NUMBER OF SAMPLES USED FOR CONSTRAINTS.

In our framework, we propose to formulate the model developmental safety as data-dependent
constraints. As discussed in Section 4.2, since we only have access to a finite set of empirical samples,
there exists generalization errors between the safety constraints in Eqn. 3. In this part, we examine
the impact of varying the amount of data used for constraints. Specifically, we conduct experiments
with different numbers of data for constraints, i,e., 100, 1k, 2k, 4k from each task. The results are
summarized in Tab. 7. From the table, we can observe that DevSafety(acc) and Safety Ratio increase
when using more data for constraints. This is consistent with results obtained in Lemma 1 which
shows a larger number of data for constraints leads to a higher probability of being safe. One the
other hand, we found that, with the likelihood of developmental safety increasing, the improvement
of the targeted task decreases, which indicates there may still exist a tradeoff between enhancing the
targeted task’s performance and satisfying the developmental safety requirements.
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Table 8: The Effect of External Image-text Pairs from LIAON400M. Numbers in parentheses denote
std.

Ref(Base model) 0 2k 5k 11k

Rentention Ratio 100.00% 100.00% 80.00% 100.00% 60.00%
Target Acc (Foggy) 0.3953(0.0000) 0.3674(0.0372) 0.4047(0.0562) 0.4186(0.0389) 0.4930(0.0174)
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Figure 7: Task-dependent heads promote developmental safety.

A.6.2 IMPORTANCE OF THE EXTERNAL DATA FROM LAION400M

We conduct experiments on targeting foggy to investigate the benefits of the external data retrieved
from LAION400M dataset. In detail, we vary the number of retrieved target-related image-text pairs
utilized in the objective function, i.e., {0, 2k, 5k, 11k}, with 1k samples from each protected task as
constraints. From Tab. 8, we can see that, with only 57 foggy samples from BDD100k dataset (i.e., 0
samples from the external data), the model does not improve the target accuracy at all. However, with
more and more retrieved image-text pairs utilized to augment the dataset D, the improvement on the
targeted task appears and becomes significant, showing the advantages of incorporating the retrieved
target-related image-text pairs for boosting target task accuracy. Regarding safety ratios, we don’t
observe a clear correlation between the amount of retrieved data and the safety ratios.

A.6.3 IMPORTANCE OF TASK-DEPENDENT HEADS

As introduced in Section 5.2, to reduce the total complexity of our algorithm, we propose task-
dependent heads to increase the parameter δ in Assumption 4, avoiding getting trapped at a flat
location where wt is infeasible but ∇H(wt) = 0. To verify the effectiveness of the design, we
experiment on targeting overcast and foggy tasks with varying numbers of data for constraints. The
results are presented in Figure 7. The results show that models equipped with task-dependent heads
almost consistently exhibit both higher safety ratio and higher accuracy on the target task. Besides,
without task-dependent heads, models may have trouble achieving 100% developmental safety,
such as targeting Overcast, demonstrating the importance of task-dependent heads for promoting
developmental safety.

A.6.4 VERIFICATION OF LEMMA 2

To verify the theoretical result in Lemma 2, we empirically calculate ∇ĥ(ŵ) and ∇h(w) with CLIP
models. Specifically, for targeting overcast, we compute the minimal singular values of ∇ĥ(ŵ) and
∇h(w) on the base model and two trained models, with 1k samples for each protected task. The
initial value of Uk is set to zero so UkV

⊤
k = 0. From the results presented in Table 9, we can observe

that, on the initial model, the minimal singular value of ∇ĥ(ŵ) is slightly larger than that of ∇h(w)
and the gap become much significant after training, which is consistent with the theoretical result in
Lemma 2 and also provides some insight on the empirical results in Figure 7.

A.6.5 CONSTANT β VS INCREASING β

In theory, an increasing penalty parameter β may help reduce the complexity of constrained problems
as shown in Alacaoglu & Wright (2024), but in our empirical experiments, we find that using a
constant β is generally behave better than using an increasing β . As shown in Fig. 8 for target task
foggy, models with a constant β are able to achieve 100% safety ratio with 2k or 4k sampler per
constraint. On the contrary, models using a cosine increasing β obtain both lower safety ratio and
lower accuracy on the target task compared to models with constant β. We conjecture that this is
because models with an increasing β might leave the feasible developmental safety region too far
in the initial stages as they have a relatively small penalty weight β at this time. Given the high
non-convexity and complexity of the model space, it becomes increasingly challenging in the later
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Table 9: Minimal Singular Values of ∇h(w) and ∇ĥ(ŵ)

Initial Model Final Model

w/o task-dependent heads ∇h(w) 22.5712 10.6132
w task-dependent heads ∇ĥ(ŵ) 22.6829 15.8373
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Figure 8: Performance Comparison between Constant β and Increasing β.

stages to return to a feasible solution that satisfies developmental safety constraints while significantly
improving target accuracy.

B MORE RELATED WORK

Continual learning. This work is closely related to Continual learning (CL), also known as lifelong
learning, yet it exhibits nuanced differences. Continual learning usually refers to learning a sequence
of tasks one by one and accumulating knowledge like human instead of substituting knowledge (Wang
et al., 2024; Qu et al., 2021). There is a vast literature of CL of deep neural networks (DNNs) (Aljundi
et al., 2018; Lopez-Paz & Ranzato, 2017a; Farajtabar et al., 2019; Lee et al., 2017; Guo et al., 2020;
Parisi et al., 2018). The core issue in CL is known as catastrophic forgetting (McCloskey & Cohen,
1989), i.e., the learning of the later tasks may significantly degrade the performance of the models
learned for the earlier tasks. Different approaches have been investigated to mitigate catastrophic
forgetting, including regularization-based approaches (Kirkpatrick et al., 2017; Zenke et al., 2017; Li
& Hoiem, 2016), expansion-based approaches (Zhou et al., 2022; Li et al., 2019; Rusu et al., 2016;
van de Ven et al., 2020), and memory-based approaches (Rolnick et al., 2019; Shin et al., 2017;
Guo et al., 2020; Lopez-Paz & Ranzato, 2017a; Chaudhry et al., 2019). In the era of large language
models(LLMs), another type of continual learning method, known as knowledge/representation
editing(Liu et al., 2024; Zou et al., 2023; Meng et al., 2022), emerges to efficiently modify the
behavior of LLMs with minimal impact on unrelated inputs (Wang et al., 2023b), such as to update
stale facts, eliminate unintended biases, and reduce undesired hallucinations.

The framework proposed in this work is similar to memory-based approaches in the sense that both
use examples of existing tasks to regulate learning. However, the key difference is that most existing
continual learning focuses on the trade-off between learning plasticity and memory stability and aims
to find a proper balance between performance on previous tasks and new tasks (Wang et al., 2024).
Hence, they do not provide a guarantee for MDS. A recent work (Peng et al., 2023) has proposed an
ideal continual learner that never forgets by assuming that all tasks share the same optimal solution.
However, it is not implementable for deep learning problems. Besides, existing continual learning
studies usually highlight resource efficiency when accumulating knowledge by reducing the number
of samples of previous tasks. In contrast, this work tends to utilize more examples to construct
developmental safety constraints for protected tasks to facilitate MDS.

AI Safety. Our notion of model developmental safety should not be confused with AI safety. The
latter is a field concerned with mitigating risks associated with AI, whose surge in attention stems
from the growing capabilities of AI systems, particularly large foundation models (Kojima et al.,
2022; Wei et al., 2022; Bubeck et al., 2023; Radford et al., 2021b). As these models become more
adept at complex tasks, concerns around potential misuse, bias, and unintended consequences rise
proportionally. Amodei et al. (2016) presents several practical research problems related to AI safety,
including avoiding side effects, avoiding reward hacking, scalable oversight, safe exploration, and
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robustness to distributional shift. More recently, Wang et al. (2023a) elaborate on eight different
perspectives to evaluate the trustworthiness of LLMs, including toxicity, stereotype bias, adversarial
robustness, out-of-distribution robustness, robustness on adversarial demonstrations, privacy, machine
ethics, and fairness. These AI safety issues arise in the usage of AI models, and they are distinctive
from model developmental safety studied in this work, which arises in the development of AI models.
Note that the term "safety" in model developmental safety is to underline that it is important and
must be enforced in practice. Therefore, this work provides another dimension for consideration in
AI safety, i.e., retention of safety. Any safety features of an AI system that have been acquired and
validated should be retained safely in continuous development.

SafeRL. This work is partially related to SafeRL (Safe Reinforcement Learning), which focuses on
developing algorithms and techniques to ensure safety (avoid harmful actions) of RL agents, such
as in autonomous driving (Shalev-Shwartz et al., 2016), robotics areas (Pham et al., 2018). Many
studies have been conducted in SafeRL domain. A popular approach in SafeRL is to maximize
the expected cumulative reward subject to specific safety constraints (Wachi et al., 2024), such as
expected cumulative safety constraint (Ding et al., 2021; Bura et al., 2022; Tessler et al., 2018;
Achiam et al., 2017), state constraint (Thomas et al., 2021; Turchetta et al., 2020; Wang et al., 2023c;
Thananjeyan et al., 2021), joint chance constraint (Ono et al., 2015; Pfrommer et al., 2022), etc.
However, as SafeRL heavily relies on the special structure of policy optimization for RL, it is different
from our work that study a generic developmental safety in model development process. Hence,
although sharing the similarity of solving a constrained problem, the algorithms for SafeRL are not
applicable to our problem.

Constrained Learning. Constrained learning has attracted significant attention in the literature.
Traditional works for constrained optimization include three primary categories: 1) primal methods
which do not involve the Lagrange multipliers, e.g., cooperative subgradient methods (Lan & Zhou,
2016; Polyak & Tret’yakov, 1973) and level-set methods (Aravkin et al., 2019; Lin et al., 2018a;b);
2) primal-dual methods which reformulate constrained optimization problems as saddle point prob-
lems (Hamedani & Aybat, 2021; Nemirovski, 2004); 3) penalty-based approaches which incorporate
constraints by adding a penalty term to the objective function (Xu, 2021; Lan & Monteiro, 2013;
2016). However, most of these works are limited to convex objectives or convex constraints. In recent
years, due to its increasing importance in modern machine learning problems, such as in applications
concerned with fairness (Cotter et al., 2019; Agarwal et al., 2018), robustness (Robey et al., 2021;
Madry et al., 2017), and safety (Paternain et al., 2019b;a) problems, the research interest has been
directed to developing efficient algorithms for non-convex optimization (non-convex objective and
non-convex constraint) (Boob et al., 2023; Facchinei et al., 2021; Ma et al., 2020; Li et al., 2024;
Chamon et al., 2022; Alacaoglu & Wright, 2024). Among these, Chamon et al. (2022) studies how to
solve constrained learning learning with expected non-convex loss and expected non-convex con-
straints by using empirical data to ensure the PAC learnability, and proposed a primal-dual algorithm
to solve constrained optimization problems in the empirical dual domain. However, their algorithm
requires solving the primal problem up to a certain accuracy, which is theoretically not feasible
for general non-convex problems. Boob et al. (2023) introduces a new proximal point method that
transforms a non-convex problem into a sequence of convex problems by adding quadratic terms
to both the objective and constraints. For solving non-convex optimization problems with equality
constraints, Alacaoglu & Wright (2024) propose single-loop quadratic penalty and augmented La-
grangian algorithms with variance reduction techniques to improve the complexity. Nevertheless,
none of these algorithms can be directly applied to our large-scale deep learning problem (4), due to
either prohibitive running cost or failure to handle biased stochastic gradients caused by compositional
structure.

C PROOFS

C.1 PROOF OF LEMMA 1

Proof Consider task k. Recall that Dk contains nk data points. According to Theorem 3.2 in
Boucheron et al. (2005), we have with probability at least 1− δ/m, for all w,

|Lk(w,Dk)− Lk(w,Dk)| ≤ 2Rnk
(H) +

√
ln(2m/δ)

2nk
≤ 2C

nαk
+

√
ln(2m/δ)

2nk
,
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where the second inequality is by the assumption on Rn(H). Combining the inequalities above with
w = wnew and w = wold, we have with probability at least 1− δ/m

Lk(wnew,Dk)− Lk(wold,Dk) ≤ Lk(wnew,Dk)− Lk(wold,Dk) +
4C

nαk
+ 2

√
ln(2m/δ)

2nk
.

Applying the union bound with the events above for k = 1, . . . ,m leads to the conclusion of this
lemma.

C.2 PROOF OF LEMMA 2

Proof Recall that w has two component u and W . The gradient of hk(w) with respect to W and u
are denoted by ∇Whk(w) and ∇uhk(w), respectively. Hence,

∇hk(w) = (∇uhk(w),∇Whk(w))

for k = 1, . . . ,m. Similarly, after adding the task-dependent heads, ŵ has four component u, W , U
and V. The gradients ∇uĥk(ŵ), ∇W ĥk(ŵ)∇Uĥk(ŵ) and ∇Vĥk(ŵ) are defined correspondingly,
and

∇ĥk(ŵ) =
(
∇uĥk(ŵ),∇W ĥk(ŵ),∇Uĥk(ŵ),∇Vĥk(ŵ)

)
.

Recall that
ĥk(ŵ) = hk(W + UkV

⊤
k ,u) for k = 1, . . . ,m.

Therefore,
∇uĥk(ŵ) = ∇uhk(W + UkV

⊤
k ,u), ∇W ĥk(ŵ) = ∇Whk(W + UkV

⊤
k ,u)

and

∇Uĥk(ŵ) =

(
0, . . . ,0,∇Whk(W + UkV

⊤
k ,u)Vk︸ ︷︷ ︸

The kth block

,0, . . . ,0

)⊤

∇Vĥk(ŵ) =

(
0, . . . ,0,∇Whk(W + UkV

⊤
k ,u)⊤Uk︸ ︷︷ ︸

The kth block

,0, . . . ,0

)⊤

,

where the sparsity patterns of ∇Uĥk(ŵ) and ∇Vĥk(ŵ) are because ĥk does not depend on Uj and
Vj with j ̸= k.

Suppose UkV
⊤
k = 0 for all k. It holds that hk(w) = ĥk(ŵ) and

∇hk(w) = (∇uhk(w),∇Whk(w)) =
(
∇uĥk(ŵ),∇W ĥk(ŵ)

)
.

Consider any α = (α1, . . . , αm) ∈ Rm. We have

λmin

([
∇ĥ1(ŵ), . . . ,∇ĥm(ŵ)

]⊤ [
∇ĥ1(ŵ), . . . ,∇ĥm(ŵ)

])

= min
α,s.t.∥α∥=1

∥∥∥∥∥
m∑

k=1

αk∇ĥk(ŵ)

∥∥∥∥∥
2

= min
α,s.t.∥α∥=1

(∥∥∥∥∥
m∑

k=1

αk∇uĥk(ŵ)

∥∥∥∥∥
2

+

∥∥∥∥∥
m∑

k=1

αk∇W ĥk(ŵ)

∥∥∥∥∥
2

+

∥∥∥∥∥
m∑

k=1

αk∇Uĥk(ŵ)

∥∥∥∥∥
2

+

∥∥∥∥∥
m∑

k=1

αk∇Vĥk(ŵ)

∥∥∥∥∥
2)

= min
α,s.t.∥α∥=1

(∥∥∥∥∥
m∑

k=1

αk∇hk(w)

∥∥∥∥∥
2

+

m∑
k=1

α2
k ∥∇Whk(w)Vk∥2F +

m∑
k=1

α2
k

∥∥∥∇Whk(w)⊤Uk

∥∥∥2
F

)
≥λmin

(
[∇h1(w), . . . ,∇hm(w)]⊤ [∇h1(w), . . . ,∇hm(w)]

)
+min

k
∥∇Whk(w)Vk∥2F +min

k

∥∥∥∇Whk(w)⊤Uk

∥∥∥2
F
,

where the first two equalities are by definitions and the third equality is because UkV
⊤
k = 0 for all k.

C.3 PROOF OF THEOREM 1

In this section, we present the proof of the Theorem 1. Recall that the problem is formulated as

min
w

F (w,D) :=
1

n0

n0∑
i=1

(f(g1i(w)) + f(g2i(w))) s.t.
1

m
hk(w;Dk) ≤ 0, k = 1, · · · ,m.

(13)
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with f(·) = τ log(·). With the quadratic penalty method, the problem is converted to

min
w

Φ(w) := F (w,D) +
1

m

m∑
k=1

β

2
([hk(w;Dk)]+)

2

︸ ︷︷ ︸
H(w)

. (14)

By Assumptions 1, we can get f is Lf -Lipschitz continuous and L∇f -smooth with Lf = τ
cg

and
L∇f = τ

c2g
. By noticing that ℓce is a cross entropy loss, we find that |hk(·)| can be bounded by a

constant Ch with Ch = 2. Then, we can get Φ(w) is Lβ-smooth with Lβ := LF + βLH where
LF := 2(L∇gLf + L∇fL

2
g) and LH := L∇hCh + L2

h. We also define C̃∇g := σ∇g + Lg and
C̃∇h := σ∇h + Lh. To facilitate our discussion, we let

vt1 = (1− θ)vt−1
1 + θGt

1,

vt2 = (1− θ)vt−1
2 + θGt

2,

vt = vt1 + vt2.

To prove our main theorem, we need following lemmas.

Lemma 3 If θ ≤ 1
3 , the gradient variance ∆t

1 := ∥vt1 −∇F (wt,D)∥2 can be bounded as

E[∆t+1
1 ] ≤(1− θ)E[∆t

1] +
2L2

F

θ
E[∥wt+1 −wt∥2] + 5θL2

f C̃
2
∇gE[Ξ

t+1
1 + Ξt+1

2 ]

+ 3L2
f C̃

2
∇gE

[
1

n0

∑
i∈Bt+1

(∥∥ut+1
1i − ut1i

∥∥2 + ∥∥ut+1
2i − ut2i

∥∥2)]+ 2θ2L2
f (σ

2
∇g + L2

g)

min{|B|, |B1i|, |B2i|}
,

(15)
with Ξt+1

1 := 1
n0

∥ut+1
1 − g1(wt+1)∥2 = 1

n0

∑n0

i=1 ∥u
t+1
1i − g1i(w

t+1)∥2 and Ξt+1
2 := 1

n0
∥ut+1

2 −
g2(wt+1)∥2 = 1

n0

∑n0

i=1 ∥u
t+1
2i − g2i(w

t+1)∥2.

Proof
∆t+1

1 = ∥vt+1
1 −∇F (wt+1)∥2 = ∥(1− θ)vt1 + θGt

1 −∇F (wt+1)∥2

=
∥∥∥ 1 + 2 + 3 + 4

∥∥∥2 ,
where 1 , 2 , 3 , 4 are defined as
1 = (1− θ)(vt1 −∇F (wt)), 2 = (1− θ)(∇F (wt)−∇F (wt+1)),

3 =
θ

|B|
∑

i∈Bt+1

∇ĝ1i(w
t+1)

(
∇f(ut

1i)−∇f(g1i(w
t+1))

)
+∇ĝ2i(w

t+1)
(
∇f(ut

2i)−∇f(g2i(w
t+1))

)
,

4 =
θ

|B|
∑

i∈Bt+1

∇ĝ1i(w
t+1)∇f(g1i(w

t+1)) +∇ĝ2i(w
t+1)∇f(g2i(w

t+1))−∇F (wt+1).

Note that Et[⟨ 1 , 4 ⟩] = Et[⟨ 2 , 4 ⟩] = 0. Then, by the Young’s inequality, we can get

Et

[∥∥∥ 1 + 2 + 3 + 4
∥∥∥2]

=
∥∥∥ 1

∥∥∥2 + ∥∥∥ 2
∥∥∥2 + Et

∥∥∥ 3
∥∥∥2 + Et

∥∥∥ 4
∥∥∥2 + 2

〈
1 , 2

〉
+ 2Et[

〈
1 , 3

〉
] + 2Et[

〈
2 , 3

〉
] + 2Et[

〈
3 , 4

〉
]

≤(1 + θ)
∥∥∥ 1

∥∥∥2 + 2

(
1 +

1

θ

)∥∥∥ 2
∥∥∥2 + 2 + 3θ

θ
Et

∥∥∥ 3
∥∥∥2 + 2Et

∥∥∥ 4
∥∥∥2 .

We can also get

(1 + θ)∥ 1 ∥2 = (1 + θ)(1− θ)2∥vt1 −∇F (wt)∥2 ≤ (1− θ)∥vt1 −∇F (wt)∥2

2

(
1 +

1

θ

)∥∥∥ 2
∥∥∥2 = 2

(
1 +

1

θ

)
(1− θ)2∥∇F (wt)−∇F (wt+1)∥2 ≤ 2L2

F

θ
∥wt+1 −wt∥2

2 + 3θ

θ
Et

[
∥ 3 ∥2

]
=

2 + 3θ

θ

θ2

|B|Et

∑
i∈Bt+1

(∥∥∇ĝ1i(w
t+1)

∥∥2 ∥∥∇f(ut
1i)−∇f(g1i(w

t+1)
∥∥2 + ∥∥∇ĝ2i(w

t+1)
∥∥2 ∥∥∇f(ut

2i)−∇f(g2i(w
t+1)

∥∥2)
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We first bound the first term
(2 + 3θ)θ

|B| Et

∑
i∈Bt+1

∥∥∇ĝ1i(w
t+1)

∥∥2 ∥∥∇f(ut
1i)−∇f(g1i(w

t+1)
∥∥2

≤
(2 + 3θ)θL2

f

|B| Et

 ∑
i∈Bk+1

∥∥∇ĝ1i(w
t+1)

∥∥2 ∥∥ut
1i − g1i(w

t+1)
∥∥2

= (2 + 3θ)θL2
fEt

 1

|B|
∑

i∈Bt+1

Et

[∥∥∥∇ĝ1i(w
k+1)

∥∥∥2 |i ∈ Bt+1

] ∥∥∥ut
1i − g1i(w

k+1)
∥∥∥2


≤ (2 + 3θ)θL2
f C̃

2
∇gEt

 1

|B|
∑

i∈Bt+1

∥∥ut
1i − g1i(w

t+1)
∥∥2

≤ (2 + 3θ)θL2
f C̃

2
∇g

(
(1 + δ)Et

[
1

n0

n0∑
i=1

∥∥ut+1
1i − g1i(w

t+1)
∥∥2]+ (1 + 1/δ)Et

[
1

n0

n0∑
i=1

∥∥ut+1
1i − ut

1i

∥∥2])

= (2 + 3θ)θL2
f C̃

2
∇g

(1 + δ)Et

[
1

n0

n0∑
i=1

∥∥ut+1
1i − gi(w

t+1)
∥∥2]+ (1 + 1/δ)Et

 1

n0

∑
i∈Bt+1

∥∥ut+1
1i − ut

1i

∥∥2
If θ ≤ 1

3 and δ = 3θ
2 , we have (2 + 3θ)θ(1 + δ) ≤ 5θ and (2 + 3θ)θ(1 + 1/δ) ≤ 3. And similarly,

we can get the bound for the second term. Then, by combining them, we can get

2 + 3θ

θ
E
[
∥ 3 ∥2

]
≤ 5θL2

f C̃
2
∇gE[Ξ

t+1
1 +Ξt+1

2 ]+3L2
f C̃

2
∇gE

[
1

n0

∑
i∈Bt+1

(∥∥ut+1
1i − ut1i

∥∥2 + ∥∥ut+1
2i − ut2i

∥∥2)] .
Et

[
∥ 4 ∥2

]
=θ2Et

∥∥∥∥∥ 1

|B|
∑

i∈Bt+1

∇ĝ1i(wk+1)∇f(g1i(wk+1))− 1

n0

n0∑
i=1

∇g1i(wt+1)∇f(g1i(wt+1))

∥∥∥∥∥
2


+ θ2Et

∥∥∥∥∥ 1

|B|
∑

i∈Bt+1

∇ĝ2i(wk+1)∇f(g2i(wt+1))− 1

n0

n0∑
i=1

∇g2i(wt+1)∇f(g2i(wt+1))

∥∥∥∥∥
2


=θ2Et

∥∥∥∥∥ 1

|B|
∑

i∈Bt+1

∇ĝ1i(wt+1)∇f(g1i(wt+1))− 1

|B|
∑

i∈Bt+1

∇g1i(wt+1)∇f(g1i(wt+1))

∥∥∥∥∥
2


+ θ2Et

∥∥∥∥∥ 1

|B|
∑

i∈Bt+1

∇g1i(wt+1)∇f(g1i(wt+1))− 1

n0

n0∑
i=1

∇g1i(wt+1)∇f(g1i(wt+1))

∥∥∥∥∥
2


+ θ2Et

∥∥∥∥∥ 1

|B|
∑

i∈Bt+1

∇ĝ2i(wt+1)∇f(g2i(wt+1))− 1

|B|
∑

i∈Bt+1

∇g2i(wt+1)∇f(g2i(wt+1))

∥∥∥∥∥
2


+ θ2Et

∥∥∥∥∥ 1

|B|
∑

i∈Bt+1

∇g2i(wt+1)∇f(g2i(wt+1))− 1

n0

n0∑
i=1

∇g2i(wt+1)∇f(g2i(wt+1))

∥∥∥∥∥
2


≤
2θ2L2

f (σ
2
∇g + L2

g)

min{|B|, |B1i|, |B2i|}
.

Therefore, we can get

E[∆t+1
1 ] ≤(1− θ)E[∆t

1] +
2L2

F

θ
E[∥wt+1 −wt∥2] + 5θL2

f C̃
2
∇gE[Ξ

t+1
1 + Ξt+1

2 ]

+ 3L2
f C̃

2
∇gE

[
1

n0

∑
i∈Bt+1

(∥∥ut+1
1i − ut1i

∥∥2 + ∥∥ut+1
2i − ut2i

∥∥2)]+ 2θ2L2
f (σ

2
∇g + L2

g)

min{|B|, |B1i|, |B2i|}
.
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Lemma 4 If γ1 ≤ 1/5, function value variance Ξt
1 := 1

n0
∥ut

1 − g1(wt)∥2 can be bounded as

E[Ξt+1
1 ] ≤

(
1− γ1|B|

4n0

)
E
[
Ξt
1

]
+
5n0L

2
gE[∥wt+1 −wt∥2]

γ1|B|
+
2γ21σ

2
g |B|

n0|B1i|
− 1

4n0
E

[ ∑
i∈Bt+1

∥ut+1
1i − ut1i∥2

]
.

(16)
Lemma 5 If γ1 ≤ 1/5, function value variance Ξt

2 := 1
n0

∥ut
2 − g2(wt)∥2 can be bounded as

E[Ξt+1
2 ] ≤

(
1− γ1|B|

4n0

)
E
[
Ξt
2

]
+
5n0L

2
gE[∥wt+1 −wt∥2]

γ1|B|
+
2γ21σ

2
g |B|

n0|B2i|
− 1

4n0
E

[ ∑
i∈Bt+1

∥ut+1
2i − ut2i∥2

]
.

(17)

Since the proof of Lemma 4 and Lemma 5 are almost the same, we only presents the proof of
Lemma 4 as follows.
Proof Define ϕt1(u1) =

1
2∥u1−g1(w

k)∥2 = 1
2

∑n0

i=1 ∥u1i−g1i(wk)∥2, which is 1-strongly convex.

ϕt+1
1 (ut+1

1 ) =
1

2
∥ut+1

1 − g1(w
t+1)∥2 =

1

2
∥ut

1 − g1(w
t+1)∥2 + ⟨uk

1 − g1(w
t+1),ut+1

1 − ut
1⟩+

1

2
∥ut+1

1 − ut
1∥2

=
1

2
∥ut

1 − g1(w
t+1)∥2 +

∑
i∈Bt+1

⟨ut1i − ĝ1i(w
t+1), ut+1

1i − ut1i⟩+
1

2

∑
i∈Bt+1

∥ut+1
1i − ut1i∥2

+
∑

i∈Bt+1

⟨ĝ1i(wt+1)− g1i(w
k+1), ut+1

1i − ut1i⟩

(18)
Note that ut1i− ĝ1i(wt+1) = (ut1i−u

t+1
1i )/γ1 and 2⟨b−a, a− c⟩ ≤ ∥b− c∥2−∥a− b∥2−∥a− c∥2.∑

i∈Bt+1

⟨uk1i − ĝ1i(w
t+1), ut+1

1i − ut1i⟩

=
∑

i∈Bt+1

⟨ut1i − ĝ1i(w
t+1), g1i(w

k+1)− ut1i⟩+
∑

i∈Bt+1

⟨ut1i − ĝ1i(w
t+1), ut+1

1i − g1i(w
t+1)⟩

=
∑

i∈Bt+1

⟨ut1i − ĝ1i(w
t+1), g1i(w

t+1)− ut1i⟩+
1

γ1

∑
i∈Bt+1

⟨ut1i − ut+1
1i , ut+1

1i − g1i(w
t+1)⟩

≤
∑

i∈Bt+1

⟨ut1i − ĝ1i(w
t+1), g1i(w

t+1)− ut1i⟩

+
1

2γ1

∑
i∈Bt+1

(
∥ut1i − g1i(w

t+1)∥2 − ∥ut+1
1i − ut1i∥2 − ∥ut+1

1i − g1i(w
t+1)∥2

)
If γ1 ≤ 1

5 , we have

− 1

2

(
1

γ1
− 1− γ1 + 1

4γ1

) ∑
i∈Bt+1

∥ut+1
1i − ut1i∥2 +

∑
i∈Bt+1

⟨ĝ1i(wt+1)− g1i(w
t+1), ut+1

1i − ut1i⟩

≤ − 1

4γ1

∑
i∈Bt+1

∥ut+1
1i − ut1i∥2 + γ1

∑
i∈Bt+1

∥∥ĝ1i(wt+1)− g1i(w
t+1)

∥∥2 + 1

4γ1

∑
i∈Bt+1

∥ut+1
1i − ut1i∥2

=γ1
∑

i∈Bt+1

∥∥ĝ1i(wt+1)− g1i(w
t+1)

∥∥2 .
Then we can get
1

2
∥ut+1

1 − g1(w
t+1)∥2 ≤1

2
∥ut

1 − g1(w
t+1)∥2 + 1

2γ1

∑
i∈Bt+1

∥ut1i − g1i(w
t+1)∥2

− 1

2γ1

∑
i∈Bt+1

∥ut+1
1i − g1i(w

t+1)∥2

+ γ1
∑

i∈Bt+1

∥∥ĝ1i(wt+1)− g1i(w
t+1)

∥∥2 − γ1 + 1

8γ1

∑
i∈Bt+1

∥ut+1
1i − ut1i∥2

+
∑

i∈Bt+1

⟨ut1i − ĝ1i(w
t+1), g1i(w

t+1)− ut1i⟩.
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Note that 1
2γ1

∑
i/∈Bt+1 ∥ut1i − g1i(w

t+1)∥2 = 1
2γ1

∑
i/∈Bt+1 ∥ut+1

1i − g1i(w
t+1)∥2, which implies

that
1

2γ1

∑
i∈Bt+1

(
∥ut1i − g1i(w

t+1)∥2 − ∥ut+1
1i − g1i(w

t+1)∥2
)
=

1

2γ1

(
∥ut

1 − g1(w
t+1)∥2 − ∥ut+1

1 − g1(w
t+1)∥2

)
.

Besides, we also have E
[∑

i∈Bt+1

∥∥ĝ1i(wt+1)− g1i(w
t+1)

∥∥2] ≤ |B|σ2
g

|B1i| and

E

[ ∑
i∈Bt+1

⟨ut1i − ĝ1i(w
t+1), g1i(w

t+1)− ut1i⟩

]
=

|B|
n0

n0∑
i=1

⟨ut1i − g1i(w
t+1), g1i(w

t+1)− ut1i⟩

= −|B|
n0

∥ut
1 − g1(w

t+1)∥2.

Then we can obtain(
1

2
+

1

2γ1

)
E
[
∥ut+1

1 − g1(w
t+1)∥2

]
≤
(
1

2
+

1

2γ1
− |B|
n0

)
E
[
∥ut

1 − g1(w
t+1)∥2

]
+
γ1|B|σ2

g

|B1i|
− γ1 + 1

8γ1
E

[ ∑
i∈Bt+1

∥ut+1
1i − ut1i∥2

]
.

Divide both sides by γ1+1
2γ1

we can get

E
[
∥ut+1

1 − g1(w
t+1)∥2

]
≤
γ1 + 1− 2γ1

|B|
n0

γ1 + 1
E
[
∥ut

1 − g1(w
t+1)∥2

]
+

2

γ1 + 1

γ21 |B|σ2
g

|B1i|

− 1

4
E

[ ∑
i∈Bt+1

∥ut+1
1i − ut1i∥2

]
.

Note that
γ1+1−2γ1

|B|
n0

γ1+1 ≤
γ1(1− |B|

n0
)+1

γ1+1 = 1 − γ1|B|
(γ1+1)n0

≤ 1 − γ1|B|
2n0

and 1
γ1+1 ≤ 1 for γ1 ∈ (0, 1].

Besides, we have ∥ut
1−g1(w

t+1)∥2 ≤ (1+ γ1|B|
4n0

)∥ut
1−g1(wt)∥2+(1+ 4n0

γ1|B| )∥g1(wt+1)−g1(wt)∥2

due to Young’s inequality, (1 + γ1|B|
4n0

)(1− γ1|B|
2n0

) ≤ (1− γ1|B|
4n0

) and (1 + 4n0

γ1|B| )(1−
γ1|B|
2n0

) ≤ 5n0

γ1|B| .

E
[
Ξt+1
1

]
= E

[
1

n0
∥ut+1

1 − g1(w
t+1)∥2

]
≤
(
1− γ1|B|

4n0

)
E
[
1

n0
∥ut

1 − g1(w
t)∥2

]
+

5n0L
2
g∥wt+1 −wt∥2

γ1|B|
+

2γ21σ
2
g |B|

n0|B1i|
− 1

4n0
E

[ ∑
i∈Bt+1

∥ut+1
1i − ut1i∥2

]

=

(
1− γ1|B|

4n0

)
E
[
Ξt
1

]
+

5n0L
2
gE[∥wt+1 −wt∥2]

γ1|B|
+

2γ21σ
2
g |B|

n0|B1i|
− 1

4n0
E

[ ∑
i∈Bt+1

∥ut+1
1i − ut1i∥2

]

Lemma 6 The gradient variance ∆t
2 := ∥vt2 −∇H(wt)∥2 can be bounded as

E[∆t+1
2 ] ≤(1− θ)E[∆t

2] +
2β2L2

H

θ
E
[
∥wt+1 −wt∥2

]
+ 5θβ2C̃2

∇hE[Γt+1]

+
3β2C̃2

∇h

m
E

 ∑
k∈Bt+1

c

∥ut+1
k − utk∥2

+
θ2β2C2

h(σ
2
∇h + L2

h)

min{|Bc|, |Bk|}

(19)

with Γt+1 := 1
m∥ut+1 − h(wt+1)∥2.

Proof
∆t+1

2 = ∥vt+1
2 −∇H(wt+1)∥2 = ∥(1− θ)vt2 + θGt

2 −∇H(wt+1)∥2

∥ 1 + 2 + 3 + 4 ∥2,
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where 1 , 2 , 3 and 4 are defined as
1 = (1− θ)(vt2 −∇H(wt)), 2 = (1− θ)(∇H(wt)−∇H(wt+1)),

3 =
θ

|Bc|
β
∑

k∈Bt+1
c

(
[utk]+∇ĥk(wt+1)− [hk(w

t+1)]+∇ĥk(wt+1)
)

4 = θ

 1

|Bc|
β
∑

k∈Bt+1
c

[hk(w
t+1)]+∇ĥk(wt+1)−∇H(wt+1)


Note that Et[⟨ 1 , 4 ⟩] = Et[⟨ 2 , 4 ⟩] = 0. Then, by the Young’s inequality, we can get

Et

[
∥ 1 + 2 + 3 + 4 ∥2

]
=∥ 1 ∥2 + ∥ 2 ∥2 + Et∥ 3 ∥2 + Et∥ 4 ∥2 + 2⟨ 1 , 2 ⟩+ 2Et[⟨ 1 , 3 ⟩] + 2Et[⟨ 2 , 3 ⟩] + 2Et[⟨ 3 , 4 ⟩]

≤(1 + θ)∥ 1 ∥2 + 2

(
1 +

1

θ

)
∥ 2 ∥2 + 2 + 3θ

θ
Et∥ 3 ∥2 + 2Et∥ 4 ∥2.

We can also get
(1 + θ)∥ 1 ∥2 = (1 + θ)(1− θ)2∥vt2 −∇H(wt)∥2 ≤ (1− θ)∥vt2 −∇H(wt)∥2

2

(
1 +

1

θ

)
∥ 2 ∥2 =2

(
1 +

1

θ

)
(1− θ)2∥∇H(wt)−∇H(wt+1)∥2

≤2

θ

∥∥∥∥∥ 1

m

m∑
k=1

β
(
∇hk(wt+1)⊤[hk(w

t+1)]+ −∇hk(wt)⊤[hk(w
t)]+

)∥∥∥∥∥
2

≤2β2L2
H

θ
∥wt+1 −wt∥2

2 + 3θ

θ
∥ 3 ∥2 ≤ 2 + 3θ

θ

θ2β2

|Bc|
∑

k∈Bt+1
c

∥∇ĥk(wt+1)∥2∥[utk]+ − [hk(w
t+1)]+∥2

≤ (2 + 3θ)θβ2

|Bc|
∑

k∈Bt+1
c

∥∇ĥk(wt+1)∥2∥utk − hk(w
t+1)∥2

Consider that wt+1 and utk do not depend on either Bt+1
c or Bk, we have

(2 + 3θ)θβ2Et

 1

|Bc|
∑

k∈Bt+1
c

∥∇ĥk(w
t+1)∥2∥ut

k − hk(w
t+1)∥2


= (2 + 3θ)θβ2Et

 1

|Bc|
∑

k∈Bt+1
c

Et

[
∥∇ĥk(w

t+1)∥2|k ∈ Bt+1
c

]
∥ut

k − hk(w
t+1)∥2


≤ (2 + 3θ)θβ2C̃2

∇hEt

 1

|Bc|
∑

k∈Bt+1
c

∥ut
k − hk(w

t+1)∥2


≤ (2 + 3θ)θ(1 + δ)β2C̃2
∇h

m

∑
k∈[m]

Et

[
∥ut+1

k − hk(w
t+1)∥2

]
+

(2 + 3θ)θ(1 + 1/δ)β2C̃2
∇h

m
Et

 ∑
k∈[m]

∥ut+1
k − ut

k∥2


=
(2 + 3θ)θ(1 + δ)β2C̃2

∇h

m

∑
k∈[m]

Et

[
∥ut+1

k − hk(w
t+1)∥2

]
+

(2 + 3θ)θ(1 + 1/δ)β2C̃2
∇h

m
Et

 ∑
k∈Bt+1

c

∥ut+1
k − ut

k∥2


where the last equation holds by noting that ut+1
k = utk for all i /∈ Bt+1

c .

If θ ≤ 1
3 and δ = 3θ

2 , we have (2 + 3β)β(1 + δ) ≤ 5θ and (2 + 3β)β(1 + 1/δ) ≤ 3. Therefore, we
can get

E
[
2 + 3θ

θ
∥ 3 ∥2

]
≤ 5θβ2C̃2

∇hE[Γt+1] +
3β2C̃2

∇h

m
E

 ∑
k∈Bt+1

c

∥ut+1
k − utk∥2
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Next, we give the upper bound of Et∥ 4 ∥2.

Et∥ 4 ∥2 =θ2β2Ek


∥∥∥∥∥∥ 1

|Bc|
∑

k∈Bt+1
c

[hk(w
t+1)]+∇ĥk(wt+1)− 1

m

m∑
k=1

[hk(w
t+1)]+∇hk(wt+1)

∥∥∥∥∥∥
2


≤θ2β2Et


∥∥∥∥∥∥ 1

|Bc|
∑

k∈Bt+1
c

[hk(w
t+1)]+∇ĥk(wt+1)− 1

|Bc|
∑

k∈Bt+1
c

[hk(w
t+1)]+∇hk(wt+1)

∥∥∥∥∥∥
2


+ θ2β2Et


∥∥∥∥∥∥ 1

|Bc|
∑

k∈Bt+1
c

[hk(w
t+1)]+∇hk(wt+1)− 1

m

m∑
k=1

[hk(w
t+1)]+∇hk(wt+1)

∥∥∥∥∥∥
2


≤θ
2β2C2

h(σ
2
∇h + L2

h)

min{|Bc|, |Bk|}

Combine above inequalities, we can get

E[∆t+1
2 ] ≤(1− θ)E[∆t

2] +
2β2L2

H

θ
E
[
∥wt+1 −wt∥2

]
+ 5θβ2C̃2

∇hE[Γt+1]

+
3β2C̃2

∇h

m
E

 ∑
k∈Bt+1

c

∥ut+1
k − utk∥2

+
θ2β2C2

h(σ
2
∇h + L2

h)

min{|Bc|, |Bk|}
.

Lemma 7 If γ2 ≤ 1/5, function value variance Γt :=
1
m∥ut − h(wt)∥2 can be bounded as

E[Γt+1] ≤
(
1− γ2|Bc|

4m

)
E [Γt]+

5mL2
hE[∥wt+1 −wt∥2]

γ|Bc|
+
2γ22σ

2
h|Bc|

m|Bk|
− 1

4m
E

 ∑
k∈Bt+1

c

∥ut+1
k − utk∥2

 .
(20)

Proof Define ψk(u) = 1
2∥u − h(wt)∥2 = 1

2

∑m
k=1 ∥uk − hk(w

t)∥2, which is 1-strongly convex.

ψt+1(ut+1) =
1

2
∥ut+1 − h(wt+1)∥2 =

1

2
∥ut − h(wt+1)∥2 + ⟨ut − h(wt+1),ut+1 − ut⟩+ 1

2
∥ut+1 − ut∥2

=
1

2
∥ut − h(wt+1)∥2 +

∑
k∈Bt+1

c

⟨utk − ĥk(w
t+1), ut+1

k − utk⟩+
1

2

∑
k∈Bt+1

c

∥ut+1
k − utk∥2

+
∑

k∈Bt+1
c

⟨ĥk(wt+1)− hk(w
t+1), ut+1

k − utk⟩

(21)

Note that utk − ĥk(w
t+1) = (qki − qk+1

i )/γ2 and 2⟨b− a, a− c⟩ ≤ ∥b− c∥2 −∥a− b∥2 −∥a− c∥2.∑
k∈Bt+1

c

⟨utk − ĥk(w
t+1), ut+1

k − utk⟩

=
∑

k∈Bt+1
c

⟨utk − ĥk(w
t+1), hk(w

t+1)− utk⟩+
∑

k∈Bt+1
c

⟨utk − ĥk(w
t+1), ut+1

k − hk(w
t+1)⟩

=
∑

k∈Bt+1
c

⟨utk − ĥk(w
t+1), hk(w

t+1)− utk⟩+
1

γ2

∑
k∈Bt+1

c

⟨utk − ut+1
k , ut+1

k − hk(w
t+1)⟩

≤
∑

k∈Bt+1
c

⟨utk − ĥk(w
t+1), hk(w

t+1)− utk⟩

+
1

2γ2

∑
k∈Bt+1

c

(
∥utk − hk(w

t+1)∥2 − ∥ut+1
k − utk∥2 − ∥ut+1

k − hk(w
t+1)∥2

)
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If γ2 ≤ 1
5 , we have

− 1

2

(
1

γ2
− 1− γ2 + 1

4γ2

) ∑
k∈Bt+1

c

∥ut+1
k − utk∥2 +

∑
k∈Bt+1

c

⟨ĥk(wt+1)− hk(w
t+1), ut+1

k − utk⟩

≤ − 1

4γ2

∑
k∈Bt+1

c

∥ut+1
k − utk∥2 + γ2

∑
k∈Bt+1

c

∥∥∥ĥk(wt+1)− hk(w
t+1)

∥∥∥2 + 1

4γ2

∑
k∈Bt+1

c

∥ut+1
k − utk∥2

=γ2
∑

k∈Bt+1
c

∥∥∥ĥk(wt+1)− hk(w
t+1)

∥∥∥2 .
Then we can get
1

2
∥ut+1 − h(wt+1)∥2 ≤1

2
∥ut − h(wt+1)∥2 + 1

2γ2

∑
k∈Bt+1

c

∥utk − hk(w
t+1)∥2 − 1

2γ2

∑
k∈Bt+1

c

∥ut+1
k − hk(w

t+1)∥2

+ γ2
∑

k∈Bt+1
c

∥∥∥ĥk(wt+1)− hk(w
t+1)

∥∥∥2 − γ2 + 1

8γ2

∑
k∈Bt+1

c

∥ut+1
k − utk∥2

+
∑

k∈Bt+1
2

⟨utk − ĥk(w
t+1), hk(w

t+1)− utk⟩.

Note that 1
2γ2

∑
k/∈Bt+1

c
∥utk − hk(w

t+1)∥2 = 1
2γ2

∑
k/∈Bt+1

c
∥ut+1

k − hk(w
t+1)∥2, which implies

that
1

2γ2

∑
k∈Bt+1

c

(
∥utk − hk(w

t+1)∥2 − ∥ut+1
k − hk(w

t+1)∥2
)
=

1

2γ2

(
∥ut − h(wt+1)∥2 − ∥ut+1 − h(wt+1)∥2

)
.

Besides, we also have E
[∑

k∈Bt+1
c

∥∥∥ĥk(wt+1)− hk(w
t+1)

∥∥∥2] ≤ |Bc|σ2
h

|Bk| and

E

 ∑
k∈Bt+1

c

⟨utk − ĥk(w
t+1), hk(w

t+1)− utk⟩

 =
|Bc|
m

m∑
k=1

⟨utk − hk(w
t+1), hk(w

t+1)− utk⟩

= −|Bc|
m

∥ut − h(wt+1)∥2.
Then we can obtain(

1

2
+

1

2γ2

)
E
[
∥ut+1 − h(wt+1)∥2

]
≤
(
1

2
+

1

2γ2
− |Bc|

m

)
E
[
∥ut − h(wt+1)∥2

]
+
γ2|Bc|σ2

h

|Bk|
− γ2 + 1

8γ2
E

 ∑
k∈Bt+1

c

∥ut+1
k − utk∥2

 .
Divide both sides by γ2+1

2γ2
we can get

E
[
∥ut+1 − h(wt+1)∥2

]
≤
γ2 + 1− 2γ2

|Bc|
m

γ2 + 1
E
[
∥ut − h(wt+1)∥2

]
+

2

γ2 + 1

γ22 |Bc|σ2
h

|Bk|

− 1

4
E

 ∑
k∈Bt+1

c

∥ut+1
k − utk∥2

 .
Note that γ2+1−2γ2

|Bc|
m

γ2+1 ≤ γ2(1− |Bc|
m )+1

γ2+1 = 1− γ2|Bc|
(γ2+1)m ≤ 1− γ2|Bc|

2m and 1
γ2+1 ≤ 1 for γ2 ∈ (0, 1].

Besides, we have ∥ut−h(wt+1)∥2 ≤ (1+ γ2|Bc|
4m )∥ut−h(wt)∥2+(1+ 4m

γ2|Bc| )∥h(wt+1)−h(wt)∥2
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due to Young’s inequality, (1+ γ2|Bc|
4m )(1− γ2|Bc|

2m ) ≤ (1− γ2|Bc|
4m ) and (1+ 4m

γ2|Bc| )(1−
γ2|Bc|
2m ) ≤ 5m

γ2|Bc| .

E [Γt+1] = E
[
1

m
∥ut+1 − h(wt+1)∥2

]

≤
(
1− γ2|Bc|

4m

)
E
[
1

m
∥ut − h(wt)∥2

]
+

5mL2
h∥wt+1 −wt∥2

γ2|Bc|
+

2γ22σ
2
h|Bc|

m|Bk|
− 1

4m
E

 ∑
k∈Bt+1

c

∥ut+1
k − utk∥2


=

(
1− γ2|Bc|

4m

)
E [Γt] +

5mL2
hE[∥wt+1 −wt∥2]

γ2|Bc|
+

2γ22σ
2
h|Bc|

m|Bk|
− 1

4m
E

 ∑
k∈Bt+1

c

∥ut+1
k − utk∥2


We state the main theorem again for convenience and present the proof.

Theorem 2 Suppose Assumptions 1, 2, 3 and 4 hold, and set β = 1
ϵδ ,

θ = min{ ϵ4δ2 min{|Bk|,|Bc|}
672(σ2

∇h+L2
h)

, ϵ
2 min{|B|,|B1i|,|B2i|}
1344L2

f (σ
2
∇g+L2

g)
}, γ1 = γ2 = min{ 5n0θ

3|B| ,
5mθ
3|Bc| ,

ϵ4δ2|Bk|
26880σ2

hC̃
2
∇h

} and

η = min
{

1
12(LF+βLH) ,

θ
8
√
3LF

, θ
8
√
3LHβ

, γ1|B|
40

√
6LgLf C̃∇gn0

, γ2|Bc|
40

√
6βLhC̃∇hm

}
. Then there exists λ

such that
E
[
∥∇F (wt̂) +∇h(wt̂)λ)∥

]
≤ ϵ

E[∥[h(wt̂)]+∥] ≤ ϵ

E[λ⊤[h(wt̂)]+] ≤ ϵ

with number of iterations T of Algorithm 1 bounded by O(ϵ−7δ−3) and t̂ selected uniformly at
random from {1, · · · , T}.

Proof Since Φ(w) is Lβ-smooth with Lβ = LF + βLH where LF := 2(L∇gLf + L∇fL
2
g) and

LH := L∇hCh + LhC∇h, we have

Φ(wt+1) ≤ Φ(wt) + ⟨∇Φ(wt),wt+1 −wt⟩+ Lβ

2
∥wt+1 −wt∥2

= Φ(wt) + ⟨vt,wt+1 −wt⟩+ ⟨∇Φ(wt)− vt,wt+1 −wt⟩+ Lβ

2
∥wt+1 −wt∥2

≤ Φ(wt) + ⟨vt,wt+1 −wt⟩+
(
Lβ

2
+

1

4η

)
∥wt+1 −wt∥2 + η∥∇Φ(wt)− vt∥2.

(22)
Since wt+1 = wt − ηvt, which is equivalent to wt+1 = argminw⟨vt,w⟩+ 1

2η∥w−wt∥2, we have

⟨vt,wt+1 −wt⟩ ≤ − 1

2η
∥wt+1 −wt∥2. (23)

Then we can get

Φ(wt+1) ≤ Φ(wt) +

(
Lβ

2
− 1

4η

)
∥wt+1 −wt∥2 + η∥∇Φ(wt)− vt∥2 (24)

Φ(wt+1) ≤ Φ(wt) +

(
Lβ

2
− 1

4η

)
∥wt+1 −wt∥2 + 2η∥∇Φ(wt)− vt∥2 − η∥∇Φ(wt)− vt∥2

(25)

η∥∇Φ(wt)− vt∥2 ≤ Φ(wt)− Φ(wt+1) +

(
Lβ

2
− 1

4η

)
∥wt+1 −wt∥2 + 2η∥∇Φ(wt)− vt∥2.

(26)

Then we want to bound E∥∇Φ(wt)− vt∥2.

∥∇Φ(wt)− vt∥2 = ∥(1− θ)(vt−1
1 + vt−1

2 ) + θ(Gt
1 +Gt

2)−∇Φ(wt)∥2

= ∥(1− θ)vt−1
1 + θGt

1 −∇F (wt) + (1− θ)vt−1
2 + θGt

2 −∇H(wt)∥2

= ∥vt1 −∇F (wt) + vt2 −∇H(wt)∥2
(27)
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Since Et [⟨vt1 −∇F (wt), vt2 −∇H(wt)⟩] = 0, we have
Et∥∇Φ(wt+1)− vt+1∥2 = Et∥vt+1

1 −∇F (wt+1)∥2 + Et∥vt+1
2 −∇H(wt+1)∥2 (28)

Summing (15),
20θL2

f C̃
2
∇gn0

γ1|B| ×(16) and
20θL2

f C̃
2
∇gn0

γ1|B| ×(17), we can get

E[∆t+1
1 ] ≤(1− θ)E[∆t

1] +

(
2L2

F

θ
+

100θL2
gL

2
f C̃

2
∇gn

2
0

γ21 |B|2

)
E[∥wt+1 −wt∥2]

+
20θL2

f C̃
2
∇gn0

γ1|B|

(
1− γ1|B|

4n0

)
E
[
Ξt
1 + Ξt

2 − Ξt+1
1 − Ξt+1

2

]
− L2

f C̃
2
∇g

(
5θn0
γ1|B|

− 3

)
E

[
1

n0

∑
i∈Bt+1

∥∥ut+1
1i − ut1i

∥∥2 + ∥∥ut+1
2i − ut2i

∥∥2]

+
2θ2L2

f (σ
2
∇g + L2

g)

min{|B|, |B1i|, |B2i|}
+

80θγ1σ
2
gL

2
f C̃

2
∇g

min{|B1i|, |B2i|}

(29)

Summing (19) and 20θβ2C̃2
∇hm

γ2|Bc| ×(20), we can get

E[∆t+1
2 ] ≤(1− θ)E[∆t

2] +

(
2β2L2

H

θ
+

100θβ2L2
hC̃

2
∇hm

2

γ22 |Bc|2

)
E[∥wt+1 −wt∥2]

+
20θβ2C̃2

∇hm

γ2|Bc|

(
1− γ2|Bc|

4m

)
E [Γt − Γt+1]

− β2C̃2
∇g

(
5θm

γ2|Bc|
− 3

)
E

 1

m

∑
k∈Bt+1

c

∥∥ut+1
k − utk

∥∥2
+
θ2β2(σ2

∇h + L2
h)

min{|Bc|, |Bk|}
+

40θγ2β
2σ2

hC̃
2
∇h

|Bk|

(30)

Summing (26), 4η
θ ×(29) and 4η

θ ×(30), let γ1 = γ2 = γ ≤ min{ 5n0θ
3|B| ,

5mθ
3|Bc|}, we can get 5θn0

γ|B| −3 ≥ 0,
5θm
γ|Bc| − 3 ≥ 0 and

ηE∥∇Φ(wt)− vt∥2

≤E [Yt − Yt+1]

−

(
1

4η
− LF + βLH

2
− 8ηL2

F

θ2
−

400ηL2
gL

2
f C̃

2
∇gn

2
0

γ2|B|2
− 8ηβ2L2

H

θ2
− 400ηβ2L2

hC̃
2
∇hm

2

γ2|Bc|2

)
E
[
∥wt+1 −wt∥2

]
+

8ηθL2
f (σ

2
∇g + L2

g)

min{|B|, |B1i|, |B2i|}
+

320ηγσ2
gL

2
f C̃

2
∇g

min{|B1i|, |B2i|}
+

4ηθβ2(σ2
∇h + L2

h)

min{|Bc|, |Bk|}
+

160ηγβ2σ2
hC̃

2
∇h

|Bk|
(31)

where

Yt+1 = Φ(wt+1)+
4η

θ
∥∇Φ(wt+1)−vt+1∥2+

80ηL2
f C̃

2
∇gn0

γ|B|
(Ξt+1

1 +Ξt+1
2 )+

80ηβ2C̃2
∇hm

γ|Bc|
Γt+1.

If η = min
{

1
12(LF+βLH) ,

θ
8
√
3LF

, θ
8
√
3LHβ

, γ|B|
40

√
6LgLf C̃∇gn0

, γ|Bc|
40

√
6βLhC̃∇hm

}
, we have

η

24
E
[
η−2∥wt+1 −wt∥2 + ∥∇Φ(wt)− vt∥2

]
≤E [Yt − Yt+1] +

8ηθL2
f (σ

2
∇g + L2

g)

min{|B|, |B1i|, |B2i|}
+

320ηγσ2
gL

2
f C̃

2
∇g

min{|B1i|, |B2i|}
+

4ηθβ2(σ2
∇h + L2

h)

min{|Bc|, |Bk||}
+

160ηγβ2σ2
hC̃

2
∇h

|Bk|
.

(32)
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Dividing both sides by η
24 and taking the average over T we can get

1

T

T−1∑
t=0

E
[
η−2∥wt+1 −wt∥2 + ∥∇Φ(wt)− vt∥2

]
≤24E[Y0]

ηT
+

192θL2
f (σ

2
∇g + L2

g)

min{|B|, |B1i|, |B2i|}
+

7680γσ2
gL

2
f C̃

2
∇g

min{|B1i|, |B2i|}
+

96θβ2(σ2
∇h + L2

h)

min{|Bc|, |Bk|}
+

3840γβ2σ2
hC̃

2
∇h

|Bk|
.

(33)

Y0 = Φ(w0) +
4η

θ
∥∇Φ(w0)− v0∥2 +

80ηL2
f C̃

2
∇gn0

γ|B|
(Ξ0

1 + Ξ0
2) +

80ηβ2C̃2
∇hm

γ|Bc|
Γ0

= Φ(w0) +
4η

θ
∥∇Φ(w0)− v0∥2 +

80ηL2
f C̃

2
∇g

γ|B|
(∥u0

1 − g1(w
0)∥2 + ∥u0

2 − g2(w
0)∥2)

+
80ηβ2C̃2

∇h

γ|Bc|
∥u0 − h(w0)∥2.

Since w0 is a feasible solution, we have Φ(w0) = 1
n0

∑n0

i=1 f(gi(w
0)). Since g is bounded by

Assumption 1 and f is Lipschitz continuous, we can show that there exists a constant CF :=
max{τ | log(c2g)|, τ | log(C2

g )|} such that |F (w,D)| ≤ CF . We assume that u0k = hk(w
0), u01i =

ĝ1i(w
0), u02i = ĝ2i(w

0) and v0 = 1
n0

∑n0

i=1(∇ĝ1i(w0)⊤∇f(ĝ1i(w0) +∇ĝ2i(w0)⊤∇f(ĝ2i(w0)),
we can get

E[∥∇Φ(w0)− v0∥2] ≤ 2(C2
∇g + σ2

∇g)C
2
∇f

E[∥u0
1 − g1(w

0)∥2] ≤ σ2
g

E[∥u0
2 − g2(w

0)∥2] ≤ σ2
g

E[∥u0 − h(w0)∥2] = 0

(34)

Therefore, we can get

1

T

T−1∑
t=0

E
[
η−2∥wt+1 −wt∥2 + ∥∇Φ(wt)− vt∥2

]
≤24CF

ηT
+

192(C2
∇g + σ2

∇g)C
2
∇f

θT
+

1920L2
f C̃

2
∇gσ

2
g

|B|γT

+
192θL2

f (σ
2
∇g + L2

g)

min{|B|, |B1i|, |B2i|}
+

7680γσ2
gL

2
f C̃

2
∇g

min{|B1i|, |B2i|}
+

96θβ2(σ2
∇h + L2

h)

min{|Bc|, |Bk|}
+

3840γβ2σ2
hC̃

2
∇h

|Bk|
.

(35)

Let β = 1
ϵδ , θ = min

{
ϵ4δ2 min{|Bk|,|Bc|}

672(σ2
∇h+L2

h)
, ϵ

2 min{|B|,|B1i|,|B2i|}
1344L2

f (σ
2
∇g+L2

g)

}
= O(ϵ4δ2),

γ1 = γ2 = γ ≤ min
{

5n0θ
3|B| ,

5mθ
3|Bc| ,

ϵ4δ2|Bk|
26880σ2

hC̃
2
∇h

}
= O(ϵ4δ2),

η = min
{

1
12(LF+βLH) ,

θ
8
√
3LF

, θ
8
√
3LHβ

, γ1|B|
40

√
6LgLf C̃∇gn

, γ2|Bc|
40

√
6βLhC̃∇hm

}
= O(ϵ5δ3) and

T = O(ϵ−7δ−3), we have

1

T

T−1∑
t=0

E
[
η−2∥wt+1 −wt∥2 + ∥∇Φ(wt)− vt∥2

]
≤ O(ϵ2)

By the definition of wt+1, we have
wt+1 −wt + ηvt = 0

⇔ η−1(wt −wt+1) + (∇Φ(wt)− vt) + (∇Φ(wt+1)−∇Φ(wt)) = ∇Φ(wt+1)

⇔ η−1(wt −wt+1) + (∇Φ(wt)− vt) + (∇Φ(wt+1)−∇Φ(wt))

= ∇F (wt+1) +
β

m
∇h(wt+1)[h(wt+1)]+
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This gives ∥∥∥∥∇F (wt+1) +
β

m
∇h(wt+1)⊤[h(wt+1)]+

∥∥∥∥2
≤ 3

(
η−2∥wt −wt+1∥2 + ∥∇Φ(wt)− vt∥2 + ∥∇Φ(wt+1)− Φ(wt)∥2

)
≤ 3

(
η−2∥wt −wt+1∥2 + ∥∇Φ(wt)− vt∥2 + L2

β∥wt −wt+1∥2
)

≤ 3
(
η−2∥wt −wt+1∥2 + ∥∇Φ(wt)− vt∥2 + η−2∥wt −wt+1∥2

)
≤ 6(η−2∥wt −wt+1∥2 + ∥∇Φ(wt)− vt∥2)

Therefore, we can achieve that

1

T

T−1∑
t=0

E

[∥∥∥∥∇F (wt+1) +
β

m
∇h(wt+1)[h(wt+1)]+

∥∥∥∥2
]
≤ O(ϵ2) (36)

By Jensen’s inequality, we can get

E
[∥∥∥∥∇F (wt̂) +

β

m
∇h(wt̂)[h(wt̂)]+

∥∥∥∥] ≤ O(ϵ), (37)

with t̂ selected uniformly at random from {1, · · · , T}.

Then, with the full rank assumption on the Jacobian, which is ∥∇h(wt)[h(wt)]+∥ ≥ δ∥[h(wt)]+∥
as in Assumption 4, we can get

∥[h(wt+1)]+∥2 ≤ 1

δ2
∥∇h(wt+1)[h(wt+1)]+∥2

=
m2

β2δ2
∥∇F (wt+1) +

β

m
∇h(wt+1)[h(wt+1)]+ −∇F (wt+1)∥2

≤ 2m2

β2δ2

[∥∥∇F (wt+1)
∥∥2 + ∥∥∥∥∇F (wt+1) +

β

m
∇h(wt+1)[h(wt+1)]+

∥∥∥∥2
] (38)

Taking the average over T , we can get

1

T

T−1∑
t=0

E∥[h(wt+1)]+∥2 ≤ 1

T

T−1∑
t=0

2m2

β2δ2
E

[∥∥∇F (wt+1)
∥∥2 + ∥∥∥∥∇F (wt+1) +

β

m
∇h(wt+1)[h(wt+1)]+

∥∥∥∥2
]

≤O(ϵ2)
(39)

and using λ = β
m [h(wt̂)]+. By Jensen’s inequality, we can get

E∥[h(wt̂)]+∥ ≤ O(ϵ) (40)

E|λ⊤[h(wt̂)]+| = E
∣∣∣∣ βm [h(wt̂)]⊤+[h(w

t̂)]+

∣∣∣∣ = β

m
E∥[h(wt̂)]+∥2

=
1

mδϵ
E∥[h(wt̂)]+∥2

≤ O(ϵ).

(41)

37


	Introduction
	Related Work
	Notations and Preliminaries
	A blueretention-Centric Framework
	Model developmental safety
	A blueretention-centric Approach for Model developmental safety

	blueretention-centric Development of CLIP Models
	Efficient Optimization and Convergence Analysis
	Promoting developmental safety via Task-dependent heads

	Experiments
	Visualization of Learning Process
	Comparison with Baselines for Model developmental safety
	Performance with Multiple Rounds of Model Development

	Conclusion
	More Experimental Details and Results
	Experimental Details.
	Dataset.
	Experimental Settings.
	Hyperparameter tuning.
	Details about Baselines

	Retrieving external data from LIAON400M
	Visualization of Models' Learning Curves
	Deficiency of Weighting Methods
	Detailed Performance Comparison with Baselines
	Detailed Ablation studies
	The Effect of Different Number of Samples Used for Constraints.
	Importance of the external data from LAION400M
	Importance of Task-dependent Heads
	Verification of Lemma 2
	Constant  vs Increasing 


	More Related Work
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1


