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Abstract
Despite the success of the carefully-annotated
benchmarks, the effectiveness of existing graph
neural networks (GNNs) can be considerably im-
paired in practice when the real-world graph data
is noisily labeled. Previous explorations in sam-
ple selection have been demonstrated as an ef-
fective way for robust learning with noisy labels,
however, the conventional studies focus on i.i.d
data, and when moving to non-iid graph data and
GNNs, two notable challenges remain: (1) nodes
located near topological class boundaries are very
informative for classification but cannot be suc-
cessfully distinguished by the heuristic sample se-
lection. (2) there is no available measure that con-
siders the graph topological information to pro-
mote sample selection in a graph. To address this
dilemma, we propose a Topological Sample Se-
lection (TSS) method that boosts the informative
sample selection process in a graph by utilising
topological information. We theoretically prove
that our procedure minimizes an upper bound of
the expected risk under target clean distribution,
and experimentally show the superiority of our
method compared with state-of-the-art baselines.

1. Introduction
Noisy labels ubiquitous in real-world applications (Deng
et al., 2020; Mirzasoleiman et al., 2020; Gao et al., 2022;
Yao et al., 2023a; Huang et al., 2023b; Chen et al., 2024;
Wu et al., 2023) inevitably impair the learning efficiency
and the generalization robustness of deep neural networks
(DNNs) (Liu and Tao, 2015; Rolnick et al., 2017; Nguyen
et al., 2019; Yuan et al., 2024). It becomes exacerbated
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on the graph data, as the noise influence can be propa-
gated along the topological edges, unlike the independent
and identically distributed (i.i.d.) data in the forms of im-
age (Mirzasoleiman et al., 2020; Chen et al., 2019; Frénay
and Verleysen, 2013; Thulasidasan et al., 2019; NT et al.,
2019; Wei et al., 2021; Cheng et al.; Berthon et al., 2021).
Combating the degeneration of GNNs on the noisily labeled
graph then emerges as a non-negligible problem, drawing
more attention from the research community (Dai et al.,
2021; Li et al., 2021; Du et al., 2021; Yuan et al., 2023a;b;
Xia et al., 2023; Yao et al., 2021; 2020; Lin et al., 2023b).

Sample selection has been demonstrated as a promising way
to deal with label noise on i.i.d. data (Han et al., 2018;
Jiang et al., 2018; Zhou et al., 2020; Yuan et al., 2023c; Yao
et al., 2023b; Li et al., 2024), due to its simplicity and effec-
tiveness in isolating incorrectly labeled samples. It builds
upon the memorization effect that clean samples will be
learned before mislabeled samples, which allows designing
strategies of extracting clean samples corresponding to the
predictions of the trained model i.e, small loss trick or high
prediction confidence (Arpit et al., 2017; Cheng et al., 2020;
Northcutt et al., 2021). The extracted samples are more
likely clean and thus will lead a classifier to a clean data
regime, thereby mitigating the negative impact posed by
corrupted labels.

The straightforward application of such sample selection
methods on noisily labeled graph data does not show
promise as usual due to the neglect of the important topo-
logical information on a graph. As illustrated in Figure 1,
nodes located near topological class boundaries are much
informative compared to nodes located far from topologi-
cal class boundaries, as they may link nodes from diverse
classes (Brandes, 2001; Barthelemy, 2004; Freeman, 1977;
Zhu et al., 2020; Wu et al., 2024). However, those boundary-
near clean nodes are harder to learn and identify in noisily
labeled graphs compared with the clean nodes that are far
from boundaries. Since boundary-near nodes are often of
a small proportion and lose discriminative information due
to the aggregation from the heterogeneous neighbours in
GNNs, they are often entangled with mislabeled nodes in
the procedures of sample selection (Bai and Liu, 2021; Wei
et al., 2023). Besides, there is a scarcity of a method that
considers the topological characteristic within a noisily la-
beled graph to promote informative sample selection.
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Figure 1: Illustration of noisily labeled nodes with different
topological structures. v1 is a mislabeled node located near
class boundaries while v15 is a mislabeled node far away
from class boundaries.

To address this dilemma, we propose a robust Topological
Sample Selection (TSS) method, specifically designed to
progressively select informative samples in a noisily labeled
graph. Initially, TSS extracts nodes located far from class
boundaries and these extracted nodes are more likely to
be clean. These initially extracted nodes make the model
in TSS learn a clean pattern, subsequently facilitating the
extraction of informative clean nodes near class boundaries,
where those nodes are often entangled with incorrect la-
bels. Identifying the topological positions of nodes is based
on a proposed Class-conditional Betweenness Centrality
(CBC) measure, which quantifies the heterogeneous mes-
sage passing between different classes. This measurement
is inspired by the random-walk technique applied to graph
structures (Nikolentzos and Vazirgiannis, 2020; Kang et al.,
2012) rather than GNN predictions. As a result, follow-
ing this progressive extraction, TSS simultaneously cali-
brating the model towards the clean and informative data
regime (Wang et al., 2021b; Bengio et al., 2009). Our theo-
retical analysis further substantiates this claim. In a nutshell,
our contributions can be summarized as follows:

• We identify the challenge of the previous sample selec-
tion with the noisily labeled graph data, and propose a
TSS method to address the dilemma, which considers
the topological characteristic to effectively select clean
informative nodes for training under label noise.

• The proposed TSS method progressively extracts infor-
mative nodes and reduces the negative impact of label
noise. We provide theoretical proof demonstrating that
our method consistently minimizes an upper bound of
the expected risk under the target clean distribution.

• We conduct extensive experiments on various bench-
marks to show the superiority of the proposed method
over the state-of-the-art baselines in learning with noisily
labeled graph, and provide comprehensive verification
about the underlying mechanism of our method.

2. Method
2.1. Notations and Preliminary

Assume that we have an undirected graph G = (V, E),
where V = {v1, ...,vn} is the set of n nodes, E ⊆ V × V
is the set of edges, and A ∈ Rn×n is the adjacency ma-
trix of the graph G. If nodes vi and vj are connected by
edges (vi,vj) ∈ E , Aij = 1; otherwise, Aij = 0. Let
D ∈ Rn×n be the diagonal matrix, and Â ∈ Rn×n be
the normalized adjacency matrix D−1/2AD−1/2. Denote
X = {x1, ...,xn} and Y = {y1, ..., yn} as the sets of node
attributes and node labels respectively, with xi being the
node attribute of node vi and yi being the true label of node
vi. In this study, we have a dataset D = {D̃tr,Dte}, where
D̃tr = {(A,xi, ỹi)}ntr

i=1 is a noisy training set drawn from
a noisy distribution PD̃ = P(A,X , Ỹ) (ỹi is the noisy
counterpart of yi), and Dte is a clean test set drawn from a
clean distribution PD = P(A,X ,Y). Our goal is to learn
a proper GNN classifier fG : (A,X ) → Y from the noisy
training set D̃tr.

2.2. Class-conditional Betweenness Centrality

As discussed in the introduction, when extracting clean
nodes from a noisily labeled graph, the roles of nodes vary
greatly based on their topological information (Wei et al.,
2023; Song et al., 2022). Some nodes situated near topo-
logical class boundaries are more difficult to be extracted
since they lack the typical characteristics of their correspond-
ing classes when aggregating neighbour nodes of different
classes (Wei et al., 2023). To alleviate this issue, we in-
troduce a Class-conditional Betweenness Centrality (CBC)
measure that takes into account the topological structure of
nodes, formulated as follows.

Definition 2.1 (Class-conditional Betweenness Centrality).
Given the Personalized PageRank matrix π = α(I− (1−
α)Â)−1 (π ∈ Rn×n), the Class-conditional Betweenness
Centrality of the node vi is defined by counting how often
the node vi is traversed by a random walk between pairs of
other nodes that belong to different classes in a graph G:

Cbi :=
1

n(n− 1)

∑
vu ̸=vi ̸=vv,

ỹu ̸=ỹv

πu,iπi,v

πu,v
, (1)

where πu,i with the target node vu and the source node vi

denotes the probability that an α-discounted random walk
from node vu terminates at vi. An α-discounted random
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walk represents a random traversal that, at each step, either
terminates at the current node with probability α, or moves
to a random out-neighbour with probability 1− α.

Note that, CBC is inspired by the classical concept in graph
theory – Betweenness Centrality (Newman, 2005; Brandes,
2001) that measures the centrality of nodes in a graph 1, but
significantly differs from the class-conditional constraint
and the random walk realization instead of the short-path
counting. We kindly refer the readers to the Appendix A for
the detailed discussion about their difference.

Robustness of Class-conditional Betweenness Centrality
One promising merit of CBC is that it is robust to the label
noise, although by definition it is based on the pair of nodes
from different classes. As shown in Fig. 2 (b), under the
high rate of label noise, the CBC of each node still can be
accurately measured and the performance is close to the
Fig. 2 (a) under clean labels. We also compare the perfor-
mance of CBC with the other two difficulty measurers (Li
et al., 2023) in the Fig. 2 (c) and (d) to demonstrate our
effectiveness. This is because CBC just requires that the
node pairs belong to different classes instead of their abso-
lutely accurate class labels, which is compatible with the
general noise-agnostic scenarios. For example, if we have
a pair of nodes whose latent true labels (y1 = 1, y2 = 2)
corresponding to the obvious noisy labels (ỹ1 = 1, ỹ2 = 3),
this node pair would not hinder the computation of CBC.
Besides, even if the node pair actually belongs to the same
underlying true class, CBC then degrades to the Between-
ness Centrality and does not heavily hurt the total measure.
Additionally, to demonstrate the consistent robustness of our
CBC under varying levels of label noise, we visualize the
superiority of our CBC distribution with numerical results
as Fig. 4. The node dataset exhibits two distinct clusters, and
despite a significant extent of label noise, certain nodes lo-
cated near topological class boundaries consistently receive
higher CBC scores. The complete and related experiment
details have been presented in Appendix A.

Effectiveness of Class-conditional Betweenness Central-
ity To demonstrate the effectiveness of Eq. (1), we con-
duct an empirical verification presented in Fig. 3. As ob-
served, the ability to extract clean nodes from the subset of
noisily labeled nodes notably diminishes as CBC increases,
consistent with the expected behaviour of CBC. Addition-
ally, nodes with elevated CBC values tend to be situated
closer to the decision boundary, which is essential to char-
acterize the decision boundary for classifier (Bengio et al.,
2009; He et al., 2018; Huang et al., 2010; Vapnik, 1999;
Bai and Liu, 2021). Leveraging the CBC measure allows us

1In graph theory, the betweenness of a node vi is defined to be
the fraction of shortest paths between pairs of nodes in a graph that
passes through vi. We provide its formal definition and discussion
in Appendix.

to selectively choose more informative nodes, significantly
enhancing GNNs’ performance during the training process.
For further empirical evidence demonstrating the positive
correlation between test accuracy and the overall CBC of
the training set, we kindly refer readers to Appendix A.

2.3. Topological Sample Selection

In this section, we construct the Topological Sample Selec-
tion (TSS) method leveraging the CBC measure to enhance
informative sample selection in the presence of label noise.
Utilizing the CBC measure, the TSS process begins by ex-
tracting clean nodes situated far from class boundaries and
fitting a model on them. Then the model in TSS can learn
clean patterns from the fitted clean nodes, which makes it
possible for TSS to extract clean nodes from those nodes
near class boundaries and entangled with incorrect labels.
A visualization is shown in the Appendix E. Specifically,
this process is similar to curriculum learning (Bengio et al.,
2009; Guo et al., 2018) as it also learns from easy ones
(extracted nodes located far from class boundaries) to hard
(extracted nodes close to class boundaries) ones, with their
identification guided by the CBC measure. Next, we for-
mula TSS from the perspective of curriculum learning.

Here, we devise an “easy-to-hard" curriculum within our
TSS method, building upon the CBC. This curriculum is
structured as a sequence of training criteria ⟨Q̃λ⟩ with the
increasing pace parameter 0 ≤ λ ≤ 1. Each criterion Q̃λ

is a reweighting of the noisy training distribution PD̃. The
early Q̃λ emphasises the easy nodes (located far from class
boundaries) evaluated by CBC, and as λ increases, more
hard nodes (closer to class boundaries) are progressively
added into Q̃λ, detailed in the following. Note that, while
several methods may involve in curriculum learning, few
of them address noisy labeled graphs by considering the
intricate graph structure 2.

Extracting Clean Labeled Nodes The extraction of clean
labeled nodes is closely related to the memorization effect
of neural networks (Arpit et al., 2017; Lin et al., 2023a;
Xia et al., 2020b). Specifically, due to the memorization
effect, the GNN classifier trained at early epochs would fit
the clean data well but not the incorrectly labeled data. We
can treat the training nodes whose noisy labels are iden-
tical to the ones predicted by the trained classifier as the
confident nodes, indicating a higher likelihood of having
clean labels (Bai and Liu, 2021). Note that, there are other
similar rules to extract clean examples, e.g., those who have
a high confidence score or corresponding to a smaller loss
value (Han et al., 2018; Yu et al., 2019; Xia et al., 2021;
Li et al., 2024), which will be compared in experiments.
Now, we progressively obtain the extracted nodes, which

2More discussion of related works has been summarized in the
Appendix B due to the space limitation.
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Figure 2: Robustness of Class-conditional Betweenness Centrality (t-SNE visualization of node embeddings based on
trained GNNs from the CORA dataset). (a) clean labeled nodes with less CBC (lighter colour) are farther-away from class
boundaries than those with high CBC (darker colour). (b)(c)(d) Compared with other two difficulty measurers (Wei et al.,
2023; Li et al., 2023) in graph curriculum learning under 40% Symmetric label noise, CBC clearly shows superiority in
terms of the differentiation w.r.t. boundary-near nodes.

Figure 3: Correlation between F-score of extracting confi-
dent nodes and overall CBC of the noisily labeled subsets
in a graph with 30% Symmetric label noise. The Pearson
coefficient is−0.9276 on 50 randomly selected subsets with
p value smaller than 0.0001.

are more likely to have clean labels and named as the con-
fident nodes (Bai and Liu, 2021; Xia et al., 2021). The
extracted confident node set PD̂ from PD̃, which approx-
imates nodes drawn from a target clean distribution PD.
With PD̂, we can construct our robust learning curriculum.

Definition 2.2 (Topological Sample Selection). Assume a
sequence of extracted confident training criteria ⟨Q̂λ⟩ with
the increasing pace parameter λ. Each confident criterion
Q̂λ is a reweighting of the confident distribution PD̂(z),
where z is a random variable representing an extracted
confident node for the learner. Let 0 ≤ Wλ(z) ≤ 1 be the
weight on z at step λ in the curriculum sequence, and

Q̂λ(z) ∝Wλ(z)PD̂(z), (2)

such that
∫
Z Q̂λ(z)dz = 1, where Z denotes the whole set

of extracted confident nodes from each Q̂λ(z). Then, the
following two conditions are satisfied:

• (i) The entropy of distributions gradually increases, i.e.,
H(Q̂λ) is monotonically increasing with respect to λ.

• (ii) The weight function Wλ(z) for any confident nodes
is monotonically increasing with respect to λ.

In Definition 2.2, Condition (i) means that the diversity and
the information of the extracted confident set should grad-
ually increase, i.e, the reweighting of nodes in later steps
increases the probability of sampling informative nodes eval-
uated by CBC. Condition (ii) means that as gradually adding
more confident nodes, the size of the confident node set pro-
gressively increases. Intuitively, in our TSS, the key is the
proposed CBC measure that works as a difficulty measurer
and defines the weight function Wλ(z). This formalization
has been widely used in the related curriculum learning lit-
erature (Bengio et al., 2009; Wang et al., 2021b). With the
help of CBC, we can design a robust “easy-to-hard" learning
curriculum that first extracts confident nodes from noisily
easy nodes (located far away from class boundaries) – that
we term as high-confident nodes to train GNNs and then
extracts confident nodes from noisily hard nodes (close to
class boundaries) – that we term as low-confident nodes to
continually train. We summarize the procedure of TSS in
Algorithm 1 of the Appendix.

2.4. Theoretical Guarantee of TSS

Here, we first investigate the change in deviation between
PD̂ and PD during the learning phases of TSS. Then, we
theoretically prove that, with the PD̂, our TSS method per-
sistently minimizes an upper bound of the expected risk
under target clean distribution.

Taking the binary node classification as an example, after
extracting the confident nodes, our goal is to learn a proper
GNN classifier fG : (A,X )→ Y with the input extracted
confident nodes zi = {(A,xi, yi)}ncf

i=1 from the confident
distribution PD̂(Z) = PD̂(A,X|Y)PD̂(Y) (Cucker and
Zhou, 2007), such that the following expected risk can be
minimized:

R(fG) :=
∫
Z

LfG (z)PD(A,x|y)PD(y)dz, (3)

where PD(Z) = PD(A,X|Y)PD(Y) denotes the target
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Figure 4: The distributions of the CBC score w.r.t. nodes on WikiCS with 40% and 60% symmetric noise (symm.) or
40% and 60% instance-based noise (inst.). The nodes are considered “far from topological class boundaries" (far from
boundaries.) when their two-hop neighbours belong to the same class; conversely, nodes are categorized as “near topological
class boundaries" (near boundaries.) when this condition does not hold. More comprehensive experiments in the Appendix A.

clean distribution on Z , and LfG (z) = 1fG(A,x) ̸=y =
1−yfG(A,x)

2 denotes the loss function measuring the dif-
ference between the predictions and labels. Since the
deduction for both y = 1 and y = −1 cases are ex-
actly similar, we only consider one case in the follow-
ing and denote PD(A,x) = PD(A,x|y = 1) and
PD̂(A,x) = PD̂(A,x|y = 1). Let 0 ≤ Wλ∗(A,x) ≤ 1,
α∗ =

∫
A,X Wλ∗(A,x)PD̂(A,x)dx denote the normal-

ization factor3 and E(A,x) measures the deviation from
PD̂(A,x). Combining with Definition 2.2, we can con-
struct the below curriculum sequence for theoretical evalua-
tion (See proof in the Appendix C):

Q̂λ(A,x) ∝Wλ(A,x)PD̂(A,x), (4)

where

Wλ(A,x) ∝ αλPD(A,x) + (1− αλ)E(A,x)

α∗PD(A,x) + (1− α∗)E(A,x)

with 0 ≤ Wλ(A,x) ≤ 1 through normalizing its maxi-
mal value as 1 and αλ varies from 1 to α∗ with increasing
pace parameter λ. Note that, the initial stage of TSS sets
Wλ(A,x) ∝ PD(A,x)

PD̂(A,x) , which is of larger weights in the
high-confident nodes while much smaller in low-confident
nodes. With the pace λ increasing, the large weights in
high-confidence areas become smaller while small ones in
low-confidence areas become larger, leading to more uni-
form weights with smaller variations.

Here, we introduce a local-dependence assumption for
graph-structured data: Given the data related to the neigh-
bours within a certain number of hops of a node vi, the data
in the rest of the graph will be independent of vi (Wu et al.,
2020). This assumption aligns with Markov chain princi-
ples (Revuz, 2008), stating that the node is independent of
the nodes that are not included in their two-hop neighbors
when utilizing two-layer GNN, which does not means the
totally i.i.d w.r.t. each node but means i.i.d w.r.t. subgroups.

3The α∗ ≤ 1 since Wλ∗(A,x)PD̂(A,x) ≤ PD̂(A,x)

The local-dependence assumption is well-established and
has been widely adopted in numerous graph theory stud-
ies (Schweinberger and Handcock, 2015; Didelez, 2008).
It endows models with desirable properties which make
them amenable to statistical inference (Schweinberger and
Handcock, 2015). Therefore, based on the local-dependence
assumption, for a node with the certain hops of neighbours
ZA, after aggregation, we will obtain node representation
Zxi

that is approximately independent and identically dis-
tributed with nodes outside of ZA. We refer readers to
(Gong et al., 2016) for more details. Finally, with Eq. (10)
as the pace distribution, we have the following theorem and
a detailed proof is provided in Appendix C.

Theorem 1. Suppose {(Zxi
, yi)}mi=1 are i.i.d. samples

drawn from the pace distribution Qλ with radius |X| ≤ R.
Denote m+/m− be the number of positive/negative sam-
ples and m∗ = min{m−,m+}. Let H = {x → wTx :
mins|wTx| = 1 ∩ ||w|| ≤ B}, and ϕ(t) = (1 − t)+ for
t ∈ R be the hinge loss function. For any δ > 0 and g ∈ H,
with confidence at least 1− 2δ, have:

R(sgn(g)) ≤ 1

2m+

m+∑
i=1

ϕ(yig(Zxi)) +
1

2m−

m−∑
i=1

ϕ(yig(Zxi))

+
RB√
m∗

+ 3

√
ln (1− δ)

m∗

+ (1− αλ)
√

1− exp {−DKL(P
+
D||E+)}

+ (1− αλ)
√

1− exp {−DKL(P
−
D||E−)},

(5)

where E+, E− denote error distributions that capture the
deviation from P+

D, P−
D to P+

D̂
, P−

D̂
.

Remark 1 (on the upper bound of the expected risk
R(sgn(g)). The error distribution E reflects the difference
between the noisy distribution and the clean distribution. Es-
sentially, this error distribution serves as a bridge connecting
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Figure 5: The hyperparameter analysis of TSS. The experiment results are reported over five trials under the 20% Symmetric
noise. (a) The test accuracy of TSS with three different pacing functions on various datasets. (b) The test accuracy of TSS
with increasing λ0 on CORA and PubMed.

the noisy and clean distributions in our upper bound. Thus,
the last two rows measure the generalization capability of
the learned classifier, which is monotonically increasing
with respect to both the KL-divergence between the error
distribution E and the clean distribution PD, and the pace
parameter λ. That is, the less deviated is the error E from
PD, the more beneficial is to learn a proper classifier from
PD̂ which can generalize well on PD.

Thus, the TSS process with curriculum Q̂λ makes it fea-
sible to approximately learn a graph model with minimal
expected risk on PD through the empirical risk from PD̂,
since the "easy-to-hard" property of the curriculum Q̂λ in-
trinsically facilitates the information transfer from PD̂ to
PD. In specific, we can approach the task of minimizing
the expected risk on PD by gradually increasing the pace
λ, generating relatively high-confident nodes from Q̂λ, and
minimizing the empirical risk on those nodes. This com-
plies with the core idea of the proposed TSS. In addition,
the first row in the upper bound of Theorem 1 corresponds
to the empirical risk on training nodes generated from Qλ.
The second row reflects that the more training nodes are
considered, the better approximation of expected risk can
be achieved (Haussler and Warmuth, 1993; Haussler, 1990).

3. Experiments
In this section, we conduct extensive experiments to verify
the effectiveness of our method and provide comprehensive
ablation studies about the underlying mechanism of TSS.

Datasets We adopted three small datasets including Cora,
CiteSeer, and PubMed, with the default dataset split as did
in (Chen et al., 2018), and four large datasets: WikiCS, Face-
book, Physics and DBLP to evaluate our method. Detailed
statistics are summarized in Appendix. Following previous
works (Dai et al., 2021; Du et al., 2021; Xia et al., 2020c),
we consider three settings of simulated noisy labels, i.e, Sym-
metric noise, Pairflip noise and Instance-dependent noise.
More explanation about noise settings in Appendix D.2.

Baselines We compare TSS with several state-of-the-art
sample selection with noisy labels on i.i.d. data: (1) Co-
teaching+ (Yu et al., 2019), (2) Me-Momentum (Bai and
Liu, 2021) and (3) MentorNet (Yu et al., 2019). we also

compare with the graph curriculum learning method: (1)
CLNode (Wei et al., 2023), (2) RCL (Zhang et al., 2023).
Besides, some denoising methods on graph data have been
considered (1) LPM (Xia et al., 2020a), (2) CP (Zhang et al.,
2020), (3) NRGNN (Dai et al., 2021), (4) PI-GNN (Du
et al., 2023), (5) RT-GNN (Qian et al., 2023) and (6)RS-
GNN (Dai et al., 2022). More details about implementations
are provided in the Appendix D.3.

3.1. Main results

Performance comparison on public graph datasets Ta-
ble 1 shows the experimental results on three synthetic noisy
datasets under various types of noisy labels. For three
datasets, as can be seen, our proposed method produces
the best results in all cases. When the noise rate is high, the
proposed method still achieves competitive results through
the extraction of confident nodes. Although some baselines,
e.g., NRGNN, can work well in some cases, experimental
results show that they cannot handle various noise types.
In contrast, the proposed TSS achieves superior robustness
against broad noise types. Lastly, some popular sample-
selection methods that have worked well on learning with
noisy labels on i.i.d. data, e.g., Co-teaching+, do not show
superior performance on graph data. This illustrates that the
unique topology consideration in GNNs brings new chal-
lenges to those prior works and proves the necessity of TSS.

Performance comparison on large graph datasets We
justify that the proposed methods can effectively alleviate
the label noise on large graph datasets. Detailed descriptions
of these graph datasets are provided in the Appendix. As
shown in Table 2, our proposed method is consistently su-
perior to other methods across all settings. Additionally, on
certain datasets, labeled nodes are sparse e.g., WikiCS that
contains only 4.96% labeled nodes or Physics that contains
only 1.45%. The results indicate that our method is robust
even in the presence of a small number of labeled nodes.

Hyperparameter sensitivity In TSS, the hyperparameter
λ affects the performance by controlling the construction of
each selection. Correspondingly, the pacing function λ(t)
with training epoch number t controls the increasing speed
of λ, while λ0 controls the initial number of λ (Wang et al.,
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Table 1: Mean and standard deviations of classification accuracy (percentage) on synthetic noisy datasets with different
noise levels. The results are reported over ten trials and the best are bolded.

Method Symmetric Pairflip Instance-dependent
30% 40 % 50% 20% 30% 40% 30% 40% 50%

C
O

R
A

Cross-Entropy 83.61±1.07 80.86±1.46 75.14±2.44 82.23±0.93 75.87±1.20 62.05±3.59 83.21±0.74 80.32±0.94 74.96±1.82
LPM 82.73±0.64 78.12±1.17 70.23±2.17 83.39±1.22 77.44±1.93 64.02±5.04 82.81±0.87 77.67±2.01 70.55±1.86
CP 82.37±1.38 79.97±1.74 76.19±2.26 80.24±0.96 73.02±1.56 58.04±3.78 82.37±1.09 80.36±1.21 74.17±2.68

NRGNN 81.73±1.80 79.08±3.18 77.36±2.03 81.83±0.93 77.10±1.52 64.13±3.98 81.62±2.08 78.66±2.54 76.31±2.98
PI-GNN 82.48±0.10 80.36±0.10 77.59±0.20 83.10±0.10 77.96±0.20 63.62±0.30 81.83±1.00 80.02±1.07 77.27±1.21
RT-GNN 83.21±1.05 80.46±1.06 75.84±1.43 82.53±0.73 76.87±1.09 61.75±2.29 82.14±0.97 80.13±1.23 74.82±0.94
RS-GNN 83.21±0.29 79.00±0.15 77.21±0.43 81.83±0.37 76.46±0.24 63.09±0.22 82.83±0.73 78.93±0.63 76.52±0.83

Co-teaching+ 82.59±0.96 79.81±1.30 74.59±2.33 81.70±1.45 75.59±2.13 59.03±5.76 81.84±1.10 79.70±1.34 73.36±2.54
Me-momentum 83.76±0.25 81.82±0.72 79.48±0.63 84.09±0.48 78.04±1.03 64.07±1.03 83.14±0.25 82.04±0.57 77.33±0.82

MentorNet 81.84±0.86 78.52±2.01 73.82±2.83 80.83±1.88 72.56±3.42 59.78±4.59 81.59±0.92 78.49±1.63 72.41±3.66
CLNode 80.98±1.50 77.11±2.25 74.39±2.41 83.43±0.89 73.89±1.97 55.38±2.80 81.12±2.43 75.11±2.93 68.44±4.88

RCL 73.20±0.12 76.36±1.09 63.40±0.73 71.06±0.48 65.30±0.80 51.34±0.42 69.20±1.00 59.30±0.13 54.16±2.25
TSS 85.02±0.12 82.58±0.92 81.16±0.80 85.26±0.30 78.50±0.72 65.15±1.53 84.70±0.04 83.31±0.21 80.15±0.36

C
ite

Se
er

Cross-Entropy 75.13±0.70 73.85±0.85 70.74±1.86 76.61±0.53 73.87±1.08 62.92±4.11 74.83±1.04 73.22±0.71 69.42±2.07
LPM 73.19±1.07 69.54±1.37 61.22±2.08 75.08±0.76 69.91±1.31 58.86±4.28 73.55±0.79 69.32±1.76 61.90±1.73
CP 73.26±1.22 70.99±1.88 63.74±2.55 74.36±1.21 68.21±2.56 56.56±6.50 73.45±0.72 69.90±1.64 64.61±2.74

NRGNN 75.41±1.04 73.52±1.46 70.98±2.47 75.72±1.04 74.13±1.38 63.60±4.83 75.33±0.91 74.36±1.45 71.61±1.76
PI-GNN 73.55±0.14 71.05±0.21 68.02±0.20 73.06±0.13 69.91±0.32 60.62±0.41 74.28±0.78 70.66±1.51 67.81±1.99
RT-GNN 74.64±0.72 73.66±0.58 71.36±0.65 73.32±0.68 65.78±1.33 62.38±0.56 73.94±0.52 72.86±0.48 71.02±0.25
RS-GNN 74.93±0.65 73.65±0.45 70.54±1.26 76.31±0.33 73.27±0.38 61.42±2.01 75.03±0.25 72.85±0.15 70.14±1.06

Co-teaching+ 71.01±2.83 68.12±2.38 61.65±4.27 72.09±1.21 68.25±2.91 56.64±5.46 70.80±3.08 67.46±2.55 62.12±2.81
Me-Momentum 75.40±0.26 74.41±0.56 70.51±0.79 76.93±0.47 74.07±1.06 63.96±0.97 75.27±0.25 74.24±0.45 71.18±0.45

MentorNet 69.61±3.42 66.87±3.78 60.21±2.67 71.96±1.81 66.14±4.98 54.20±6.25 70.56±2.55 64.90±4.72 60.95±4.93
CLNode 68.73±2.07 64.26±3.18 56.07±3.61 69.11±3.15 61.62±3.33 53.32±4.29 69.91±1.88 66.22±2.65 60.37±3.10

RCL 60.90±0.12 54.50±2.53 46.58±1.44 65.00±0.13 56.68±0.27 51.14±1.58 63.70±0.53 54.70±1.97 46.62±0.59
TSS 75.86±0.31 74.77±0.79 71.81±0.74 77.25±0.44 74.91±0.90 65.36±1.27 76.61±0.17 75.61±0.29 74.03±0.26

P
ub

M
ed

Cross-Entropy 85.98±0.50 84.80±0.83 82.83±1.55 85.31±0.38 83.31±0.58 76.12±2.04 85.29±0.27 84.10±0.74 82.45±2.96
LPM 85.33±0.70 84.33±0.79 82.31±0.89 85.90±0.57 84.63±0.34 78.94±0.79 85.51±0.52 84.90±0.53 83.12±1.18
CP 86.12±0.63 85.01±0.65 82.33±1.51 86.13±0.36 84.87±0.46 78.81±0.77 85.66±0.60 84.92±0.99 81.18±1.95

NRGNN 86.19±0.44 84.99±1.16 83.02±1.44 86.26±0.81 83.79±1.28 75.83±2.72 85.45±0.52 85.07±1.15 83.47±1.02
PI-GNN 86.16±0.06 85.35±0.11 83.12±0.13 86.01±0.12 84.09±0.21 78.35±0.23 86.13±0.29 85.09±0.40 83.22±0.85
RT-GNN 84.73±0.05 84.70±0.35 79.39±0.25 82.90±0.03 80.80±0.10 79.90±0.12 83.09±0.43 81.60±0.15 80.81±0.32
RS-GNN 85.38±0.42 84.34±0.38 82.37±0.35 85.24±0.24 83.12±0.47 75.24±1.27 85.16±0.32 84.14±0.14 83.07±0.15

Co-teaching+ 86.14±0.58 85.01±0.74 82.74±2.12 85.37±1.90 84.45±0.75 77.31±5.38 85.83±0.54 84.65±1.47 81.42±2.89
Me-Momentum 86.05±0.18 85.66±0.78 82.42±0.41 85.78±0.26 85.43±0.35 80.34±0.41 85.87±0.27 84.37±0.40 83.53±0.14

MentorNet 85.43±0.81 84.55±1.33 82.84±0.92 86.64±0.59 84.83±0.92 74.36±6.01 85.14±1.12 84.13±1.75 80.38±3.99
CLNode 86.03±0.37 85.34±0.45 83.06±0.37 86.27±0.42 85.15±0.38 81.12±0.44 85.23±0.37 84.61±0.39 83.63±0.51

RCL 82.40±0.24 80.30±0.15 76.40±0.14 82.70±0.23 82.66±0.69 81.30±0.20 82.10±0.12 80.30±0.12 74.90±0.19
TSS 86.69±0.32 86.23±0.37 83.53±0.23 87.05±0.28 86.30±0.22 83.18±0.55 86.21±0.03 85.32±0.04 83.94±0.08

Table 2: Mean and standard deviations of classification accuracy (percentage) on large graph datasets with instance-dependent
label noise. The results are the mean over five trials and the best are bolded.

Dataset WikiCS Facebook Physics DBLP
Method 30% 50 % 30% 50% 30% 50% 30% 50%

CP 72.27±0.40 54.41±1.75 74.86±1.19 62.46±3.47 90.64±1.38 81.88±0.96 70.02±3.06 55.54±5.58
NRGNN 73.09±1.63 56.10±2.67 68.00±2.34 58.34±3.69 88.96±2.23 82.04±1.06 72.48±2.61 65.42±9.63
PI-GNN 75.28±0.56 58.51±1.24 75.18±0.26 60.32±0.26 89.16±1.03 82.14±0.94 71.72±3.39 62.31±2.26

Co-teaching+ 72.64±0.81 54.66±2.18 75.19±1.53 60.48±3.22 90.08±1.71 78.07±4.73 66.32±2.12 51.46±4.49
Me-Momentum 75.75±0.28 58.40±1.95 62.86±1.39 46.13±1.67 82.65±0.69 68.22±2.47 59.88±0.60 44.54±2.34

MentorNet 72.17±0.98 51.80±3.30 73.74±2.07 59.04±3.38 88.59±2.51 76.31±4.50 63.73±4.93 47.85±6.47
CLNode 73.98±0.40 58.93±1.12 77.14±2.35 59.08±2.63 90.96±1.14 80.89±2.36 72.32±2.06 61.21±3.07

RCL 64.88±0.72 55.14±0.01 67.20±0.01 52.70±1.04 85.16±1.34 72.14±1.72 63.20±0.81 48.12±1.16
TSS 76.35±0.06 59.33±0.46 77.58±1.81 64.46±1.75 92.64±0.82 86.04±1.03 74.70±1.72 66.30±1.13

2021b). Thus, we evaluate the sensitivity of TSS to λ(t)
and λ0. From Fig. 5 (a), We find that the performance is
relatively similar when applying different pacing functions.
Additionally, the results in Fig. 5 (b) show the performance
is relatively good when λ0 is between 0.3 and 0.7.

3.2. Ablation Study

Performance with different GNN architectures We
evaluate our proposed TSS on different GNN architectures,
i.e., GCN (Zhang et al., 2019), GAT (Veličković et al., 2017),
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Figure 6: Illustration the effectiveness of TSS on noisy CORA and CiteSeer. “Vanilla" as a curriculum learning is based on
the straightforward selection with confidence, instead of the CBC measure.

Table 3: Mean and standard deviations of classification accuracy (percentage) on different GNN architectures. The
experimental results are reported over five trials. Bold numbers are superior results.

Dataset CORA CiteSeer

Backbone Symmetric Pairflip Symmetric Pairflip
20% 40 % 20% 40% 20% 40% 20% 40%

GCN 85.96±0.22 82.58±0.92 85.26±0.30 65.15±1.53 76.87±0.37 74.77±0.79 77.25±0.44 65.36±1.27
GAT 86.12±0.50 82.68±0.78 85.86±0.44 66.26±0.79 76.16±0.40 73.72±0.19 76.98±0.30 64.48±1.63
ARMA 85.82±0.40 81.32±0.80 84.20±0.27 65.48±1.11 75.22±0.37 72.80±0.60 75.32±0.78 63.86±1.17
APPNP 86.54±0.45 82.20±0.68 86.20±0.44 66.64±1.00 76.70±0.26 75.66±0.44 76.64±0.45 65.32±1.69

Table 4: Mean and standard deviations of classification accuracy (percentage) on different difficulty measurer. The
experimental results are reported over five trials. Bold numbers are superior results.

Dataset CiteSeer PubMed

Difficulty Measurer Symmetric Instance-dependent Symmetric Instance-dependent
30% 50% 30% 50% 30% 50% 30% 50%

Feature-based 74.35±0.86 68.77±0.59 74.50±0.16 70.30±0.12 84.11±0.76 81.64±0.50 84.10±0.04 81.72±0.06
Neighborhood-based 74.54±0.36 68.93±0.78 74.72±0.10 68.90±0.11 84.15±0.88 81.86±0.43 84.28±0.23 81.76±0.10
CBC-based 75.86±0.31 71.81±0.74 76.61±0.17 74.03±0.26 86.69±0.32 83.53±0.23 86.21±0.03 83.94±0.08

ARMA (Bianchi et al., 2021) and APPNP (Gasteiger et al.,
2018). The experiments are conducted on Cora and CiteSeer
datasets, which are shown in Table 3. As can be seen, TSS
performs similarly on different GNN architectures, showing
consistent generalization on different architectures.

Performance with different difficulty measurers We
compare our proposed CBC measurement with other two
baseline measurements: The feature-based difficulty mea-
surer and the neighborhood-based difficulty measurer in
Table 4. The results clearly demonstrate the enhanced per-
formance of the CBC-based difficulty measurer. Notably,
the extent of accuracy improvement presents a consistent
upward trend as the noise rate increases. This observation
further underscores the efficacy and value of the CBC-based
approach in effectively dealing with label noise.

The underlying mechanism of TSS To assess whether
the “easy-to-hard" mechanism of TSS effectively extracts
informative nodes, we design an vanilla method that extracts
the confident nodes once at the beginning of training epochs
and trains a GNN on the totally extracted nodes during all
epochs. The initial extraction process is similar to TSS.

From the comparison in the Fig. 6, we can see that the TSS
gradually improves the training efficiency by introducing
more informative nodes and reaches better performance
than the vanilla method. Additionally, the utilization of two
baseline sample selection methods further demonstrates the
effectiveness of our approach. This proves the necessity
of introducing the “easy-to-hard" learning schedule along
with CBC to alleviate the poor extraction performance from
informative nodes during the cold-start stage.

4. Conclusion
To handle the challenge of extracting clean nodes on the
noisily labeled graph, we propose a Topological Sample
Selection (TSS) method that exploits the topological infor-
mation to boost the informative sample selection process.
TSS utilizes the proposed Class-conditional Betweenness
Centrality (CBC) measure to characterize the topological
structure of each node, steering the model to initially extract
and learn from the nodes situated away from class bound-
aries. Subsequently, TSS focuses on extracting clean infor-
mative nodes near class boundaries. This improved sample
selection process significantly enhances the robustness of
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the trained model against label noise. The effectiveness of
this method has been proved by our theoretical analysis and
extensive experiments. In the future, we will continually ex-
plore the robustness of TSS for other imperfect graph data,
for example, imbalanced graph data or out-of-distribution
graph data to demonstrate its effectiveness.
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A. A Further Discussion on Class-conditional Betweenness Centrality
A.1. Background of Betweenness Centrality

When shaping classifiers by GNNs in graph-structured data, some nodes situated near topological class boundaries are
important to drive the decision boundaries of the trained classifier (Chen et al., 2021). However, GNNs find it challenging
to discern class characteristics from these nodes due to their aggregation of characteristics from various classes, causing
them to lack the distinctive features typical of their corresponding classes (Wei et al., 2023). Moreover, this heterogeneous
aggregation makes it difficult to extract clean label nodes from those near the boundaries. Thus, we design a Class-conditional
Betweenness Centrality (CBC) measure that can effectively detect those nodes.

Our Class-conditional Betweenness Centrality measure is inspired by the classical concept in graph theory – Betweenness
Centrality (BC). The formal definition of the Betweenness Centrality is as follows.

Definition A.1 (Betweenness centrality). The betweenness centrality (BC) of the node vi is defined to be the fraction of
shortest paths between pairs of vertices in a graph G that pass through vi. Formally, the betweenness centrality of a node vi

is defined:

bvi
=

1

n(n− 1)

∑
vu ̸=vi ̸=vv

σvu,vv
(vi)

σvu,vv

(6)

where σvu,vv denotes the number of shortest paths from vu to vv, and σvu,vv (vi) denotes the number of shortest paths
from vu to vv that pass through vi.

A.2. Difference of Class-conditional Betweenness Centrality

The betweenness centrality measures the centrality of nodes in a connected graph based on the shortest paths of other pairs
of nodes. It provides a quantified measure of a node’s influence in controlling the flow of information among other nodes. A
higher betweenness centrality signifies a node’s increased significance in regulating the information flow within the network.
By incorporating the class-conditional constraint into Eq. (6), we can effectively identify nodes that play a crucial role in
controlling the flow of information between different classes and are typically located near topological class boundaries.
This is exemplified by the boundary-near nodes v5 and v9 in Fig. 7, where the shortest paths for nodes in class 1 and class 2
must pass through these nodes, underlining their pivotal role in managing information flow between the two classes.

𝑣𝑣3

𝑣𝑣2

𝑐𝑐2𝑐𝑐1
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Figure 7: The illustration of boundary-near nodes

Thus, after adding the class-conditional constrain into the Eq.(6), we define the CBC of a node vi as the fraction of shortest
paths between pairs of nodes that belong to different classes in a graph G that pass through vi:

Cbi =
1

n(n− 1)

∑
vu ̸=vi ̸=vv

yu ̸=yv

σvu,vv
(vi)

σvu,vv

(7)

where σvu,vv
denotes the number of shortest paths from vu to vv, and σvu,vv

(vi) denotes the number of shortest paths
from vu to vv that pass through vi.

Notably, the CBC measure builds upon the BC measure and outperforms it in detecting boundary-near nodes. This
improvement is attributed to the class-conditional constraint, which alleviates the impact of information flow among nodes
belonging to the same class. Specifically, information flow among nodes of the same class is more likely to occur through
nodes positioned near the centre of the class rather than at the boundary. For instance, in Fig. 7, the shortest path from node
v3 to v6 or from v7 to v4 traverses the centre-near node v1 rather than the boundary-near node v5.
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A.3. Optimization Form of Class-conditional Betweenness Centrality

However, it is usually practically limited to directly employ Eq. (7), since in most networks, the information does not
flow only along the shortest paths (Stephenson and Zelen, 1989; Freeman et al., 1991; Newman, 2005), and it is very
time-consuming to find the shortest paths in a large graph (Liu and Lü, 2010; Zhao et al., 2022). Thus, we relax Eq. (7) with
the random walk, which simultaneously allows the multiple paths to contribute to CBC and avoids the expensive search cost
of the shortest paths (Noh and Rieger, 2004; Liu and Lü, 2010; Zhao et al., 2022). Concretely, we employ the Personalized
PageRank (PPR) method (Bahmani et al., 2010; Haveliwala et al., 2003) to implement random walk and then arrive at the
final form of our CBC in the following definition.
Definition A.2 (Class-conditional Betweenness Centrality). Given the Personalized PageRank matrix π = α(I − (1 −
α)Â)−1 (π ∈ Rn×n), the Class-conditional Betweenness Centrality of the node vi is defined by counting how often the
node vi is traversed by a random walk between pairs of other vertices that belong to different classes in a graph G:

Cbi :=
1

n(n− 1)

∑
vu ̸=vi ̸=vv

ỹu ̸=ỹv

πu,iπi,v

πu,v
, (8)

where πu,i with the target node vu and the source node vi denotes the probability that an α-discounted random walk from
node vu terminates at vi. Here an α-discounted random walk represents a random traversal that, at each step, either
terminates at the current node with probability α, or moves to a random out-neighbour with probability 1− α.

In the above definition, the CBC is based on the random walks that count how often a node is traversed by a random walk
between pairs of other nodes that belong to different classes. Our proposed CBC successfully detects the boundary-near
nodes by evaluating the flow of messages passing between different classes. The nodes that possess high CBC are closer to
the topological class boundaries. Consequently, our CBC measure is adept at identifying the topological structure of nodes,
and its exploration of topological information renders it robust against noisy labeled data. Additionally, the CBC measure
can be seamlessly integrated into other related domains. For instance, it can be employed to identify the structure of nodes
in out-of-distribution (OOD) detection tasks, as discussed in (Wu et al., 2022; Huang et al., 2023c), and to enhance OOD
generalization, as demonstrated in studies by (Yang et al., 2022; Huang et al., 2023d; Peng et al., 2023) and (Wu et al., 2021;
Huang et al., 2023a).

A.4. Importance of Class-conditional Betweenness Centrality

In Fig. 8, we present a visual representation highlighting the clear positive correlation between test accuracy and the
aggregate Class-conditional Betweenness Centrality (CBC) of the training set. Additionally, we carefully structure the
training sequence for each node in every training set, prioritizing nodes based on their CBC scores. This underlines the
pivotal role of CBC in shaping the performance of models. The empirical findings strongly affirm the significance of
extracting insights from informative nodes, a factor that markedly enhances the performace of GNNs throughout the training
process.

A.5. Distribution of Class-conditional Betweenness Centrality

In our comprehensive empirical analysis, we thoroughly investigate the distributions of Class-conditional Betweenness
Centrality for nodes in WikiCS, considering diverse levels of noise as presented in Fig. 9. To pre-categorize nodes based
on their proximity to topological class boundaries, we employ the following criteria: Nodes are classified as “far from
topological class boundaries" (far from boundaries) if their two-hop neighbors belong to the same class. Conversely, nodes
are labeled as “near topological class boundaries" (near boundaries) if this condition does not apply. It’s important to note
that the “WikiCS" dataset, chosen for this analysis, is substantial and comprises sparsely labeled nodes. As observed in
Fig. 9, the node dataset exhibits two distinct clusters. Even in the presence of considerable label noise, nodes far away from
topological class boundaries consistently demonstrate lower CBC scores across all cases.

B. Related work
B.1. Curriculum Learning with Label Noise

We have diligently incorporated curriculum-based approaches into our literature review that align with our research theme.
One widely adopted criterion involves selecting samples with small losses and treating them as clean data. Several curriculum
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Figure 8: There is a significant positive correlation between the test accuracy and the overall CBC of the clean labeled
training set (the Pearson correlation coefficient is 0.6999 over 50 randomly selected class-balanced training sets with the p
value smaller than 0.0001).

learning methods utilize this criterion (Jiang et al., 2014), and in each step, select samples with small losses. For instance, in
MentorNet (Jiang et al., 2018), an additional pre-trained network is employed to select clean instances using loss values
to guide model training. The underlying concept of MentorNet resembles the self-training approach (Kumar et al., 2010),
inheriting the drawback of accumulated error due to sample-selection bias.

To address this issue, Co-teaching (Han et al., 2018) and Co-teaching+ (Yu et al., 2019) mitigate the problem by training two
DNNs and using the loss computed on one model to guide the other. CurriculumNet (Guo et al., 2018)presents a curriculum
learning approach based on unsupervised estimation of data complexity through its distribution in a feature space. It benefits
from training with both clean and noisy samples and weights each sample’s loss in training based on the gradient directions
compared to those on validation (i.e, , a clean set). Notably, CurriculumNet relies on a clean validation set.

It’s worth emphasizing that the discussed curriculum learning methods primarily focus on mitigating label noise issues within
i.i.d. datasets and depend on the prediction of pre-trained neural networks. However, those methods cannot be employed
on graph data due to the “over-smoothing" issue when training Graph Neural Networks (GNNs). Note that, in GNNs,
“over-smoothing" refers to the phenomenon where, as the network depth increases, node features become increasingly similar.
This similarity poses a challenge when employing curriculum learning with label noise, making it difficult to distinguish
between “easy" and “hard" nodes due to the homogenization of features caused by over-smoothing. Additionally, even in
shallow GNN architectures, over-smoothing can lead to under-confident predictions, complicating the task of establishing an
’easy-to-hard’ training curriculum (Wang et al., 2021a; Hsu et al., 2022). Addressing this challenge, our work introduces a
novel method, which proposes a robust CBC measure. This measure effectively distinguishes between ’easy’ and ’hard’
nodes, taking into account the graph structure rather than the prediction of GNNs, thereby mitigating the over-smoothing
problem. Our work stands as a pioneer in the development of a curriculum learning approach explicitly designed for
graph data afflicted by label noise. This distinction underscores a significant contribution of our research, emphasizing the
necessity for specialized strategies to effectively handle noise within graph-structured data.

B.2. Graph Neural Netwoeks

Predicting node labels involves formulating a parameterized hypothesis using the function fG(A,X ) = ŷA, incorporating a
Graph Neural Network (GNN) architecture (Kipf and Welling, 2016) and a message propagation framework (Gilmer et al.,
2017). The GNN architecture can take on various forms such as GCN (Kipf and Welling, 2016), GAT (Veličković et al.,
2017), or GraphSAGE (Hamilton et al., 2017).

In practical terms, the forward inference of an L-layer GNN involves generating node representations HA ∈ RN×D through
L-layer message propagation. Specifically, with ℓ = 1 . . . L denoting the layer index, hℓ

i is the representation of the node i,
MESS(·) being a learnable mapping function to transform the input feature, AGGREGATE(·) capturing 1-hop information
from the neighborhood N (v) in the graph, and COMBINE(·) signifying the final combination of neighbor features and
the node itself, the L-layer operation of GNNs can be formulated as mℓ

v=AGGREGATEℓ({MESS(hℓ−1
u ,hℓ−1

v , euv) :u ∈
N (v)}), where hℓ

v = COMBINEℓ(hℓ−1
v ,mℓ

v). After L-layer propagation, the final node representations hL
e for each e ∈ V
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Figure 9: Class-conditional Betweenness Centrality distributions of nodes in WikiCS, with varying levels of symmetric
noise (symm.), pairflip noise (pairflip.), and instance-based noise (inst.).

are derived. Furthermore, a detailed summary of different GNN architectures is presented in Table 5.

Subsequently, a subsequent linear layer transforms HA into classification probabilities ŷA ∈ RN×C , where C represents
the total categories. The primary training objective is to minimize the classification loss, typically measured by cross-entropy
between the predicted ŷA and the ground truth Y .

Table 5: Detailed architectures of different GNNs.

GNN MESS(·) & AGGREGATE(·) COMBINE(·)
GCN ml

i = W l
∑

j∈N (i)
1√
d̂id̂j

hl−1
j hl

i = σ(ml
i +W l 1

d̂i
hl−1
i )

GAT ml
i =

∑
j∈N (i) αijW

lhl−1
j hl

i = σ(ml
i +W lαiih

l−1
i )

GraphSAGE ml
i = W l 1

|N (i)|
∑

j∈N (i) h
l−1
j hl

i = σ(ml
i +W lhl−1

i )
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B.3. Denoising Methods on Graph Data

Prior research has explored diverse strategies to address the challenge of label noise in graph data. NRGNN (Dai et al.,
2021) combats label noise by linking unlabeled nodes with noisily labeled nodes that share high feature similarity, thus
incorporating more reliable label information. Conversely, PI-GNN (Du et al., 2021) mitigates noise impact by introducing
Pairwise Intersection (PI) labels based on feature similarity among nodes.

In a different approach, the LPM method (Xia et al., 2020a) and GNN-Cleaner (Xia et al., 2023) address noisy labels by
involving a small set of clean nodes for assistance. Additionally, CP (Zhang et al., 2020) operates with class labels derived
from clustering node embeddings, encouraging the classifier to capture class-cluster information and avoid overfitting to
noisy labels.

Furthermore, RS-GNN (Dai et al., 2022) focuses on enhancing GNNs’ robustness to noisy edges. It achieves this by
training a link predictor on noisy graphs, aiming to enable effective learning from graphs that contain inaccuracies in edge
connections.

Lastly, RT-GNN (Qian et al., 2023) leverages the memorization effect of neural networks to select clean labeled nodes,
generating pseudo-labels from these selected nodes to mitigate the influence of noisy nodes on the training process.

In addition, the efficacy of contrastive learning (You et al., 2020; Chen et al., 2023; Zheng et al., 2022; 2023) has been
harnessed to effectively reduce label noise during node classification tasks on graph-based data. Based on the homophily
assumption, ALEX (Yuan et al., 2023a) learns robust node representations utilizing graph contrastive learning to mitigate
the overfitting of noisy nodes and CGNN (Yuan et al., 2023b) integrates graph contrastive learning as a regularization term,
thereby bolstering the robustness of trained models against label noise. Each of these approaches offers unique insights into
effectively handling label noise in graph data.

In this context, our proposed Topological Sample Selection(TSS) represents a distinctive perspective on employing
curriculum learning methods specifically tailored for noisily labeled graphs. By introducing TSS, we contribute a novel and
effective strategy to tackle label noise in the complex domain of graph-structured data.

B.4. Graph Curriculum Learning

Graph Curriculum Learning (GCL) stands at the intersection of graph machine learning and curriculum learning, gaining
increasing prominence due to its potential. At its core, GCL revolves around customizing a difficulty measure to compute a
difficulty score for each data sample, crucial in defining an effective learning curriculum for the model. The design of this
difficulty measure can follow predefined or automatic approaches.

Predefined approaches often employ heuristic metrics to measure node difficulty based on specific characteristics even before
the training commences. For example, CLNode (Wei et al., 2023) gauges node difficulty by considering label diversity
among a node’s neighbors. Conversely, SMMCL (Gong et al., 2019) assumes varying difficulty levels among different
samples for propagation, advocating an easy-to-hard sequence in the curriculum for label propagation.

On the other hand, automatic approaches determine difficulty during training using a supervised learning paradigm rather
than predefined heuristic-based metrics. For example, RCL (Zhang et al., 2023) gradually incorporates the relation between
nodes into training based on the relation’s difficulty, measured using a supervised learning approach. Another instance,
MentorGNN (Zhou et al., 2022), tailors complex graph signals by deriving a curriculum for pre-training GNNs to learn
informative node representations and enhance generalization performances.

However, a notable gap exists in existing GCL methods concerning their robustness to label noise, especially in effectively
handling graphs with noisy labels. Our proposed Topological Sample Selection(TSS) addresses this limitation by being
the pioneer in curriculum learning explicitly designed for graphs affected by label noise. This underscores the novelty and
significance of TSS within the domain of GCL.
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C. Proof to Theoretical Guarantee of TSS
C.1. Proof for the Weighted Expression

We first formulate PD(A,x) as the weighted expression of PD̂(A,x):

PD(A,x) =
1

α∗Wλ∗(A,x)PD̂(A,x), (9)

where 0 ≤ Wλ∗(A, x) ≤ 1 and α∗ =
∫
A,X Wλ∗(A,x)PD̂(A,x)dx denote the normalization factor. Based on Eq.(9),

PD(A,x) actually corresponding to a curriculum as definied in Eq.(2) under the weight function Wλ∗(A,x).

Eq.(9) can be equivalently reformulated as

PD̂(A,x) = α∗
PD(A,x) + (1− α∗)E(A,x),

where
E(A,x) =

1

1− α∗ (1−Wλ∗(A,x))PD̂(A,x).

Here, the term E(A,x) measures the deviation from PD̂(A,x) to PD(A,x). Recalling the previous empirical analysis
of Fig. 3, extracting confident nodes from the early Q̃λ that emphasises the easy nodes works well. We define this period
(corresponding to relatively small λ) as the high-confidence regions. In these high-confidence areas, PD(A,x) is accordant
to the PD̂(A,x) and thus E(A,x) corresponds to the nearly zero-weighted PD̂(A,x) tending to be small. On the contrary,
in later training criteria, the poor performance of extracting confident nodes causes that the PD̂(A,x) cannot approximate
the PD̂(A,x) well in those low-confident regions. E(A,x) then imposes large weights on PD̂(A,x), yielding the large
deviation values. Combining with Definition 2.2, we construct the below curriculum sequence for theoretical evaluation:

Q̂λ(A,x) ∝Wλ(A,x)PD̂(A,x), (10)

where

Wλ(A,x) ∝ αλPD(A,x) + (1− αλ)E(A,x)

α∗PD(A,x) + (1− α)∗E(A,x)

with 0 ≤ Wλ(A,x) ≤ 1 through normalizing its maximal value as 1 and αλ varies from 1 to α∗ with increasing pace
parameter λ.

C.2. Proof of Theorem 1

Now, we estimate the expected risk by the following surrogate (Donini et al., 2018):

Remp(fG) :=
1

n

ncf∑
i=1

LfG (zi). (11)

Let F be a function family mapping from Zxi to [a, b], P(Zxi) a distribution on Zxi and S = (Zx1 , . . . , Zxm) a set of i.i.d.
samples drawn from P. The empirical Rademacher complexity of F with respect to S is defined by

R̂m(F) = Eσ[sup
g∈F

1

m

m∑
i=1

σig(Zxi
)], (12)

where σi are i.i.d. samples drawn from the uniform distribution in {−1, 1}. The Rademacher complexity of F is defined by
the expectation of R̂m over all samples S:

Rm(F) = ES∼Pm |R̂S(F)|. (13)

Definition C.1. The Kullback-Leibler divergence DKL(p||q) between two densities p(Ω) and q(Ω) is defined by

DKL(p||q) =
∫
Ω

p(x) log
p(x)

q(x)
dx. (14)
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Based on the above definitions, we can estimate the generalization error bound for curriculum learning under the curriculum
Q̂λ. Based on the Bretagnolle-Huber inequality (Schlüter et al., 2013), we have∫

|p(x)− q(x)|dx ≤ 2
√

1− exp{−DKL(p||q)} (15)

LetH be a family of functions taking value in {−1, 1} , for any δ > 0 with confidence at least 1− δ over a sample set S,
the following holds for any fG ∈ H (Gong et al., 2016):

R(fG) ≤ Remp(fG) +Rm(H) +

√
ln( 1δ )

2m
. (16)

In addition, we have

R(fG) ≤ Remp(fG) +Rm(H) + 3

√
ln( 1δ )

2m
. (17)

Suppose S ⊆ {x : ∥x∥ ≤ R} be a sample set of size m, and H = {x→ sgn(wTx) : mins|wTx| = 1 ∩ ||w|| ≤ B} be
hypothesis class, where w ∈ Rn,x ∈ Rn, and then we have

R̂m(H) ≤ BR√
m

(18)

Proof.

R̂m(H) = 1

m
Eσ

[
sup

∥w∥≤B

m∑
i=1

σisgn(wxi)

]

≤ 1

m
Eσ

[
sup

∥w∥≤B

m∑
i=1

σi|sgn(wxi)|
]
≤ 1

m
Eσ

[
sup

∥w∥≤B

m∑
i=1

σi|wxi|
]

≤ B

m
Eσ

[ m∑
i=1

σi∥xi∥
]
≤ B

m
Eσ

[
|

m∑
i=1

σi∥xi∥|
]

=
B

m
Eσ

[√√√√(

m∑
i=1

σi∥xi∥)2
]

=
B

m
Eσ

[√√√√ m∑
i,j=1

σiσj∥xi∥∥xj∥
]

≤ B

m

√√√√Eσ

[ m∑
i,j=1

σiσj∥xi∥∥xj∥
]

=
B

m

√√√√ m∑
i=1

∥xi∥2

≤ BR√
m
.

(19)

Then, suppose {(Zxi , yi)}mi=1 are i.i.d. samples drawn from the confident pace distribution Q̂λ. Denote m+/m− be the
number of positive/negative samples and m∗ = min{m−,m+}. H is the function family projecting to {−1, 1}. Then for
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any δ > 0 and f ∈ H, with confidence at least 1− 2δ we have:

R(fG) ≤
1

2
R+

emp(fG) +
1

2
R−

emp(fG)

+
1

2
R̂m+

(H) + 1

2
R̂m−(H) +

√
ln( 2δ )

m∗

+ (1− αλ)
√

1− exp {−DKL(P
+
D||E+)}

+ (1− αλ)
√

1− exp {−DKL(P
−
D||E−)},

(20)

and

R(fG) ≤
1

2
R+

emp(fG) +
1

2
R−

emp(fG)

+
1

2
R̂m+(H) +

1

2
R̂m−(H) + 3

√
ln( 2δ )

m∗

+ (1− αλ)
√

1− exp {−DKL(P
+
D||E+)}

+ (1− αλ)
√

1− exp {−DKL(P
−
D||E−)},

(21)

where E+, E− denotes the error distribution corresponding to PD(A, x|y = 1),PD(A, x|y = −1), and
R+

emp(fG),R−
emp(fG) denote the empirical risk on positive nodes and negative nodes, respectively.

Proof. We first rewrite the expected risk as:

R(fG) =
∫
Z

LfG (z)PD(A,x|y)PD(y)dz,

=
1

2

∫
X+

LfG (x, y)PD(A,x|y = 1)dx+
1

2

∫
X−
LfG (x, y)PD(A,x|y = −1)dx

:=
1

2
(R+(fG) +R−(fG)).

(22)

The empirical risk tends not to approximate the expected risk due to the inconsistency of PD̂(A,x|y) and PD(A,x|y).
However, by introducing the error distribution with the confident pace distribution and denoting by EQ̂λ

(fG) in the error
analysis, we can the following error decomposition:

1

2
(R+(fG) +R−(fG))−

1

2
(R+

emp(fG) +R−
emp(fG))

=
1

2
[R+(fG)− EQ̂+

λ
(fG) + EQ̂+

λ
(fG)−R+

emp(fG)]

+
1

2
[R−(fG)− EQ̂−

λ
(fG) + EQ̂−

λ
(fG)−R−

emp(fG)]

:= S1 + S2.

(23)

Let S1 = A1 + A2 and S2 = B1 + B2, where A1 = 1
2 (R

+(fG)) − EQ̂+
λ
(fG)), A2 = 1

2 (EQ̂+
λ
(fG) − R+

emp(fG)),
B1 = 1

2 (R
−(fG))− EQ̂−

λ
(fG)), B2 = 1

2 (EQ̂−
λ
(fG)−R−

emp(fG)). Here, EQ̂+
λ
(fG) and EQ̂−

λ
(fG) denote the pace risk with

respect to positive nodes and negative nodes, respectively.
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By the fact, the 0-1 loss is bounded by 1, we have:

A1 +A2 =
1

2
[R+(fG)− EQ̂+

λ
(fG) + EQ̂+

λ
(fG)−R+

emp(fG)]

≤ 1

2

∫
X+

(PD(A, x|y)− Q̂+
λ (x))dx+

1

2
Rm+

(H) + 1

2

√
ln( 1δ )

2m+

≤ (1− αλ)
√
1− exp {−DKL(P

+
D||E+)}+ 1

2
Rm+

(H) + 1

2

√
ln( 1δ )

2m+
.

(24)

In a similar way, we can bound:

B1 +B2 =
1

2
[R−(fG)− EQ̂−

λ
(fG) + EQ̂−

λ
(fG)−R−

emp(fG)]

≤ (1− αλ)
√
1− exp {−DKL(P

−
D||E−)}+ 1

2
Rm−(H) +

1

2

√
ln( 1δ )

2m−
.

(25)

By taking m∗ = min{m−,m+} and combine Eq. (24) and Eq. (25), we can get:

R(fG) ≤
1

2
R+

emp(fG) +
1

2
R−

emp(fG)

+
1

2
R̂m+(H) +

1

2
R̂m−(H) +

√
ln( 2δ )

m∗

+ (1− αλ)
√

1− exp {−DKL(P
+
D||E+)}

+ (1− αλ)
√

1− exp {−DKL(P
−
D||E−)}.

(26)

In addition, we further get:

Rm(H) ≤ R̂m(H) +

√
ln( 2δ )

2m
. (27)

By replacing Rm, we complete the proof.

The above established error bounds upon 0-1 loss are hard to optimize. We change the bound of Eq.(21) under the commonly
utilized hinge loss ϕ(t) = (1− t)+ for t ∈ R and finally obtain our Theorem 1. The above proof is according to (Gong
et al., 2016).

D. Details of Empirical Study
D.1. Datasets

In our experiments, we employ seven common datasets gathered from diverse domains. The datasets are as follows: (1)
Cora, CiteSeer, and Pubmed (Yang et al., 2016), which are citation networks where nodes represent documents and edges
signify citations among them; (2) WikiCS (Mernyei and Cangea, 2020), comprising nodes corresponding to Computer
Science articles. Edges are based on hyperlinks, and the ten classes represent different branches of the field in the Wikipedia
website; (3) Facebook (Rozemberczki et al., 2021), with nodes representing verified pages on Facebook and edges indicating
mutual likes; (4) Physics (Shchur et al., 2018), a co-authorship graph based on the Microsoft Academic Graph. In this
dataset, nodes represent authors connected by an edge if they co-authored a paper. Node features represent paper keywords
for each author’s papers, and class labels indicate the most active fields of study for each author; (5) DBLP (Pan et al., 2016),
also a citation network, where each paper may cite or be cited by other papers. The statistical information for the utilized
datasets is presented in Table 6.
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Table 6: Important statistical information of used datasets.

Dataset Edges Classes Features Nodes/Labeled Nodes Labeled Ratio
Cora 5, 429 7 1, 433 2, 708/1208 44.61%
CiteSeer 4, 732 6 3, 703 3, 327/1827 54.91%
PubMed 44, 338 3 500 19, 717/18217 92.39%
WikiCS 215, 603 10 300 11, 701/580 4.96%
Facebook 342, 004 4 128 22, 470/400 1.78%
Physics 495, 924 5 8415 34, 493/500 1.45%
DBLP 105, 734 4 1639 17, 716/800 4.51%

D.2. Label Noise Generation Setting

Following previous works (Dai et al., 2021; Du et al., 2021; Xia et al., 2020c), we consider three settings of simulated noisy
labels:

(1) Symmetric noise: this kind of label noise is generated by flipping labels in each class uniformly to incorrect labels of
other classes.

(2) Pairflip noise: the noise flips each class to its adjacent class. More explanation about this noise setting can be found
in (Yu et al., 2019; Zheng et al., 2020; Lyu and Tsang, 2019).

(3) Instance-dependent noise: the noise is quite realistic, where the probability that an instance is mislabeled depends
on its features. We follow (Xia et al., 2020c) to generate this type of label noise to validate the effectiveness of the
proposed method.

D.3. Baseline Details

In more detail, we employ baselines:

• Sample selection with label noise on i.i.d. data:

(1) Co-teaching+ (Yu et al., 2019): This approach employs a dual-network mechanism to reciprocally extract confident
samples. Specifically, instances with minimal loss and discordant predictions are identified as reliable, clean
samples for subsequent training.

(2) Me-Momentum (Bai and Liu, 2021): The objective of this method is to identify challenging clean examples from
noisy training data. This process involves iteratively updating the extracted examples while refining the classifier.

(3) MentorNet (Jiang et al., 2018): This approach involves pre-training an additional network, which is then used
to select clean instances and guide the training of the main network. In cases where clean validation data is
unavailable, the self-paced variant of MentorNet resorts to a predefined curriculum, such as focusing on instances
with small losses.

• Graph Curriculum learning:

(1) CLNode (Wei et al., 2023): CLNode is a curriculum learning framework aimed at enhancing the performance
of backbone GNNs by gradually introducing more challenging nodes during the training process. The proposed
difficulty measure is based on label information.

(2) RCL (Zhang et al., 2023): RCL utilizes diverse underlying data dependencies to train improved Graph Neural
Networks (GNNs), resulting in enhanced quality of learned node representations. It gauges the inter-node
relationships as a measure of difficulty for each node.

• Denoising methods on graph data:

(1) LPM (Xia et al., 2020a): The method is specifically tailored to address noisy labels in node classification,
employing a small set of clean nodes for guidance.
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(2) CP (Zhang et al., 2020): The method operates on class labels derived from clustering node embeddings. It
encourages the classifier to comprehend class-cluster information, effectively mitigating overfitting to noisy labels.
Prior to clustering, node embeddings are acquired using the Node2Vec model (Grover and Leskovec, 2016).

(3) NRGNN (Dai et al., 2021): In this approach, a label noise-resistant GNN establishes connections between
unlabeled nodes and noisily labeled nodes with high feature similarity. This connection strategy effectively
incorporates additional clean label information into the model.

(4) PI-GNN (Du et al., 2023): This method introduces Pairwise Intersection (PI) labels, generated based on feature
similarity among nodes. These PI labels are then employed to alleviate the adverse impact of label noise, thereby
enhancing the model’s robustness.

(6) RS-GNN (Dai et al., 2022) This method primarily aims to improve the robustness of Graph Neural Networks
(GNNs) in the presence of noisy edges. It achieves this by training a link predictor on graphs with inaccuracies in
edge connections, ultimately enabling GNNs to effectively learn from such imperfect graph structures.

(5) RT-GNN (Qian et al., 2023): This approach identifies clean labeled nodes by leveraging the memorization effect
of neural networks. Subsequently, it generates pseudo-labels based on these selected clean nodes to mitigate the
impact of noisy nodes during the training process.

D.4. Algorithm Framework of TSS

Algorithm 1 Algorithm flow of TSS.

1: Input: A pretrained classifier fp
G , the noisy training set D̃tr = {(A, xi, ỹi)}ntr

i=1, the identity matrix I, the normalized
adjacency matrix Â, the hyperparameters α, λ0, T

2: Obtain π ← α(I− (1− α)Â)−1

3: Initialize parameters of a GNN classifier fG
4: Let t = 1
5: while t < T or not converge do
6: for vi ∈ D̃tr do
7: Calculate Cbi ← 1

ntr(ntr−1)

∑
vu ̸=vi ̸=vv

ỹu ̸=ỹv

πu,iπi,v

πu,v

8: end for
9: Sort D̃tr according to Cbi in ascending order

10: λt ← min(1, λt−1 + (1− λt−1) ∗ t
T )

11: Generate noisy training subset D̃t
tr ← D̃tr[1, . . . , ⌊λt ∗ ntr⌋]

12: Extract confident training subset D̂t
tr from D̃t

tr

// i.e., the training nodes whose noisy labels are identical to the ones predicted by fp
G

13: Calculate loss L on D̂t
tr

14: Back-propagation on fG for minimizing L
15: t← t+ 1
16: end while
17: Output:Trained GNN classifier fG

D.5. Pacing Function of TSS

After measuring node difficulty using the CBC measure, we employ the TSS method to enhance the training of our GNN
model. We incorporate a pacing function λ(t) to govern the proportion λ of training nodes available at the t-th epoch. In
TSS, we utilize three distinct pacing functions: linear, root, and geometric.

• linear:
λt = min(1, λt−1 + (1− λt−1) ∗

t

T
) (28)

• root:

λt = min(1,

√
λ2
t−1 + (1− λ2

t−1) ∗
t

T
) (29)
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Figure 10: Visualization of the extracted nodes in the TSS. The red dots represent the newly extracted nodes in the later
stage. Other colour dots represent the nodes extracted in the early stage.

• geometric:

λt = min(1, 2log2 λt−log2 λt∗ t
T ) (30)

The linear function escalates the training node difficulty uniformly over epochs. On the other hand, the root function
introduces a higher proportion of difficult nodes in a smaller number of epochs. Meanwhile, the geometric function extends
the training duration on a subset of easy nodes by conducting multiple epochs.

D.6. Implementation Details

A two-layer graph convolutional network whose hidden dimension is 16 is deployed as the backbone for all methods. We
apply an Adam optimizer (Kingma and Ba, 2014) with a learning rate of 0.01. The weight decay is set to 5× 10−4. The
number of pre-training epochs is set to 400. While the number of retraining epochs is set to 500 for Cora, CiteSeer, and
1000 for Pubmed, WikiCS, Facebook, Physics and DBLP. All hyper-parameters are tuned based on a noisy validation set
built by leaving 10% noisy training data.

E. More experiment
E.1. Visualize extracted nodes in TSS

To justify that TSS can extract clean near-boundary nodes, we visualize the extracted clean nodes by employing t-
SNE (Van der Maaten and Hinton, 2008) on their embeddings, which are the penultimate layer representation vectors. The
results are shown in Figure 10, where red dots represent the nodes extracted in the later stage of TSS and other colour dots
represent the nodes extracted in the early stage of TSS. On Cora and CiteSeer, we can clearly see that there are lots of red
dots which are on the boundary of class-clusters. This supports and justifies our claim that TSS can extract clean informative
nodes (located on a class’s boundary and link the nodes of different classes). Comparing the nodes extracted on three types
of noisy datasets, we can observe that the TSS is not sensitive to the type of label noise and can work well on the most
general instance-dependent label noise cases.
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Table 7: Mean and standard deviations of classification accuracy (percentage) on heterphily graph datasets with 30%
instance-dependent label noise. The results are the mean over five trials and the best are bolded.

Method Chameleon Squirrel DBLP
CP 55.08±2.18 43.42±2.46 70.02±3.06
NRGNN 49.02±2.35 41.35±1.98 72.48±2.61
PI-GNN 52.85±2.16 43.31±2.97 71.72±3.39
Co-teaching+ 53.07±1.98 39.48±2.54 66.32±2.12
Me-Momentum 55.01±1.69 44.38±1.78 59.88±0.60
MentorNet 53.73±3.75 39.63±3.43 63.73±4.93
CLNode 52.85±2.91 35.92±1.84 72.32±2.06
RCL 52.96±0.96 40.59±1.23 63.20±0.81
TSS 56.17±0.28 48.03±1.03 74.70±1.72

E.2. CBC distributions of nodes with varying homophily ratio

In this section, we assess the effectiveness of our CBC measure in relation to varying homophily ratios within the noisy
labeled graph. We modify the graph structure by introducing synthetic, cross-label (heterophilous) edges that connect
nodes with differing labels. The methodology for adding these heterophilous edges, as well as the calculation for the
homophily ratio, are both referred to (Ma et al., 2021). As illustrated in Fig. 11, a decrease in the homophily ratio results in
an increased number of nodes near class boundaries, which consequently exhibit higher CBC scores. Notably, our CBC
measure effectively reflects the topology of nodes even as the complexity of the graph increases.
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Figure 11: The distributions of the CBC score w.r.t. nodes on CORA with different homophily ratios in the presence of 30%
instance-dependent label noise. The nodes are considered “far from topological class boundaries" (far from boundaries.)
when their two-hop neighbours belong to the same class; conversely, nodes are categorized as “near topological class
boundaries" (near boundaries.) when this condition does not hold.

E.3. Performance comparison on heterphily datasets

We evaluate the effectiveness of our method on three commonly used heterogeneous datasets, i.e., DBLP (Fu et al., 2020),
Chameleon (Rozemberczki et al., 2021), Squirrel (Rozemberczki et al., 2021) under 30% instance-dependent label noise.
The summary of experimental results is in the Table 7. As can be seen, our method still shows superior performance over a
range of baselines.

F. Limitations
Indeed, our TSS method has demonstrated effectiveness across various scenarios. However, it’s important to acknowledge
certain inherent limitations due to the intricacies of dealing with noisily labeled graphs.

Firstly, the TSS method is specifically tailored for homogeneously-connected graphs, where linked nodes are anticipated
to share similarities. This is evident in the diverse datasets utilized in our experiments. Adapting TSS to heterogeneously
connected graphs, such as protein networks, requires a nuanced refinement of our approach to suit the distinct network
characteristics.

Secondly, a notable challenge for TSS arises when the labeling ratio is exceptionally low. In such instances, the extraction
of clean nodes might inadvertently overlook crucial features of mislabeled nodes. This oversight could potentially impact
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the learning process of models. Addressing this limitation mandates thoughtful adjustments in our approach, aiming to
accommodate scenarios with scantily labeled data better.
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