Self-Discover: Large Language Models Self-Compose
Reasoning Structures

Pei Zhou® Jay Pujara® Xiang Ren ¢ Xinyun Chen’ Heng-Tze Cheng'
Quoc V.Le! EdH. Chi' Denny Zhou! Swaroop Mishra’ Huaixiu Steven Zheng'
T Google DeepMind <> University of Southern California

Abstract

We introduce SELF-DISCOVER, a general framework for LLMs to self-discover
the task-intrinsic reasoning structures to tackle complex reasoning problems that
are challenging for typical prompting methods. Core to the framework is a self-
discovery process where LLMs select multiple atomic reasoning modules such
as critical thinking and step-by-step thinking, and compose them into an explicit
reasoning structure for LLMs to follow during decoding. SELF-DISCOVER sub-
stantially improves GPT-4 and PaLM 2’s performance on challenging reason-
ing benchmarks such as BigBench-Hard, grounded agent reasoning, and MATH,
by as much as 32% compared to Chain of Thought (CoT). Furthermore, SELF-
DISCOVER outperforms inference-intensive methods such as CoT-Self-Consistency
by more than 20%, while requiring 10-40x fewer inference compute. Finally, we
show that the self-discovered reasoning structures are universally applicable across
model families: from PaLM 2-L to GPT-4, and from GPT-4 to Llama2, and share
commonalities with human reasoning patterns.

Direct Answer Task 4’
Chainigft—,‘.l'rt;ought Task ‘-{ Rationale H Answer

Self-Discover Task Task-Specific Structured
Reasoning as Reasoning Structure Reasoning

Structures (Ours)

Self-Discover Over Direct Answer Self-Discover Over Chain-of-Thought

Avg. BBH: +11/o
T4D: + 39% 2 T4D: +290% —— — |
MATH: +5.5% MATH: +8.5%
D -|IIIII||||IIII
I .-lllllllll“llllll Il ==

Figure 1: SELF-DISCOVER guides LLMs to self-discover and compose atomic reasoning modules
into a reasoning structure to solve challenging tasks. Through testing on challenging reasoning
benchmarks incuding Big Bench-Hard (BBH), agent reasoning (T4D), and MATH, we find that
SELF-DISCOVER outperforms Direct Answering on 23/25 and CoT on 21/25 tasks in zero-shot
setting using PaLM 2-L. Full BBH results are in Appendix E]Table@

Avg. BBH: +7%

A Accuracy
A Accuracy

1 Introduction

Large Language Models (LLM) (Brown et al.l 2020} (Chowdhery et al.l 2022} |OpenAll |2023b; |Anil
et al.,2023) powered by transformers (Vaswani et al., 2017) have produced impressive breakthroughs

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

in generating coherent texts (OpenAl, 2022)), and following instructions (Zhong et al. 2021} Mishra
et al., 2022c; Wei et al., [2021} |Chung et al.| 2022; |Ouyang et al., 2022). In pursuit of the goal to
enhance LLMs’ capability to reason and solve complex problems, various prompting methods have
been proposed, drawing inspirations from cognitive theories of how humans reason. For example,
few-shot and zero-shot chain-of-thought (CoT) (Nye et al., 2021} Wei et al.||2022; [Kojima et al.| [2022;
Yasunaga et al.| 2023)) resembles how humans solve problems step-by-step, decomposition-based
prompting (Zhou et al.,|2022a} |Drozdov et al.| 2022; [Patel et al.| 2022; Hao et al., 2023} [Khot et al.,
2022)) is inspired by how humans breakdown a complex problem into a series of smaller subproblems,
and then solve those subproblems one by one (Polyal 2004), and step-back prompting (Zheng et al.,
2023) is motivated by how humans reflect on task nature to derive general principles. However, a
fundamental limitation is that each technique itself serves as an atomic reasoning module making an
implicit prior assumption of the process on how to tackle a given task. Instead, we argue that each
task has a unique intrinsic structure underlying the reasoning process involved in solving it efficiently.
For instance, least-to-most prompting (Zhou et al.| [2022a; Drozdov et al., [2022)) has shown to be
much more effective than CoT (Wei et al.,|2022)) at solving tasks such as symbolic manipulation and
compositional generalization, due to the decomposition structure of the tasks.

This paper aims at self-discovering the underlying reasoning structure unique to each task, while
being highly efficient in terms of computation. Our approach, SELF-DISCOVER, is inspired by how
humans internally devise a reasoning program for problem-solving (Newell et al.l [1958; Rasmussen)
1983), as illustrated in Figure 2]. From a set of atomic reasoning modules described in natural
language such as “breakdown into sub tasks” and “critical thinking”, an LLM, and task examples
without labels, SELF-DISCOVER composes a coherent reasoning structure intrinsic to the task (Stage
1) and then solves instances of the task using the discovered structure (Stage 2). Stage 1 operates at
the task-level and uses three actions to guide the LLM to generate a reasoning structure for the task.
At Stage 2, during the final decoding, the LLM simply follows the self-discovered structure to arrive
at the final answer.

Solving problems using SELF-DISCOVER brings several benefits compared to other methods for
LLM reasoning. First, the discovered reasoning structure is grounded in atomic reasoning modules
benefiting from the strengths of multiple reasoning modules in contrast to applying a priori module
such as CoT. Second, SELF-DISCOVER is efficient in computation as it only requires 3 more inference
steps on the fask-level, while being more performant than inference-heavy ensemble approaches such
as self-consistency Wang et al.[(2022). Lastly, the discovered reasoning structure is intrinsic to the
task, and conveys LLMSs’ insights about the task in a more interpretable way than the optimized
prompts (Zhou et al., [2022b; |Yang et al.| [2023)).

We test SELF-DISCOVER on 25 challenging reasoning tasks including Big Bench-Hard (BBH) (Suz]
cun et al., 2022), Thinking for Doing (T4D) (Zhou et al., |2023) and MATH (Hendrycks et al.,
2021)). SELF-DISCOVER outperforms CoT on 21/25 task with performance gains up to 42% (Fig-
ure [I)), highlighting the advantage of the self-discovered reasoning structure composed from the
atomic reasoning modules against a single a priori CoT module. Furthermore, we demonstrate
that SELF-DISCOVER achieves superior performance against inference-heavy methods such as CoT
+ Self-Consistency and majority voting of every module while requiring 10-40x fewer inference
compute (Figure[3). Finally, we compare SELF-DISCOVER with prompts optimized (OPRO) using a
training set (Yang et al. [2023) (Figure[8)). We find that SELF-DISCOVER still performs on par or
better than OPRO while the self-discovered reasoning structure are much more interpretable.

We conduct a set of analysis to understand the effectiveness of SELF-DISCOVER. By breaking
down BBH tasks into 4 different categories, we find that SELF-DISCOVER performs best on tasks
requiring world knowledge and has a moderate performance boost on algorithmic tasks compared
to CoT (Figure). This is further confirmed by the error analysis on MATH, where 74.7% model
failures comes from computation errors (e.g. math). We also take a closer look at the self-discovered
reasoning structures, and show the universality of them by transferability study from PaLLM 2-L to
GPT-4, and from GPT-4 to Llama-2-70B. We hope to encourage more future work on structured
reasoning for solving challenging problems using LLMs.

2 Self-Discovering Reasoning Structures for Problem-Solving

We take inspiration from how humans use prior knowledge and skills to devise a reasoning program to
solve problems (Newell et al., |1958; Rasmussen, |1983). When we face a new problem, we often first
search internally what knowledge and skills from our prior experience might be helpful to solve it.
Then we will attempt to apply relevant knowledge and skills to this task. And finally we will connect
multiple individual skills and knowledge to solve the problem. We design SELF-DISCOVER to enact
these steps into two stages as illustrated in Figure 2]

Given a task and a set of reasoning module descriptions representing high-level problem-solving
heuristics such as “Use critical thinking” and “Let’s think step by step”, Stage 1 of SELF-
DISCOVER aims to uncover the intrinsic reasoning structure for solving this task via meta-reasoning.
Specifically, we uses three meta-prompts to guide LLMs to select, adapt, and implement an action-
able reasoning structure with no labels or training required. We format the structure in key-value
pairs similar to JSON due to interpretability and findings on following JSON boosts reasoning and
generation quality (Zhou et al.l 2023} OpenAll 2023a). The structure of the meta-prompts and
full prompts are shown in Figure 9] Stage 1 operates on fask-level, meaning we only need to run
SELF-DISCOVER once for each task. Then, in Stage 2, we can simply use the discovered reasoning
structure to solve every instance of the given task by instructing models to follow the provided
structure by filling each key and arrive at a final answer.

Stage 1: Discover Reasoning Structure on Task-Level Reasoning Structure

Key-Value pairs
— \

Language

TaSk: > i "Type and color of each item": ""
Model colored objects "Number of items of each color": ""
[Self—DiSCOVer "Number of items of each type": ""
. . "Number of items of each color and type":
‘ Atomic Reasoning Modules J "Final answer":

Stage 2: Solve Problems Using Discovered Structure on Instance-Level

Fill in the Values based on
Keys during decoding

Task Instance |~ ’ Reasoning Structure ‘—» Lzll\r/}gg:ige

Figure 2: Illustration of using SELF-DISCOVER for problem-solving. Given a generative LM, task, and seed
reasoning module descriptions, we guide LMs to generate a reasoning structure in key-value format to solve the
task. Finally, models can follow the self-discovered structures to solve the every instance from the task by filling
in the values in JSON step-by-step.

2.1 Stage 1: Self-Discover Task-Specific Structures

The first stage consists of three actions: 1) SELECT, where relevant reasoning modules for task-
solving are chosen from the set of reasoning module descriptions; 2) ADAPT, where descriptions of
selected reasoning modules are rephrased to be more specific to the task at hand; and 3) IMPLEMENT,
where the adapted reasoning descriptions are implemented into a structured actionable plan so that
the task can be solved by following the structure.

SELECT First, not every reasoning module is helpful for every task, so the first stage of SELF-
DISCOVER guides model to select modules that are useful based on task examples. For example,
“reflective thinking” might help search for first-principle theories on science problems, while “creative
thinking” helps on generating a novel continuation to a story. Given raw set of reasoning module
descriptions D such as “critical thinking”, and “break the problem into sub-problems” (full set in
Appendix [A), and a few task examples without labels ¢; € T', SELF-DISCOVER first selects a subset
of reasoning modules D that are useful for solving the tasks by using a model M and a meta-prompt
ps:

Dgs = M(ps || D || t:). ey

ADAPT Since each reasoning module provides a general description of how to solve problems, the
next step of SELF-DISCOVER aims at tailoring each selected module to the task at hand. For example,
from “break the problem into sub-problems” to “calculate each arithmetic operation in order” for
arithmetic problems. Given selected reasoning module subset Dg from the previous step, ADAPT

. Selected
Self-Discover All Seed Modules Modules
% Step-by-step + Step-by-step
SELECT F < Breakdown LaMnggalge Break down
- Proposefverify ode
4 Adapted Modules
ADAPT L Language | || step-by-step analyze each item
Modules Model % Break down to type and color ...
[Reasoning Structure J
Adapted Language { "Type and color of each item":
IMPLEMENT MOdlilles Mgdeig > "Number of items of each color":
- "Number of items of each type":
..}

Figure 3: Illustration of three actions of SELF-DISCOVER. We use LMs to compose a coherent reasoning
structure by selecting relevant modules, adapting to task-specific descriptions, and implement a reasoning
structure in JSON.

rephrases each of the selected module to be more specific to the task. Similarly to SELECT, this
stage uses a meta-prompt p 4 and a generative model M to generate the adapted reasoning module
descriptions D 4:

Dy = M(pa| Ds | ti)- 2

IMPLEMENT Finally, given the adapted reasoning module descriptions D 4, SELF-DISCOVER op-
erationalizes the reasoning modules into an implemented reasoning structure D with specified
instruction on what to generate for each step. In addition to a meta prompt py, IMPLEMENT also
provides a demonstration of a human-written reasoning structure Sy mqrn On another task to better
convert the natural language descriptions into a reasoning structure:

Dy = M(pr || Shuman || Da || ti)- 3)

2.2 Stage 2: Tackle Tasks Using Discovered Structures

After the three stages, we have an implemented reasoning structure Dy uniquely adapted for the task
we need to solve T'. Then we can simply append the reasoning structure to all instances of the task
and prompt models to follow the reasoning structure to generate an answer A:

A= M(Dr|t),vteT. 4)

3 Experiment Setup

3.1 Tasks

We focus on diverse reasoning benchmarks that are still challenging for LLMs: BIG-Bench Hard
(BBH) (Suzgun et al., 2022)) contains 23 carefully-selected challenging tasks from BIG-Bench (Sri+
vastava et al.| |2023)). BBH tasks cover a diverse range of reasoning problems spanning the following
4 categories according to their authors: 1) Algorithmic and Multi-Step Arithmetic Reasoning, 2)
Natural Language Understanding, 3) Use of World Knowledge, and 4) Multilingual Knowledge and
Reasoning. We also test on a grounded social agent reasoning task called Thinking for Doing (T4D)
where models must leverage mental state reasoning to determine actions to perform (Zhou et al.,
2023)), where GPT-4 with CoT only reaches around 50%. Finally, we subsample 200 examples from
the MATH (Hendrycks et al.,|2021) test set, and generate instance-level reasoning structures via a
one-shot demonstration to adapt to the complexity of MATH tasks. For evaluations, we use accuracy
to measure the model performance on BBH, T4D and MATH (details can be found in Appendix [B).

3.2 Models

We use several state-of-the-art LLMs: GPT-4 (gpt-4-turbo-preview) (OpenAl} 2023b), GPT-3.5-turbo
(ChatGPT) (OpenAl, 2022ﬂ instruction-tuned PaLLM 2-L (Anil et al.| 2023 and an open-source
LLM Llama2-70B (Touvron et al., 2023)).

3.3 Baselines
We compare SELF-DISCOVER with other zero-shot prompting methods for LLM reasoning:

* Direct Prompting, where model directly generates the answer without intermediate reason-
ing steps.

* CoT (Wei et al., 2022} Kojima et al., [2022), where models are prompted to generate a
reasoning process leading to the final answer.

* Plan-and-Solve (Wang et al., [2023)), where models are prompted to first generate a plan
and then solve the problem. SELF-DISCOVER differs by grounding the reasoning structure
in atomic reasoning modules, and prompting the decoding to follow the explicit key-value
reasoning structure.

Next, we also consider other baselines that make use of the raw seed reasoning modules (RM) we
pass to SELF-DISCOVER. We compare with the following methods’ performance and the inference
call efficiency on a subset of tasks.

* CoT-Self-Consistency [Wang et al.| (2022), we sample multiple outputs from LLM with CoT
and aggregate answers to get the final answer. We compare this method on a subset of tasks
due to the cost of repetitive queries.

* Majority voting of each RM: we prompt models to solve the tasks by appending each
RM and use majority voting of all answers to get the final answer. We examine whether
integrating multiple RMs into a coherent reasoning structure is advantageous to applying
each RM to solve the task and use majority voting to ensemble them post-hoc, which costs
much more inference computation.

* Best of each RM: this method assumes that we have access to oracle labels and uses the
highest accuracy from applying each RM. We compare with this to examine whether SELF-
DISCOVER competes with methods that depend on perfect prior knowledge of which RM to
use on a new task.

Furthermore, for analysis on universality of reasoning structures, we compare with a prompt-
optimization method that require a training set to improve prompts: LLMs as optimizers
(OPRO) (Yang et al., 2023). We aim to show that when we apply structures or prompts opti-
mized from one model, the reasoning structures can retain more performance gains than the wordings
of prompts.

4 Results

We answer the following questions through experimental results: 1) Does discovering reasoning
structures improve LLM reasoning capabilities? [@.1)) 2) Which categories of problems do SELF-
DISCOVER perform the best? and 3) Can SELF-DISCOVER boost LLM performance efficiently?
(@.3) Finally, we will show qualitative examples of self-discovered structures, LLM output following
the structures, and compare with LLM output following other prompting methods for reasoning ({.4).

4.1 Does SELF-DISCOVER Improve LLM Reasoning?

Overall, SELF-DISCOVER improves PaLM 2-L and GPT-4’s reasoning across diverse set of
reasoning tasks. Table[T|shows the overall results on complex reasoning tasks of BBH, T4D and

'accessed in October-December 2023
2For MATH, we use a PaLM 2-L model with a stronger instruction tuning to enable better instruction
following of more complex reasoning structures.

Table 1: Self-Discover significantly improves LLM reasoning across a diverse set of 25 complex tasks:
BBH, T4D and MATH. CoT: zero-shot Chain of Thought (Kojima et al., [2022)). PS: plan-and-solve
prompting (Wang et al.,2023)).

Method \ BBH \ T4D \ MATH
PalLM 2-L 56% | 30% 45%
PalLM 2-L + CoT 60% | 40% 42%
PalLM 2-L + PS 61% | 42% 49%
PalLM 2-L + Self-Discover | 67% | 69% | 50.5%
GPT-4 58% | 51% | 70.5%
GPT-4 + CoT 75% | 52% 71%
GPT-4 + PS 73% | 53% 70%
GPT-4 + Self-Discover 81% | 85% 73%

MATH using PaLM 2-L and GPT-4. We compare Self-Discover with baselines including direct
prompting, CoT, and Plan-and-Solve (PS).

On aggregated 23 tasks of BBH, SELF-DISCOVER achieves 7% and 6% absolute improvement
on PaLM 2-L over Chain-of-Thought and Plan-and-Solve, respectively. Similar gains (6% and
8%) are observed when SELF-DISCOVER is applied to GPT-4. Breakdown results of each task’s
improvement over direct answering and CoT of PaLM 2-L are shown in Figure T[] where we find
SELF-DISCOVER outperforms them on over 20/24 tasks. For a per-task performance for all 23 BBH
tasks, please refer to Appendix [C|

On the grounded social agent task T4D, SELF-DISCOVER reaches over > 27% (32%) absolute
improvement over all baselines on PaLM 2-L (GPT-4). SELF-DISCOVER achieves 69% and 85%
accuracy on PalLM 2-L and GPT-4, significantly outperforming previous SoTA prompting method
such as Foresee and Reflect (FaR) which employs an expert-designed reasoning structure. In contrast,
SELF-DISCOVER generates the reasoning structure automatically from a set of atomic reasoning
modules without human interventions.

For MATH, we observe a moderate gain of 1%-7% (2%-3%) on PaLM 2-L (GPT-4) from SELF-
DISCOVER compared to the baselines. Upon error analysis (see Appendix [E] for details), we find that
the reasoning structures generated by PaLM 2-L from SELF-DISCOVER are correct 87.5% of the
time: human experts can follow the reasoning structures to solve the tasks perfectly. The majority of
the failures (74.7%) comes from errors in executing the computations, consistent with prior findings
Zheng et al.|(2023)).

4.2 Which Types of Problems Do SELF-DISCOVER Help the Most?

SELF-DISCOVER performs best on
tasks that require diverse world
knowledge. Figure [presents the av-
erage improvement in terms of delta
in accuracy of SELF-DISCOVER over
direct answer and CoT on 4 cate-
gories of reasoning tasks we test. We
adopt the categorization from Suzgun
et al.| (2022). We find that SELE-
DISCOVER improves over these two
baselines on all categories, but es-
pecially on tasks that require world ol
knowledge such as sports understand- Multilingual Algorithmic NLU World Knowledge

. 7 . . Problem Categories

ing, movie recommendation, and ruin

names. Figure 4: Breakdown of SELF-DISCOVER performance im-
provement on 4 categories on PalLM 2-L. SELF-DISCOVER per-
forms the best on tasks requiring world knowledge.

Self-Discover Performance Improvement Across 4 Categories

B Self-Discover Over Direct
Self-Discover Over CoT

19.8 19.7

= = N
o w o
" | "

Avg. Accuracy Delta (%)

w
L

These tasks demand models to reason
using fact and general commonsense
knowledge. We interpret SELF-DISCOVER’s advantages on these tasks as strength from integrating
multiple reasoning modules from various perspectives as only applying CoT might miss key knowl-

BBH-Movie Recommendation BBH-Geometric Shapes

g5 ¥ 601 %
> 55
980 A Y Self-Discover
S 50 Direct
o A W CoT
< A CoT+Self-Consistency
g75 ‘ 4514 @ Plan-and-Solve
© N || X X Majority voting each RM
g) 70 40 Best of each RM*
<

35
65
0 10 20 30 40 0 10 20 30 40

of Inference Calls Per Instance

Figure 5: Comparison of accuracy with number of inference calls required per instance. For CoT-Self-
Consistency, we sample 10 times. Best of each RM method requires gold labels (*). SELF-DISCOVER requires
only 1 inference call per instance, same as Direct and CoT while reaching better performance compared with
40x more call required methods on GPT-4. We acknowledge that SELF-DISCOVER input and output are longer
than CoT and Direct prompting, increasing cost. However, as the number of instances increases, the efficiency
of SELF-DISCOVER in terms of inference per instance is highly desirable.

edge in the reasoning process. We observe that the gain on the Algorithmic category is moderate,
consistent with the findings from Sec.[4.1jon MATH.

4.3 How Efficient is SELF-DISCOVER?

SELF-DISCOVER achieves better performance while requiring 10-40x fewer inference computer
compared to self-consistency or majority voting. Here we examine a subset of 2 tasks from
BBH and present a more thorough comparison of methods including those requiring many inference
calls that are too costly to run on all 24 tasks. Figure [5] shows average accuracy and number of
inference calls required per instance for each method using GPT-4. Accuracy wise (y-axis), we
find that SELF-DISCOVER outperforms other baselines even those that require repeated inference
calls such as CoT-self-consistency and majority voting of applying each RM. Efficiency wise (x-
axis), SELF-DISCOVER only requires one call per instance and three more inference calls on the
task-level, CoT-self-consistency requires 10 times more since we have to sample 10 times for each
instance, and methods using each RM requires 40 times more as we use 40 RMs. In summary,
SELF-DISCOVER presents itself a strong reasoning boosting method that is efficient to deploy on
large-scale.

4.4 Qualitative Examples

We show examples of model-discovered structures for different reasoning tasks in Figure|10|from
PalLM 2-L. We observe that each structure is uniquely adapted to the task, integrates multiple
reasoning modules, and provides insights on how to solve the tasks. Furthermore, example of
comparing reasoning processes from CoT, Plan-and-Solve, and SELF-DISCOVER is shown in Figure[6]
We find that CoT and Plan-and-Solve makes incorrect assertions early and arrives at a wrong answer
while following structure from SELF-DISCOVER leads the model to generate logical conclusions
(“path is closed as the beginning and ending coordinates are the same”) and arrive at the correct
answer.

5 Deep Diving Into Self-Discovered Reasoning Structures

After experimental results showing the effectiveness and efficiency of SELF-DISCOVER on a range of
reasoning tasks, this section further analyzes are all actions of SELF-DISCOVER needed and what
other benefits can self-discovered structures bring? In Sec.[5.1] we show that it is critical to the
model’s performance to use the reasoning structures discovered through the three steps of SELECT,
ADAPT and IMPLEMENT. In Sec. we demonstrate the universality of the self-discovered
reasoning structures by (1) applying the structures discovered by PaLM 2-L to GPT-4, (2) applying
the structures discovered by GPT-4 to Llama-2-70B. We further show the commonalities between the
reasoning structures and human reasoning patterns in Appendix [F

This SVG path element <path d="M 55.57,80.69 L 57.38,65.80 M 57.38,65.80 L 48.90,57.46 M 48.90,57.46 L
45.58,47.78 M 45.58,47.78 L 53.25,36.07 L 66.29,48.90 L 78.69,61.09 L 55.57,80.69"/> draws a:
(A) circle (B) heptagon (C) hexagon (D) kite (E) line (F) octagon (G) pentagon(H) rectangle (I) sector (J) triangle

’ Let's think ‘
step-by-step (CoT)

Let’s devise a plan and solve
the problem (Plan-and-Solve)

Self-Discover Reasoning Structure (Ours)

/This SVG path consists of\

multiple lines drawn
between different points.
These points do not form
a regular geometric shape
such as a circle,
pentagon, heptagon,
hexagon, or octagon. ...
They do, however, seem
to form a shape with four
sides, which could be
considered a form of a
kite...

Thus the final answer is

/This SVG Path element \

consists of many "L"
commands which draw a
straight line from the
current point to the new
point. But it does not
close the path, meaning
the shape is not a regular
polygon like a hexagon,
heptagon, octagon or
pentagon. The
instructions make 4 lines
in total but they are not
straight and do not form a
parallelogram or a

/"Simplify SVG Path': ...
"Breakdown of Path Commands":{

~

"Move to Command (M)": "Sets the starting point for the next
command without drawing anything.",
"Line to Command (L) steps":

{"Start and end coordinates of each line segment":
"M 55.57,80.69 L 57.38,65.80: From point (55.57, 80.69) to (57.38,
65.80)"}, ... and finally closing the shape at (55.57, 80.69)"}

"Critical Thinking Analysis":{
"Logical Reasoning":{

"Analysis of path continuity": "The path includes
multiple line segments that connect distinct points. The path ends by
connecting back to the starting point, indicating a closed shape.",

"Identification of closed shapes": "The final line
segment connects the last point back to the first point, which is

rectangle. ... characteristic of a closed shape."},

Thus the final answer is "Final Reasoning and Decision":"With 7 distinct points all
(D) kite. \innected in a closed path, the shape formed is a heptagon.", /

(D) kite. X

"Final Answer": "B) heptagon"} v

Figure 6: Comparison of generated reasoning process from CoT, Plan-and-Solve, and SELF-DISCOVER on
BBH-geometric shape task. Both CoT and Plan-and-Solve incorrectly asserts that the path does not form a regular
shape as it is not a closed path (highlighted in red) and arrive at a wrong answer. The reasoning structure (in
blue Courier font)from SELF-DISCOVER first breaks down each line segment and analyze the coordinates
carefully, then leverages logical reasoning to conclude that it forms a closed shape as the path ends at the same
coordinate (highlighted in purple and orange), and selects the correct answer through final reasoning.

5.1 Importance of SELF-DISCOVER Actions

WC COl'ldllCt ablation study on the 100 Ablaton Studies on 3 Self-Discover Actions: SELECT, ADAPT, IMPLEMENT (SAI)
three actions: SELECT, ADAPT, and 90 N -
IMPLEMENT to analyze the effects 80 = Ours-SA

80

B Ours-SAl

of SELF-DISCOVER actions. Figure 7]
show results using GPT-4 on 4 rea-
soning tasks when we apply SELECT 60
(-S) or apply SELECT and ADAPT 50
(-SA) or apply all three actions. We
find that with each stage, model’s zero-
shot reasoning capability improve con-
sistently across tasks, indicating that
all three actions are beneficial.

70

Accuracy

40

30

Snarks Movie T4D Geometry

Tasks

Figure 7: Ablation study on three SELF-DISCOVER actions on
4 reasoning tasks: all three actions are beneficial for task-solving.

5.2 Towards Universality of Discovered Reasoning Structures

Transferrability of PaLM 2-L Optimized Prompts/Structures on GPT-4
94 94

Applying PalLM 2-L Discovered
Structures to GPT-4 We first use
a PaLM 2-L model to discover the
reasoning structures of 4 reasoning
tasks. Then, we apply the resulting
reasoning structures to the decoding
of GPT-4 as grounding. We compare
our approach to OPRO
which discovered zero-shot-
prompts through optimizations. We
apply OPRO prompts optimized using
PalLM 2-L on each task to GPT-4 on 20~
the same reasoning tasks. Figure [§]
shows that SELF-DISCOVER outper-
forms OPRO on 3 out of 4 tasks de-
spite that OPRO used 20% data to op-

100
s OPRO*

90 1 Self-Discover

80

70

60 1

Accuracy

50
404

301

Movie T4D

Snarks

Geometry
Tasks

Figure 8: Transferrability tests of optimized prompts (OPRO)
and composed structures (SELF-DISCOVER).

timize the prompt. In contrast, SELF-DISCOVER is done in a zero-shot manner, demonstrating the
efficiency of our method and universality of the discovered reasoning structures.

Applying GPT-4 Discovered Structures to Llama2 and ChatGPT Motivated by transferrability
performance across LLLMs, we further investigate can self-discovered reasoning structures from
LLMs boost reasoning for smaller LMs that are challenging to come up with structures themselve
We use GPT-4 to discover the task-intrinsic reasoning structures, and then apply those structures to
the decoding of open-sourced Llama2-70B as well as GPT-3.5-turbo (ChatGPT) on two subsets of
tasks from BBH. We find that using self-discovered structures on Llama?2 (52%) outperforms CoT
(42%) on disambiguation QA zero-shot and on GPT-3.5-turbo (56%) outperforms CoT (51%) on
geometry with 3-shot demonstration from structured reasoning process.

6 Related Work

6.1 Prompting Methods

Recent advancements in the area of LLMs have given rise to a plethora of few-shot (Brown et al.,[2020)
and instruction (Mishra et al.| 2022c};|Wei et al.| [2021} |Ouyang et al.| 2022) prompting techniques,
including Chain-of-Thought prompting (CoT) (Nye et al., [2021; [Wei et al.|, 2022}, Least-to-most
prompting (Zhou et al, |2022a; Drozdov et al., [2022)), Decomposed prompting (Khot et al.| [2022),
Reframing (Mishra et al., [2022b), Help Me Think Prompting (Mishra & Nouri, [2023)), Stepback
Prompting (Zheng et al.,[2023)) and search-based approaches like Tree-of-Thought (ToT) (Yao et al.|
2023al), Graph-of-Thought (Besta et al., [2023}; |Yao et al., [2023b)), Branch-solve-merge (Saha et al.,
2023)) and RAP (Hao et al.,|2023)). Each of the prompting methods has some strengths and weaknesses
in terms of their successful application domain. Our work SELF-DISCOVER presents the missing
piece in the prompting literature, as SELF-DISCOVER provides a way to self-compose over various
prompting methods via the proposed self-discovery mechanism. Composing over prompting methods
in SELF-DISCOVER is analogous to the programming literature where a program is written using
various basic building blocks such as for loop, if/else condition etc.

6.2 Reasoning and Planning

With the development of various reasoning and planning benchmarks such as GSM8K [Cobbe et al.
(2021)), Math [Hendrycks et al., BigBench |Srivastava et al.| (2023)) etc., various methods have been
proposed to improve model performance. Often these methods induce specific reasoning structures
mimicking the reasoning structure of the underlying task associated with the dataset. For example,
chain of thought|Wei et al.| (2022) and scratchpad |[Nye et al.[(2021) induce generation of explanations
associated with a reasoning question. Similarly other methods induces specific reasoning structures
such as question summarization |[Kuznia et al.| (2022), question decomposition [Patel et al.| (2022),
program generation Mishra et al.|(2022a)); Chen et al.|(2022)); |Gao et al.|(2023b)), etc. However, in
a real world user traffic, queries can be diverse covering various reasoning structures. Our work
SELF-DISCOVER allows models to combine multiple reasoning approaches by self-composing into a
structure without the need to access task labels. There have been some related work that explores LLM
combining skills in-context such as SkiC (Chen et al.,[2023), devising a strategy (Gao et al., 2023a),
and planning with iterative quering (Liu et al., 2023). However, they require human annotating skills
and reasoning plans while SELF-DISCOVER leverages a scalable solution with the help of LLM’s
meta-task reasoning capabilities.

7 Conclusion

We introduce SELF-DISCOVER, an efficient and performant framework for models to self-discover a
reasoning structure for any task from a seed set of general problem-solving skills. We observe drastic
improvements on challenging reasoning benchmarks from multiple LLMs up to 30%. Ablations study
of SELF-DISCOVER demonstrates that the composed reasoning structures are universally transferable
between LLMs. Forward looking, we are excited to explore more on LLM structured reasoning to
push the boundary of problem-solving and discover potentials for Human-AlI collaboration.

3We tried zero-shot meta prompting Llama2 but observed low-quality structure outputs.

Acknowledgement

We thank anonymous reviewers for their constructive feedback during the discussion period. We thank
team members from Google DeepMind, INK Lab, and JAUNTS Lab for their insightful feedback on
this paper. This work was funded in part by the Defense Advanced Research Projects Agency with
awards HR00112220046, HR00112390061, and N660011924033.

References

Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin, D., Passos, A., Shakeri, S., Taropa, E., Bailey,
P, Chen, Z., et al. Palm 2 technical report. arXiv preprint arXiv:2305.10403,2023.

Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Gianinazzi, L., Gajda, J., Lehmann, T.,
Podstawski, M., Niewiadomski, H., Nyczyk, P, et al. Graph of thoughts: Solving elaborate
problems with large language models. arXiv preprint arXiv:2308.09687, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877-1901, 2020.

Chen, J., Pan, X., Yu, D., Song, K., Wang, X., Yu, D., and Chen, J. Skills-in-context prompting:
Unlocking compositionality in large language models. arXiv preprint arXiv:2308.00304, 2023.

Chen, W., Ma, X., Wang, X., and Cohen, W. W. Program of thoughts prompting: Disentangling
computation from reasoning for numerical reasoning tasks. arXiv preprint arXiv:2211.12588,
2022.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung,
H. W, Sutton, C., Gehrmann, S., et al. Palm: Scaling language modeling with pathways. arXiv
preprint arXiv:2204.02311, 2022.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, Y., Wang, X., Dehghani, M.,
Brahma, S., et al. Scaling instruction-finetuned language models. arXiv preprint arXiv:2210.11416,
2022.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J.,
Hilton, J., Nakano, R., et al. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Drozdov, A., Schirli, N., Akyiirek, E., Scales, N., Song, X., Chen, X., Bousquet, O., and Zhou, D.
Compositional semantic parsing with large language models. arXiv preprint arXiv:2209.15003,
2022.

Fernando, C., Banarse, D., Michalewski, H., Osindero, S., and Rocktischel, T. Promptbreeder:
Self-referential self-improvement via prompt evolution. arXiv preprint arXiv:2309.16797, 2023.

Gao, C., Jiang, H., Cai, D., Shi, S., and Lam, W. Strategyllm: Large language models as strategy gener-
ators, executors, optimizers, and evaluators for problem solving. arXiv preprint arXiv:2311.08803,
2023a.

Gao, L., Madaan, A., Zhou, S., Alon, U., Liu, P, Yang, Y., Callan, J., and Neubig, G. Pal: Program-
aided language models. In International Conference on Machine Learning, pp. 10764-10799.
PMLR, 2023b.

Hao, S., Gu, Y., Ma, H., Hong, J. J., Wang, Z., Wang, D. Z., and Hu, Z. Reasoning with language
model is planning with world model. arXiv preprint arXiv:2305.14992, 2023.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., and Steinhardt, J.
Measuring mathematical problem solving with the math dataset. Sort, 2(4):0-6.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart, S., Tang, E., Song, D., and Steinhardt, J.
Measuring mathematical problem solving with the math dataset, 2021.

10

Khot, T., Trivedi, H., Finlayson, M., Fu, Y., Richardson, K., Clark, P., and Sabharwal, A. Decomposed
prompting: A modular approach for solving complex tasks. In The Eleventh International
Conference on Learning Representations, 2022.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y. Large language models are zero-shot
reasoners. Advances in neural information processing systems, 35:22199-22213, 2022.

Kuznia, K., Mishra, S., Parmar, M., and Baral, C. Less is more: Summary of long instructions is
better for program synthesis. In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pp. 4532-4552, 2022.

Liu, T., Guo, Q., Yang, Y., Hu, X., Zhang, Y., Qiu, X., and Zhang, Z. Plan, verify and switch:
Integrated reasoning with diverse x-of-thoughts. arXiv preprint arXiv:2310.14628, 2023.

Mishra, S. and Nouri, E. HELP ME THINK: A simple prompting strategy for non-experts to create
customized content with models. In Rogers, A., Boyd-Graber, J., and Okazaki, N. (eds.), Findings
of the Association for Computational Linguistics: ACL 2023, pp. 11834-11890, Toronto, Canada,
July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.751.
URLhttps://aclanthology.org/2023.findings—acl.751.

Mishra, S., Finlayson, M., Lu, P., Tang, L., Welleck, S., Baral, C., Rajpurohit, T., Tafjord, O.,
Sabharwal, A., Clark, P, et al. Lila: A unified benchmark for mathematical reasoning. In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
5807-5832, 2022a.

Mishra, S., Khashabi, D., Baral, C., Choi, Y., and Hajishirzi, H. Reframing instructional prompts
to gptk’s language. In Findings of the Association for Computational Linguistics: ACL 2022, pp.
589-612, 2022b.

Mishra, S., Khashabi, D., Baral, C., and Hajishirzi, H. Cross-task generalization via natural language
crowdsourcing instructions. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 3470-3487, 2022c.

Newell, A., Shaw, J. C., and Simon, H. A. Elements of a theory of human problem solving.
Psychological review, 65(3):151, 1958.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H., Austin, J., Bieber, D., Dohan, D.,
Lewkowycz, A., Bosma, M., Luan, D., et al. Show your work: Scratchpads for intermediate
computation with language models. arXiv preprint arXiv:2112.00114, 2021.

OpenAl. Chatgpt: Optimizing language models for dialogue, 2022. URL https://openail
com/blog/chatgpt/.

OpenAl. Json generation mode, 2023a. URL https://platform.openai.com/docs/
guides/text—generation/json—mode.

OpenAl, R. Gpt-4 technical report. arXiv, pp. 2303-08774, 2023b.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S.,
Slama, K., Ray, A., et al. Training language models to follow instructions with human feedback.
Advances in Neural Information Processing Systems, 35:27730-27744, 2022.

Patel, P., Mishra, S., Parmar, M., and Baral, C. Is a question decomposition unit all we need? In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
45534569, 2022.

Polya, G. How to solve it: A new aspect of mathematical method, volume 85. Princeton university
press, 2004.

Rasmussen, J. Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in
human performance models. IEEE transactions on systems, man, and cybernetics, (3):257-266,
1983.

Saha, S., Levy, O., Celikyilmaz, A., Bansal, M., Weston, J., and Li, X. Branch-solve-merge improves
large language model evaluation and generation. arXiv preprint arXiv:2310.15123, 2023.

11

https://aclanthology.org/2023.findings-acl.751
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://platform.openai.com/docs/guides/text-generation/json-mode
https://platform.openai.com/docs/guides/text-generation/json-mode

Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid, A., Fisch, A., Brown, A. R., Santoro, A.,
Gupta, A., Garriga-Alonso, A., et al. Beyond the imitation game: Quantifying and extrapolating
the capabilities of language models. Transactions on Machine Learning Research, 2023.

Suzgun, M., Scales, N., Schirli, N., Gehrmann, S., Tay, Y., Chung, H. W., Chowdhery, A., Le, Q. V.,
Chi, E. H.,, Zhou, D., et al. Challenging big-bench tasks and whether chain-of-thought can solve
them. arXiv preprint arXiv:2210.09261, 2022.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S.,
Bhargava, P., Bhosale, S., et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L. u., and Polosukhin, I. Attention is all you need. In Advances in Neural In-
formation Processing Systems, volume 30. Curran Associates, Inc., 2017. URL
https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053clcd4a845aa—-Paper.pdf.

Wang, L., Xu, W., Lan, Y., Hu, Z., Lan, Y., Lee, R. K.-W., and Lim, E.-P. Plan-and-solve prompt-
ing: Improving zero-shot chain-of-thought reasoning by large language models. arXiv preprint
arXiv:2305.04091, 2023.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi, E. H., Narang, S., Chowdhery, A., and Zhou,
D. Self-consistency improves chain of thought reasoning in language models. In The Eleventh
International Conference on Learning Representations, 2022.

Wei, J., Bosma, M., Zhao, V., Guu, K., Yu, A. W, Lester, B., Du, N., Dai, A. M., and Le, Q. V.
Finetuned language models are zero-shot learners. In International Conference on Learning
Representations, 2021.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, E,, Chi, E., Le, Q. V., Zhou, D., et al. Chain-of-
thought prompting elicits reasoning in large language models. Advances in Neural Information
Processing Systems, 35:24824-24837, 2022.

Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., and Chen, X. Large language models as
optimizers. arXiv preprint arXiv:2309.03409, 2023.

Yao, S., Yu, D., Zhao, J., Shafran, 1., Griffiths, T. L., Cao, Y., and Narasimhan, K. Tree of thoughts:
Deliberate problem solving with large language models. arXiv preprint arXiv:2305.10601, 2023a.

Yao, Y., Li, Z., and Zhao, H. Beyond chain-of-thought, effective graph-of-thought reasoning in large
language models. arXiv preprint arXiv:2305.16582, 2023b.

Yasunaga, M., Chen, X., Li, Y., Pasupat, P., Leskovec, J., Liang, P., Chi, E. H., and Zhou, D. Large
language models as analogical reasoners. arXiv preprint arXiv:2310.01714, 2023.

Zheng, H. S., Mishra, S., Chen, X., Cheng, H.-T., Chi, E. H,, Le, Q. V., and Zhou, D. Take a step back:
Evoking reasoning via abstraction in large language models. arXiv preprint arXiv:2310.06117,
2023.

Zhong, R., Lee, K., Zhang, Z., and Klein, D. Adapting language models for zero-shot learning by
meta-tuning on dataset and prompt collections. arXiv preprint arXiv:2104.04670, 2021.

Zhou, D., Schirli, N., Hou, L., Wei, J., Scales, N., Wang, X., Schuurmans, D., Cui, C., Bousquet, O.,
Le, Q. V., et al. Least-to-most prompting enables complex reasoning in large language models. In
The Eleventh International Conference on Learning Representations, 2022a.

Zhou, P., Madaan, A., Potharaju, S. P., Gupta, A., McKee, K. R., Holtzman, A., Pujara, J., Ren,
X., Mishra, S., Nematzadeh, A., et al. How far are large language models from agents with
theory-of-mind? arXiv preprint arXiv:2310.03051, 2023.

Zhou, Y., Muresanu, A. L., Han, Z., Paster, K., Pitis, S., Chan, H., and Ba, J. Large language
models are human-level prompt engineers. In The Eleventh International Conference on Learning
Representations, 2022b.

12

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

A Self-Discover Prompt Details

Table 2] shows all 39 reasoning modules we use for SELF-DISCOVER, adopted from [Fernando et al.
(2023), that contain cognitive heuristics of problem-solving.

Figure [9] contains the structure of the three actions of SELF-DISCOVER during Stage 1, where it
discovers an intrinsic reasoning structure on the task-level.

For Stage 2, where we use the self-discovered structure to solve the task instances, we start with
the prompt: “Follow the step-by-step reasoning plan in JSON to correctly solve the task. Fill in the
values following the keys by reasoning specifically about the task given. Do not simply rephrase the
keys.”, followed by the reasoning structure, and finally the task instance.

Select several reasoning modules Rephrase and specify each reasoning Opet'atiOﬁalize the reasoning
that are crucial to utilize in order module so that it better helps solving mOd“l?S Intoa ?tev’b [-step
solve the siven task: the task: reasoning plan in JSON format:

Paired IMPLEMENT Step

All reasoning module descriptions SELECTED module descriptions: DO Ao
e Critical thinking: ... e Critical thinking: ...

e Step-by-Step: ... e Step-by-Step: ... Reasoning description Example

P d verify:
* ropose and verify Reasoning Plan Example

Task examples w/o answer:

Task examples w/o answer: Example 1: ... ’ ADAPTED module description: ‘
Example 1: .. Example 2: ...
Example 2: ... Task examples w/o answer: ...

Adapt each reasoning module Implement a reasoning structure for

Select several modules that are

solvers to follow step-by-step and
crucial for solving the tasks above:

description to better solve the tasks: X
arrive at correct answers:

Figure 9: Meta-Prompts for the three actions of SELF-DISCOVER. Each meta-prompt consists of an
instruction in the beginning and the end, reasoning module descriptions, and task examples without labels. For
IMPLEMENT, to show model an example of a reasoning structure (plan), we present a human-written structure
in JSON for another task.

B Evaluation Details

We use accuracy and exact matching as with other methods tested on BBH, T4D and MATH. To
properly evaluate the generated answers from LLLMs, we prompt the models to end the answer with
“Thus, the final answer is [X]”, where X is either one answer option such as “A” or a string such
as “valid”’. During evaluation, we manually examine each task’s outputs from LLMs and design
heuristics to extract the final answers. For MATH dataset, we find that it is challenging to extract the
answers accurately. As a result, we subsample 200 test examples from MATH, and manually sanity
check and annotate the extracted answers for all methods tested in our paper.

Here we also provide more details on token counts for Self-Discover and other baselines. Since
Self-Discover only added 3 calls per task, on per instance level it only needs to run once. The average
length of self-discovered structures is 224 tokens for BBH, 183 tokens for T4D, and 152 for MATH,
which is similar to ToT/GoT prompts with around 234 tokens. We run the stage 2 (generating solution
based on the structure) only in 1 inference pass where the model fills the values in the self-discovered
structures. Thus, Self-Discover still reduces much inference cost compared to CoT-Self-Consistency,
majority voting, etc. which requires 20s-40s fold of each CoT reasoning path token counts.

C BBH Per Task Performance

Per-task performance on BBH (23 tasks in total) are shown in Table @

13

Table 2: All 39 reasoning modules consisting of high-level cognitive heuristics for problem-solving.
We adopt them from [Fernando et al.|(2023)).

Reasoning Modules

1 How could I devise an experiment to help solve that problem?

2 Make a list of ideas for solving this problem, and apply them one by one to the problem to see if any progress can be made.

3 How could I measure progress on this problem?

4 How can I simplify the problem so that it is easier to solve?

5 What are the key assumptions underlying this problem?

6 What are the potential risks and drawbacks of each solution?

7 What are the alternative perspectives or viewpoints on this problem?

8 What are the long-term implications of this problem and its solutions?

9 How can I break down this problem into smaller, more manageable parts?

10 Critical Thinking: This style involves analyzing the problem from different perspectives, questioning assumptions, and evaluating
the evidence or information available. It focuses on logical reasoning, evidence-based decision-making, and identifying

potential biases or flaws in thinking.

11 Try creative thinking, generate innovative and out-of-the-box ideas to solve the problem. Explore unconventional solutions,
thinking beyond traditional boundaries, and encouraging imagination and originality.

12 Seek input and collaboration from others to solve the problem. Emphasize teamwork, open communication, and leveraging the
diverse perspectives and expertise of a group to come up with effective solutions.

13 Use systems thinking: Consider the problem as part of a larger system and understanding the interconnectedness of various elements.
Focuses on identifying the underlying causes, feedback loops, and interdependencies that influence the problem, and developing holistic
solutions that address the system as a whole.

14 Use Risk Analysis: Evaluate potential risks, uncertainties, and tradeoffs associated with different solutions or approaches to a
problem. Emphasize assessing the potential consequences and likelihood of success or failure, and making informed decisions based
on a balanced analysis of risks and benefits.

15 Use Reflective Thinking: Step back from the problem, take the time for introspection and self-reflection. Examine personal biases,
assumptions, and mental models that may influence problem-solving, and being open to learning from past experiences to improve
future approaches.

16 What is the core issue or problem that needs to be addressed?

17 What are the underlying causes or factors contributing to the problem?

18 Are there any potential solutions or strategies that have been tried before? If yes, what were the outcomes and lessons learned?
19 What are the potential obstacles or challenges that might arise in solving this problem?

20 Are there any relevant data or information that can provide insights into the problem? If yes, what data sources are available,
and how can they be analyzed?

21 Are there any stakeholders or individuals who are directly affected by the problem? What are their perspectives and needs?

22 What resources (financial, human, technological, etc.) are needed to tackle the problem effectively?

23 How can progress or success in solving the problem be measured or evaluated?

24 What indicators or metrics can be used?

25 Is the problem a technical or practical one that requires a specific expertise or skill set? Or is it more of a conceptual or
theoretical problem?

26 Does the problem involve a physical constraint, such as limited resources, infrastructure, or space?

27 Is the problem related to human behavior, such as a social, cultural, or psychological issue?

28 Does the problem involve decision-making or planning, where choices need to be made under uncertainty or with competing
objectives?

29 Is the problem an analytical one that requires data analysis, modeling, or optimization techniques?

30 Is the problem a design challenge that requires creative solutions and innovation?

31 Does the problem require addressing systemic or structural issues rather than just individual instances?

32 Is the problem time-sensitive or urgent, requiring immediate attention and action?

33 What kinds of solution typically are produced for this kind of problem specification?

34 Given the problem specification and the current best solution, have a guess about other possible solutions.

35 Let’s imagine the current best solution is totally wrong, what other ways are there to think about the problem specification?

36 What is the best way to modify this current best solution, given what you know about these kinds of problem specification?

37 Ignoring the current best solution, create an entirely new solution to the problem.

38 Let’s think step by step.

39 Let’s make a step by step plan and implement it with good notion and explanation.

Table 3: Big Bench-Hard (Suzgun et al., |2022) per-task performance of GPT-4 and PaLM 2-L
with SELF-DISCOVER.

. GPT-4 GPT4 GPT-4 PaLM 2-L PaLM 2-L PaLM 2-L
Big Bench-Hard Task Human (Avg,) Human (Max) Direct + CoT + Self-Discover Direct + CoT + Self-Discover
boolean_expressions 79 100 73 83 85 71 84 84
causal_judgement 70 100 67 75 80 46 59 61
date_understanding 77 100 74 80 81 73 78 78
disambiguation_qa 67 93 60 70 80 54 50 57
dyck_languages 48 100 69 73 77 94 95 98
formal_fallacies 91 100 60 60 80 60 63 69
geometric_shapes 54 100 30 56 60 33 34 39
hyperbaton 75 100 68 69 76 80 75 82
logical_deduction_seven_objects 40 89 60 70 70 45 39 50
movie_recommendation 61 90 70 70 86 83 54 66
multistep_arithmetic_two 10 25 10 92 70 4 50 47
navigate 82 100 70 90 90 38 63 67
object_counting 86 100 90 100 100 27 44 70
penguins_in_a_table 78 100 80 100 90 70 67 75
reasoning_about_colored_objects 75 100 77 80 79 36 79 75
ruin_names 78 100 90 80 97 79 58 90
salient_translation_error_detection 37 80 40 50 70 56 48 60
snarks 77 100 73 89 97 58 62 86
sports_understanding 71 100 54 61 90 44 47 89
temporal_sequences 91 100 96 99 100 99 97 99
tracking_shuffled_objects_seven_objects 65 100 24 80 68 22 58 36
web_of_lies 81 100 15 80 71 54 42 67
word_sorting 63 100 65 90 85 12 4 15

reasoning about colored objects causal judgement
{ {

"Type and color of each item": "Identify the chain of events in
"Number of items of each color": the story":
"Number of items of each type": "Identify the consequences of
"Number of items of each color each event":

and type": "Identify the cause-and-effect
"Final answer": | Break down relationships between events":

} to sub-tasks "Choose a final answer based

on the reasoning":

}

Devise an algorithm

Reflect on
task nature

dyck languages
{

"Parentheses that are not closed properly":

" Stack to store the closing parentheses":

"If the next symbol is a closing parenthesis, pop the stack and
check if the popped symbol matches the next symbol":

"If the stack is empty, add the next symbol to the stack":

}

Figure 10: Examples of self-discovered structures on BBH tasks using PaLLM 2-L. We observe traits of
atomic reasoning modules such as “step-by-step thinking”, “reflect on task nature”, and an interesting creative
thinking case where models devise an algorithm using stack to solve parenthesis parsing task.

Table 4: Additional baselines including Tree-of-Thought (ToT) and Graph-of-Thought (GoT) [Added
rows].

Method \ BBH \ T4D \ MATH
PalLM 2-L 56% | 30% 45%
PalLM 2-L + CoT 60% | 40% 42%
PalLM 2-L + ToT 58% | 41% | 44.5%
PalM 2-L + GoT 60% | 40% 40%
PalLM 2-L + PS 61% | 42% 49%
PalLM 2-L + Self-Discover | 67% | 69% | 50.5%
GPT-4 58% | 51% | 70.5%
GPT-4 + CoT 75% | 52% 71%
GPT-4 + ToT 76% | 50% 69%
GPT-4 + GoT 75% | 52% 70%
GPT-4 + PS 73% | 53% 70%
GPT-4 + Self-Discover 81% | 85% 73%

D Additional Experiments

We further include Tree-of-Thought (Yao et al.,[2023a)) and Graph-of-Thought (Besta et al., |2023))
(zero-shot versions) as baselines for comparison shown in Table E}

To show the effectiveness of Self-Discover on more general tasks, we tested on a subset of MMLU
(10 subtasks, with 50 diverse questions each, all randomly sampled) and results are shown in Table [5]
We find that GPT-4+Self-Discover wins GPT-4+CoT in zero-shot on 7 out of 10, ties on 2 out of
10, and loses on 1 out of 10 tasks. In addition, we tried Self-Discover on the instance-level, where
for each question, we run stage 1 to output the reasoning structure, then solve the task. We find that
the instance-level Self-Discover performs even better on MMLU, outperforming CoT by 7.2% on
average for all tasks. This result, combined with those in main content, shows that the strength of
Self-Discover spans across two types of tasks: for well-defined hard reasoning tasks such as BBH,
task-level Self-Discover works well while being very efficient; for very open-domain tasks such as
MMLU, we can do instance-level Self-Discover, which significantly outperforms CoT while still
fewer inference required than self-consistency.

We show additional examples of self-discovered structures in Figure[I0] We observe traits of atomic
reasoning modules such as “step-by-step thinking”, “reflect on task nature”, and an interesting creative
thinking case where models devise an algorithm using stack to solve parenthesis parsing task.

15

Table 5: MMLU (Suzgun et al., [2022) per-task performance of GPT-4 and PaLM 2-L with SELF-
DiscoVvER. We sampled 10 tasks with 50 examples each. SD (instance) refers to that we run stage
one on each question and use the generated structure during solving, to acount for the diversity of
questions. [New Table]

MMLU Tasks

GPT-4 GPT-4 GPT-4 GPT-4+SD PaLM2-L PaLM2-L PaLM2-L PaLM 2-L+SD

Direct + CoT +SD (instance) Direct + CoT +SD (instance)
business_ethics 78 83 85 91 72 77 80 83
high_school_world_history 64 69 74 83 54 59 61 66
machine_learning 72 80 81 88 70 75 75 78
college_medicine 45 52 50 54 44 45 45 49
high_school_statistics 68 75 75 84 60 66 68 73
international_law 70 77 77 82 60 69 63 71
conceptual_physics 62 66 70 74 59 64 65 69
marketing 71 75 76 82 67 69 71 74
jurisprudence 60 70 74 76 55 60 64 69
moral_disputes 62 68 69 73 60 65 66 68

Task-Navigation: If you follow these instructions, do you return to the starting point? Always
face forward. Take 1 step backward. Take 9 steps left. Take 2 steps backward. Take 6 steps forward.
Take 4 steps forward. Take 4 steps backward. Take 3 steps right.

Human-Written Structure: Model-Discovered Structure:
{ Positi fter i ion 1 ki "Break down instructions into individual movements":
“Position after instruction 1": Structure: :
“Position after instruction 2": : -
SR Gl T RE Step-wise "Instruction 1": "",

" . . - mental notes "Effect on position after Instruction 1": "",

Position after instruction n": "Instruction 2": "",
“Is final position the same as starting "Effect on position after Instruction 2": "",
position?":
} "Additional instructions if present": ""

2

Simplify the sequence of movements": {

"Simplified representation of series":
o
}

Figure 11: Case study of human-written structure shares commonalities with LLM-discovered reasoning
structure. We observe similar reasoning patterns—both structures contain step-wise analysis of each instruction.

E Error Analysis

We perform an error analysis of SELF-DISCOVER on the MATH dataset of 200 samples to understand
the failure modes. We manually annotate whether the generated reasoning structure is correct or
not together with whether the correctness of model prediction using SELF-DISCOVER. A reasoning
structure is defined as correct if a human expert can solve the task by simply following the reasoning
structure.

Out of 200 examples, we find that 87.5% (175) examples have correct reasoning structures. 12.5%
(25) examples have incorrect reasoning structures leading to prediction errors. Table [6]shows 4 such
examples where the LLM misunderstands the task, or makes an error in one of the steps or adds
unnecessary steps in the reasoning structure.

Next, we analyze the errors made by the model in SELF-DISCOVER: out of 99 examples where the
model prediction is wrong, wrong reasoning structures account for only 25.3% of the errors. The
remaining 74.7% errors are due to errors in the intermediate calculations such as math computations.
Table [7|shows 3 examples of such errors. This insight indicates that future improvements should aim
at improving the step-wise calculation accuracy of LLMs, such as using tools or code generation.

F Further Anaysis

Model-Discovered Reasoning Structures vs. Human Reasoning Patterns We investigate whether
LLM-discovered reasoning structures share some commonalities with human reasoning patterns.
We give humans 3 task instances without labels and an example reasoning structure (same as SELF-

16

Table 6: Examples of wrong reasoning structures for MATH. The first error in the reasoning structure

is highlighted in red.
Prompt Reasoning Structure Error
How many numbers between 1. Find the number of multiples of 3 between 1 and Need to sub-

1 and 2005 are integer multi-
ples of 3 or 4 but not 12?7

2005.

2. Find the number of multiples of 4 between 1
and 2005.

3. Find the number of multiples of 12 between 1
and 2005.

4. Add the number of multiples of 3 and 4.

5. Subtract the number of multiples of 12 (to avoid
double counting).

6. The result is the number of integers between 1
and 2005 that are multiples of 3 or 4 but not 12.

tract the num-
ber of mul-
tiples of 12
twice instead
of once.

How many numbers are in
the list 6,7,10,11,14,15,...,
94,95,98?

1. Find the number of pairs in the list.

2. Find the number of numbers in each pair.

3. Multiply the number of pairs by the number of
numbers in each pair to find the total number of
numbers in the list.

LLM misun-
derstands the
task: the rea-
soning struc-
ture is irrele-
vant.

A restaurant offers three
desserts, and exactly twice
as many appetizers as main
courses. A dinner consists of
an appetizer, a main course,
and a dessert. What is the
least number of main courses
that the restaurant should of-
fer so that a customer could
have a different dinner each
night in the year 2003?

1. Define the variables:

- M: number of main courses

- A: number of appetizers (twice the number of
main courses)

- D: number of desserts (fixed at 3)

- T: total number of possible dinner combinations
2. Calculate the total number of possible dinner
combinations:

-T=M*A*D

3. Set the total number of possible dinner combi-
nations equal to the number of nights in the year
2003:

-T=2003

4. Substitute the expression for A in terms of M:
-T=M*Q2*M)*3

5. Solve the equation for M:

-6M? = 2003

6. Find the smallest integer value of M that satis-
fies the equation.

There are 365
nights in the
year 2003.

Determine the number of
ways to arrange the letters of
the word NINE.

1. Count the total number of letters in the word
NINE.

2. Identify the number of times each letter appears
in the word.

3. Calculate the factorial of the total number of
letters.

4. Divide the factorial by the factorial of the num-
ber of times each letter appears.

5. Multiply the results from step 4 for each unique
letter. }

Step 5 is un-
necessary and
leads to error
in the final re-
sult.

17

Table 7: Examples of wrong calculations for MATH. The first error in the intermediate computations

is highlighted in red.

Prompt

Self-Discover Prediction

Error

How many ways are there
to arrange 6 people around
a circular table with 7 seats?
(Two seatings are considered
the same if one is a rotation
of the other.)

"1. Calculate the total number of ways to arrange
6 people in 7 seats without considering rotations
as the same.": 7% 6 * 5 * 4 *3 *2 =5040

- There are 7 choices for the first person.

- There are 6 choices for the second person.

- There are 5 choices for the third person.

- There are 4 choices for the fourth person.

- There are 3 choices for the fifth person.

- There are 2 choices for the sixth person.

"2. Divide the result from step 1 by the number of
rotations that are considered the same.": 5040/ 6
=840

- There are 6 rotations that are considered the same.

There are 7 ro-
tations instead
of 6 that are
considered the
same.

A customer ordered 15

pieces of gourmet chocolate.

The order can be packaged
in small boxes that contain

1, 2 or 4 pieces of chocolate.

Any box that is used must
be full. How many different
combinations of boxes can
be used for the customer’s 15
chocolate pieces? One such
combination to be included
is to use seven 2-piece boxes
and one 1-piece box.

"1. Find the number of ways to package the choco-
lates using only boxes of 1 piece.": 1,

"2. Find the number of ways to package the choco-
lates using only boxes of 2 pieces.": 1,

"3. Find the number of ways to package the choco-
lates using only boxes of 4 pieces.": 0,

"4. Find the number of ways to package the choco-
lates using a combination of boxes of 1 and 2
pieces.": 7,

"5. Find the number of ways to package the choco-
lates using a combination of boxes of 1 and 4
pieces.": 3,

"6. Find the number of ways to package the choco-
lates using a combination of boxes of 2 and 4
pieces.": 2,

"7. Find the number of ways to package the choco-
lates using a combination of boxes of 1, 2, and 4
pieces.": 4,

"8. Sum up the total number of ways from the
seven cases above.": 1 +1+0+7+3+2+4=18

There is 0 way
to package 15
chocolates us-
ing only boxes
of 2 pieces.

How many primes are in the
row of Pascal’s Triangle that
starts with a 1 followed by a
6?

"1. Identify the row of Pascal’s Triangle that starts
with a 1 followed by a 6.": "1, 6, 15, 20, 15,6, 1",
"2. List all the numbers in that row.": [1, 6, 15, 20,
15,6, 1],

"3. Check each number in the list for primality.":
[False, True, False, False, False, True, False],

"4. Count the number of primes found in the list.":
2

6 is
prime.

not a

18

DISCOVER meta-reasoning stage) and ask them to write a reasoning structure for a task before
solving it. Figure[TT|shows comparison of human and LLM-composed reasoning structures on the
BBH-navigation task. We observe similar structures such as mental-noting after each movement.
From promising findings of LLM self-discovered structures boost and share traits of human meta-
reasoning, we hope to encourage more future work to study humna-AlI collaboration for complex
problem-solving.

To show whether the chosen reasoning modules and discovered structures provide a diverse coverage,
we have included more details on frequency of selected reasoning modules in Table[8] Furthermore,
we observe a very diverse set of self-discovered structures as the 12 examples shown in Figure 6,
10, 11, and Table 6 and 7. Math problem structures (Table 6) tend to be very different from BBH
ones (Figure 10). Due to the non-deterministic nature of LLMs, the number of reasoning structures
that can be discovered by Self-Discover is infinite, because it can use multiple reasoning modules
in many different orders. In our prompts, we specifically do not restrict how the structures should
use the modules and find examples where models use new modules not in the seed list (Figure 10
Dyck-Language example where model devises a stack algorithm, which is not in the seed list).

19

Table 8: Selected reasoning module frequency on 25 sub tasks (BBH, T4D and MATH), for full
reasoning module descriptions, please refer to Table 2 in Appendix. Top 5 selected modules are in
bold.

. Short Module
Reasoning Description Frequency
Module Index (For Full set see Table 2) Over 25 Tasks

1 Devise an experiment 9/25
2 Make a list of ideas 4/25
3 Measure Progress 6/25
4 Simplify the problem 17/25
5 Key assumptions 10/25
6 Risks of solution 3/25
7 Alternative perspectives 12/25
8 Long-term implications 2/25
9 Break down to smaller problems 14/25
10 Critical thinking 18/25
11 Creative thinking 12/25
12 Seek input from others 5/25
13 Systems thinking 11/25
14 Risk analysis 3/25
15 Reflective thinking 13/25
16 Core issues? 7/25
17 Underlying causes or factors 6/25
18 Solutions tried before 2/25
19 Obstacles or challenges? 10/25
20 Relevant data? 9/25
21 Stakeholder needs? 1/25
22 Resources needed? 8/25
23 Evaluate progress? 9/25
24 Metrics can be used? 7125
25 Technical or practical problem 4/25
26 Physical constraint? 1/25
27 Human behavior? 3/25
28 Decision-making or planning 15/25
29 Analytical or optimization 7/25
30 Design challenge? 2/25
31 Systemic or structural issues? 4/25
32 Time-sensitive? 1/25
33 Typical solutions? 5/25
34 Other possible solutions 12/25
35 Imagine current solution is wrong 8/25
36 Modify current solution 7125
37 Create entirely new solution 5/25
38 Think step-by-step 17/25
39 Step-by-step plan with explanation 21/25

20

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We accurately report the results from our experiments in the abstract and
introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We present an extensive analysis of the limitation of Self-Discover in both
Sections 4 and 5 with an extended error analysis on MATH in Appendix E.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

21

Answer: [NA]
Justification: We do not present theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided detailed prompts, explanation of how each inference procedure,
and each model specification to reproduce the main experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Due to legal constraints, we are not able to fully release the code and data at
the current time. But we provide, with the best faith, details to reproduce our results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

 The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details of inference procedures including initial prompts, frame-
work of each data/test split, and model specifications.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include discussions of statistical significance and most improvements are
significant.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify the LLM models we use. And since our experiments do not involve
large-scale training, it is not computationally costly.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow NeurIPS code of ethics carefully.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Our work is a foundational study on model’s reasoning capabilities.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

24

https://neurips.cc/public/EthicsGuidelines

11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all models, data, and code we use in our experiments.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

25

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not involve extensive crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not involve extensive crowdsourcing.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

26

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27

	Introduction
	Self-Discovering Reasoning Structures for Problem-Solving
	Stage 1: Self-Discover Task-Specific Structures
	Stage 2: Tackle Tasks Using Discovered Structures

	Experiment Setup
	Tasks
	Models
	Baselines

	Results
	Does Self-Discover Improve LLM Reasoning?
	Which Types of Problems Do Self-Discover Help the Most?
	How Efficient is Self-Discover?
	Qualitative Examples

	Deep Diving Into Self-Discovered Reasoning Structures
	Importance of Self-Discover Actions
	Towards Universality of Discovered Reasoning Structures

	Related Work
	Prompting Methods
	Reasoning and Planning

	Conclusion
	Self-Discover Prompt Details
	Evaluation Details
	BBH Per Task Performance
	Additional Experiments
	Error Analysis
	Further Anaysis

