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ABSTRACT

While Graph Neural Network (GNN) explanation has recently received signifi-
cant attention, existing works are generally designed for static graphs. Due to the
prevalence of temporal graphs, many temporal graph models have been proposed,
but explaining their predictions still remains to be explored. To bridge the gap,
in this paper, we propose a Temporal GNN Explainer (T-GNNExplainer) method.
Specifically, we regard a temporal graph as a sequence of temporal events be-
tween nodes. Given a temporal prediction of a model, our task is to find a subset
of historical events that lead to the prediction. To handle this combinatorial opti-
mization problem, T-GNNExplainer includes an explorer to find the event subsets
with Monte Carlo Tree Search (MCTS), and a navigator that learns the correlations
between events and helps reduce the search space. In particular, the navigator is
trained in advance and then integrated with the explorer to speed up searching and
achieve better results. To the best of our knowledge, T-GNNExplainer is the first
explainer tailored for temporal graph models. We conduct extensive experiments
to evaluate the performance of T-GNNExplainer. Experimental results demon-
strate that T-GNNExplainer can achieve superior performance with up to ⇠50%
improvement in Area under Fidelity-Sparsity Curve.

1 INTRODUCTION

Temporal graphs are highly dynamic networks where new nodes and edges can appear at any time.
The input is usually regarded as a sequence of events (node i, node j, timestamp t), which means
there is an interaction (edge) between node i and j at timestamp t. It is ubiquitous in many real-
world applications, such as friendship in social networks (Pereira et al., 2018; Barrat et al., 2021),
and user-item interactions in e-commence (Li et al., 2021c). Many applicable temporal graph models
(e.g., Jodie (Kumar et al., 2019), TGAT (Xu et al., 2020), TGN (Rossi et al., 2020)) are proposed
considering both time dynamics and graph topology. Compared with static GNNs, temporal graph
models learn the representation of each node as a function of time and then predict future evolutions,
e.g., which interaction will occur and what time node attributes change.

Despite the success, all these models are black boxes and lack transparency. It is opaque how
information aggregates and propagates over a graph and how a prediction is affected by historical
events. Human-intelligent explanations are critical for understanding the rationale of predictions
and providing insights into model characteristics. Explainers could increase the trust and reliability
of temporal graph models when they are applied to high-stakes situations, like fraud detection in
financial systems (Wang et al., 2021b) and disease progression prediction in healthcare (Li et al.,
2021a). Besides, explainers also help check and mitigate the privacy, fairness and safety issues in
real-world applications (Doshi-Velez & Kim, 2017).

While currently there are no methods for explaining temporal graph models, some recent expla-
nation methods (e.g., GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020) and Sub-
graphX (Yuan et al., 2021)) for static GNNs are the most related. They identify the important nodes,
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edges and subgraphs for predictions by perturbing the input of GNN models. Obviously, these
models cannot be used to explain a well-trained temporal graph model, as they cannot capture the
temporal dependency mixed with the graph topology.

Here we propose T-GNNExplainer, an instance-level model-agnostic explainer for temporal graph
models. For any prediction of a target event, we aim to find out important events from candidate
events, which lead to the model’s prediction of occurrence (or absence) of it. The candidate events
are previously occurred events satisfying spatial and temporal conditions: they are in the k-hop
neighborhood based on the message passing mechanism, and their timestamps should be close to
that of the target event.

Specifically, T-GNNExplainer takes the advantages of search-based and learning-based GNN ex-
plainers together. Generally speaking, a learning-based explainer is inductive to all the target events,
and explaining a target event is very quick once trained. A search-based explainer searches for the
best result for each target event, which is more specific but time-consuming. While in this work,
T-GNNExplainer is designed as a MCTS process with a learned navigator. We pretrain a navigator
in advance to learn the inductive relationship between a target event and its candidate events. Then
we utilize MCTS to explore the best combination of candidate events given any new target event.
The navigator helps to bias the search process, significantly reducing the search time and improving
the performance.

We evaluate T-GNNExplainer on both synthetic and real-world datasets for two typical temporal
graph models (TGAT and TGN). On synthetic datasets, we simulate temporal events by the mul-
tivariate Hawkes process and pre-defined event relation rules. The highly accurate explanations
demonstrate that T-GNNExplainer can find an exact influential event set. Since we do not know the
ground truth for real-world datasets, the fidelity-sparsity curve is adopted to evaluate the superiority
of T-GNNExplainer compared with baselines. We further provide a case study on synthetic datasets
to illustrate the practical events found by T-GNNExplainer and navigation information.

2 RELATED WORK

2.1 TEMPORAL GRAPH AND TEMPORAL GRAPH MODELS

Graphs can be divided into four types by temporal granularity: static graph, graph with time-
weighted edges, discrete-time dynamic graph (DTDG) and continuous-time dynamic graph (CTDG)
(Kazemi et al., 2020). The typical graph neural networks (e.g., GCN (Kipf & Welling, 2017),
GAT (Veličković et al., 2018), GIN (Xu et al., 2018)) can be used for the former two types to learn
the static node embeddings. DTDGs are sequences of static graph snapshots taken at intervals in
time. CTDGs are more general and are represented as a sequence of timestamped events, including
edge/node addition, deletion, and feature transformations. In this work, we consider temporal graphs
as CTDGs and take a sequence of timestamped events as model input since CTDGs are mainstream
dynamic graphs with the finest time granularity.

Instead of static node embeddings, temporal graph models are required to learn dynamic node em-
beddings. DeepCoevelve (Dai et al., 2016) used RNNs to update node embeddings when some
nodes are involved in new events. Jodie (Kumar et al., 2019) added the time projection module to
make node embeddings evolve over time. However, they lack a GNN-like aggregation from node
neighbors, which leads to the staleness problem (i.e., some node embeddings are out of date (Rossi
et al., 2020; Kazemi et al., 2020)). Thus, CoPE (Zhang et al., 2021) and TGAT (Xu et al., 2020) are
proposed to utilize the message passing mechanism to update node embeddings by its own events
and its neighbors’ events. It has been demonstrated to improve expressive power. TGN (Rossi et al.,
2020) is an up-to-date framework and claims that most previous models are its specific cases. We
choose the state-of-the-art TGAT and TGN as target models to be explained in the paper.

2.2 GRAPH EXPLAINERS

One popular way of explaining static graphs is to study the output variations of well-trained GNN
models with respect to different input perturbations (Yuan et al., 2020b). Intuitively, the output
changes vastly when critical nodes, edges, or subgraphs are perturbed. There are mainly two ap-
proaches assigning importance scores to graph entities by perturbations: learning-based and search-
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based. Learning-based methods (Luo et al., 2020; Shan et al., 2021; Vu & Thai, 2020) leverage
node representations generated by the trained GNN and adopt a neural network to learn crucial
nodes/edges. They are trained with multiple instances, i.e., learning inductive explanation charac-
teristics for multiple ones. Besides, search-based methods (Yuan et al. (2021); Wang et al. (2021a))
utilize heuristic search algorithms with a score function (e.g., defined by Shapley value or causality)
to find an important input subset. Their inference time is longer because the search space of each
instance is different, and they need to explore feasible solutions one by one. There are also some
works possessing intrinsically interpretable architectures (Han et al. (2020); Li et al. (2021b); Xiao
et al. (2022)) or generating model-level explanations (Yuan et al. (2020a); Shin et al. (2022)). Most
of the self-interpretable models seek to a sparse subgraph during forward computation supported
by the attention mechanism (Han et al. (2020)) or other internal scores (Li et al. (2021b); Cui et al.
(2021)). There is a concurrent work that also explains temporal graph models He et al. (2022). How-
ever, they use discrete snapshots of a temporal graph while we focus on continuous event streams.
In this work, we mainly focus on instance-level post-hoc explanation methods since most of the
temporal graph models in the literature are not designed with specific consideration of explanations.

3 PRELIMINARY

3.1 TEMPORAL GRAPH MODEL

Assume that the input of temporal graph models is a sequence of events S = {e1, e2, · · · }. Each
ei = {nui , nvi , ti, atti} means that the node nui and nvi have an interaction (edge) at timestamp
ti with edge attribute atti. The atti could be the interaction feature, or an indicator to represent ei
is edge addition/deletion. Further, ei could involve only one node, {nui , null, ti, atti}, to represent
a node-wise event (node addition/deletion, or node attribute change). These events S constitute
a temporal graph G = (N ,S) where S can be regarded as timestamped edges and N are nodes
involved in S . Since G and S are mutually defined, we regard G as both a temporal graph and a set
of events in the following.

We utilize the setting defined in (Kazemi et al., 2020) to unify different temporal graph models as
an encoder-decoder framework. The encoder is to learn the dynamic embedding for each node over
time, and the decoder utilizes the node embeddings for downstream prediction tasks, such as future
edge prediction. Specifically, let Gi denote the graph constructed just before the timestamp ti, i.e.,
containing the events {e1, · · · , ei�1} but excluding ei. The encoder takes Gi as the input and obtains
Z

i where Z
i
n⇤ is the current embedding of the node n⇤ at timestamp ti. The decoder constructs the

loss by predicting whether an interaction between a pair of nodes happen at this timestamp (the
positive sample is ei = {nui , nvi} while negative samples are the remaining pairs). Thus, the
decoder uses Zi to predict the logit/probability of a new event between any pair of nodes, computes
the loss to backpropagate the gradients, and updates the model parameters.

Encoder(Gi) ! Z
i Decoder(Zi) ! Logit/Probablity of Events ! Loss

Let f(·) denote a well-trained temporal graph model including the encoder and the decoder to sim-
plify the notation. f(Gi)[ej ] means that we use the encoder to compute Z

i by G
i at timestamp ti

and computes the logit/probability of event ej by leveraging Z
i
nuj

and Z
i
nvj

.

3.2 PROBLEM FORMULATION

Given the sequence of events and a well-trained temporal graph model f(·), the temporal explainer
explains why the model predicts an event ek would occur or not. Specifically, we aim to find
out a subset of events R

k from all the previous events G
k to maximize the mutual information

MI(Yk,R
k). Yk is the original prediction decided by f(Gk)[ek], which is 0 or 1. R

k determines
the distribution of the new prediction by f(Rk)[ek]. When they are strongly dependent, Rk is
regarded as a good explanation for the prediction of occurrence/absence of event ek.

According to (Ying et al., 2019), maximizing the mutual information MI(Yk,R
k) is equivalent to

minimizing conditional entropy H(Yk|R
k) because H(Yk) is a constant. Then we can transform

H(Yk|R
k) into a cross entropy loss based on (Farnia & Tse, 2016):

min
Rk

�

X

c=0,1

1(Yk = c) logP (Ynew = c|R
k) (1)
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Figure 1: The framework of T-GNNExplainer. We first pre-train the navigator to learn the inductive
relationship between events. Then we invoke the explorer to search out a specific combination of
important events based on MCTS, including node selection, node expansion, reward simulation and
backpropagation. When expanding a node, the navigator infers to decide which event is removed.

P (Ynew|R
k) is calculated by f(Rk)[ek] and c is the label indicating whether the event occurs or not.

Objective. Given a target event ek on which a prediction is made by f(·), T-GNNExplainer is
a mapping g to infer the important events Rk = g(ek,Gk

, f(·)) by current temporal graph G
k. T-

GNNExplainer g can also minimize the cross entropy loss for K target events. Formally, the optimal
explainer g⇤ is defined as

g
⇤ = argmin

g
�

1

K

KX

k=1

⇥
1(Yk = 1) log �(f(Rk)[ek]) + 1(Yk = 0) log(1� �(f(Rk)[ek]))

⇤

subject to R
k = g(ek,G

k
, f(·)) and R

k
✓ G

k and |R
k
|  Nr

(2)

Here we assume f(Rk)[ek] is a single-dimensional logit value produced by the model f(·), and �(·)
indicates the sigmoid function. Rk should be concise so we use Nr as a hyper-parameter to control
the size of Rk.

4 METHODOLOGY

4.1 OVERVIEW

Here we introduce how to identify an important subset of events R
k for the target event ek. It is

a combinatorial optimization problem where any subset of G
k whose size is equal to or smaller

than Nr could be the explanation. Besides, the search space of a temporal graph explainer is more
significant than that of static graph explainers because of duplicate timestamped edges and node-
wise events. Therefore, we design an explorer-navigator framework to effectively and efficiently
obtain R

k, shown in Fig. 1. The navigator is trained from multiple target events to capture the
inductive correlation between events. The explorer is guided by the navigator and finds a more
specific result based on Monte Carlo Tree Search. We will present them in the following.

4.2 NAVIGATOR

Inspired by previous parameterized explainers (Luo et al., 2020), we pretrain a navigator to provide
a global understanding of the relationship among events. Concretely, the navigator is a feed-forward
neural network h✓(ej , ek), which infers the importance score of an event ej w.r.t a target event
ek. The scores will be leveraged in the node expansion of the explorer (Sec. 4.3) to facilitate the
searching. The input features and the training/inference process are described as follows.

Navigator features. To capture the correlation between the target event ek = {nuk , nvk , tk, attk}
and each candidate event ej = {nuj , nvj , tj , attj}, we construct navigator input features as:

Zek,ej = [Xnuk
||Xnvk

|| Time(tk) || attk ||Xnuj
||Xnvj

|| Time(tj) || attj ]T (3)

X represents the node feature matrix. Time(·) is a function converting a real-valued timestamp to a
vector that could be learnable (Xu et al., 2020; Rossi et al., 2020) or not (Vaswani et al., 2017). In
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this paper, we adopt the harmonic encoder (Xu et al., 2020) as the time function. We input all the
candidate events w.r.t a target event as a batch into h✓.

Training Process. We use the same objective function described in Eq. 2. The output of h✓ is
regarded as a soft-mask assigning weights to corresponding temporal edges of Gk. If the model f(·)
is differentiable w.r.t edge weights, we add the soft-mask as edge aggregation weights in the model,
and then obtain the new prediction. Otherwise, the reparameterization trick is used in f(·). More de-
tails about reparameterization can be found in (Luo et al., 2020). Note that h✓ is trained inductively,
i.e., events in the training set are different from those to be explained by T-GNNExplainer.

Inference Process. Provided with a candidate event ej and a target event ek, we construct the input
Zek,ej , put it into the trained navigator h✓ and infer the score, which will be utilized by the explorer.

4.3 EXPLORER

We adopt Monte Carlo Tree Search (MCTS) in the explorer. First of all, we initialize the root node
as a set of candidate events. Then multiple rounds (a.k.a., rollouts) are conducted to expand nodes in
the search tree, where each node represents a feasible subset of events in the search space. There are
four aspects in each round: (1) select a path from the root to a leaf node; (2) expand new children by
removing unimportant events according to the navigator in the path selecting procedure; (3) simulate
reward of new nodes by temporal graph model; (4) backpropagate the leaf node’s reward to update
information in path nodes. At last, a node achieving the best reward and satisfying the sparsity
threshold is our final explanation result. We present the pseudo-code in Appendix.

4.3.1 INITIALIZATION

The root node includes all the candidate events, which are previously occurred events satisfying
spatial and temporal conditions. Take the temporal graph in Fig. 1 as an example where we explain
e13. Assume that the encoder uses the 2-hop GNN-based aggregation, the set of seen events by
encoder is {e2, · · · , e12}. A temporal threshold is used to remove old events. If the threshold is set
as 10, we preserve 10 recently occurred events. Finally, the root is initialized as {e3, · · · , e12}.

4.3.2 NODE SELECTION

We use N
i to represent a node in the search tree and use ej to indicate one action, i.e., discard the

event ej from N
i. We follow the UCT (Upper Confidence bound applied to Trees) formula proposed

in (Kocsis & Szepesvári, 2006) to balance the exploitation and the exploration in the node selection.
Assume we are on node N

i, the action criteria is

e
⇤ = argmax

ej2C(N i)

0

@ c(N i
, ej)

n(N i, ej)
+ �

qP
el2C(N i) n(N

i, el)

1 + n(N i, ej)

1

A (4)

C(N i) indicates the events already expanded in N
i, n(N i

, ej) is the count for selecting ej on node
N

i in previous rollouts, and c(N i
, ej) denotes the cumulative reward of selecting ej on node N

i.
The first component is exploitation: we select the node with a high average reward. The second
component corresponds to exploration: we select the node with few simulations. We select and
move to N

i’s child node by removing the event e⇤ from N
i.

4.3.3 NODE EXPANSION

The strategy of node expansion significantly influences the performance because it affects the search
space and hence the best node’s quality. Previous works expand all possible children for any selected
node (Yuan et al., 2021). Instead, we only expand the best potential node to refine the search space.
Assuming the selected node N

i is expandable (i.e., the number of children is less than the number
of events contained in the node), the explorer invokes the navigator (Sec. 4.2) to obtain potential
scores:

e
⇤ = argmin

ej2N i/C(N i)
h✓(ej , ek) (5)
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N
i
/C(N i) means possible events which are not expanded in the previous rollouts. We remove the

most unimportant event e⇤ to expand a new node. Since the navigator is learned in advance and infers
the score quickly, the additional cost is negligible. We could also expand the top-k candidates or
induce randomness to trade off the exploitation and exploration in the expansion step. For example,
we select e⇤ to expand with probability 1� ✏ and select a random unexplored ej with probability ✏.

The node selection and expansion are done alternatively. We start from the root node. We expand
new child node(s) for the root according to Eq. 5. Then we choose the node with the highest value
based on Eq. 4 from the root’s original and new child nodes and move to it. Next we repeat the
expansion and selection from the new node. The process ends when the current node is identified as
a leaf node, e.g., the node has less than five events.

4.3.4 REWARD SIMULATION AND BACKPROPAGATION

The reward is simulated by the temporal graph model. In detail, we compute the reward of a leaf
node r(N leaf) by computing the negative cross entropy loss 1 using Eq. 1, where R

k = N
leaf. In

backpropagation, all the nodes N
i from root to the leaf will update n(·, ·) and c(·, ·) by adding

the leaf node’s reward and one respectively, i.e., c(N i
, el) = c(N i

, el) + r(N leaf), n(N i
, el) =

n(N i
, el) + 1. el is the action selected at N i.

5 EXPERIMENTS

In this section, we evaluate the performance of T-GNNExplainer with several baseline explain-
ers. We first describe synthetic datasets, real-world datasets and target models in Sec. 5.1. Then
we present the detailed experimental setup, including baselines and evaluation metrics in Sec. 5.2.
Sec. 5.3 is a quantitative evaluation to demonstrate that T-GNNExplainer could surpass the baselines
up to ⇠50% improvement in the Area Under the Fidelity-Sparsity Curve (AUFSC). Furthermore, we
investigate the navigator’s effect in Sec. 5.4. Finally, a case study in Sec. 5.5 is constructed to show
the explanations provided by T-GNNExplainer and navigation weights. The dataset statistics, target
models’ performance, and running time of all the methods are presented in Appendix. The code and
datasets are attached in the supplementary.

5.1 DATASETS AND TARGET MODELS

Real-world datasets: We adopt two typical real-world temporal graphs: Wikipedia2 and Reddit3.
The Wikipedia dataset consists of ⇠9300 active users and top edited pages and ⇠160,000 temporal
edges. A 172-dimensional user editing feature accompanies each temporal edge. The Reddit dataset
is analogous to Wikipedia with ⇠11,000 active users and subreddits and ⇠700,000 temporal edges.
The 172-dimensional temporal edge features come from user post contents.

Synthetic datasets: We utilize the Hawkes process (Hawkes, 1971) and tick library (Bacry et al.,
2017) to generate synthetic datasets. In Fig. 2, we define four types of events (E1 ⇠ E4) in a graph.
According to the multivariate Hawkes process, the intensity of an event is divided into two parts:
endogenous and exogenous. For example, E0 has endogenous intensity 0.5 to happen because of
itself, and E3 has exogenous intensity 2 influenced by the happening of E2. Given a pre-defined
event relation including endogenous/exogenous intensities, we adopt the tick library to simulate a
sequence of events with timestamps. We generate two synthetic datasets with ⇠ 10000 timestamps
based on event relation v1 and v2 in Fig. 2. More details are described in Appendix.

Target models: We adopt two recent state-of-the-art temporal graph models TGAT (Xu et al., 2020)
and TGN (Rossi et al., 2020). TGAT presents a temporal attention layer to aggregate a node’s pre-
vious neighbours in chronological order and a time encoder to encode temporal information. TGN
further proposes a memory store and update module to persist each node’s temporal state. A point
process model Transformer Hawkes Process (THP) is also compared in Sec. A.8 in Appendix. These
models are trained in a self-supervised manner for real-world datasets, i.e., events seen on the graph
are positive samples and randomly chosen unseen events are negative ones. For synthetic datasets,

1A larger reward indicates a better solution, hence negative CR is consistent with the objective in Eq. 2.
2http://snap.stanford.edu/jodie/wikipedia.csv
3http://snap.stanford.edu/jodie/reddit.csv
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Figure 2: Synthetic temporal graph and pre-defined event relations. Values on nodes indicate en-
dogenous intensities. Values on edges define exogenous intensities. Green edges are positive influ-
ences while red edges are negative influences. Grey edges reflect no influence.

happened E3 timestamps are positive samples, and we uniformly sample random timestamps as
negative samples.

5.2 BASELINES AND SETUPS

Baselines: We compare the performance of T-GNNExplainer with several baseline methods. (1)
We implement PGExplainer (PG) in (Luo et al., 2020) and adapt it for the temporal graph scenario.
The adapted PG computes a weight to each event instead of each edge. The input information for
event ej is the same as the Zei,ej in Eq. 3. We add the output score of PG to the attention weights
in the target model for all layers and use the same training objectives as T-GNNExplainer. (2) For
the attention-based explainer (ATTN), we extract the attention weights in TGAT/TGN and average
the values over all layers. The averaged weights are regarded as importance scores. (3) Besides, we
implement a straightforward explainer by perturbing one candidate event (PBONE), i.e., we compute
the importance of each event ej 2 G

k by feeding G
k
/{ej} into the target model. Moreover, we also

compare with the self-interpretable THP-based THPExplainer in Sec. A.8 in Appendix.

Evaluation metrics: We adopt the fidelity Fid(f(Gk)[ek], f(Rk)[ek]) and the sparsity Sp(Rk
,G

k)
to evaluate the performance. Instead of using the difference between the original and new pre-
diction probabilities to define the fidelity in the previous work (Yuan et al., 2020b), we use the
difference between logits because logits could exhibit explainers’ performance more clearly. The
fidelity is defined as Fid(f(Gk)[ek], f(Rk)[ek]) = 1(Yk = 1)(f(Rk)[ek]� f(Gk)[ek]) + 1(Yk =
0)(f(Gk)[ek]�f(Rk)[ek]). Besides, sparsity is defined as Sp = |R

k
|/|G

k
|. The higher fidelity and

higher sparsity mean a better result. We draw the fidelity-sparsity curve and compute area under the
curve AUFSC to evaluate the performance. A larger AUFSC indicates a better performance. Note
that AUFSC may be negative because fidelity could be negative.

Furthermore, we also use the metric Best Fid, indicating the best fidelity ever found by the explainer
without sparsity limitations. For T-GNNExplainer, we traverse all tree nodes to find a node with the
best fidelity. For baseline explainers, we rank all the candidate events in ascending order by their
importance scores produced by the explainer and successively preserve top events to find the subset
with the best fidelity.

Experimental setup: We use a two-layer MLP with 128 hidden units to instantiate the navigator h✓.
We set the exploration parameter � to 5 and the rollout number to 500 in the explorer. Following the
same setting in TGAT and TGN, we adopt a two-layer attention architecture and harmonic encoding
for timestamps. We train both TGAT and TGN with a 70%, 15%, and 15% splitting scheme of
datasets based on timestamps. For all methods, we limit the number of candidate events to 25 and
randomly sample 500 events in the test dataset as target events for the explanation. We use a machine
with an RTX 2080 GPU and a 48-core Intel(R) Xeon(R) CPU@2.2GHz. More hyper-parameters
are listed in Appendix.

5.3 PERFORMANCE COMPARISON WITH BASELINES

In this section, we report the quantitative results in Table 1 and Table 2 for real-world and synthetic
datasets respectively4. We find that T-GNNExplainer outperforms baseline explainers significantly
and consistently for two metrics on all the datasets. On the real-world datasets, the gains of AUFSC
(Best Fid) are up to 53%(26%), 86%(45%), 134%(47%), and 74%(50%) w.r.t to the leading baseline

4Best results are in bold and the second best are underlined.
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Table 1: Best fidelity (") and AUFSC (") achieved by each explainer on real-world datasets.
Wikipedia Reddit

TGAT TGN TGAT TGN
Best Fid AUFSC Best Fid AUFSC Best Fid AUFSC Best Fid AUFSC

ATTN 0.891 0.564 0.479 0.073 0.658 -0.654 0.575 0.289
PBONE 0.027 -2.227 0.296 -0.601 0.167 -2.492 0.340 -0.256

PG 1.354 0.692 0.464 -0.231 0.804 -0.369 0.679 0.020
T-GNNExplainer 1.836 1.477 0.866 0.590 1.518 1.076 1.362 1.113

Table 2: Best fidelity (") and AUFSC (") achieved by each explainer on synthetic datasets.
Synthetic v1 Synthetic v2

TGAT TGN TGAT TGN
Best Fid AUFSC Best Fid AUFSC Best Fid AUFSC Best Fid AUFSC

ATTN 0.555 0.390 2.178 1.624 0.605 0.291 0.988 -0.634
PBONE 0.044 -2.882 0.000 -3.311 0.096 -4.771 0.320 -5.413

PG 0.476 -0.081 2.006 0.626 1.329 -0.926 1.012 -1.338
T-GNNExplainer 0.780 0.666 2.708 2.281 1.630 1.331 4.356 3.224

in four scenarios. ATTN and PG obtain comparable performance while PBONE performs the worst.
The results of synthetic datasets are analogous to those of real-world datasets.

Besides, we illustrate the fidelity-sparsity curve on the real-world datasets intuitively, shown in
Fig. 3. T-GNNExplainer achieves the highest final fidelity than other baselines and is also the highest
one under a given sparsity threshold. Moreover, with a relatively small sparsity threshold, e.g., 0.2,
T-GNNExplainer can already find a solution with a high fidelity compared to its final best value,
which indicates that T-GNNExplainer explores the low-sparsity event subsets efficiently. Without
the searching procedure, the fidelity of PG and ATTN increase slowly. PBONE performs the worst
in all scenarios because it treats each event independently. More performance investigations of the
navigator are illustrated in Sec. A.5 and Sec. A.6 in Appendix.

F

(a) TGAT, Wikipedia

F

(b) TGN, Wikipedia

F

(c) TGAT, Reddit

F

(d) TGN, Reddit

Figure 3: Fidelity-sparsity comparison of explainers on real-world datasets with target models.

5.4 EFFICIENCY INFLUENCE OF THE NAVIGATOR

In this section, we investigate the efficiency enhancement of the navigator. We set the rollout number
to 500 for with navigator and without navigator. Here, we compare the time exhausted to achieve
a fidelity threshold. Let the best fidelity denote the larger final fidelity between with navigator and
without navigator. We set the fidelity threshold to 0.8⇥best fidelity to compare the time exhausted.

Results for all the datasets and both models are shown in Fig. 4. The results are averaged over
all target events. We can find that the running time of with navigator is always less than that of
without navigator under all settings. The efficiency improvement of with navigator is about 70.1%,
60.1%, 48.2%, and 28.1%. On the synthetic datasets, we can observe similar results as those on
real-world datasets. The speedup of the navigator is about 83.85%, 96.43%, 78.48%, and 43.66%
respectively under four synthetic settings. Overall, the navigator effectively speeds up the searching
procedure of the explorer to achieve reasonable solutions. More runtime comparisons with baselines
and complexity analysis of T-GNNExplainer are illustrated in Sec. A.4 in Appendix.
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(a) TGAT (b) TGN

Figure 4: Efficiency of the navigator on all the datasets with target models.

5.5 CASE STUDY

In this section, we visualize explanations for target events with TGAT on the synthetic dataset.
Specifically, we show the scores given by T-GNNExplainer, the navigator, and the target models’
intrinsic attention module. The values are normalized in [0, 1]. Since T-GNNExplainer returns a
subset, we assign 1 to the selected events and 0 to others. The bar colours are consistent with type
colours in Fig. 2. The light green and green colours represent positive events to trigger the event E3,
while the red colour indicate negative events to inhibit the event E3. The grey are irrelevant events.
Because we explain the happened target event E3, a good explainer should assign relatively high
scores to green bars and low scores to gray and red events.

Fig. 5 and Fig. 6 present the cases on synthetic v1 and v2. ATTN finds a dense event subset including
irrelevant or negative events (Fig. 5(c)), or overlooks some previous positive events (Fig. 6(c)).
The navigator obtains a better result than ATTN. It assigns high scores to green bars and almost
eliminates the gray and red ones. Assisted by the navigator, T-GNNExplainer utilizes the explorer
to further filter the events and make sure the final result is concise. Overall, our final event set is
sparse while it remains the most important events leading to the occurrence of the target event E3.

(a) OURS (b) NAVIGATOR (c) ATTN

Figure 5: Synthetic v1, target event index 7380.

(a) OURS (b) NAVIGATOR (c) ATTN

Figure 6: Synthetic v2, target event index 2013.

6 CONCLUSION

In this paper, we propose the T-GNNExplainer for temporal graph model explanation. We design
a novel explorer-navigator framework to search for explanations effectively and efficiently. Experi-
mental results illustrate the superiority of T-GNNExplainer on both synthetic and real-world datasets
with two typical temporal graph models. Since instance-level explanations can be local and sensitive
to the input, exploring model-level explanations for temporal graph models could be future work.
Besides, how to generate simulated datasets to mimic real-world dynamic graphs more accurately
also deserves further investigation.
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