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ABSTRACT

Due to the concise design and the wonderful generalization performance, con-
trastive language-image pre-training (CLIP) has been investigated in the medical
domain for medical image understanding. However, few studies have been done
on CLIP for multilevel medical information alignment. In this paper, we proposed
cascaded CLIP (casCLIP) where contrastive alignment is performed on multilevel
information. In addition, we propose aligning the report with the entire image se-
ries and employ a multi-layer transformer to integrate the image embeddings from
a study into a single embedding of image series. Moreover, we introduce support
alignment opposition de-alignment method to enhance higher-level alignment. In
this study, casCLIP was pre-trained on a dataset of chest X-ray images with reports
and the high level disease information extracted from the reports. Experimental
results on multiple public benchmarks demonstrate the effectiveness of our model
for zero-shot classification.

1 INTRODUCTION

Contrastive language-image pre-training (CLIP) (Radford et al., 2021) is a cutting-edge model
renowned for its powerful function in associating images and text. It is well appreciated for its
elegant design and exceptional ability to generalize across various domains, making it a valuable
tool for bridging the gap between visual data and language. In the medical domain, interpreting
medical images, such as X-rays, MRIs, and CT scans, is critical for diagnosing diseases and devel-
oping treatment plans. The potential of CLIP in medical image understanding lies in its capacity to
associate medical images and reports making it garner much attention in the context of the medical
field recently, such as MedCLIP (Wang et al., 2022), CheXzero (Zhang et al., 2023), MedKlip (Wu
et al., 2023), GloRIA (Huang et al., 2021a).

Medical data usually contains hierarchical labels that provide different levels of disease information.
However, existing CLIP methods were not explicitly designed to handle this multilevel medical in-
formation. To illustrate this, consider a study involving medical images and their corresponding
original reports. From this data, we can derive a level 1 summary of the presented diseases, such
as atelectasis. This disease, in turn, falls under the category of chest diseases, representing level
2 information. Each level provides a distinct level of abstract description for the images. Con-
ventional CLIP methods attempt to align a specific image embedding with these text embeddings
corresponding to the multi-level information (Figure 1a), which may result in underrepresentation of
the embeddings. Therefore, there is a significant gap in developing a comprehensive approach that
integrates multilevel information for more accurate medical image understanding and diagnosis.

To fill this gap, we propose cascaded CLIP (casCLIP), which employs a cascading mechanism to
facilitate multilevel information alignment. As illustrated in Figure 1b, besides the alignment be-
tween image embedding from the image encoder and the embedding of the original report, casCLIP
also aligns the embeddings of higher level text summaries with higher level image embeddings that
are derived from the lower level image embeddings. The goal of casCLIP is to create multilevel
representations that can effectively capture the diverse levels of information present in both images
and their associated text, ultimately leading to more precise image and text representations.

Furthermore, it is important to note that a medical report often encompasses a series of medical
images within a single study. While the report can provide an overview of the entire study of image
series, it may not necessarily correspond to each individual image within it. For example, consider
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Figure 1: The illustration of handling multi-level text information for conventional CLIP and
casCLIP. (a) Conventional CLIP aligns a specific image embedding with multiple text embeddings
corresponding to the multi-level information; (b) casCLIP generates multiple image embeddings for
the multiple text levels and cascades multiple alignments between text embeddings and image em-
beddings. In the high-level alignment process, casCLIP also de-align the opposite text summary to
the image embedding.

a chest radiograph study consisting of frontal and lateral images. Pneumonia might be detectable
in the frontal image but not in the lateral one. Therefore, attempting to pair the report with each
individual image is not suitable. While most previous research has focused on associating the report
with each image separately for contrastive learning, we propose aligning the report with the entire
image series study. In this paper, we treat the image series within a study as an integrated entity and
employ a multi-layer transformer (Vaswani et al., 2017) to integrate the image embeddings from the
study into a single image series embedding, which can then be aligned with the report embedding.

To achieve better alignment in the high-level alignment process, we employ a technique referred to as
Support Alignment Opposition De-alignment (SAOD). This approach involves creating an opposite
text summary and increasing the dissimilarity between the opposite text summary and the image,
while simultaneously bringing the support text summary closer to the image in terms of similarity.
As depicted in Figure 1b, for the level 1 summary “Disease atelectasis is found”, we construct a
corresponding opposite text summary “Disease atelectasis is not found”. The goal is to ensure that
an image that aligns well with Disease atelectasis is found should not align with Disease atelectasis
is not found.

We pre-trained casCLIP on MIMIC-CXR (Johnson et al., 2019), a large public dataset of chest radio-
graphs with free-text radiology reports. We evaluated the pre-trained model rigorously on numerous
public benchmarks. Experimental results showed that our model achieves better performance com-
pared to other methods in previous works. Our contributions are summarized as follows:

• casCLIP for Multilevel Alignment: We introduce casCLIP, a novel approach that en-
hances multilevel information alignment within CLIP models. This improvement leads to
superior performance in downstream medical image understanding tasks.

• Image Series Encoding: To better model real-world medical image studies, we propose
encoding the entire image series rather than individual images to align with the text. We
employ a multi-layer transformer to consolidate multiple image embeddings into image
series embeddings, resulting in more comprehensive representations.

• Support Alignment Opposition De-alignment Method: To improve alignment between
high-level text summaries and their corresponding images, we introduce the SAOD align-
ment. This technique involves constructing opposing text summaries and intentionally in-
creasing the dissimilarity between these opposites and the image embeddings.

• Pre-training and Evaluation: We conduct the pre-training of casCLIP on a large public
dataset and evaluate its performance across multiple datasets. Our experimental results
demonstrate the effectiveness of casCLIP in a range of medical image understanding tasks,
highlighting its practical applicability.
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2 RELATED WORK

2.1 VISION-LANGUAGE REPRESENTATION

Vision-language representation has undergone remarkable growth and diversification in recent re-
search. Two prevalent architectural paradigms, the dual-stream (Jia et al., 2021; Li et al., 2021) and
single-stream methods (Chen et al., 2020), have emerged as prominent strategies for fusing visual
and textual modalities. Notably, several studies have endeavored to enrich vision-language models
with commonsense knowledge to enhance contextual understanding and reasoning capabilities (Cui
et al., 2021; Li et al., 2020; Yu et al., 2021). Additionally, there has been substantial progress in
refining pretraining objectives,such as masked language modeling (MLM) and masked visual mod-
eling (MVM) (Huang et al., 2021b; Wang et al., 2023). The CLIP family models have garnered
significant attention (Radford et al., 2021; Li et al., 2022b; Mu et al., 2022; Yao et al., 2022; Chen
et al., 2023), relying on vision-language contrastive learning and large-scale image-text pairs. Other
CLIP models tried to explore the hierarchical information contained in data (Geng et al., 2023; Ge
et al., 2023). These models have showcased impressive capabilities in aligning vision and language
representations effectively. Together, this vibrant landscape of research in vision-language represen-
tation empowers a diverse array of applications, spanning from image captioning and visual question
answering to specialized domains like medical imaging and diagnosis.

2.2 MEDICAL IMAGE UNDERSTANDING

Medical image understanding is a pivotal area in healthcare, and extensive research has been de-
voted to advancing the capabilities of computer systems in this domain. The field of medical image
analysis has seen a surge in deep learning-based approaches, such as convolutional neural networks
(CNNs), graph neural networks (GNN) and transformers, which have demonstrated remarkable suc-
cess in tasks such as disease diagnosis, lesion detection, and organ segmentation (Wang et al., 2017;
Mao et al., 2018; 2022). Recently, the CLIP model has sparked significant interest and represents
a notable advancement. CLIP, originally designed for general vision-language tasks, has demon-
strated its versatility and effectiveness in various domains, including medicine. Several adaptations
and extensions of the CLIP model have been explored within the medical domain. MedCLIP (Wang
et al., 2022) was designed to decouple images and texts for multimodal contrastive learning thus
scaling the usable training data in a combinatorial magnitude with low cost. Huang et al. (2021a)
proposed an attention-based framework for learning global and local representations for medical
image recognition. Wu et al. (2023) incorporate domain-specific knowledge to CLIP to enhance
medical visual-language pre-training. Zhang et al. (2023) also proposed an approach to leverage
existing medical domain knowledge to guide vision-language pre-training using paired chest X-rays
and radiology reports. However, few studies have been done on CLIP to handle multilevel medical
information. In this paper, we propose a framework for multilevel information alignment based on
contrastive learning.

3 METHOD

An overview of our casCLIP framework is illustrated in Figure 2. The input for casCLIP pre-
training consists of three parts: the image series, the original text and higher-level text summaries.
The prompts of hierarchical labels serve as the higher-level text summaries in our pre-training for
medical images. Consequently, an input sample for pre-training is represented as a triplet denoted
as X = (images, text, labels). Figure 2 illustrates the workflow of casCLIP.

3.1 ENCODING

Image series encoding: The image series encoder is to encode the image series in a study into a
image series embedding. In our framework, the image series encoder consists of an image encoder
and a multi-layer transformer. The image encoder is responsible for encoding each individual image
within the series into an image embedding. The transformer is to consolidate these individual image
embeddings into a unified image series embedding by introducing a special input [CLS], similar to
the aapproach used in BERT model (Devlin et al., 2019). A projection head is applied to transform
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Figure 2: An overview of our framework. In the pre-training process, for a batch of input triplets
like (Image series, Text, Hierarchical labels), the Image series is input to an image series encoder
which consists of an image encoder and a multi-layer transformer to get an image series embedding
Es. Concurrently, Text is input to a text encoder to get a text embedding Et. Each label in the
Hierarchical labels involved in the batch is converted to multiple prompts opposite to each other,
e.g., disease found, not found or uncertain. Each prompt is feed to the text encoder to get a label
prompt embedding. Further in the process, Es and Et are passed through an information extraction
network to achieve the respective level 1 embeddings E(1)

s and E
(1)
t that are subsequently input to

another information extraction network to get level 2 embeddings E
(2)
s and E

(2)
t . Es and Et are

aligned using the general CLIP loss function. E(1)
s , E(1)

t and level 1 label prompt embeddings are
aligned using the SAOD method. Similarly, E(2)

s , E(2)
t and level 2 label prompt embeddings are

also aligned using SAOD.

the raw embedding to a specified dimension. The process is denoted as

Eij = Enci(Ximages[j]);E
′
s = Transformer([[CLS], Ei1 , · · · , Eij ]);Es = fs(E

′
s) (1)

where Enci is the image encoder; Ximages[j] is the jth image in the input image series; E′
s is the the

raw output embedding corresponding to [CLS] through the transformer; fs is the projection head
that maps the output embeddings E′

s to a specified dimension Es ∈ RD.

Text encoding: The text encoder is to encode a text into a raw text embedding that is also projected
to a specified dimension by the projection head, denoted as

E′
t = Enct(Xtext);Et = ft(E

′
t) (2)

where Enct is the text encoder; Xtext is the input text; ft is the projection head that maps the raw
output embeddings E′

t to a specified dimension Et ∈ RD. Et should have the same dimension with
Es for contrastive learning. The text encoder is also used to encode high-level text summaries.

High-level encoding: The high-level encoding process involves feeding the image series embedding
Es and the text embedding Et into an information extraction network to obtain their corresponding
level 1 embeddings E(1)

s and E
(1)
t . These level 1 embeddings are subsequently passed into another
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information extraction network to derive level 2 embeddings E(2)
s and E

(2)
t . In our specific imple-

mentation, the information extraction networks are structured as a multi-layer perceptron (MLP). By
aligning these higher-level embeddings with the corresponding high-level text summaries, we aim
to imbue these embeddings with more abstract and comprehensive high-level information. This en-
riched representation is valuable for enhancing the performance of downstream classification tasks.
The high-level encoding process is formulated as

E(1)
s = MLP1(Es);E

(2)
s = MLP2(E

(1)
s ); E

(1)
t = MLP1(Et);E

(2)
t = MLP2(E

(1)
t ) (3)

3.2 HIGHER-LEVEL SUMMARY CONSTRUCTION

A sample could have multiple summaries in a level. In the case of our pre-training on the MIMIC-
CXR dataset, we construct the high-level summaries by the provided 14 labels, including 12 specific
diseases, support devices and no finding. Notably, we categorize no finding as a level 2 label, as it
serves as a summary indicating the absence of any diseases. The remaining 13 labels are considered
as level 1 labels.

For each label, we construct three distinct prompts to represent the negative, positive, and uncertain
states of that label. For example, for label Atelectasis, the 3 prompts would be ‘Disease Atelectasis
is not found.’, ‘Disease Atelectasis is found.’, ‘Not sure if Disease Atelectasis is found.’. Detail
prompts for other labels are found in Appendix Table 4. These label prompts serve as the high-
level summaries for high-level alignment. Each label prompt is input to the text encoder to get an
embedding specific to that prompt.

The higher-level label encoding process is formulated as

nli, pli, uli = Prompt(Xlabels[i]);

E′
nli = Enct(nli);E′

pli = Enct(pli), E′
uli = Enct(uli)

Enli = fl(E
′
nli);Epli = fl(E

′
pli);Euli = fl(E

′
uli)

(4)

where Xlabels[i] is the ith label of the input sample; Prompt(·) constructs 3 prompts for the label,
representing the negative, positive, and uncertain states of that label. Each of these prompt is en-
coded into an embedding by the text encoder; fl is a projection head to map the embedding to a
specified dimension. Notably, the embedding dimension for level 1 should match that of E(1)

s , while
the level 2 embedding dimension should be match that of E(2)

s for contrastive learning.

3.3 CASCLIP PRE-TRAINING

To pre-train a casCLIP , we set the training loss function a combination of two parts: the general
CLIP loss function is used for the original image series-text alignment and the SAOD alignment loss
for higher-level alignment, denoted as

L = LCLIP + LSAOD (5)

CLIP loss: In the context of CLIP, given a batch of N samples, it computes an N × N similarity
matrix between image series and texts, where the diagonal elements are for paired image series
and texts. CLIP loss is to maximize the diagonal elements in the similarity matrix in both row and
column directions by a cross entropy loss function. The general CLIP loss is computed as

Sij = Esi · ET
tj/τ0;

Limage
CEi

= − log
exp(Sii)∑N
j=1 exp(Sij)

;Ltext
CEi

= − log
exp(Sii)∑N
j=1 exp(Sji)

;

LCLIP =
1

2N

N∑
i=1

(Limage
CEi

+ Ltext
CEi

)

(6)

where τ0 a learnable temperature parameter.

Support Alignment Opposition De-alignment (SAOD): SAOD is employed for higher-level align-
ment, where a single higher-level text summary may be associated with multiple image series, and
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conversely, an image series may have multiple labels, each corresponding to various text summaries.
In our design, each label is linked to three label prompt embeddings, representing the negative, pos-
itive, and uncertain status of that label. For a given sample with a specific label status, SAOD serves
to maximize the similarity between the higher-level embeddings and the label prompt embedding of
that particular status. Simultaneously, it seeks to minimize the similarity between the higher-level
embeddings and the label prompt embeddings corresponding to other statuses. For sample i with
label l in status m (0=negative, 1=positive, 2=uncertain), we implement the SAOD alignment for
level k alignment as follows

Simage
il = [E(k)

si · ET
nl, E

(k)
si · ET

pl, E
(k)
si · ET

ul, ]/τk; Stext
il = [E

(k)
ti · ET

nl, E
(k)
ti · ET

pl, E
(k)
ti · ET

ul, ]/τk;

Limage
CEi

= − log
exp(Simage

il [m])∑3
j=1 exp(S

image
il [j])

; Ltext
CEi

= − log
exp(Stext

il [m])∑3
j=1 exp(S

text
il [j])

;

L
(k)
SAODil

= (Limage
CEi

+ Ltext
CEi

)/2

(7)

where τk a learnable temperature parameter for level k; Enl, Epl, Eul are the prompt embeddings
corresponding to negative, positive and uncertain status of label l. Consequently, the overall SAOD
loss in a batch is

LSAOD =
1

N

N∑
i=1

∑
k

∑
l

L
(k)
SAODil

(8)

where k traverses all the levels and l iterates through all the labels with known status for sample
i. This formulation enables the SAOD loss to be computed across all levels and labels within the
batch, facilitating the alignment and contrastive learning objectives.

3.4 INFERENCE

Given an image series, inference aims to determine the presence of a specific disease, such as Car-
diomegaly. Figure 3 illustrates the inference process using casCLIP. Firstly, The image series is
passed to the multi-level image series encoder in casCLIP to get the image series embeddings E(1)

s

and E
(2)
s for level 1 and level 2, respectively. The multi-level image series encoder includes the

image series encoder and the information extraction network in casCLIP. Secondly, we pass the
3 prompts associated with the disease to the text encoder to obtain embeddings for prompts corre-
sponding to negative, positive and uncertain status of the disease. Thirdly, we compute the similarity
between image series embeddings and the prompts for each level. This similarity score reflects the
likelihood of a match between the image series and the corresponding disease status. These sim-
ilarity scores can then be processed using a softmax function to derive the related probabilities.
Through this process, casCLIP allows for the assessment of the presence of a specific disease in an
image series based on the similarity between the image series and the corresponding prompts.

4 EXPERIMENTS

In this section we conduct experiments to validate the effectiveness of our proposed casCLIP frame-
work for zero-shot classification and linear-probe evaluation.

4.1 DATASETS

4.1.1 DATASET FOR PRE-TRAINING:

We pre-train casCLIP on MIMIC-CXR dataset (Johnson et al., 2019; Johnson et al.). The MIMIC-
CXR database is a large publicly available dataset of chest radiographs with free-text radiology
reports. The dataset contains 377,110 images corresponding to 227,835 radiographic studies per-
formed at the Beth Israel Deaconess Medical Center in Boston, MA. The dataset is de-identified and
protected health information (PHI) has been removed. Their also provide an official split for train-
ing, validation and test and no overlap patients on the three sets. Our pre-training is on the training
set that contains 368,960 images for 222,758 studies. We validate the model on the validation set
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Figure 3: Inference with casCLIP.

that contains 2,991 images for 1,808 studies. The validation is during the pre-training process to
save the model that perform best on validation set.

4.1.2 DATASET FOR DOWNSTREAM TASKS:

MIMIC-CXR test set is a split from MIMIC-CXR dataset. It contains 5,159 images for 3,269
studies.

ChestX-ray14 (Wang et al., 2017) contains 112,120 frontal-view X-ray images of 30,805 unique
patients, collected from the year of 1992 to 2015 by NIH(National Institutes of Health), with labels
of 14 common diseases provided. This dataset is labeled per image, we consider each image as a
study. We evaluate zero-shot classification on the provided test set that contains 25,596 images.

CheXpert500. CheXpert(Irvin et al., 2019) is a large dataset of chest X-rays and competition for
automated chest x-ray interpretation, which features uncertainty labels and radiologist-labeled refer-
ence standard evaluation sets. We perform zero-shot evaluation on the collection of test set consist-
ing of 500 studies from 500 patients. Eight board-certified radiologists individually annotated each
of the studies in this test set following the same procedure and post-processing. We only evaluate
5 competition pathologies (i.e.,Atelectasis, Cardiomegaly, Consolidation, Edema, Pleural effusion)
on this dataset, following the previous study (Tiu et al., 2022).

4.2 IMPLEMENTATION DETAILS

We benchmarked on the Mask R-CNN (He et al., 2017) with SwinTransformer (Liu et al., 2021)
followed by a feature pyramid networks (FPN) (Lin et al., 2017) as the image encoder. We used the
BERT model as the backbone of text encoder. The image encoder and text encoder are initialized
with the GLIP-T (Li et al., 2022a) model. The original text embedding dimension output from text
encoder is 768. The original image series embedding dimension output from image series encoder
is 1280 and is then reduced to 768 by a linear projection head. The level 1 and level 2 embeddings
are 128 and 64, respectively. The transformer to aggregate the image embeddings consists 2 layers
of Multihead Attention. All The learnable temperature τk is initialized to 0.07. The training batch
size is 32 and the max epoch is 30. we use AdamW optimizer (Loshchilov & Hutter, 2019) with
both initial weight decay and initial learning rate euqal to 0.0001 during pre-training.

We implemented 4 variants for casCLIP. casCLIP SAOD h2 was implemented with 2 higher levels
with SAOD alignment. casCLIP h2 was implemented with 2 higher levels without SAOD alignment.
casCLIP SAOD h1 was implemented with 1 higher levels with SAOD alignment. casCLIP h1 was
implemented with 1 higher levels without SAOD alignment.
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Table 1: results on MIMIC-CXR dataset

AUC ACC F1

casCLIP SAOD h2 0.8735 0.8505 0.5897
casCLIP h2 0.8543 0.8367 0.5587
casCLIP SAOD h1 0.8547 0.8489 0.5714
casCLIP h1 0.8549 0.8367 0.5641
MedKLIP (Wu et al., 2023) 0.6337 0.4776 0.3235

Table 2: results on ChestXray14 dataset

AUC ACC F1

casCLIP SAOD h2 0.7743 0.9160 0.2926
casCLIP h2 0.7249 0.8844 0.2868
casCLIP SAOD h1 0.7673 0.8837 0.3294
casCLIP h1 0.7280 0.5728 0.2133
MedKLIP (Wu et al., 2023) 0.7134 0.7898 0.2465
CheXzero (Tiu et al., 2022) 0.7296 0.8278 0.2141
BioViL (Boecking et al., 2022) 0.6912 0.7916 0.1931
GLoRIA (Huang et al., 2021a) 0.6610 0.7700 0.1732
ConVIRT (Zhang et al., 2022) 0.6101 0.7102 0.1628

4.3 ZERO-SHOT CLASSIFICATION

We conduct zero-shot classification evaluation on 3 datasets: CheXpert, Chest-Xray14. We illustrate
the results in Table 1, 2 and 3 for the 3 datasets respectively. Some results are from the related papers.
From the results, our casCLIP can outperform other baselines.

4.4 ABLATION STUDY

In this section, we provide additional ablation studies on influence factors including the des-
gined levels and the SAOD alignment. Comparing the results between casCLIP SAOD h2 and
casCLIP SAOD h1, casCLIP SAOD h2 perform better than casCLIP SAOD h1, demonstrating 2
level hierarchical structure is better. casCLIP SAOD h2 performs better than casCLIP h2, demon-
strating the efficacy of SAOD alignment.

5 CONCLUSION

In conclusion, the development and exploration of the cascaded CLIP (casCLIP) model represent
a significant leap forward in the field of medical image understanding. By harnessing the power
of contrastive learning across multiple modalities, including medical images, textual reports, and

Table 3: results on CheXpert dataset

AUC ACC F1

casCLIP SAOD h2 0.8978 0.8640 0.6697
casCLIP h2 0.8912 0.8420 0.6428
casCLIP SAOD h1 0.9002 0.8536 0.6584
casCLIP h1 0.9050 0.8620 0.6793
MedKLIP (Wu et al., 2023) 0.7871 0.7480 0.5112
MedCLIP (Wang et al., 2022) 0.8524 0.8360 0.6304
CheXzero (Tiu et al., 2022) 0.8890 0.6060
GLoRIA (Huang et al., 2021a) 0.6100 0.6700
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hierarchical labels, casCLIP excels at capturing the rich and complex information present in the
medical domain.

The model’s pretraining on chest X-ray images with associated reports and high-level disease infor-
mation extraction empowers it with the capability to effectively bridge the gap between visual and
textual data in the medical field. Furthermore, casCLIP’s adaptability to the multilevel of medical
data positions it as a promising asset for medical diagnosis, treatment planning, and image-text re-
trieval tasks. Its multidimensional understanding of medical images and reports can contribute to
more accurate and efficient healthcare practices.

As with any groundbreaking research, there remain opportunities and challenges on the horizon.
Future work may focus on further refining casCLIP’s performance, addressing potential biases in
medical data, and ensuring its ethical use in healthcare. Nevertheless, the advent of casCLIP marks
a significant advancement in leveraging state-of-the-art AI techniques for enhancing medical image
understanding and holds great promise for the future of healthcare applications.
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Table 4: The constructed label prompts in MIMIC-CXR dataset for high-level text summary.

labels status prompts

level 1

Atelectasis
negative Disease Atelectasis is not found.
positive Disease Atelectasis is found.
uncertain Not sure if Disease Atelectasis is found.

Cardiomegaly
negative Disease Cardiomegaly is not found.
positive Disease Cardiomegaly is found.
uncertain Not sure if Disease Cardiomegaly is found.

Consolidation
negative Disease Consolidation is not found.
positive Disease Consolidation is found.
uncertain Not sure if Disease Consolidation is found.

Edema
negative Disease Edema is not found.
positive Disease Edema is found.
uncertain Not sure if Disease Edema is found.

Enlarged Cardiomediastinum
negative Disease Enlarged Cardiomediastinum is not found.
positive Disease Enlarged Cardiomediastinum is found.
uncertain Not sure if Disease Enlarged Cardiomediastinum is found.

Fracture
negative Disease Fracture is not found.
positive Disease Fracture is found.
uncertain Not sure if Disease Fracture is found.

Lung Lesion
negative Disease Lung Lesion is not found.
positive Disease Lung Lesion is found.
uncertain Not sure if Disease Lung Lesion is found.

Lung Opacity
negative Disease Lung Opacity is not found.
positive Disease Lung Opacity is found.
uncertain Not sure if Disease Lung Opacity is found.

Pleural Effusion
negative Disease Pleural Effusion is not found.
positive Disease Pleural Effusion is found.
uncertain Not sure if Disease Pleural Effusion is found.

Pleural Other
negative Pleural disease other than Effusion is not found.
positive Pleural disease other than Effusion is found.
uncertain Not sure if Pleural disease other than Effusion is found.

Pneumonia
negative Disease Pneumonia is not found.
positive Disease Pneumonia is found.
uncertain Not sure if Disease Pneumonia is found.

Pneumothorax
negative Disease Pneumothorax is not found.
positive Disease Pneumothorax is found.
uncertain Not sure if Disease Pneumothorax is found.

Support Devices
negative Support Device is not found.
positive Support Device is found.
uncertain Not sure if Support Device is found.

level 2 No Finding
negative Chest Disease is found.
positive Chest Disease is not found.
uncertain Not sure if Chest Disease is found.
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