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ABSTRACT

Current methods for reconstructing training data from trained classifiers are re-
stricted to very small models, limited training set sizes, and low-resolution images.
Such restrictions hinder their applicability to real-world scenarios. In this paper,
we present a novel approach enabling data reconstruction in realistic settings for
models trained on high-resolution images. Our method adapts the reconstruction
scheme of Haim et al. (2022) to real-world scenarios – specifically, targeting mod-
els trained via transfer learning over image embeddings of large pre-trained models
like DINO-ViT and CLIP. Our work employs data reconstruction in the embed-
ding space rather than in the image space, showcasing its applicability beyond
visual data. Moreover, we introduce a novel clustering-based method to identify
good reconstructions from thousands of candidates. This significantly improves
on previous works that relied on knowledge of the training set to identify good
reconstructed images. Our findings shed light on a potential privacy risk for data
leakage from models trained using transfer learning.

1 INTRODUCTION

Understanding when training data can be reconstructed from trained neural networks is an intriguing
question that attracted significant interest in recent years. Successful reconstruction of training sam-
ples has been demonstrated for both generative models (Carlini et al., 2021; 2023) and classification
settings (Haim et al., 2022). Exploring this question may help understand the extent to which neural
networks memorize training data and their vulnerability to privacy attacks and data leakage.

Existing results on training data reconstruction from neural network classifiers focus on restricted and
unrealistic settings. These methods require very small training datasets, which strongly limit their
ability to generalize. Additionally, they are constrained to low-resolution images, such as CIFAR or
MNIST images, and simple models like multilayered perceptrons (MLPs) or small CNNs.

We aim to overcome these limitations in a transfer-learning setting. Transfer Learning leverages
knowledge gained from solving one problem to address a related problem, often by transferring
learned representations from large pre-trained models (known as Foundation Models) to tasks with
limited training data. In the context of deep learning, transfer learning is commonly implemented by
fine-tuning the final layers of pre-trained models or training small MLPs on their output embeddings,
known as deep features (Oquab et al., 2014). This approach often achieves high generalization even
for learning tasks with small training sets, while also requiring less computing power. Thus, transfer
learning is very common in practice.

In this work, we demonstrate reconstruction of training samples in more realistic scenarios. Specifi-
cally, we reconstruct high-resolution images from models that achieve good test performance, within
a transfer learning framework. Our approach involves training an MLP on the embeddings of
common pre-trained transformer-based foundation models, such as CLIP (Radford et al., 2021) or
DINO-ViT (Caron et al., 2021) (see Fig. 1). Our findings have implications for privacy, particularly
when transfer learning is being used on sensitive training data, such as medical data. Consequently,
preventing data leakage in transfer learning necessitates the development of appropriate defenses.

Additionally, our work addresses a key limitation of prior reconstruction works: their reliance on
training images for identifying good reconstructions from thousands of candidates. While this
approach demonstrated that training images are embedded within the model’s parameters, it’s
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Figure 1: Reconstructed Data from a binary classifier trained on 100 DINO-VIT embeddings

unrealistic for attackers to have access to the training data. To overcome this, we introduce a novel
clustering-based approach to effectively identify reconstructed training samples, eliminating the
need for prior knowledge of the training set. This marks a significant step towards establishing
reconstruction techniques as real-world privacy attacks.

Our Contributions:

• We demonstrate reconstruction of high-resolution training images from models trained in a
transfer learning approach, a significant advancement from previous reconstruction methods
that were limited to small images and models with low generalization.

• We demonstrate, for the first time, reconstruction of non-visual data (feature vectors of
intermediate layers).

• We introduce a novel clustering-based approach for effectively identifying training samples
without a-priori knowledge of training images, a significant step towards a more realistic
privacy attack.

2 PRIOR WORK

Data Reconstruction Attacks. Reconstruction attacks attempt to recover the data samples on
which a model is trained, posing a serious threat to privacy. Earlier examples of such attacks include
activation maximization (model-inversion) (Fredrikson et al., 2015; Yang et al., 2019), although they
are limited to only a few samples per class or assume knowledge of all-but-one sample (Balle et al.,
2022). Reconstruction in a federated learning setup (Zhu et al., 2019; He et al., 2019; Hitaj et al., 2017;
Geiping et al., 2020; Huang et al., 2021; Wen et al., 2022) where the attacker assumes knowledge
of samples’ gradients. Other works studied reconstruction attacks on generative models like LLMs
(Carlini et al., 2019; 2021; Nasr et al., 2023) and diffusion-based image generators (Somepalli et al.,
2022; Carlini et al., 2023). Our work is based on the reconstruction method from Haim et al. (2022),
which relies only on knowledge of the parameters of the trained model, and is based on theoretical
results of the implicit bias in neural networks (Lyu & Li, 2019; Ji & Telgarsky, 2020). This work was
generalized to multi-class setting (Buzaglo et al., 2023) and to the NTK regime (Loo et al., 2023).

Transfer Learning. Deep transfer learning, a common technique across various tasks (see surveys:
(Tan et al., 2018; Zhuang et al., 2020; Iman et al., 2023)), leverages pre-trained models from large
datasets to address challenges faced by smaller, domain-specific datasets (e.g., in the medical do-
main (Kim et al., 2022)). While convolutional neural networks (CNNs) have been the go-to approach
for transfer learning (Oquab et al., 2014; Yosinski et al., 2014), recent research suggests that vision
transformers (ViTs) may offer stronger learned representations for downstream tasks (Caron et al.,
2021; He et al., 2022). For example, ViT (Dosovitskiy et al., 2020), pre-trained on ImageNet (Deng
et al., 2009), provides robust general visual features. Beyond supervised pre-training, self-supervised
learning methods like DINO (Caron et al., 2021; Oquab et al., 2023) learn informative image rep-
resentations without requiring labeled data, allowing the model to capture strong image features
suitable for further downstream tasks. Additionally, CLIP (Radford et al., 2021) has emerged as a
powerful technique, leveraging a massive dataset of paired text-image examples and contrastive loss
to learn semantically meaningful image representations.
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Figure 2: Overview of our training and data reconstruction scheme.

3 METHOD

Our goal is to reconstruct training samples (images) from a classifier that was trained on the corre-
sponding embedding vectors of a large pre-trained model in a transfer learning manner.

The classifier training is illustrated in Fig. 2a. Formally, given an image classification task Ds =
{(si, yi)}ni=1 ⊆ Rds × {1, . . . , C}, where ds is the dimension of the input image1 and C is the
number of classes, we employ a large pre-trained model F : Rds → Rd (e.g., DINO) to transfer each
image si to its corresponding deep feature embedding xi = F(si) ∈ Rd, where d is the dimension of
the feature embedding vector (the output of F ). We then train a model ϕ(·,θ) : Rd → RC to classify
the embedding dataset Dx = (xi, yi)

n
i=1 ⊆ Rd × {1, . . . , C}, where θ ∈ Rp is a vectorization of the

trained parameters. Typically, ϕ is a single hidden-layer multilayer perceptron (MLP). Also note that
F is kept fixed during the training of ϕ. The overall trained image classifier is ϕ(F(s)).

Our reconstruction approach is illustrated in Fig. 2b and presented in detail below. Given the trained
classifier ϕ and the pre-trained model F , our goal is to reconstruct training samples si from the
training set Ds. The reconstruction scheme comprises two parts:

1. Reconstructing embedding vectors from the training set of the classifier ϕ.

2. Mapping the reconstructed embedding vectors back into the image domain. Namely, computing
F−1 (e.g., by “inverting” the pre-trained model F).

3.1 RECONSTRUCTING EMBEDDING VECTORS FROM ϕ

Given a classifier ϕ : Rd → Rc trained on an embedding training-set Dx = {(xi, yi)}ni=1, we apply
the reconstruction scheme of (Haim et al., 2022; Buzaglo et al., 2023) to obtain {x̂i}mi=1, which
are m “candidates” for reconstructed samples from the original training set Dx. In this section we
provide a brief overview of the reconstruction scheme of (Haim et al., 2022; Buzaglo et al., 2023)
(for elaboration see Sec. 3 in Haim et al. (2022)):

Implicit Bias of Gradient Flow: Lyu & Li (2019); Ji & Telgarsky (2020) show that given a
homogeneous2 neural network ϕ(·,θ) trained using gradient flow with a binary cross-entropy loss
on a binary classification dataset {(xi, yi)}ni=1 ⊆ Rd × {±1}, its parameters θ converge to a KKT
point of the maximum margin problem. In particular, there exist λi ≥ 0 for every i ∈ [n] such that
the parameters of the trained network θ satisfy the following equation:

1Typically ds = 3× h× w, where h and w are the height and width of the image, respectively.
2W.r.t the parameters θ. Namely ∀c > 0 : ϕ(·, cθ) = cLϕ(·,θ) for some L.
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θ =

n∑
i=1

λiyi∇θ(ϕ(xi,θ)) . (1)

Data Reconstruction Scheme: Given such a trained model ϕ with trained (and fixed) parameters
θ, the crux of the reconstruction scheme is to find a set of {xi, λi, yi} that satisfy Eq. (1). This is
done by minimizing the following loss function:

Lrec(x̂1, . . . , x̂m, λ1, . . . , λm) :=

∥∥∥∥∥θ −
m∑
i=1

λiyi∇θ(ϕ(x̂i,θ))

∥∥∥∥∥
2

2

, (2)

Where the optimization variables {x̂i, λi} are initialized at random from λi ∼ U(0, 1) and x̂i ∼
N (0, σ) (σ is a hyperparameter). This generates m vectors {x̂i}mi=1 that we consider as “candidates”
for reconstructed samples from the original training set of the classifier ϕ. The number of candidates
m should be “large enough” (e.g., m ≥ 2n, and see discussion in Haim et al. (2022)). The yi are
assigned in a balanced manner (i.e., y1, . . . , ym/2 = 1 and y1+m/2, . . . , ym = −1). Lastly, Buzaglo
et al. (2023) extended this scheme to multi-class classification problems.

The data reconstruction scheme is conducted multiple times for different choices of hyperparameters
(e.g., learning rate and σ). For each trained model, we run about 50-100 reconstruction runs with
m = 500, resulting in about 25k-50k candidates. See Appendix B.2 for full details.

3.2 MAPPING EMBEDDING VECTORS x̂i TO THE IMAGE DOMAIN ŝi

Unlike previous works on data reconstruction that directly reconstruct training images, our method
reconstructs embedding vectors. To evaluate the effectiveness of our reconstructed candidates, we
must first map them back to the image domain. In this section we describe how we achieve training
images from image-embeddings. Namely, given reconstructed image-embeddings x̂i, our goal is to
compute ŝi = F−1(x̂i). To this end we apply model-inversion methods and in particular, the method
proposed in Tumanyan et al. (2022).

Given a vector x̂i (an output candidate from the reconstruction optimization in Section 3.1), we search
for an input image ŝi to F that maximizes the cosine-similarity between F(ŝi) and x̂i. Formally:

ŝi = F−1(x̂i) = argmax
ν

F(ν) · x̂i

∥F(ν)∥∥x̂i∥
. (3)

We further apply a Deep-Image Prior (DIP) (Ulyanov et al., 2018) to the input of F . I.e., ν = g(z)
where g is a CNN U-Net model applied to a random input z sampled from Gaussian distribution.
The only optimization variables of the inversion method are the parameters of g. See Appendix B.3
further explanation and full implementation details.

By applying model-inversion to DINO embeddings, Tumanyan et al. (2022) demonstrated that the
[CLS] token contains a significant amount of information about the visual appearance of the original
image from which it was computed. Even though their work was done in the context of image to
image style transfer, their results inspired our work and motivated us to apply their approach in the
context of reconstructing training image samples.

A significant modification to Tumanyan et al. (2022) in our work is by employing a cosine-
similarity loss instead of their proposed MSE loss. We find that using MSE loss (i.e., F−1(x̂) =
argminν∥F(ν)− x̂i∥2) is highly sensitive to even small changes in the scale of x̂. The scales of x̂
can be very different from the unknown x = F(s). Using cosine similarity alleviates this issue while
simultaneously achieving similar quality for the inverted image result (see also Appendix A.1).

The above-mentioned technique is used for mapping embeddings to images for most transformers
that we consider in our work. However, this technique did not produce good results when applied to
CLIP (Radford et al., 2021). Therefore, to map CLIP image embeddings to the image domain, we
employ a diffusion-based generator conditioned on CLIP embeddings by Lee et al. (2022) (similar in
spirit to the more popular DALL-E2 (Ramesh et al., 2022); see also Appendix A.7 and Appendix B.4).

4
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3.3 SELECTING RECONSTRUCTED EMBEDDINGS TO BE INVERTED

Applying the model-inversion described in Section 3.2 to a large pretrained model is computationally
intensive. Inverting a single embedding vector takes about 30 minutes on an NVIDIA-V100-32GB
GPU. Therefore, it is not feasible to invert all 25k-50k output candidates of Section 3.1.

To determine which reconstructed candidates to invert, we pair each training embedding xi with its
nearest reconstructed candidate x̂j (measured by cosine similarity) and select the top 40 vectors with
the highest similarity for inversion. This approach proves effective in practice, yielding images with
high visual similarity to the original training images, as demonstrated in the results (e.g., Fig. 1).

In practice, the original training embeddings are not available (and inverting all candidates is compu-
tationally prohibitive). In Section 5 we introduce a novel method to identify good reconstructions
without relying on either ground-truth embeddings or exhaustive inversion.

4 RESULTS

We demonstrate reconstructed training images from models trained in a transfer learning setup, on
the embeddings of large pretrained models. We train several MLPs to solve learning tasks for various
choices of training images and choices of the large pretrained backbones from which the image
embeddings are computed.

Datasets. Since we simulate a model that is trained in a transfer learning manner, it is reasonable to
assume that such tasks involve images that were not necessarily included in the training sets on which
the pretrained backbone was trained (typically, ImageNet (Deng et al., 2009)). In our experiments we
use images from Food-101 (Bossard et al., 2014) (most popular dishes from foodspotting website)
and iNaturalist (Van Horn et al., 2018) (various animals/plants species) datasets. The resolution of
the images vary between 250-500 pixels, but resized and center-cropped to 224× 224.

Pretrained Backbones (F ) for Image Embeddings. We select several Transformer-based founda-
tion models that are popular choices for transfer learning in the visual domain:

• ViT (Dosovitskiy et al., 2020): vit-base-patch16-224 from TIMM Wightman (2019).
• DINO-ViT (Caron et al., 2021): dino-vitb16 from the official implementation3.
• DINOv2 (Oquab et al., 2023): dinov2-vitb14-reg from the official implementation4.
• CLIP-ViT (Radford et al., 2021): ViT-L/14 as provided by OpenAI’s CLIP repository 5.

The dimension of the output embeddings is consistent across all backbones F , and equal to d=768.

Multilayer Perceptron (ϕ) consists of a single hidden layer of dimension 500 (d-500-C) that is
optimized with gradient descent for 10k epochs, weight-decay of 0.08 or 0.16 and learning rate 0.01.
All models achieve zero training error.

RECONSTRUCTING TRAINING DATA FROM ϕ(F)

We train classifiers ϕ(F(s)) on two binary classification tasks: (1) binary iNaturalist is fauna
(bugs/snails/birds/alligators) vs. flora (fungi/flowers/trees/bush) and (2) binary Food101 is beef-
carpaccio/bruschetta/caesar-salad/churros/cup-cakes vs. edamame/gnocchi/paella/pizza/tacos. Each
binary class mixes images from several classes of the original dataset (images are not mixed between
different datasets). Each training set contains 100 images (50 per class). The test sets contains
1000/1687 images for iNaturalist/Food101 respectively. All models achieve test-accuracy above 95%
(except for DINO on Food101 with 85%. Also see Fig. 31).

In Fig. 3 we show the results of reconstructing training samples from 8 models (for two binary tasks
and 4 choices of F). For each reconstructed image (ŝ = F−1(x̂)), we show the nearest image from

3https://github.com/facebookresearch/dino
4https://github.com/facebookresearch/dinov2
5https://github.com/openai/CLIP

5
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Pretrained
Model (F)

Dataset
Food101 iNaturalist

ViT

DINO-ViT

DINOv2-ViT

CLIP

Figure 3: Training samples (red) and their best reconstructed candidate, from MLPs trained on
embeddings of various backbone models for two datasets.

the training set, in terms of cosine-similarity between the embeddings of both (dcosine(x̂,F(s))). As
can be seen, many reconstructed images clearly have high semantic similarity to their corresponding
nearest training images.

The quality of the results greatly depends on the effectiveness of the inversion method, which can
vary across different backbones F . DINO and ViT yield the highest quality reconstructed samples.
DINOv2 proves harder to invert, resulting in lower reconstruction quality. With CLIP, we utilize
UnCLIP6 to project embeddings into good natural images, maintaining semantic similarity even as
reconstruction quality decreases (e.g., same class). In Section 6 we further discuss the differences
and limitations of inversion.

Our approach is also applicable to multiclass setting by using Buzaglo et al. (2023) extension of the
method described in Section 3.1 (see Appendix B.5 for details). This is demonstrated in Fig. 4 where
we show reconstructed training samples from models trained on multiclass tasks.

QUANTITATIVE EVALUATION OF THE RECONSTRUCTED DATA

We evaluate our results by how well they corroborate with the theory on which the reconstruction
method is based, and also by how well the reconstructed images resemble the original training
samples.

6We use the UnCLIP implementation from https://github.com/kakaobrain/karlo

6
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(a) DINO Food101 10 classes (b) DINO iNaturalist 4 classes

Figure 4: Reconstructions from a multiclass models trained 100 images from Food101/iNaturalist
with C=10/4 classes (10/25 images per class), with test-accuracy 84%/96% (on a/b respectively).
Color-padded images are training images, where color represents different classes.
Measuring Reconstruction Quality and Alignment with Theory. Convergence to the KKT
solution of the maximum-margin implies that reconstruction is only possible for samples lying on
the margin, i.e., those with the smallest model outputs.7 This can be demonstrated by plotting each
training sample’s reconstruction quality (typically measured using SSIM (Wang et al., 2004)) between
the original and reconstructed images), against its proximity to the decision boundary (measured by
the model output).

When reconstructing images from embeddings, as in our work, the reconstructed samples may exhibit
small translations or subtle artifacts that are hard to pinpoint, despite appearing visually similar. As
a result, conventional image metrics like SSIM, which are sensitive to pixel alignment, may not be
effective for this task.

Quantitative Evaluation. In Fig. 5a, we show results for several metrics for reconstruction quality,
including SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018), and Split-product (Somepalli et al.,
2022), as well as cosine similarity in the embedding domain (dcosine(x̂,F(s))). Notably, cosine
similarity aligns most closely with the theoretical predictions: higher values correspond to samples
that are closer to the margin. In Fig. 5b we demonstrates that cosine-similarity between embeddings
also aligns well with visual similarity. To this end we sort all reconstructed samples according to
dcosine(x̂,F(s)). Note how samples with high cosine-similarity also appear visually similar.
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(a) Various metrics for reconstruction quality (normalized to [0,1]. I.e., (x− min(x))/(max(x)−
min(x)) where x is the array containing the metric values).
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(b) Reconstructed samples sorted by dcosine(x̂,F(s)) (values shown above images)

Figure 5: Cosine-Similarity between embeddings (top-left) aligns well with both theoretical
properties and visual similarity. Results for DINO Food101 model. Complete results for all models
and metrics are in Appendix A.2.

Such plots (reconstruction-quality vs. model-output) are a good way to summarize the reconstruction
results for each model, since they show the full reconstruction quality for all samples. In Fig. 6

7In addition to the condition in Eq. (1), λi ̸= 0 holds only for samples xi that lie on the classification margin,
closest to the decision boundary. See Sections 3.2 & 5.3 in Haim et al. (2022).
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we show such plots for every model from Figs. 3 and 4 (where reconstruction-quality is measured
by cosine similarity between embeddings). This analysis hints that samples that are closer to the
classification margin (either in the binary or multiclass case) are more vulnerable to reconstruction
(since their reconstruction quality is higher).
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Figure 6: Quantitative summary for all models whose reconstructed samples are in Figs. 3 and 4.

5 IDENTIFYING GOOD RECONSTRUCTION WITHOUT THE ORIGINAL
TRAINSET

In this section, we introduce a clustering-based approach to identify “good” reconstructed candidates
without relying on the original training data. This is an important step towards an effective privacy
attack. Previous works (Haim et al., 2022; Buzaglo et al., 2023; Loo et al., 2023), including Section 3.3
in this work, rely on the original training images for demonstrating that training images are embedded
in the model parameters. However, it is not applicable to real-world privacy attacks, as attackers don’t
have access to the original training data.

When directly reconstructing training images, this issue can be mitigated by manual inspection of
the thousands of output image candidates – a time-consuming but feasible approach. However, this
approach is irrelevant when reconstructing image embeddings. The reconstructed embeddings must
first be inverted into images, which is computationally expensive (inverting a single vector takes
about 30 minutes on an NVIDIA-V100-32GB GPU, as detailed in Section 3.3). Inverting thousands
of embeddings is simply infeasible.

Figure 7: Clustering-Based Reconstruction. Inversion of clusters representatives (blue) compared
to training samples whose embeddings are in the same cluster (in red).

8
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Pretrained
Model (F): ViT DINO-ViT DINOv2-ViT CLIP

Dataset

Food101
s

F−1(F(s))

F−1(x̂)

iNaturalist
s

F−1(F(s))

F−1(x̂)

Figure 9: Training samples (red), inversion of original embeddings (blue), and inversion of recon-
structed embeddings.

This is where our proposed clustering approach comes in. We observe that reconstructed candidates
whose inversions are visually similar to training samples tend to cluster together. By applying
clustering algorithms, we group similar candidates and only invert representative samples from the
largest clusters. This reduces the total number of inversions by two orders of magnitude (from
thousands to tens) and eliminates reliance on training data for identifying good reconstructed samples.

We demonstrate this by using agglomerative clustering8 on 25,000 candidates reconstructed from a
Dino-ViT-based model trained on the Food101 dataset (same as in Fig. 3). We use cosine similarity
as the distance metric with “average” linkage and 1,000 clusters, from which we select the 45 largest
ones (containing between 100 and 8,000 candidates each). Within each cluster, a representative is
chosen by averaging all candidate embeddings. Finally, these representatives are inverted using the
methods described in Section 3.2. Fig. 7 shows the results of inverting these cluster representatives
(blue), along with a training sample whose embedding belongs to the same cluster (red). As can be
seen, the clustering-based approach provides a very good method for reconstructing training samples
without requiring the training data.
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Figure 8: Impact of Num. Clusters
on Reconstruction Quality (for
CIFAR10 model with n=500)

The choice of the number of clusters (MAXCLUST) significantly
affect the results of our clustering-based approach. Since as-
sessing this effect in our current image-embedding setup is
computationally prohibitive, we evaluate our approach on 50k
reconstructed candidates from a model trained on 500 CIFAR-
10 images (same as in Haim et al. (2022)). For each MAXCLUST,
we select the representatives of the largest 150 clusters by either
averaging all cluster candidates (red) or selecting the nearest
candidate to the cluster-mean (blue). We compare each repre-
sentative to a training image in the same cluster (using SSIM)
and count the numbers of good representatives (SSIM> 0.4),
the results are in Fig. 8.

Notably, beyond a certain small threshold, any MAXCLUST

yields a considerable amount of good reconstructed samples
(see also Appendix A.8).

6 LIMITATIONS

In this work, we made design choices when training the models to align with realistic transfer learning
practices. However, some choices led to better reconstruction results than others, revealing limitations
of our method. Here we discuss these limitations, their impact on our results, and identify potential
future research directions:

8
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html
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• The quality of reconstructed images relies heavily on the backbone model (F) and the inversion
method (Section 3.2). Fig. 9 shows the inverted original embeddings F−1(F(s)) (blue), which
are the “best” we can achieve (independent of our reconstruction method). It also shows how some
backbones are easier or harder to invert, as evident in the difference between F−1(F(s)) (blue)
and the original image s (red), for different F ’s. It can also be seen that the inverted reconstructed
embeddings F−1(x̂) are sometimes more similar to F−1(F(s)) than to s, which may hint that the
challenge lies in the inversion more than in the reconstruction part. Certainly, improving model
inversion techniques is likely to enhance the quality of reconstructed samples.

• CNN-based backbones F (e.g., VGG (Simonyan & Zisserman, 2014)) proved more challenging
for inversion than Transformer-based backbones F . Since Transformers are also being more
frequently employed due to their better generalization, we decided to focus our work on them and
leave CNN-based backbones for future research.

• Linear-Probing (i.e. train a single linear layer ϕ) is common practice in transfer learning. However,
current reconstruction methods, including ours, struggle to perform well on linear models. This
may stem from the small number of parameters in linear models (see Appendix A.5).

• We use weight-decay regularization since it is a fairly common regularization technique. However,
the reconstruction method is known to perform much worse on models that are trained without
it (Buzaglo et al., 2023).

• We experimented with an embedding vector that is a concatenation of [CLS] and the average of
all other output tokens (of F). This had minor effect on the results, see Appendix A.6 for details.

• Fine-tuning the entire model F (together with ϕ) is resource-intensive and less common compared
to training only on fixed embedding vectors. While we followed the latter approach, full fine-tuning
can be an interesting future direction.

7 CONCLUSION

In this work, we extend previous data reconstruction methods to more realistic transfer learning
scenarios. We demonstrate that certain models trained with transfer learning are susceptible to training
set reconstruction attack. Given the widespread adoption of transfer learning, our results highlight
potential privacy risks. By examining the limitations of our approach, we identify simple mitigation
strategies, such as employing smaller or even linear models, increasing training set size or training
without weight-decay regularization. However, some of these mitigation (removing regularization or
using smaller models) may also come at a cost to the generalization of the model. Furthermore, these
techniques may not be effective against future advanced reconstruction attacks. We aim for our work
to inspire the development of new defense methods and emphasize the importance of research on
data reconstruction attacks and defenses.
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A ADDITIONAL EXPERIMENTS

A.1 IMPORTANCE OF COSINE-SIMILARITY FOR INVERSION (AS OPPOSED TO MSE)

Original 1.0 0.1 0.5 2 10

Figure 10: Inverting DINO (F−1(aF(s))) with different scales a

In Fig. 10, we illustrate the significance of having the correct scale when inverting an embedding
(using the inversion described in Section 3.2). For several images s (left-most column), we display
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the inversion of their embeddings F−1(F(s)) (second from left column) alongside other inversions
of the same vector multiplied by varying scales, namely, F−1(aF(s)) for a =

[
1
10 ,

1
2 , 2, 10

]
. As

clearly evident, inverting the same vector without knowing the ”true” scale (a = 1.0) would result in
very different results, sometimes making them hard to recognize.

The original paper Tumanyan et al. (2022) uses MSE in its inversion scheme. However, the output
candidates from the reconstruction method (described in Section 3.1) can have significantly different
norms than their corresponding original training embedding.
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Figure 11: Comparing (a) the norms of F(s) (red) and its NN x̂ (blue), and (b) their ratios

To conduct a comparison, we employ a binary model trained on DINO embeddings of images
from Food101, reconstructing candidates x̂ from this model. In Fig. 11a, for each training image
s we compare the norm of its DINO embedding ∥F(s)∥ (red), to the norm of its nearest neighbour
embedding ∥x̂∥ (blue), where x̂ = argmin

x
dcosine(x,F(s)) (and the value of dcosine is the x-axis).

In Fig. 11b we show the ratio between the two, highlighting that candidates can have very different
norm compared to their corresponding training image. This variation in norms is a result of the
reconstruction scheme that we use (Section 3.1), whose nature we don’t fully understand yet. However,
using cosine-similarity loss in our inversion scheme eliminates this issue.

A.2 FULL RESULTS FOR FIG. 5

In Fig. 2 we showed the results of various metrics for reconstruction-quality for a model that was
trained on embeddings of DINO on Food101 dataset. We also showed alignment for visual similarity
of cosine-similarity in embedding space.

In Fig. 12 we provide the full results (same as in Fig. 5a) for all other models from Fig. 3 and all
metrics.

The complete results for Fig. 5b are provided in the supplementary material (sorted reconstructed
sample by all 6 metrics, for each of the 8 models from Fig. 3)
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Figure 12: Various Metrics for Reconstruction-Quality vs. Model-Output
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A.3 COSINE-SIMILARITY AS A PROXY FOR GOOD RECONSTRUCTIONS

Determining whether a candidate is a reconstruction of an original sample is a difficult challenge.
It is highly unlikely that the two will be exactly the same, which is why selecting an appropriate
similarity measure is important. Unfortunately, there is no ”best” metric for comparing two images,
which is a known open problem in computer vision (see e.g., Zhang et al. (2018)).

The task becomes even more complex when dealing with reconstructed embedding vectors, as in
our work. Given our computational constraints, we must choose wisely which embeddings to invert,
adding another layer of complexity to the comparison process. Throughout our work, we frequently
employ cosine similarity as a metric for evaluating embedding similarities. However, whether this
metric accurately reflects visual quality is unclear. We set out to explore this question empirically.

Previous work on data reconstruction (Haim et al., 2022; Buzaglo et al., 2023) directly reconstruct
training images, allowing us to a directly compare between cosine similarity and image similarity
measures. Both works established SSIM (Wang et al., 2004) as a good visual metric for CIFAR10
images (see Appendix A.2 in Buzaglo et al. (2023)), and defined SSIM> 0.4 as a good threshold
for declaring two images as sufficiently similar. In fact these works also use cosine similarity to
find nearest neighbors between candidates and training images when normalized to [−1, 1], and only
after shifting the images to [0,1] they use SSIM. Which means that they also implicitly assume that
cosine-similarity is a good proxy for visual similarity.

In Fig. 13, we quantitatively evaluate this assumption using reconstructed images from a CIFAR10-
trained model (as in Haim et al. (2022)). The left panel is for simply reproducing the results of Haim
et al. (2022). By looking at both middle and right panel, we see that CosSim=0.75 is a good cut-off
for determining ”good” reconstruction, since from this point there is a good correlation between the
two metrics. This is also the reason that we use this threshold for determining good reconstruction in
other experiments in the paper.

By further observing the middle panel: if SSIM> 0.4 (horizontal black line) is considered a criterion
for good image reconstruction, then cosine similarity (CosSim> 0.75, vertical black line) may
overlook some potentially high-quality reconstructions, indicating room for further improvement in
our approach.
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Figure 13: Comparing Cos-Sim to SSIM of training data (model trained on CIFAR10)

A.4 DOES TRAINING DATA RECONSTRUCTABILITY REQUIRE OVERTRAINING?
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Figure 14: Does Training Data Reconstructability Require Overtraining? – Seems Not.
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We set to explore how ”reconstructability” (i.e., how many good samples we can reconstruct from) de-
pends on the number of training iterations. We note from empirical observations that reconstructability
certainly improves with longer training, which should not be surprising because according to theory,
the model converges more to the KKT solution.

But the key question is - does the model have to be ”overtrained” before becoming reconstructable,
or not? To define ”overtrained”, we observe how the generalization accuracy increases. Obviously,
the longer we train, the better the model will be reconstructable. But is it reconstructable before the
generalization accuracy saturates? (Or do we have to keep training long after that?)

In Fig. 14 we show the test accuracy per training iteration (red) for a model trained on DINO
embeddings from the Food101 dataset. We also show reconstruction quality (blue) by counting the
number of training samples whose cosine similarity to its nearest neighbor candidate was above 0.75.
As can be seen, reconstructability increases after about 1000 iterations and starts saturating at about
2000 iterations, where the test accuracy (even though quite high in the beginning), keeps increasing
by more than 1.5% until 10k iterations.

The implication is that reconstructability is achieved in a reasonable time (measured by the time taken
to achieve good generalization accuracy). This observation is important to assert the realism of our
method as a viable privacy threat to models trained in a similar fashion.

A.5 IMPACT OF MODEL SIZE AND TRAINING SET SIZE ON RECONSTRUCTABILITY
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Figure 15: Effect of model size and dataset size on reconstructability.

Previous works Buzaglo et al. (2023) observed that the quality of reconstruction results is influenced
by the size of the model (i.e., number of parameters) and the size of the training set. We conduct
similar analysis for our models.

This relationship can be intuitively understood by considering Eq. (2) as a system of equations to
be inverted, where the number of equations corresponds to the number of parameters in the model,
θ ∈ Rp, and the unknowns are the coefficients λi ∈ R and the reconstructed embeddings xi ∈ Rd

for each training sample i ∈ {1, ..., n}. The ratio p
n(d+1) represents the number of model parameters

relative to the total number of unknowns. As this ratio increases, i.e., when the model has more
parameters compared to the number of unknowns, we hypothesize that the system of equations
becomes more well-determined, leading to higher reconstructability.

This hypothesis is supported by the empirical results presented in Fig. 15, where we train 2-layer
MLPs with architecture D-W -1 on N training samples from binary Food101. Each cell reports
the number of good reconstructions (cosine similarity between training embedding and its nearest
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neighbor candidate > 0.75), both in absolute terms and as a percentage relative to N. As shown,
when the model has more parameters relative to the number of training examples (further left and
higher up in the table), our method can extract more reconstructions from the model.

This figure also show that our method can be extended to larger datasets, up to N=2000 (and probably
beyond).

A.6 EFFECT OF USING [CLS]+MEAN VS [CLS] AS FEATURE VECTOR

In our work we use the [CLS] token as the feature vector for a given image. However, there may
be other ways to use the outputs of transformer-based foundation models as feature vectors. As
suggested in Caron et al. (2021) (linear probing section), one might use a concatenation of the
[CLS] token and the mean of the rest of the other output tokens ([CLS]+MEAN). In Fig. 16 we
show reconstructed results for a model that was trained using such [CLS]+MEAN feature vector
(using DINO on Food101). As seen, the extra information in the feature vector does not seem to have
a significant effect on the total results of the reconstruction (as opposed to a possible assumption that
extra information would result in higher reconstructability). While this is by no means an exhaustive
evaluation of this design choice (using [CLS]+MEAN vs. just [CLS]), it does look like this may not
change the results of the reconstruction too much.

Figure 16: Reconstruction from a DINO model trained on [CLS]+MEAN embedding vector (original
training image in red)

A.7 MODEL INVERSION FOR CLIP VS UNCLIP DECODER

As described in Section 3.2, for inverting CLIP embeddings, we use an UnCLIP decoder instead
of the model inversion approach used for other backbone models (ViT/DINO/DINOv2). The main
reason behind this choice is that the same inversion method did not seem to provide satisfactory
results for CLIP. In Fig. 17, we show output images of inverted embeddings using the approach from
Tumanyan et al. (2022) (with the modifications described in our paper). The results do not produce
comparable quality to using the UnCLIP decoder.

(a) iNaturalist (b) Food101

Figure 17: Model-Inversion reconstructions from a model trained on CLIP embeddings
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A.8 FURTHER INSIGHTS ON CLUSTERING-BASED RECONSTRUCTION (SECTION 5)
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Figure 18: Extended Results for the figure in Section 5

In Fig. 18, we show extended results of the inset Figure in Section 5, displaying the same graph up to
larger MAXCLUST values (red and blue solid lines), together with similar results that count the number
of “good” reconstructions with CosSim > 0.75 (dashed blue and red lines).

The reason for the decrease in the number of good reconstructions as the number of clusters increases,
is that we only consider the largest 150 clusters (per partition of the candidates, as determined by
MAXCLUST). Consequently, when there are too many clusters, the probability that the largest ones
correspond to a cluster of a training sample decreases (for 50k clusters, this becomes totally random).
Note that the largest number of clusters in the graph is slightly smaller than 50k, and there exist
several clusters with 2-3 candidates.

Another insight from this graph is that averaging several candidates together results in better can-
didates, an observation also made by Haim et al. (2022). In our work, we don’t use such candidate
averaging (except for the clustering experiments), but this may lead to improved results. We leave
this for future research.

We note that since the similarity measure between candidates is cosine similarity, this implicitly
applies a spherical topography for comparing candidates. Therefore, it is not straightforward to
compute the mean of several candidates. In our work, we use the simple arithmetic mean, which
empirically seems to work well. We considered computing the Fréchet mean, i.e., the mean of the
candidates that lies on the sphere, but could not find a working implementation for this. This may
also be an interesting direction for future research.

For completeness, we show how the reconstructed samples look for the choice of the ”peak” SSIM
from Fig. 18, which occurs at 3294 clusters. These are shown in Fig. 19.

Figure 19: Reconstructed candidates of CIFAR10 model, obtained with our clustering-based approach
for the ”peak” value in Fig. 18 (3294)
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A.9 MORE CLUSTERING-BASED RECONSTRUCTION RESULTS

In Fig. 20 we more results of our clustering-based approach, in addition to the results in Fig. 7 (for a
model trained on DINO embeddings of Food101 images).

(a) ViT embeddings of Food101 images

(b) CLIP embeddings of Food101 images

Figure 20: Clustering-based Reconstruction for models trained on (a) ViT embeddings of Food101
images; (b) CLIP embeddings of Food101 images

A.10 COMPARISON TO ACTIVATION MAXIMIZATION

Figure 21: Reconstructions using activation maximization on the input to ϕ
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Figure 22: Reconstructions using activation maximization on the input to F

We compare our reconstruction results to a popular baseline for reconstructing data from trained
model. It is called “model inversion” in the context of privacy(Fredrikson et al., 2015) or “activation
maximization” in the context of visualization techniques (Mahendran & Vedaldi, 2016) (we prefer
the term activation maximization as it is more accurate). We are searching for inputs to the model
that achieve high activations for the model’s outputs that correspond to each class. We consider two
options in our case:

The first, by performing activation maximization on the inputs to ϕ:

argmin
x

L (Φ(x), y)

This results in multiple candidates {x} that minimize the loss function (binary cross-entropy) w.r.t
to the classes y ∈ {−1, 1}. We then search for candidates that are nearest neighbours of original
training embeddings, and invert them to images by computing F−1(x) (this is the same pipeline as
we use for the reconstructed candidates of our approach). The results of this approach can be seen
in Fig. 21.

The second approach, is to optimize over the inputs to F (instead of the inputs to ϕ) in the same
manner that is described in Appendix B.3:

x = gν(z) s.t. ν = argmin
ν

L (ϕ (F (gν(z))) , y)

Where g is the U-Net model with parameters ν. This is equivalent to performing the inversion method
as described in Appendix B.3, but feeding the output of F into the trained ϕ and then into the loss
L, with a given y ∈ {−1, 1} (instead of comparing the output of F to a given embedding vector).
Note that as described in Appendix B.3, the only optimization variables are the parameters of the
Deep-Image Prior g (denoted as ν in the equation above). The results of this approach are shown
in Fig. 22.

As evident from the results, while activation maximization techniques manage to reconstruct some
interesting outputs, that are somewhat semantically related to the training classes, the results of both
methods are inferior to the results of our proposed approach.

A.11 GT INVERSION

Here are the full results (on all reconstructed candidates) of the results shown in Fig. 9.
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Figure 23: ViT on Food101: Training Image (red), Inversion of Original Embedding (blue) and
Inversion of Reconstructed Embedding.

Figure 24: ViT on iNaturalist: Training Image (red), Inversion of Original Embedding (blue) and
Inversion of Reconstructed Embedding.
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Figure 25: DINO on Food101: Training Image (red), Inversion of Original Embedding (blue) and
Inversion of Reconstructed Embedding.

Figure 26: DINO on iNaturalist: Training Image (red), Inversion of Original Embedding (blue) and
Inversion of Reconstructed Embedding.
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Figure 27: DINO2 on Food101: Training Image (red), Inversion of Original Embedding (blue) and
Inversion of Reconstructed Embedding.

Figure 28: DINO2 on iNaturalist: Training Image (red), Inversion of Original Embedding (blue) and
Inversion of Reconstructed Embedding.
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Figure 29: CLIP on Food101: Training Image (red), UnCLIP of Original Embedding (blue) and
UnCLIP of Reconstructed Embedding.

Figure 30: CLIP on iNaturalist: Training Image (red), UnCLIP of Original Embedding (blue) and
UnCLIP of Reconstructed Embedding.
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B IMPLEMENTATION DETAILS

Our code is implemented with PYTORCH (Paszke et al., 2019) framework.

B.1 DATA PREPROCESSING

We resize each image to a resolution of 224 pixels (the smaller side of the image) and then apply
a center crop to obtain a 224 × 224 image. We then normalize the image per pixel following the
normalization used in the original paper of each model, as shown in the table below:

Model Mean Std
DiNO, DiNOv2 [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]

ViT [0.5, 0.5, 0.5] [0.5, 0.5, 0.5]
CLIP [0.481, 0.458, 0.408] [0.269, 0.261, 0.276]

After feeding the images through the backbone F to obtain the image embeddings F(si), we
normalize each embedding by subtracting the mean-embedding and dividing by the std. Formally:

xi =
F(si)−µ

σ , where µ = 1
n

∑n
i=1 F(si), and σ =

√
1

n−1

∑n
i=1 (F(si)− µ)

2.

This is a fairly common approach when training on small datasets. µ and σ can be thought as being
part of the model ϕ as they are also applied for embeddings from outside the training set.

B.2 RECONSTRUCTION HYPERPARAMETER SEARCH

As mentioned in Section 3.1, we run the reconstruction optimization 100 times with different choice
of the 4 hyperparameters of the reconstruction algorithm:

1. Learning rate
2. σ – the initial s.t.d. of the initialization of the candidates
3. λmin – together with the loss Eq. (2), the reconstruction includes another loss term to require

λi > λmin (a consequence of the KKT conditions is that λi > 0, but if λi = 0 it has no
relevance in the overall results, therefore a minimal value λmin is set.).

4. α – Since the derivative of ReLU is piecewise constant and non-continuous, the backward
function in each ReLU layer in the original model is replaced with the derivative of SoftRelu
with parameter α.

For full explanation of the hyperparameters, please refer to Haim et al. (2022). Note that for m = 500,
running 100 times would result in 50k candidates.

The hyperparameter search is done via Weights&Biases (Biewald, 2020), with the following random-
ization (it is in the format of a W&B sweep):

parameters:
random_init_std:

distribution: log_uniform_values
max: 1
min: 1e-06

optimizer_reconstructions.lr:
distribution: log_uniform_values
max: 1
min: 1e-06

loss.lambda_regularizer.min_lambda:
distribution: uniform
max: 0.5
min: 0.01

activation.alpha:
distribution: uniform
max: 500
min: 10
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B.3 FURTHER DETAILS ABOUT INVERSION SECTION 3.2

We follow similar methodology to Tumanyan et al. (2022), using their code9 and changing the recon-
struction loss from MSE to Cosine-Similarity as mentioned in Section 3.2, and specifically Eq. (3)
(see justifications in Appendix A.1).

The Deep-Image Prior model g is a fully convolutional U-Net model (Ronneberger et al., 2015)
(initialized at random with the default pytorch implementation). The optimization is run for 20,000
iterations, where at each iteration the input to g is z+r, where z is initialized from z ∼ N (0ds , Ids×ds)
and kept fixed throughout the optimization, and r is sampled at each iteration as follows:

iteration i < 10,000: r ∼ N (0ds
, 10 · Ids×ds

)
iteration 10,000 < i ≤ 15,000: r ∼ N (0ds

, 2 · Ids×ds
)

iteration 15,000 < i ≤ 20,000: r ∼ N (0ds
, 0.5 · Ids×ds

)

Note that the input to g is of the same size of the input to F , which is simply and image of dimensions
ds = c × h × w. At each iteration, the output of g is fed to F , and the output of F (which is an
embedding vector of dimension d = 768), is compared using cosine-similarity to the embedding
vector that we want to invert. At the end of the step, the parameters of g are changed to increase the
cosine similarity between the embeddings.

B.4 INVERSION WITH UNCLIP

While the method in Appendix B.3 is used for ViT, DINO and DINOv2, for CLIP we use a different
method to invert, which is by using the UnCLIP implementation of Lee et al. (2022). Unlike the
inversion in Appendix B.3 that uses cosine-similarity, with UnCLIP, the embeddings (that go into
to UnCLIP decoder) should have the right scale. For each CLIP embedding of a training image (x),
we search for its nearest neighbour candidate (x̂) with cosine similarity, but before feeding x̂ into
the UnCLIP decoder, we re-scale it to have the same scale as x, so that the input to the decoder is
in fact (∥x∥/∥x̂∥)x̂. Unfortunately we could not resolve this reliance on the training set (as is also
done in previous reconstruction works, and discussed in the main paper), but we believe this may be
mitigated by computing and using general statistics of the training set (instead of specific training
samples). We leave this direction for future research.

B.5 RECONSTRUCTION IN MULTICLASS SETUP

The method in Section 3.1 was extended to multiclass settings by Buzaglo et al. (2023). In a nutshell,
the reconstruction loss in Eq. (2) contains the gradient (w.r.t. θ) of yiϕ(xi) which is the distance from
the decision boundary. For multiclass model ϕ : Rd → RC , the distance to the decision boundary is
ϕ(xi)yi

− maxj ̸=yi
ϕ(xi)j . Replaced into the reconstruction loss in Eq. (2), we have:

Lrec(x̂1, . . . , x̂m, λ1, . . . , λm) :=

∥∥∥∥∥θ −
m∑
i=1

λi∇θ

[
ϕ(x̂i,θ)yi

− max
j ̸=yi

ϕ(x̂i,θ)j

]∥∥∥∥∥
2

2

B.6 CHOICE OF WEIGHT DECAY

When training our model, we apply weight decay regularization. However, determining the optimal
weight decay (WD) value is not straightforward. To find a WD value, we conduct a search across
different WD values and observe their impact on test accuracy. The reuslts are shown in Fig. 31. We
notice that for most values, the test accuracy increases until approximately 0.1 and then decreases
from about 0.3 (indicating that WD is too large). We select the WD from this range, either 0.08 or
0.16. A red-x marks the run which was selected for reconstruction (and whose results are shown
in Fig. 3).

9https://splice-vit.github.io/
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Figure 31: Test-Accuracy for different choices of Weight-Decay Value. Red-X marks the specific run
used for reconstruction in Fig. 3
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C DATASETS - FULL DETAILS

C.1 IMAGE RESOLUTION

Fig. 32 illustrates how images in the datasets we used may have different resolutions. To standardize
the input, we use the pre-processing described in Appendix B.1.
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Figure 32: Resolution frequency of the images in use from iNaturalist (a) and Food101 (b) datasets

C.2 FOOD-101 (BOSSARD ET AL., 2014)

The dataset comprises real images of the 101 most popular dishes from the foodspotting website.

Binary Tasks We use the following classes:

• Class I: ”beef carpaccio”, ”bruschetta”, ”caesar salad”, ”churros” and ”cup cakes”

• Class II: ”edamame”, ”gnocchi”, ”paella”, ”pizza” and ”tacos”

For any choice of training samples amount, we randomly pick half from every such combined class
in order to create our new dataset.

Multiclass Tasks We use the following classes:

”beef carpaccio”, ”beet salad”, ”carrot cake”, ”cup cakes”, ”dumplings”, ”gnocchi”, ”guacamole”,
”nachos”, ”pizza” and ”samosa”

Here the classes are not combined. For every choice of N classes we choose the first N out of the list
above and randomly pick examples according to the training set size and in such a way that the newly
formed dataset is balanced.

C.3 INATURALIST (VAN HORN ET AL., 2018)

The dataset encompasses a total of 10,000 classes, each representing a distinct species.

Binary Tasks Classes are combined in the same manner as for the Food101 dataset. All classes
names below appear as they are in the dataset.

Fauna

02590 Animalia Arthropoda Insecta Odonata Macromiidae Macromia taeniolata
02510 Animalia Arthropoda Insecta Odonata Libellulidae Libellula forensis
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02193 Animalia Arthropoda Insecta Lepidoptera Sphingidae Eumorpha vitis
02194 Animalia Arthropoda Insecta Lepidoptera Sphingidae Hemaris diffinis
00828 Animalia Arthropoda Insecta Hymenoptera Vespidae Polistes chinensis
00617 Animalia Arthropoda Insecta Hemiptera Pentatomidae Dolycoris baccarum
02597 Animalia Arthropoda Insecta Orthoptera Acrididae Acrida cinerea
05361 Animalia Mollusca Gastropoda Stylommatophora Philomycidae Megapallifera mutabilis
04863 Animalia Chordata Reptilia Crocodylia Crocodylidae Crocodylus niloticus
04487 Animalia Chordata Aves Procellariiformes Diomedeidae Phoebastria nigripes
04319 Animalia Chordata Aves Passeriformes Tyrannidae Myiozetetes cayanensis

Flora

05690 Fungi Basidiomycota Agaricomycetes Polyporales Polyporaceae Trametes coccinea
05697 Fungi Basidiomycota Agaricomycetes Russulales Auriscalpiaceae Artomyces pyxidatus
05982 Plantae Tracheophyta Liliopsida Asparagales Iridaceae Olsynium douglasii
05988 Plantae Tracheophyta Liliopsida Asparagales Iridaceae Sparaxis tricolor
06988 Plantae Tracheophyta Magnoliopsida Asterales Asteraceae Silphium laciniatum
06665 Plantae Tracheophyta Magnoliopsida Asterales Asteraceae Calendula arvensis
07032 Plantae Tracheophyta Magnoliopsida Asterales Asteraceae Syncarpha vestita
07999 Plantae Tracheophyta Magnoliopsida Fabales Fabaceae Lupinus arcticus
07863 Plantae Tracheophyta Magnoliopsida Ericales Primulaceae Myrsine australis
08855 Plantae Tracheophyta Magnoliopsida Malpighiales Rhizophoraceae Rhizophora mangle
09143 Plantae Tracheophyta Magnoliopsida Ranunculales Berberidaceae Berberis bealei
09974 Plantae Tracheophyta Polypodiopsida Polypodiales Pteridaceae Cryptogramma acrostichoides

Multiclass Tasks

1. Insects

02590 Animalia Arthropoda Insecta Odonata Macromiidae Macromia taeniolata
01947 Animalia Arthropoda Insecta Lepidoptera Nymphalidae Phaedyma columella
02194 Animalia Arthropoda Insecta Lepidoptera Sphingidae Hemaris diffinis
02195 Animalia Arthropoda Insecta Lepidoptera Sphingidae Hemaris fuciformis
02101 Animalia Arthropoda Insecta Lepidoptera Pieridae Pontia occidentalis
02138 Animalia Arthropoda Insecta Lepidoptera Riodinidae Apodemia virgulti

2. Aquatic Animals

02715 Animalia Arthropoda Malacostraca Decapoda Grapsidae Grapsus grapsus
02850 Animalia Chordata Actinopterygii Perciformes Lutjanidae Ocyurus chrysurus
02799 Animalia Chordata Actinopterygii Perciformes Centrarchidae Ambloplites rupestris
02755 Animalia Arthropoda Merostomata Xiphosurida Limulidae Limulus polyphemus
02704 Animalia Arthropoda Malacostraca Decapoda Cancridae Cancer borealis
02706 Animalia Arthropoda Malacostraca Decapoda Cancridae Cancer productus

3. Reptiles

04859 Animalia Chordata Reptilia Crocodylia Alligatoridae Alligator mississippiensis
04868 Animalia Chordata Reptilia Squamata Agamidae Agama picticauda
04862 Animalia Chordata Reptilia Crocodylia Crocodylidae Crocodylus moreletii
04865 Animalia Chordata Reptilia Rhynchocephalia Sphenodontidae Sphenodon punctatus
04954 Animalia Chordata Reptilia Squamata Colubridae Pituophis deppei

4. Birds
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04487 Animalia Chordata Aves Procellariiformes Diomedeidae Phoebastria nigripes
04319 Animalia Chordata Aves Passeriformes Tyrannidae Myiozetetes cayanensis
04570 Animalia Chordata Aves Suliformes Phalacrocoracidae Microcarbo melanoleucos
04587 Animalia Chordata Aves Suliformes Sulidae Sula nebouxii
04561 Animalia Chordata Aves Strigiformes Strigidae Surnia ulula
04576 Animalia Chordata Aves Suliformes Phalacrocoracidae Phalacrocorax capensis
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