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ABSTRACT

We introduce OS-net (Orbitally Stable neural NETworks), a new family of neural
network architectures specifically designed for periodic dynamical data. OS-net
is a special case of Neural Ordinary Differential Equations (NODEs) and takes
full advantage of the adjoint method based backpropagation method. Utilizing
ODE theory, we derive conditions on the network weights to ensure stability of
the resulting dynamics. We demonstrate the efficacy of our approach by applying
OS-net to discover the dynamics underlying the Rössler and Sprott’s systems,
two dynamical systems known for their period doubling attractors and chaotic
behavior.

1 INTRODUCTION

The study of periodic orbits of systems of the form
ẋ = f(x), x(0) = x0, x ∈ U ⊂ Rn (1)

is an important area of research within the field of nonlinear dynamics with applications in both the
physical (astronomy, meteorology) and the nonphysical (economics, social psychology) sciences. In
particular, periodic orbits play a significant role in chaos theory. In Devaney (2003), chaotic systems
are defined as systems that are sensitive to initial conditions, are topologically transitive (meaning
that any region of the phase space can be reached from any other region), and have dense periodic
orbits. Notably, chaotic systems are constituted of infinitely many Unstable Periodic Orbits (UPOs)
which essentially form a structured framework, or a ”skeleton”, for chaotic attractors. A periodic
orbit is (orbitally) unstable if trajectories that start near the orbit do not remain close to it. Finding
and stabilizing UPOs is an interesting and relevant research field with numerous applications such
as the design of lasers Roy et al. (1992), the control of seizure activities Schiff et al. (1994) or the de-
sign of control systems for satellites Wiesel & Shelton (1983). An important tool when studying the
stability of periodic orbits of a given system is the Poincaré or return map which allows one to study
the dynamics of this system in a lower dimensional subspace. It is well-known that the stability of a
periodic orbit containing a point x0 is inherently connected to the stability of x0 as a fixed point of
the corresponding Poincaré map. However, explicitly computing Poincaré maps has been proven to
be highly challenging and inefficient Teschl (2012). With the emergence of data-driven approaches,
researchers in Bramburger & Kutz (2020) proposed a data-driven computation of Poincaré maps
using the SINDy method Brunton et al. (2016). Subsequently, they leveraged this technique in to
develop a method for stabilizing UPOs of chaotic systems Bramburger et al. (2021).
As a matter of fact, researchers have been increasingly exploring the intersection of machine learn-
ing and differential equations in recent years. For example, Partial Differential Equations (PDEs)
inspired neural network architectures have been developed for image classification in Ruthotto &
Haber (2019); Sun & Zhang (2020). On the other hand, data-driven-based PDE solvers were pro-
posed in Sirignano & Spiliopoulos (2018) while machine learning has been effectively utilized to
discover hidden dynamics from data in Raissi et al. (2019); Brunton et al. (2016); Schaeffer et al.
(2017). One notable example of such intersectional work is Neural Ordinary Differential Equa-
tions (NODEs), which were introduced in Chen et al. (2018). NODEs are equivalent to continuous
residual networks that can be viewed as discretized ODEs Haber & Ruthotto (2017). This innova-
tive approach has led to several extensions that leverage well-established ODE theory and methods
Dupont et al. (2019); Zhang & Zhao (2022); Ott et al. (2021); Zhuang et al. (2020); Yan et al. (2020);
Haber & Ruthotto (2017) to develop more stable, computationally efficient, and generalizable archi-
tectures.
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In the present work, we aim at learning dynamics obtained from chaotic systems with a shallow
network featuring a single hidden layer, wherein the network’s output serves as a solution to the
dynamical system

ẋ = W T
d σ(W T

e x+ be), x(0) = x0. (2)
where We are the input-to-hidden layer weights, be the corresponding bias term, Wd the hidden-
to-output layer weights, and σ the activation function of the hidden layer. The proposed network
is a specific case of NODEs and fully utilizes the adjoint method-based Pontryagin (1987) weight
update strategy introduced in Chen et al. (2018). Our primary objective is to establish sufficient
conditions on the network parameters to ensure that the resulting dynamics are orbitally stable. We
base our argument on the finding that the stability of Poincaré maps is equivalent to the stability
of the first variational equation associated with the dynamical system under consideration Teschl
(2012). We then build on the stability results of linear canonical systems presented in Krein (1983)
to derive a new regularization strategy that depends on the matrix J = W T

e W T
d and not on the

weight matrices taken independently. We name the constructed network OS-net for Orbitally Stable
neural NETworks.
Since we are dealing with periodic data, the choice of activation function is critical. Indeed, popular
activation functions such as the sigmoid or the tanh functions do not preserve periodicity outside the
training region. A natural choice would be sinusoidal activations however these do not hold desired
properties such as monotonicity. Furthermore, they perform poorly Parascandolo et al. (2017) on the
training phase because the optimization can stagnate in a local minimum because of the oscillating
nature of sinusoidal functions. In Ngom & Marin (2021), the authors constructed a Fourier neural
network (i.e a neural network that mimics the Fourier Decomposition) Silvescu (1999); Zhumekenov
et al. (2019) that uses a sin activation but had to enforce the periodicity in the loss function to ensure
that periodicity is conserved outside of the training region. The activation functions x+ 1

a sin2(ax)
-called snake function with frequency a- and x + sinx were proposed in Ziyin et al. (2020) for
periodic data and were proven to be particularly well suited to periodic data. As such, we use both
these activation functions in this work.
This paper is organized as follows: in section2 we present the OS-net’s architecture and the accom-
panying new regularization strategy. In section3 we showcase its performance on simulated data
from the chaotic Rössler and Sprott systems and perform an ablation study to assess the contribu-
tions of the the different parts of OS-net.

2 BUILDING OS-NET

2.1 BACKGROUND

In this chapter, we recall the main results on the stability of periodic orbits of dynamical systems we
will be using to build OS-net. We refer readers to the appendices for more details about orbits of
dynamical systems.
We consider the system

ẋ = f(x), x(0) = x0. (3)
and suppose it has a periodic solution ϕ(t, x0) of period T . We denote γ(x0) a periodic orbit
corresponding to ϕ(t, x0). Stability of periodic orbits have been widely studied in the literature.
It is, in particular well-known (Teschl, 2012, Chapter 12) that the stability of periodic orbits of
Equation3 is linked to the stabiity of its First Variational (FV) problem

ẏ = A(t)y, A(t) = d (f(x))(Φ(t,x0))
and A(t+ T ) = A(t). (4)

which is obtained by taking the gradient of Equation3 with respect to x at ϕ(t, x0). As such, the first
variational problem describres the dynamics of the state variable y = d (ϕ(t, t0,x)) and is a linear
system as the matrix A(t) does not depend on y.
To assess the stability of OS-net, we investigate the first variational equation associated with Equa-
tion2. OS-net’s FV is given by

ẏ = W T
d diag

(
σ

′ (
W T

e ϕ(t,x0) + be
))

W T
e y,

and if we make the change of variables z = W T
e y, this equation becomes

ż = JH(t)z, (5)
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where J = W T
e W T

d and H(t) = diag
(
σ

′ (
W T

e ϕ(t,x0) + be
))

is periodic. This formulation can
be seen as a generalization of linear canonical systems with periodic coefficients

ẏ = λJmH(t)y (6)

where

Jm =

(
0 Im

−Im 0

)
, Im is the identity matrix of size m,

H is a periodic matrix-valued function and λ ∈ R. Stability of such systems was extensively studied
in Krein & Jakubovic (1983) and in particular in Krein (1983). We recall the main definitions and
results from Krein (1983) and build upon these to derive stability conditions for OS-net. In particular,
we give the definition of stability zones for Equation6 and provide the main stability results we will
base our study on.
Definition 1. A point λ = λ0 (−∞ < λ0 < ∞) is called a λ-point of stability of Equation 6 if for
λ = λ0 all solutions of Equation 6 are bounded on the entire t-axis.
If, in addition, for λ = λ0 all solutions for any equation

ẏ = λJmH1(t)y

with a periodic symmetric. matrix valued function H1(t) = H1(t+T ) sufficiently close to H(t) are
bounded, then λ0 is a λ-point of strong stability of Equation 6.

The set of λ-point of strong stability of Equation 6 is an open-set that decomposes into a system of
disjoint open intervals called λ-zones of stability of Equation6. If a zone of stability contains the
point λ = 0 then it is called a central zone of stability.
Definition 2. We say that Equation 6 is of positive type if

H ∈ Pn(T ) = {A(t) symmetric s.t A(t) ≥ 0 (0 ≤ t ≤ T ) and
∫ T

0

A(t)dt > 0}.

A(t) ≥ 0 means ∀x ∈ Rn, ⟨A(t)x, x⟩ ≥ 0 and
∫ T

0
A(t)dt > 0 means

∫ T

0
⟨H(t)x, x⟩dt > 0

Definition 3. Let A be a square matrix with non-negative elements. We denote by M(A) the least
positive eigenvalue among its eigenvalues of largest modulus. Note that Perron’s theorem (1907)
guarantees the existence of M(A) Horn & Johnson (2012).

We can now state the main result we will derive our regularization from:
Theorem 1 (Krein (1983) section 7, criterion In). A real λ belongs to the central zone of stability
of an Equation 6 of positive type, if

|λ| < 2M−1(C)

where C = Jma

∫ T

0
Ha(t). If K is a matrix, Ka is the matrix obtained by replacing the elements

of K by their absolute values.

The proof of this theorem is recalled in the appendices.

2.2 ARCHITECTURE AND STABILITY OF OS-NET

To base the stability of OS-net on stability theory for systems of type Equation6, we need the matrix-
valued function H(t) and the matrix J in Equation 5 to be respectively of positive type and skew-
symmetric. To ensure H(t) is of positive type, it is sufficient to use activation functions that are
increasing since they have positive derivatives and diagonal matrices with positive elements are of
positive type. Fortunately, many common activation functions (tanh or sigmoid) have that property.
In this paper, we use the strictly monotonic activation functions x+ sin(x) and (the snake function)
x + 1

a sin2(ax), a ∈ R displayed in Figure1. These activation functions were proved to be able to
learn and extrapolate periodic functions in Ziyin et al. (2020).

Let us now pay attention to the matrix J = W T
e W T

d . To ensure J is skew-symmetric, we introduce
the matrices W ∈ Mn,2m(R) and K ∈ M2m(R) where n is the input size (i.e the size of x) and 2m
the number of nodes in the hidden layer. We then set W T

e = W , W T
d = ΩW T , and Ω = K−KT .
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Figure 1: Left: Activation functions x + sin(x) and x + 1
0.2 sin

2(0.2x). Right: Derivatives of the
activation functions

Note that the size of the hidden layer which is the size of Ω needs to be even. Otherwise, Ω would be
a singular matrix. The elements of the matrices W and K are the hyperparameters of the network
that will be optimized during training. Now, knowing that any real skew-symmetric matrix J is
congruent to Jm Yakubovich & Starzhinskii (1975), there exists a real invertible matrix S such that

Jm = STJS

and Equation5 is equivalent to Equation6. In fact, let u = STz in Equation5, we obtain

u̇ = λJmS−1H(t)(S−1)Tu = λJmH̃(t)u

where H̃(t) = S−1H(t)(S−1)T ∈ Pn(T ). We can now apply Theorem1 to OS-net and state that
OS-net is stable if

1 < 2M−1

(
Ja

∫ T

0

H(t)dt

)
. (7)

Note that since H(t) is a diagonal matrix with positive elements, Ha(t) = H(t). We can now
prove the following result that will justify our regularization strategy:
Corollary 1.1. Suppose the activation function σ is strictly increasing with a uniformly bounded
derivative. Then, OS-net is stable if

||Ja||2 <
2

LT
(8)

where L is the superior bound of the derivative of the activation function.

Proof. Let µ be any eigenvalue of Ja

∫ T

0
H(t)dt then |µ| ≤

∥∥∥Ja

∫ T

0
H(t)dt

∥∥∥
2
. Knowing that any

norm in Rn,n can be rescaled to be submultiplicative (i.e. ||AB||2 ≤ ||A||2||B||2), we obtain

|µ| ≤ ∥Ja∥2

∥∥∥∥∥
∫ T

0

H(t)dt

∥∥∥∥∥
2

which leads to

M

(
Ja

∫ T

0

H(t)dt

)
≤ ||Ja||2

∥∥∥∥∥
∫ T

0

H(t)dt

∥∥∥∥∥
2

If L is the superior bound of the derivative of the activation function, then, since H(t) is a diagonal
matrix, we have M

(
Ja

∫ T

0
H(t)dt

)
≤ LT ||Ja||2. Therefore, OS-net is stable if 1 < 2

LT ||Ja||−1
2

i.e ||Ja||2 < 2
LT .

All in all our minimization problem becomes

L(xo, g(f(x0))) = ||g(f(x0))− x0||22 s.t. ||Ja||2 <
2

LT
(9)
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and this formulation is equivalent Bach et al. (2011) to

L(x0, g(f(x0))) = ||g(f(x0))− x0||22 + α||Ja||22 (10)

where α ∈ R can be fine-tuned using cross-validation. We thus have derived a new regularization
strategy that stabilizes the network. By controlling the norm of Ja = |W T

e W T
d |, we ensure so-

lutions of Equation5 and consequently periodic orbits of Equation2 are stable. We validate these
claims in the next section by running a battery of tests on simulated data from dynamical systems
known for their chaotic behavior.

3 NUMERICAL RESULTS

In this section, we showcace the learning capabilities and stability of OS-net on different regimes
of the Rössler Rössler (1976) and of the Sprott systems Sprott (1997). In all of the following ex-
periments, the data was generated using Matlab’s ode45 solver. We take snapshots at different time
intervals to obtain the data used to train OS-net.

We used the LBFGS optimizer with a learning rate lr = 1. and the strong Wolfe Wolfe (1969) line
search algorithm for all the experiments. Our code uses Pytorch and all the tests were performed on
a single GPU1.

3.1 THE RÖSSLER SYSTEM

As in Bramburger et al. (2021), we consider the Rössler system

ẋ = −y − z (11)
ẏ = x+ 0.1y (12)
ż = 0.1 + z(x− c) (13)

where c ∈ R. Rössler introduced this system as an example of simple chaotic system with a single
nonlinear term (zx). As c increases, this system displays period doubling bifurcations leading to
chaotic behavior. Here, we consider the values c = 6 and c = 18.

3.1.1 C = 6, PERIOD-2 ATTRACTOR

First, we set c = 6 and initialize the trajectory at [x0, y0, z0] = [0,−9.1238, 0]. In this regime, the
Rössler system possesses a period-2 attractor Bramburger et al. (2021). We generate the training

Table 1: Norm of Ja

Part

System Attractor type ||Ja||
Rössler, c = 6 Period-2 0.9937
Rössler, c = 18 Chaotic 0.6318
Sprott, µ = 2.1 Period-2 0.0085

data by solving the Rössler system using Matlab’s ode45 solver with a time step of 0.001 from
t = 0 to t = 10. We then take snapshots of the simulated data every 50 step and feed it to OS-net.
We build OS-net using the Runge-Kutta 4 (RK4) algorithm with a time step of 0.005. We chose the
snake activation function x + 1

0.2 sin
2(0.2x) and set the number of nodes in the hidden layer to be

2× 16. We set µ = 0.07 in Equation 10 and use 10 epochs.
Figure2 (left) shows the training output for the y component. OS-net was able to learn the dynamics
accurately by the end of training. The norm of Ja is approximately 0.99 after training as recorded in
Table1. In this case, Inequality1.1 is not strictly enforced but the norm of the matrix Ja is controlled
enough so that OS-net renders stable orbits. The elements of the matrix Ω are concentrated in
[−0.7, 0.7].

1We base our code on the Neural ode implementation in Surtsukov (2019)
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Figure 2: Left: Training data in black along with the learned dynamics in red in the training time
interval [0, 10]. Right: Target dynamics in gray along with the data generated by OS-net on the time
interval [0, 100].
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Figure 3: Left: Rössler’s period-2 attractor. Right: stable OS-net period-1 attractor (right)

We validate OS-net by propagating a trajectory initialized [x0, y0, z0] = [0,−9.1238+0.01, 0] using
the learned dynamics. Figure2 (right) shows prediction using OS-net up to t = 100 and displays
the accuracy of this prediction when compared to the correct dynamics. We assess the stability of
OS-net by propagating the trajectory to t = 10000. OS-net converges to a stable period-1 attractor
while the Rössler system converges to a period-2 one as showcased in Figure3.

Ablation study: We compare OS-net with a network obtained by keeping the same architecture
but with the regularization in Equation10 switched off. We focus on the Rössler system with c = 6 in
Equation3.1 and keep the same experiments setup as in section3.1.1. The left side of Figure4 shows
that training was successful while the right side shows the dynamics learned by the unregularized
network diverge from the true dynamics in the time interval [0, 10]. This shows the role of the
regularization term in stabilizing the dynamics learned by OS-net. We also compare OS-net to a
neural ode with unstructured weights i.e. one where the hidden layer weights We and the output
layer weights Wd are defined independently. We show the results in Appendix C.

6



Under review as a conference paper at ICLR 2024

0 20 40 60 80 100
t

20

15

10

5

0

5

10

15

y(
t)

Figure 4: Left: Training data in black along with the learned dynamics in red in the training time
interval [0, 10]. Right: Target dynamics in gray along with the data generated by OS-net on the time
interval [0, 100].

3.1.2 C = 18, CHAOTIC BEHAVIOR

We now set c = 18 and initialize the trajectory at [x0, y0, z0] = [0,−22.9049, 0]. The Rössler
system displays a chaotic behavior in this regime. We generate the training data as before but take
snapshots every 10 steps. For OS-net, we use RK4 with a step size of 0.005 and x + sin(x) as an
activation function. The hidden layer size is 2× 32 and the penalty coefficient µ = 2.

Figure5 shows the training output and confirms the ability of OS-net to learn the target dy-
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Figure 5: Left: Training data in black along with the learned dynamics in red in the training time
interval [0, 10]. Right: Target dynamics in gray along with the data generated by OS-net on the time
interval [0, 100].

namics. We then use the learned dynamics to generate a trajectory starting at [x0, y0, z0] =
[0,−22.9049 + 0.01, 0]. Since we are dealing with a chaotic system, the learned dynamics should
not be expected to reproduce the training data Bramburger & Kutz (2020). Figure5 shows that OS-
net was able to track the chaotic system up to t ≈ 30. The norm of the matrix Ja was approximately
0.6318 at the end of training as recorded in Table1. Furthermore, the elements of the matrix Ω were
concatenated between −0.5 and +0.5. Figure6 displays the chaotic Rössler system and the stable
attractor obtained by propagating OS-net’s learned dynamics from t = 0 to t = 10000.
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Figure 6: Left: Chaotic Rössler attractor. Right: Stable period-1 OS-net attractor

3.2 SIMPLEST QUADRATIC (SPROTT’S) CHAOTIC FLOW

We consider the following system

ẋ = y

ẏ = z (14)

ż = −νz − x+ y2

where ν ∈ R. This system was introduced in Sprott (1997) and also has period doubling bifurcations
as ν varies. Here we set ν = 2.1 which yields a peiod-2 attractor for Equation14.
We initialize the trajectory at [x0, y0, z0] = [5.7043, 0.0,−2.12778] and solve the system using
ode45 on the time interval [0, 15] with a step size of 0.001. We then take snapshots every 10 step and
use the data for training. OS-net is solved using RK4 with a step size of 0.01 and x+ 1

0.3 sin
2(0.3x)

as an activation function. The hidden layer has 2× 16 nodes and the penalty coefficient µ = 1.
We show in Figure7 (left) the dynamics learned by OS-net for the y component after 20 epochs.
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Figure 7: Left: Training data in black along with the learned dynamics in red in the training time
interval [0, 15]. Right: Target dynamics in gray along with the data generated by OS-net on the time
interval [0, 100].

Figure7 (right) also shows how well OS-net tracks the original system in the interval t = 0 to
t = 100. In this case, the norm of the matrix Ja was approximately 8e − 3 and the elements
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of the matrix Ω are in the interval [−0.7, 0.7]. Inequality1.1 is strictly enforced here. We then
assess the stability of the learned dynamics by generating a trajectory starting at [x0, y0, z0] =
[5.7043 + 0.01, 0.0,−2.12778] and evolving it from t = 0 to t = 10000. Figure8 shows the period-
2 attractor of the original system and the stable period-1 OS-net orbit.
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Figure 8: Left: Sprott’s period-2 attractor. Right: stable period-1 OS-net attractor

Note The current implementation of OS-net uses the adjoint method presented in Chen et al.
(2018) which accumulates numerical errors when integrating backward. We circumvent that by
using RK4 with a small step size. This results in a computationally expensive implementation that
can be improved using the methods proposed in Ott et al. (2021); Zhuang et al. (2020); Zhang &
Zhao (2022) that we plan on incorporating into OS-net in the future.

4 CONCLUSION

We have presented a new family of stable neural network architectures for periodic dynamical data.
The proposed architecture is a particular case of NODES with dynamics represented by a shallow
neural network. We leveraged well-grounded ode theory to propose a new regularization scheme
that controls the norm of the product of the weight matrices of the network. We have validated
our theory by learning the Rössler and Sprott’s systems in different regimes including a chaotic
one. In all the regimes considered, OS-net was able to track the exact dynamics and converge
to a stable period-1 attractor. That indicates that OS-net is a promising network architecture that
can handle highly complex dynamical systems. In the future, we aim at explicitly controlling the
parameters of the systems of interest by incorporating them into the state vectors that OS-net aims at
learning. Additionally, we plan on using OS-net to learn and monitor the orbits of celestial objects
that have short orbital periods such as certain exoplanets or three-body systems like Mars-Phobos.
This extension of OS-net’s applications holds great potential in providing a broader range of stable
periodic orbits for the design of spatial missions.
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