
Power posteriors do not reliably learn the number of
components in a finite mixture

Diana Cai∗
Dept. of Computer Science

Princeton University
Princeton, NJ 08544

dcai@cs.princeton.edu

Trevor Campbell∗
Dept. of Statistics

University of British Columbia
Vancouver, BC V6T 1Z4
trevor@stat.ubc.ca

Tamara Broderick
CSAIL

MIT
Cambridge, MA 02139

tbroderick@csail.mit.edu

Abstract

Scientists and engineers are often interested in learning the number of subpopu-
lations (or components) present in a data set. Data science folk wisdom tells us
that a finite mixture model (FMM) with a prior on the number of components
will fail to recover the true, data-generating number of components under model
misspecification. But practitioners still widely use FMMs to learn the number of
components, and statistical machine learning papers can be found recommending
such an approach. Increasingly, though, data science papers suggest potential
alternatives beyond vanilla FMMs, such as power posteriors, coarsening, and re-
lated methods. In this work we start by adding rigor to folk wisdom and proving
that, under even the slightest model misspecification, the FMM component-count
posterior diverges: the posterior probability of any particular finite number of
latent components converges to 0 in the limit of infinite data. We use the same
theoretical techniques to show that power posteriors with fixed power face the
same undesirable divergence, and we provide a proof for the case where the power
converges to a non-zero constant. We illustrate the practical consequences of our
theory on simulated and real data. We conjecture how our methods may be applied
to lend insight into other component-count robustification techniques.

1 Introduction

In any probabilistic model, simplifying assumptions are made out of necessity. Some models and
conclusions nonetheless lead to reliable and useful inference. But some misspecification will have
undesirable consequences. In this work we focus on the case of mixture models — which are widely
used to discover latent groups, or components, within a population. Often the number of components
is unknown in advance, and one of the principal inferential goals is estimating and interpreting this
number. For example, practitioners might wish to find the number of latent genetic populations
(Pritchard et al., 2000; Lorenzen et al., 2006; Huelsenbeck and Andolfatto, 2007), gene tissue profiles
(Yeung et al., 2001; Medvedovic and Sivaganesan, 2002), cell types (Chan et al., 2008; Prabhakaran
et al., 2016), haplotypes (Xing et al., 2006), switching Markov regimes in US dollar exchange rate
data (Otranto and Gallo, 2002), gamma-ray burst types (Mukherjee et al., 1998), or segmentation
regions in an image (e.g., tissue types in an MRI scan (Banfield and Raftery, 1993)). In all of these
cases, it is typical to assume some standard parametric form for the mixture likelihoods, and we can
expect that this form will be at least slightly misspecified.

A common approach to learning mixture components and their cardinality is to use a finite mixture
model with a prior on the number of components (FMM) (Nobile, 1994; Stephens, 2000; Green and
Richardson, 2001; Nobile, 2004, 2007; Nobile and Fearnside, 2007; Miller and Harrison, 2013, 2014,
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2018; Grazian et al., 2020). Typically the prior on component counts is supported on all possible
strictly-positive integers, and we compute a posterior distribution over the number of components
(Pritchard et al., 2000; Lorenzen et al., 2006; Huelsenbeck and Andolfatto, 2007). But empirical
evidence (Miller and Dunson, 2019, e.g.) suggests that the posterior number of components is very
sensitive to misspecification of the component likelihoods. Indeed, data science folk wisdom tells us
that finite mixture models will tend to choose too many components in practice (Frühwirth-Schnatter,
2006, Chapter 7).

One proposal to address this mis-estimation is to use an α-posterior, or power posterior, where we
replace the likelihood with the same likelihood but raised to a fixed power α > 0, often between 0 and
1 (Grünwald, 2006; Grünwald and van Ommen, 2017; Royall and Tsou, 2003; Ghosh and Sudderth,
2012; Holmes and Walker, 2017). Power posteriors have much more general application than just to
mixture models; we focus only on mixture models here and note that behavior of power posteriors
for other models may be very different than for mixture models. In a separate line of work, Miller
and Dunson (2019) propose a coarsened posterior, which they show can be closely approximated
by a variant of the power posterior with exponent αN → 0 as the number of data points N → ∞;
in fact, they use this approximation in all of their experiments. Note that we use the terminology
“power posterior” or α-posterior throughout to refer to the fixed power case, and the terminology
αN-posterior to refer to the case where the power may depend on N .

In the present work, we start by adding rigor to data science folk wisdom and prove that, under even
the slightest model misspecification, the posterior number of components in a classic finite mixture
analysis diverges; that is, the posterior probability of any particular finite number of latent components
converges to 0 in the limit of infinite data. We use a similar analysis to lend insight into the power
posterior for finite mixtures; in particular, we find that the component-count power posterior, with
power that is constant in N , diverges in the same way. We give a proof that an αN-posterior, where αN

converges to a nonzero constant, also diverges. We support our theory with experiments on simulated
and real data. We leave analysis of powers αN → 0 to future work but provide some discussion here.

2 Main results

We begin with a brief description of the finite mixture model we consider in this work and a statement
of the main results. We defer precise details to Section 3.

Let g be a mixing measure g :=
∑k
j=1 wjδθj on a parameter space Θ with wj ∈ [0, 1] and∑k

j=1 wj = 1, and let Ψ = {ψθ : θ ∈ Θ} be a family of component distributions dominated
by a σ-finite measure µ. Then we can express a finite mixture f of the components as

f =

∫
Θ

ψθdg(θ) =

k∑
j=1

wjψθj .

Consider a Bayesian model with a prior distribution Π on the set of all mixing measures G on Θ
with finitely many atoms, i.e., g ∼ Π, and likelihood corresponding to conditionally i.i.d. data from
f =

∫
ψθdg(θ). The model assumes the likelihood is f , but the model is misspecified; i.e., the

observations X1:N := (X1, . . . , XN ) are actually generated conditionally i.i.d. from f0, which is not
itself a finite mixture of distributions in Ψ. For example, the likelihood f might be a finite mixture of
Gaussian distributions, but f0 might represent a finite mixture of Laplace distributions.

Let Π(α)(k |X1:N ) denote the posterior marginal number of components induced by raising the
likelihood to a fixed power α > 0. Our main result is that under this misspecification of the
likelihood, for any α ∈ (0, 1], the α-posterior on the number of components Π(α)(k |X1:N ) diverges;
i.e., for any finite k ∈ N, Π(α)(k |X1:N )→ 0 as N →∞.

We make only two requirements of the mixture model to guarantee this result: (1) the true data-
generating distribution f0 must be arbitrarily well-approximated by finite mixtures of Ψ, and (2)
the family Ψ must satisfy mild regularity conditions that hold for popular mixture models (e.g., the
family Ψ of Gaussians parametrized by mean and variance). We provide precise definitions of the
assumptions needed for Theorem 2.1 to hold in Section 3, and a proof in Appendix A.1.
Theorem 2.1 (Main result). Suppose observations X1:N are generated i.i.d. from a distribution f0

that is not a finite mixture of Ψ. Assume that:
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Assumption 3.1: f0 is in the KL-support of the prior Π, and

Assumption 3.6: Ψ is continuous, is mixture-identifiable, and has degenerate limits.

Then for any α ∈ (0, 1], the α-posterior on the number of components diverges; i.e., for all k ∈ N,

Π(α)(k |X1:N )
N→∞−→ 0 f0-a.s. (1)

Note that the conditions of the theorem—although technical—are satisfied by a wide class of models
used in practice. Assumption 3.1 requires that the prior Π places enough mass on mixtures near
the true generating distribution f0. Assumption 3.6 enforces regularity of the component family
and is satisfied by many popular models used in practice, such as the multivariate Gaussian family
(Proposition B.2) and, more generally, mixture-identifiable location-scale families (Proposition B.3).

While the result of Theorem 2.1 assumes that the model uses a fixed prior Π, in many practical
modeling scenarios it is common to specify a prior ΠN that depends on observed data X1:N (e.g.,
to establish a parameter range). If f0 satisfies a modified KL-support condition with respect to the
sequence of priors ΠN , it is straightforward to show that the α-posterior number of components also
diverges in this setting by Corollary A.5.

2.1 Extension to sequences αN

Much of the existing literature on power posteriors focuses on the case where the power is fixed
between 0 and 1 (Grünwald, 2006; Grünwald and van Ommen, 2017; Walker and Hjort, 2001; Royall
and Tsou, 2003). In Theorem 2.1, we considered the asymptotic behavior of the α-posterior number
of components with a fixed α ∈ (0, 1).

We also provide a result about the αN-posterior number of components, where the sequence αN may
depend on the sample size N . Corollary 2.2 states that if αN converges to a value between 0 and 1,
then the αN-posterior number of components diverges; a proof is presented in Appendix A.2.
Corollary 2.2. Suppose the conditions of Theorem 2.1 hold. Let αN → α, where α ∈ (0, 1). Then
for any k ∈ N,

Π(αN)(k |X1:N )
N→∞−→ 0, f0-a.s.

Note that the above statement does not include sequences αN that converge to 0. A notable instance
of a sequence αN → 0 is studied by Miller and Dunson (2019) as an approximation to a coarsened
posterior. Specifically, Miller and Dunson (2019) consider a particular sequence αN = γ/(γ +N),
where γ is a coarsening parameter. The interpretation of this particular sequence is that the posterior
will, for any number N of observations, behave as though there were roughly γ number of data points.
Additionally, characterizing the behavior of the αN-posterior number of components for other rates
of convergence of αN → 0 beyond the one proposed by Miller and Dunson (2019) remains an open
question.

3 Setup and assumptions in Theorem 2.1

This section makes the details of the modeling setup and each of the conditions in Theorem 2.1
precise.

3.1 Notation and setup

Let X and Θ be Polish spaces for the observations and parameters, respectively, and endow both
with their Borel σ-algebra. For a topological space (·), let C (·) be the bounded continuous functions
from (·) into R, and P(·) be the set of probability measures on (·) endowed with the weak topology
metrized by the Prokhorov distance d (Ghosal and van der Vaart, 2017, Appendix A, p. 508),
and Borel σ-algebra. We use fi ⇒ f and fi ⇐⇒ f ′i to denote limi→∞ d(fi, f) = 0 and
limi→∞ d(fi, f

′
i) = 0, respectively, for fi, f ′i , f ∈P(·).

We assume that the family of distributions Ψ = {ψθ : θ ∈ Θ} is absolutely continuous with respect
to a σ-finite base measure µ, i.e., ψθ � µ for all θ ∈ Θ, and that for measurable A ⊆ X, ψθ(A) is
a measurable function on Θ. Define the measurable mapping F : P(Θ) → P(X) from mixing
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measures to mixtures of Ψ, F (g) =
∫
ψθdg(θ). Let G be the set of atomic probability measures on

Θ with finitely many atoms, and let F be the set of finite mixtures of Ψ.

In the Bayesian finite mixture model from Section 2, a mixing measure g ∼ Π is generated from a
prior measure Π on G, and f = F (g) is a likelihood distribution. The α-posterior distribution on the
mixing measure is

∀ measurable A ⊆ G, Π(α)(A |X1:N ) =

∫
A

∏N
n=1( dfdµ )α(Xn) dΠ(g)∫

G
∏N
n=1( dfdµ )α(Xn) dΠ(g)

, (2)

where df
dµ is the density of f = F (g) with respect to µ and α > 0. The α-posterior on the mixing

measure g ∈ G induces an α-posterior on the number of components k ∈ N by counting the number
of atoms in g, and it also induces a posterior on mixtures f ∈ F via the pushforward through the
mapping F . We overload the notation Π(α)(· |X1:N ) to refer to all of these α-posterior distributions
and Π(·) to refer to prior distributions; the meaning should be clear from context.

3.2 Model assumptions

The first assumption of Theorem 2.1 is that while the true data-generating distribution f0 is not
contained in the model class f0 /∈ F, it lies on the boundary of the model class. In particular, we
assume f0 is in the KL-support of the prior Π. Denote the Kullback-Leibler (KL) divergence between
probability measures f0 and f as

KL(f0, f) :=

{ ∫
log
(
df0
df

)
df0 f0 � f

∞ otherwise
.

Assumption 3.1. For all ε > 0, the prior distribution Π satisfies

Π(f ∈ F : KL(f0, f) < ε) > 0.

We use Assumption 3.1 in the proof of Theorem 2.1 primarily to ensure that the Bayesian posterior is
consistent for f0. Note that Assumption 3.1 is fairly weak in practice. Intuitively, it just requires that
the family Ψ is rich enough so that mixtures of Ψ can approximate f0 arbitrarily well, and that the
prior Π places sufficient mass on those mixtures close to f0. For Bayesian mixture modeling, Ghosal
et al. (1999, Theorem 3), Tokdar (2006, Theorem 3.2), Wu and Ghosal (2008, Theorem 2.3), and
Petralia et al. (2012, Theorem 1) provide conditions needed to satisfy Assumption 3.1.

The second assumption of Theorem 2.1 is that the family of component distributions Ψ is well-
behaved. This assumption has three stipulations. First, the mapping θ 7→ ψθ must be continuous;
this condition essentially asserts that similar parameter values θ must result in similar component
distributions ψθ.
Definition 3.2. The family Ψ is continuous if the map θ 7→ ψθ is continuous.

Second, the family Ψ must be mixture-identifiable, which guarantees that each mixture f ∈ F is
associated with a unique mixing measure G ∈ G.
Definition 3.3 (Teicher (1961, 1963)). The family Ψ is mixture-identifiable if the mapping F (g) =∫
ψθdg(θ) restricted to finite mixtures F : G→ F is a bijection.

In practice, one should always use an identifiable mixture model for clustering; without identifiability,
the task of learning the number of components is ill posed. And many models satisfy mixture-
identifiability, such as finite mixtures of the multivariate Gaussian family (Yakowitz and Spragins,
1968), the Cauchy family (Yakowitz and Spragins, 1968), the gamma family (Teicher, 1963), the
generalized logistic family, the generalized Gumbel family, the Weibull family, and von Mises family
(Ho and Nguyen, 2016, Theorem 3.3). A number of authors (e.g., Chen (1995); Ishwaran et al. (2001);
Nguyen (2013); Ho and Nguyen (2016); Guha et al. (2019); Heinrich and Kahn (2018)) appeal to
stronger notions of identifiability for mixtures than Definition 3.3. But, to show posterior divergence
in the present work, we do not require conditions stronger than Definition 3.3.

The third stipulation—that the family Ψ has degenerate limits—guarantees that a “poorly behaved” se-
quence of parameters (θi)i∈N creates a likewise “poorly behaved” sequence of distributions (ψθi)i∈N.
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This condition allows us to rule out such sequences in the proof of Theorem 2.1, and is the essential
regularity condition to guarantee that a sequence of finite mixtures of at most k components cannot
approximate f0 arbitrarily closely.

Definition 3.4. A sequence of distributions (ψi)
∞
i=1 is µ-wide if for any closed set C such that

µ(C) = 0 and any sequence of distributions (φi)
∞
i=1 such that ψi ⇐⇒ φi,

lim sup
i→∞

φi(C) = 0.

Definition 3.5. The family Ψ has degenerate limits if for any tight, µ-wide sequence (ψθi)i∈N, we
have that (θi)i∈N is relatively compact.

The contrapositive of Definition 3.5 provides an intuitive explanation of the condition: as i→∞,
for any sequence of parameters θi that eventually leaves every compact set K ⊆ Θ, either the ψθi
become “arbitrarily flat” (not tight) or “arbitrarily peaky” (not µ-wide). For example, consider the
family Ψ of Gaussians on R with Lebesgue measure µ. If the variance of ψθi shrinks as i grows,
the sequence of distributions converges weakly to a sequence of point masses (not dominated by the
Lebesgue measure). If either the variance or the mean diverges, the distributions flatten out and the
sequence is not tight. We use the fact that these are the only two possibilities when a sequence of
parameters is poorly behaved (not relatively compact) in the proof of Theorem 2.1.

These three stipulations together yield Assumption 3.6.

Assumption 3.6. The mixture component family Ψ is continuous, is mixture-identifiable, and has
degenerate limits.

4 Proof of Theorem 2.1 and extension to sequences αN

4.1 Proof of Theorem 2.1

The proof has two essential steps. The first is to show that for any α ∈ (0, 1], the Bayesian posterior
is weakly consistent for the mixture f0; i.e., for any weak neighborhood U of f0 the sequence of
posterior distributions satisfies

Π(α)(U |X1:N )
N→∞−→ 1, f0-a.s. (3)

Weak consistency for f0 is guaranteed directly by Assumption 3.1 and the fact that Ψ is dominated by
a σ-finite measure µ. For α = 1, Assumption 3.1 implies weak consistency for f0, i.e., Equation (3)
(Ghosh and Ramamoorthi, 2003, Theorem 4.4.2). For α ∈ (0, 1), if Assumption 3.1 holds, by Ghosal
and van der Vaart (2017, Theorem 6.54), with f0-probability 1, for any Hellinger neighborhood V of
f0 and any α ∈ (0, 1), Π(α)(V |X1:N )

N→∞−→ 1. Thus, since V ⊆ U,

Π(α)(U |X1:N ) ≥ Π(α)(V |X1:N )
N→∞−→ 1, f0-a.s.

The second step is to show that for any finite k ∈ N, there exists a weak neighborhood U of f0

containing no mixtures of the family Ψ with at most k components. Together, these steps show that
the posterior probability of the set of all k-component mixtures converges to 0 f0-a.s. as the amount
of observed data grows.

We provide a proof of the second step. To begin, note that Assumption 3.1 has two additional
implications about f0 beyond Equation (3). First, f0 must be absolutely continuous with respect to
the dominating measure µ; if it were not, then there exists a measurable setA such that f0(A) > 0 and
µ(A) = 0. Since µ dominates Ψ, any f ∈ F satisfies f(A) = 0. Therefore KL(f0, f) =∞, and the
prior support condition cannot hold. Second, it implies that f0 can be arbitrarily well-approximated
by finite mixtures under the weak metric, i.e., there exists a sequence of finite measures fi ∈ F, i ∈ N
such that fi ⇒ f0 as i→∞. This holds because

√
1
2KL(f0, f) ≥ TV(f0, f) ≥ d(f0, f).

Now suppose the contrary of the claim for the second step, i.e., that there exists a sequence (fi)
∞
i=1

of mixtures of at most k components from Ψ such that fi ⇒ f0. By mixture-identifiability, we have
a sequence of mixing measures gi with at most k atoms such that F (gi) = fi. Suppose first that the
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atoms of the sequence (gi)i∈N either stay in a compact set or have weights converging to 0. More
precisely, suppose there exists a compact set K ⊆ Θ such that

gi
(
Θ \K

)
→ 0. (4)

Decompose each gi = gi,K + gi,Θ\K such that gi,K is supported on K and gi,Θ\K is supported on
Θ \K. Define the sequence of probability measures ĝi,K =

gi,K
gi,K(Θ) for sufficiently large i such that

the denominator is nonzero. Then Equation (4) implies

F
(
ĝi,K

)
⇒ f0.

Since Ψ is continuous and mixture-identifiable, the restriction of F to the domain G is continuous and
invertible; and sinceK is compact, the elements of (ĝi,K)i∈N are contained in a compact set GK ⊆ G
by Prokhorov’s theorem (Ghosal and van der Vaart, 2017, Theorem A.4). Therefore F (GK) = FK is
also compact, and the map F restricted to the domain GK is uniformly continuous with a uniformly
continuous inverse by Rudin (1976, Theorems 4.14, 4.17, 4.19). Next since F (ĝi,K) ⇒ f0, the
sequence F (ĝi,K) is Cauchy in FK ; and since F−1 is uniformly continuous on FK , the sequence
ĝi,K must also be Cauchy in GK . Since GK is compact, ĝi,K converges in GK . Lemma A.1 below
guarantees that the convergent limit gK is also a mixing measure with at most k atoms; continuity of
F implies that F (gK) = f0, which is a contradiction, since by assumption f0 is not representable as
a finite mixture of Ψ.

Now we consider the remaining case: for all compact setsK ⊆ Θ, gi(Θ\K) 6→ 0. Therefore there ex-
ists a sequence of parameters (θi)

∞
i=1 that is not relatively compact such that lim supi→∞ gi({θi}) >

0. By Assumption 3.6, the sequence (ψθi)i∈N is either not tight or not µ-wide. If (ψθi)i∈N is not tight
then fi = F (gi) is not tight, and by Prokhorov’s theorem fi cannot converge to a probability measure,
which contradicts fi ⇒ f0. If (ψθi)i∈N is not µ-wide then fi = F (gi) is not µ-wide. Denote
(φi)i∈N to be the singular sequence associated with (fi)i∈N and C to be the closed set such that
lim supi→∞ φi(C) > 0, µ(C) = 0, and φi ⇐⇒ fi per Definition 3.4. Since f0 � µ, f0(C) = 0.
But fi ⇒ f0 implies that φi ⇒ f0, so lim supi→∞ φi(C) = f0(C) = 0 by the Portmanteau theorem
(Ghosal and van der Vaart, 2017, Theorem A.2). This is a contradiction.

5 Experiments

For all experiments below, we use a finite mixture model with a Gaussian component family and a
conjugate prior. In particular, consider number of components k, mixture weights p ∈ Rk, Gaussian
component precisions τ ∈ Rk+ and means θ ∈ Rk, labels Z ∈ {1, . . . , k}N , and data X ∈ RN . Then
the probabilistic generative model is

k ∼ Geom(r) w ∼ Dirichletk(γ, . . . , γ)

τj
i.i.d.∼ Gam(α, β) θj

i.i.d.∼ N (m,κ−1)

Zn
i.i.d.∼ Categorical(w) Xn

ind∼ N (θzn , τ
−1
zn ),

where j ranges from 1, . . . , k, and n ranges from 1, . . . , N .

For posterior inference, we used a Gibbs sampler (Miller and Harrison, 2018, Sec. 7.2.2, Algorithm 1),
coupled with the approximation described in Miller and Dunson (2019, Section 5). Note that we use
this model primarily to illustrate the problem of α-posterior divergence under model misspecification;
it should not be interpreted as a carefully-specified model for the data examples that we study. Also
note that while the empirical examples below involve Gaussian FMMs, our theory applies to a more
general class of component distributions.

In this section, we consider the behavior of the α-posterior only for fixed α ∈ (0, 1). In Appendix C.2,
we show the αN-posterior number of components for αN → α ∈ (0, 1) exhibits similar divergent
behavior.

5.1 Synthetic mixture data

Here we study the effects of varying data set sizes under a misspecified model. We generated data
sets of increasing size N ∈ {50, 100, 500, 1000, 5000, 10000} from a 2-component Laplace mixture
models, where the 2-component distributions have means (−5, 5), scales (1.5, 1), and mixing weights
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(a) α = 1 (b) α = 0.8

(c) α = 0.5 (d) α = 0.2

Figure 1: Synthetic data generated from a 2-component Laplace mixture model. Curves are α-
posteriors on number of components (with fixed α) asN varies. The vertical black dotted line denotes
the generating number of components.

(0.4, 0.6). We generated the sequence of data sets such that each was a subset of the next, larger data
set in the sequence. Following Miller and Harrison (2018, Section 7.2.1), we set the hyperparameters
of the Bayesian finite mixture model as follows: m = 1

2 (maxn∈[Ñ ]Xn + minn∈[Ñ ]Xn) where
Ñ = 10,000, κ = (maxn∈[Ñ ]Xn −minn∈[Ñ ]Xn)−2, α = 2, r = 0.1, γ = 1, and β = 1. We ran
a total of 150,000 Markov chain Monte Carlo iterations per data set; we discarded the first 50,000
iterations as burn-in.

In Figure 1, we show the α-posterior number of components resulting from fixed α = 1, 0.8, 0.5, 0.2.
Note that α = 1 is the usual posterior distribution on the number of components. The figures show
that as α decreases, the posterior mass tends to shift to smaller numbers of components and also
becomes less concentrated. However, as in the usual posterior (α = 1), the α-posterior still diverges,
though more slowly with lower values of α.

5.2 Galaxy mixture data

Mixture models are used in astronomy to characterize stellar populations (Nemec and Nemec,
1991), including analysis of star and galaxy clusters. We study the Shapley galaxy data set
(Drinkwater et al., 2004), which contains measurements of redshifts (i.e., velocities in km/s) for
4215 galaxies in the Shapley Concentration regions. To examine the effect of increasing data
set size on inferential results, we randomly sampled subsets of increasing size without replace-
ment with N ∈ {100, 200, 500, 1000, 2000, 4215}; each smaller subset was contained in the next
larger data set. We set the hyperparameters of the Bayesian finite mixture model as follows:
m = 1

2 (maxn∈[Ñ ]Xn + minn∈[Ñ ]Xn) where Ñ = 4215, κ = (maxn∈[Ñ ]Xn −minn∈[Ñ ]Xn)−2,
α = 2, r = 0.1, γ = 1, and β = 1. We ran a total of 100,000 Markov chain Monte Carlo iterations
per data set; we discarded the first 50,000 iterations as burn-in.
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(a) α = 1 (b) α = 0.8

(c) α = 0.5 (d) α = 0.2

Figure 2: Shapley galaxy data. Curves are α-posteriors on the number of components (with fixed α)
as N varies.

The α-posterior number of components for this model is displayed in Figure 2. For α = 1, we
find that as we examine more and more data, the posterior diverges. Similar behavior occurs with
fractional α-posteriors. With smaller values of α, the α-posterior diverges more slowly.

6 Discussion and future work

We have shown that the posterior distribution for the number of components in finite mixtures diverges
when the mixture component family is misspecified. Our results show that this divergence holds even
when using a power posterior, with fixed power between 0 and 1, for robustness. It follows that, with
either a standard or power posterior, inferential results on the number of components will change
substantively with more data, no matter how much data has been analyzed so far. This divergence
calls into question the usefulness of FMMs, and power posterior FMMs, in applications.

A number of open questions remain. We here point to similar power-posterior behavior even when
the power changes in N but converges to a constant in (0, 1). However, Miller and Dunson (2019)
consider powers that converge to 0 in the limit of N → ∞. It remains to investigate this case,
especially for more general sequences of powers converging to zero, beyond the particular sequence
suggested by Miller and Dunson (2019).

Because our analysis is inherently asymptotic, it is possible that the α-posterior on the number of
components may still provide useful inferences for a finite sample — even when the power is fixed or
converging to a non-zero constant. But our results suggest care would need to be taken to account for
the inferential dependence on data size.
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A Proofs

A.1 Additional details for the proof of Theorem 2.1

Lemma A.1. Suppose φ, (φi)i∈N are Borel probability measures on a Polish space such that φi ⇒ φ
and supi | suppφi| ≤ k ∈ N. Then | suppφ| ≤ k.

Proof. Suppose | suppφ| > k. Then we can find k + 1 distinct points x1, . . . , xk+1 ∈ suppφ.
Pick any metric ρ on the Polish space, and denote the minimum pairwise distance between the
points 2ε. Then for each point j = 1, . . . , k + 1 define the bounded, continuous function hj(x) =
0 ∨

(
1− ε−1ρ(x, xj)

)
. Since xj ∈ suppφ, we have that

∫
hjdφ > 0. Weak convergence φi ⇒ φ

therefore implies minj=1,...,k+1 lim infi→∞
∫
hjdφi > 0. But the hj are nonzero on disjoint sets,

and each φi only has k atoms; the pigeonhole principle yields a contradiction.

A.2 Proof of Corollary 2.2

The only difference of the proof of Corollary 2.2 with the proof of Theorem 2.1 is the first step, i.e.,
weak consistency of the αN -posterior for f0. Here we provide a proof of the first step, which is a
straightforward generalization of Ghosal and van der Vaart (2017, Theorem 6.54).

Let p := df
dµ and p0 := df0

dµ denote the density of f and f0 with respect to µ, respectively.

For any weak neighborhood U of f0, we can express the αN-posterior as

Π(αN)(U c|X1:N ) =

∫
Uc

∏N
n=1 p

αN(Xn)dΠ(p)∫ ∏N
n=1 p

αN(Xn)dΠ(p)
=

∫
Uc

∏N
n=1( pp0 )αN(Xn)dΠ(p)∫ ∏N
n=1( pp0 )αN(Xn)dΠ(p)

. (5)

Since f0 is in the KL support of the prior Π, by Lemma A.2, for any β > 0 and αN → α ∈ (0, 1),
the denominator satisfies

lim inf
N→∞

eβN
∫ N∏

n=1

(
p

p0
)αN (Xn)dΠ(p) =∞, f0-a.s.

Suppose V is a Hellinger neighborhood of f0. Then by Lemma A.3 and since V c ⊇ U c, for some
β0 > 0, with f0-probability 1,

eβ0N

∫
V c

N∏
n=1

(
p

p0
)αN (Xn)dΠ(p) ≥ eβ0N

∫
Uc

N∏
n=1

(
p

p0
)αN (Xn)dΠ(p)

N→∞−→ 0.

Finally, choose β = β0, and so with f0-probability 1, Equation (5) goes to 0 as N →∞.

We now prove the lemmas used for the proof above.
Lemma A.2. Suppose that f0 is in the KL support of the prior Π and and αN → α ∈ (0, 1) as
N →∞, then for any β > 0,

lim inf
N→∞

eβN
∫ N∏

n=1

(
p

p0
)αN (Xn)dΠ(p) =∞, f0-a.s.

Proof. Let Kε := {f : KL(f0, f) < ε}. First note that by monotonicity, the strong law of large
numbers, and the KL condition, we can bound the integral as follows∫ N∏

n=1

(
p

p0
)αN(Xn)dΠ(p) ≥

∫
Kε

exp

(
αN

N∑
n=1

log

[
p

p0
(Xn)

])
dΠ(p) ≥

∫
Kε

exp

(
− αεN

)
dΠ(p).

Thus, Ghosh and Ramamoorthi (2003, Lemma 4.4.1) implies the the result.

Lemma A.3. Let αN → α ∈ (0, 1) as N →∞. Then for any Hellinger neighborhood V of f0 and
for some β0 > 0,

eβ0N

∫
V c

N∏
n=1

(
p

p0
)αN (Xn)dΠ(p)

N→∞−→ 0, f0-a.s. (6)

9



Proof. Denote the Hellinger transform as ρα(p, p0) :=
∫
pαp1−α

0 dµ. By Fubini’s theorem and
because f0(p/p0)α = ρα(p, p0), we have that

f0

∫
V c

N∏
n=1

(p/p0)αN(Xn)dΠ(p)

 =

∫
V c
ραN(p, p0)NdΠ(p) ≤ C exp(−Nε2 min(αN, 1− αN)).

The inequality above follows because for any α ∈ (0, 1), min(α, 1−α) d2
H(p, p0) ≤ − log pα(p, p0),

where dH denotes the Hellinger distance (Ghosal and van der Vaart, 2017, Lemma B.5) and because
for any p ∈ V c, d2

H(p, p0) ≥ ε2. Applying Markov’s inequality and Borel-Cantelli implies that for
some β0 > 0,

f0

∫
V c

N∏
n=1

(p/p0)αN(Xn)dΠ(p) > e−β0N i.o.

 = 0,

and so the conclusion holds.

A.3 Extension to priors that vary with N

Our main result (i.e., Theorem 2.1) applies to the setting of a fixed prior Π. However, it is often
natural to specify a prior distribution that changes with N (e.g., Roeder and Wasserman (1997),
Richardson and Green (1997), and Miller and Harrison (2018, Section 7.2.1)). Corollary A.5 below
demonstrates that a result nearly identical to Theorem 2.1 holds for priors that are allowed to vary
with N , provided that f0 is in the KL-support of the sequence of priors ΠN . The only difference
is that our result in this case is slightly weaker: we show that the posterior number of components
diverges in probability rather than almost surely.

Assumption A.4. For all ε > 0, the sequence of prior distributions ΠN satisfies

lim inf
N→∞

ΠN (f : KL(f0, f) < ε) > 0.

Corollary A.5. Suppose in the setting of Theorem 2.1 we replace Assumption 3.1 with Assumption A.4.
Then for any α ∈ (0, 1], the α-posterior on the number of components diverges in f0-probability: i.e.,
for all k ∈ N,

Π(α)(k |X1:N )
N→∞−→ 0 in f0-probability.

Proof. Since for any ε > 0, lim infN→∞ΠN (f : KL(f0, f) < ε) > 0, Ghosal and van der Vaart
(2017, Theorem 6.54, Lemma 6.26) imply that the α-posterior is weakly consistent at f0 in probability:
i.e., for any weak neighborhood U of f0,

Π(α)(U |X1:N )
N→∞−→ 1 in f0-probability.

Assumption A.4 also implies that for sufficiently large N , f0 is a weak limit of finite mixtures in F.
The remainder of the proof is identical to that of Theorem 2.1.

B Example component families

Consider the multivariate Gaussian family Ψ =
{
N (ν,Σ) : ν ∈ Rd, Σ ∈ Sd++

}
with parameter

space Θ = Rd× Sd++, equipped with the topology induced by the Euclidean metric. Let (λj(Σ))dj=1

denote the eigenvalues of the covariance matrix Σ ∈ Sd++ that satisfy∞ > λ1(Σ) ≥ . . . ≥ λd(Σ) >
0. Since the family of Gaussians is continuous and mixture-identifiable (Yakowitz and Spragins,
1968, Proposition 2), the main condition we need to verify is that the family has degenerate limits
(Definition 3.5). A useful fact is that if a sequence of Gaussian distributions is tight, then the sequence
of means and the eigenvalues of the covariance matrix is bounded.

Lemma B.1. Let (ψi)i∈N be a sequence of Gaussian distributions with mean νi ∈ Rd and covariance
Σi ∈ Sd++. If (ψi)i∈N is a tight sequence of measures, then the sequences (νi)i∈N and (λ1(Σi))i∈N
are bounded.
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Proof. Let Yi denote a random variable with distribution ψi. For each covariance matrix Σi, consider
its eigenvalue decomposition Σi = UiΛiU

>
i , where Ui ∈ Rd×d is an orthonormal matrix and

Λi ∈ Rd×d is a diagonal matrix. Then the random variable Zi = U>i Yi has distributionN (U>i νi,Λi).
If either ‖νi‖2 = ‖U>i νi‖2 is unbounded or ‖Λi‖F is unbounded, then Zi is not tight (Billingsley
(1986, Example 25.10)). Since Zi and Yi lie in any ball centered at the origin with the same
probability, Yi is not tight.

Proposition B.2. Let Ψ =
{
N (ν,Σ) : ν ∈ Rd, Σ ∈ Sd++

}
be the multivariate Gaussian family,

where Sd++ := {Σ ∈ Rd×d : Σ = Σ>, Σ � 0} is the set of d × d symmetric, positive definite
matrices. Then Ψ satisfies Assumption 3.6.

We now show that the multivariate Gaussian family has degenerate limits.

Proof of Proposition B.2. If the parameters (θi)i∈N are not a relatively compact subset of Θ, then
either some coordinate of the sequence of means νi diverges, λ1(Σi) → ∞, or λd(Σi) → 0. If
some coordinate of the mean νi diverges or the maximum eigenvalue diverges, i.e., λ1(Σi) → ∞,
then the sequence (ψθi) is not tight by Lemma B.1. On the other hand, if λd(Σi) → 0 as i → ∞,
then ψθi converges weakly to a sequence of degenerate Gaussian measures that concentrate on
Ci =

{
x ∈ Rd : (x− νi)>ud,i = 0

}
, where ud,i is the dth eigenvector of Σi. Note that µ(Ci) = 0

for Lebesgue measure µ; so if we define C = ∪iCi in the setting of Definition 3.4, the sequence is
not µ-wide.

We can generalize Proposition B.2 beyond multivariate Gaussians to mixture-identifiable location-
scale families, as shown in Proposition B.3. Examples of such families include the multivariate
Gaussian family, the Cauchy family, the logistic family, the von Mises family, and generalized
extreme value families. The proof is similar to that of Proposition B.2.

Proposition B.3. Suppose Ψ is a location-scale family that is mixture-identifiable and absolutely
continuous with respect to Lebesgue measure µ, i.e.,

dΨ

dµ
=

{
|Σ|−1/2 ϕ

(
Σ−

1/2(x− ν)
)

: ν ∈ Rd,Σ ∈ Sd++

}
,

where ϕ : Rd → R is a probability density function. Then Ψ satisfies Assumption 3.6.

C Additional experiments

C.1 Gaussian mixture data

We generated data sets of increasing size N ∈ {50, 100, 500, 1000, 5000, 10000} from 2-component
univariate Gaussian mixture models with means (−5, 5), scales (1.5, 1), and mixing weights
(0.4, 0.6). In Figure 3, we see that the posterior number of components concentrates on the generating
number of components, and for α = 0.2, the posterior is less concentrated when there is less data.

C.2 Results for αN → α

Using the same data of Section 5, we examined the behavior of the αN-posterior number of compo-
nents. Below, we consider sequences αN = (1− 1/N)α, where α ∈ {1, 0.8, 0.5, 0.2}. We plot the
αN-posterior number of components for the Laplace mixture data in Figure 4 and the galaxy data in
Figure 5. As in the fixed α case, we observe that the αN posterior number of components diverges.

C.3 Gene expression data

Computational biologists are interested in classifying cell types by applying clustering techniques
to gene expression data (Yeung et al., 2001; Medvedovic and Sivaganesan, 2002; McLachlan et al.,
2002; Medvedovic et al., 2004; Rasmussen et al., 2008; de Souto et al., 2008; McNicholas and
Murphy, 2010).
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(a) α = 1 (b) α = 0.2

Figure 3: Gaussian mixture data. Results for fixed α-posterior number of components. The vertical
black dotted line denotes the generating number of components.

(a) αN → 0.8 (b) αN → 0.2

(c) αN → 0.8 (d) αN → 0.2

Figure 4: Laplace mixture data. Results for αN -posterior number of components, where αN → α ∈
(0, 1).

In this section, we examine the behavior of the usual posterior (α = 1) on gene expression data using
a mixture of multivariate Gaussians with axis-aligned covariances. In particular, consider number
of components k, mixture weights p ∈ Rk, Gaussian component precisions τ ∈ Rk×D+ and means
θ ∈ Rk×D, labels Z ∈ {1, . . . , k}N , and data X ∈ RN×D. Then the probabilistic generative model
is

k ∼ Geom(r) w ∼ Dirichletk(γ, . . . , γ)

τjd
i.i.d.∼ Gam(α, β) θjd

i.i.d.∼ N (m,κ−1
jd )

Zn
i.i.d.∼ Categorical(w) Xnd

ind∼ N (θznd, τ
−1
znd

),
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(a) α→ 1 (b) α→ 0.8

(c) α→ 0.5 (d) α→ 0.2

Figure 5: Shapley galaxy data. Results for αN -posterior number of components, where αN → α ∈
(0, 1).

(a) Mouse single-cell data (b) Lung gene expression data

Figure 6: Posterior probability of the number of components k for Gaussian mixture models, fit to (a)
mouse cortex single-cell RNA sequencing data and (b) lung tissue gene expression data.

where j ranges from 1, . . . , k, d ranges from 1, . . . , D, and n ranges from 1, . . . , N .

In our next set of experiments, we apply the Gaussian finite mixture model to two gene expression
data sets: (1) single-cell RNA sequencing data from mouse cortex and hippocampus cells (Zeisel et al.,
2015) with the same feature selection as Prabhakaran et al. (2016) (N = 3008, D = 558, 11,000
Gibbs sampling steps with 1,000 of those as burn-in) and (2) mRNA expression data from human
lung tissue (Bhattacharjee et al., 2001) (N = 203, D = 1543, and 10,000 Gibbs sampling steps with
1,000 of those burn-in). Our experiments here represent a simplified version of previous mixture
model analyses for these and other related data sets (de Souto et al., 2008; Prabhakaran et al., 2016;
Armstrong et al., 2001; Miller and Harrison, 2018). For both data sets, we used hyperparameters
α = 1, β = 1, m = 0, κjd = τjd, r = 0.1, and γ = 1.
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As these gene expression data sets contain counts, we first transformed the data to real numerical
values. In particular, we used a base-2 log transform followed by standardization—such that each
dimension of the data had zero mean and unit variance—per standard practices (e.g., Miller and
Harrison (2018)). Then to examine the effect of increasing data set size on inferential results, we
randomly sampled subsets of increasing size without replacement; each smaller subset was contained
in the next larger data set.

For the single-cell RNAseq data set, the posterior on the number of components is shown in Figure 6a.
Here the ground truth number of clusters is captured when the data set size is N = 100. But as
predicted by our theory, as we increase the number of data points, the posterior number of components
diverges.

The α-posterior on the number of components for the lung gene expression data is shown in Figure 6b.
Again we find that on the smallest data subsets, the posterior appears to capture the ground truth
number of clusters, but that as we examine more and more data, the posterior diverges. While
diagonal covariance Gaussian components are likely not rich enough to model the cluster shapes,
our purpose here is to capture the effect of model misspecification on the posterior on the number of
components. Thus, these examples suggest the need for more robust analyses.
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