
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RECONSTRUCTING TRAINING DATA FROM
REAL WORLD MODELS TRAINED WITH
TRANSFER LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Current methods for reconstructing training data from trained classifiers are re-
stricted to very small models, limited training set sizes, and low-resolution images.
Such restrictions hinder their applicability to real-world scenarios. In this paper,
we present a novel approach enabling data reconstruction in realistic settings for
models trained on high-resolution images. Our method adapts the reconstruction
scheme of Haim et al. (2022) to real-world scenarios – specifically, targeting mod-
els trained via transfer learning over image embeddings of large pre-trained models
like DINO-ViT and CLIP. Our work employs data reconstruction in the embed-
ding space rather than in the image space, showcasing its applicability beyond
visual data. Moreover, we introduce a novel clustering-based method to identify
good reconstructions from thousands of candidates. This significantly improves
on previous works that relied on knowledge of the training set to identify good
reconstructed images. Our findings shed light on a potential privacy risk for data
leakage from models trained using transfer learning.

1 INTRODUCTION

Understanding when training data can be reconstructed from trained neural networks is an intriguing
question that attracted significant interest in recent years. Successful reconstruction of training sam-
ples has been demonstrated for both generative models (Carlini et al., 2021; 2023) and classification
settings (Haim et al., 2022). Exploring this question may help understand the extent to which neural
networks memorize training data and their vulnerability to privacy attacks and data leakage.

Existing results on training data reconstruction from neural network classifiers focus on restricted and
unrealistic settings. These methods require very small training datasets, which strongly limit their
ability to generalize. Additionally, they are constrained to low-resolution images, such as CIFAR or
MNIST images, and simple models like multilayered perceptrons (MLPs) or small CNNs.

We aim to overcome these limitations in a transfer-learning setting. Transfer Learning leverages
knowledge gained from solving one problem to address a related problem, often by transferring
learned representations from large pre-trained models (known as Foundation Models) to tasks with
limited training data. In the context of deep learning, transfer learning is commonly implemented by
fine-tuning the final layers of pre-trained models or training small MLPs on their output embeddings,
known as deep features (Oquab et al., 2014). This approach often achieves high generalization even
for learning tasks with small training sets, while also requiring less computing power. Thus, transfer
learning is very common in practice.

In this work, we demonstrate reconstruction of training samples in more realistic scenarios. Specifi-
cally, we reconstruct high-resolution images from models that achieve good test performance, within
a transfer learning framework. Our approach involves training an MLP on the embeddings of
common pre-trained transformer-based foundation models, such as CLIP (Radford et al., 2021) or
DINO-ViT (Caron et al., 2021) (see Fig. 1). Our findings have implications for privacy, particularly
when transfer learning is being used on sensitive training data, such as medical data. Consequently,
preventing data leakage in transfer learning necessitates the development of appropriate defenses.

Additionally, our work addresses a key limitation of prior reconstruction works: their reliance on
training images for identifying good reconstructions from thousands of candidates. While this
approach demonstrated that training images are embedded within the model’s parameters, it’s

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Original

Reconstructed

Original

Reconstructed

Figure 1: Reconstructed Data from a binary classifier trained on 100 DINO-VIT embeddings

unrealistic for attackers to have access to the training data. To overcome this, we introduce a novel
clustering-based approach to effectively identify reconstructed training samples, eliminating the
need for prior knowledge of the training set. This marks a significant step towards establishing
reconstruction techniques as real-world privacy attacks.

Our Contributions:

• We demonstrate reconstruction of high-resolution training images from models trained in a
transfer learning approach, a significant advancement from previous reconstruction methods
that were limited to small images and models with low generalization.

• We demonstrate, for the first time, reconstruction of non-visual data (feature vectors of
intermediate layers).

• We introduce a novel clustering-based approach for effectively identifying training samples
without a-priori knowledge of training images, a significant step towards a more realistic
privacy attack.

2 PRIOR WORK

Data Reconstruction Attacks. Reconstruction attacks attempt to recover the data samples on
which a model is trained, posing a serious threat to privacy. Earlier examples of such attacks include
activation maximization (model-inversion) (Fredrikson et al., 2015; Yang et al., 2019), although they
are limited to only a few samples per class or assume knowledge of all-but-one sample (Balle et al.,
2022). Reconstruction in a federated learning setup (Zhu et al., 2019; He et al., 2019; Hitaj et al., 2017;
Geiping et al., 2020; Huang et al., 2021; Wen et al., 2022) where the attacker assumes knowledge
of samples’ gradients. Other works studied reconstruction attacks on generative models like LLMs
(Carlini et al., 2019; 2021; Nasr et al., 2023) and diffusion-based image generators (Somepalli et al.,
2022; Carlini et al., 2023). Our work is based on the reconstruction method from Haim et al. (2022),
which relies only on knowledge of the parameters of the trained model, and is based on theoretical
results of the implicit bias in neural networks (Lyu & Li, 2019; Ji & Telgarsky, 2020). This work was
generalized to multi-class setting (Buzaglo et al., 2023) and to the NTK regime (Loo et al., 2023).

Transfer Learning. Deep transfer learning, a common technique across various tasks (see surveys:
(Tan et al., 2018; Zhuang et al., 2020; Iman et al., 2023)), leverages pre-trained models from large
datasets to address challenges faced by smaller, domain-specific datasets (e.g., in the medical do-
main (Kim et al., 2022)). While convolutional neural networks (CNNs) have been the go-to approach
for transfer learning (Oquab et al., 2014; Yosinski et al., 2014), recent research suggests that vision
transformers (ViTs) may offer stronger learned representations for downstream tasks (Caron et al.,
2021; He et al., 2022). For example, ViT (Dosovitskiy et al., 2020), pre-trained on ImageNet (Deng
et al., 2009), provides robust general visual features. Beyond supervised pre-training, self-supervised
learning methods like DINO (Caron et al., 2021; Oquab et al., 2023) learn informative image rep-
resentations without requiring labeled data, allowing the model to capture strong image features
suitable for further downstream tasks. Additionally, CLIP (Radford et al., 2021) has emerged as a
powerful technique, leveraging a massive dataset of paired text-image examples and contrastive loss
to learn semantically meaningful image representations.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) Classifier trained via Transfer-Learning (on embedding-space)

Transfer Learning
(a few FC layers)

Embeddings of
training samples

Pretrained
encoder

(e.g., DINO)

Training
samples

ℒclassification

si {xi}= { (si)} 𝜙

(b) Training-Data Reconstruction from the Classifier

Reconstructed
training samples

Mapping to
image domain

(e.g., Inversion)

Reconstructed
training

embeddings
Reconstructing

Embeddings
of the

Training
samples

−1

{ොxi} { Ƹsi}

Figure 2: Overview of our training and data reconstruction scheme.

3 METHOD

Our goal is to reconstruct training samples (images) from a classifier that was trained on the corre-
sponding embedding vectors of a large pre-trained model in a transfer learning manner.

The classifier training is illustrated in Fig. 2a. Formally, given an image classification task Ds =
{(si, yi)}ni=1 ⊆ Rds × {1, . . . , C}, where ds is the dimension of the input image1 and C is the
number of classes, we employ a large pre-trained model F : Rds → Rd (e.g., DINO) to transfer each
image si to its corresponding deep feature embedding xi = F(si) ∈ Rd, where d is the dimension of
the feature embedding vector (the output of F). We then train a model ϕ(·,θ) : Rd → RC to classify
the embedding dataset Dx = (xi, yi)

n
i=1 ⊆ Rd × {1, . . . , C}, where θ ∈ Rp is a vectorization of the

trained parameters. Typically, ϕ is a single hidden-layer multilayer perceptron (MLP). Also note that
F is kept fixed during the training of ϕ. The overall trained image classifier is ϕ(F(s)).

Our reconstruction approach is illustrated in Fig. 2b and presented in detail below. Given the trained
classifier ϕ and the pre-trained model F , our goal is to reconstruct training samples si from the
training set Ds. The reconstruction scheme comprises two parts:

1. Reconstructing embedding vectors from the training set of the classifier ϕ.

2. Mapping the reconstructed embedding vectors back into the image domain. Namely, computing
F−1 (e.g., by “inverting” the pre-trained model F).

3.1 RECONSTRUCTING EMBEDDING VECTORS FROM ϕ

Given a classifier ϕ : Rd → Rc trained on an embedding training-set Dx = {(xi, yi)}ni=1, we apply
the reconstruction scheme of (Haim et al., 2022; Buzaglo et al., 2023) to obtain {x̂i}mi=1, which
are m “candidates” for reconstructed samples from the original training set Dx. In this section we
provide a brief overview of the reconstruction scheme of (Haim et al., 2022; Buzaglo et al., 2023)
(for elaboration see Sec. 3 in Haim et al. (2022)):

Implicit Bias of Gradient Flow: Lyu & Li (2019); Ji & Telgarsky (2020) show that given a
homogeneous2 neural network ϕ(·,θ) trained using gradient flow with a binary cross-entropy loss
on a binary classification dataset {(xi, yi)}ni=1 ⊆ Rd × {±1}, its parameters θ converge to a KKT
point of the maximum margin problem. In particular, there exist λi ≥ 0 for every i ∈ [n] such that
the parameters of the trained network θ satisfy the following equation:

1Typically ds = 3× h× w, where h and w are the height and width of the image, respectively.
2W.r.t the parameters θ. Namely ∀c > 0 : ϕ(·, cθ) = cLϕ(·,θ) for some L.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

θ =

n∑
i=1

λiyi∇θ(ϕ(xi,θ)) . (1)

Data Reconstruction Scheme: Given such a trained model ϕ with trained (and fixed) parameters
θ, the crux of the reconstruction scheme is to find a set of {xi, λi, yi} that satisfy Eq. (1). This is
done by minimizing the following loss function:

Lrec(x̂1, . . . , x̂m, λ1, . . . , λm) :=

∥∥∥∥∥θ −
m∑
i=1

λiyi∇θ(ϕ(x̂i,θ))

∥∥∥∥∥
2

2

, (2)

Where the optimization variables {x̂i, λi} are initialized at random from λi ∼ U(0, 1) and x̂i ∼
N (0, σ) (σ is a hyperparameter). This generates m vectors {x̂i}mi=1 that we consider as “candidates”
for reconstructed samples from the original training set of the classifier ϕ. The number of candidates
m should be “large enough” (e.g., m ≥ 2n, and see discussion in Haim et al. (2022)). The yi are
assigned in a balanced manner (i.e., y1, . . . , ym/2 = 1 and y1+m/2, . . . , ym = −1). Lastly, Buzaglo
et al. (2023) extended this scheme to multi-class classification problems.

The data reconstruction scheme is conducted multiple times for different choices of hyperparameters
(e.g., learning rate and σ). For each trained model, we run about 50-100 reconstruction runs with
m = 500, resulting in about 25k-50k candidates. See Appendix B.2 for full details.

3.2 MAPPING EMBEDDING VECTORS x̂i TO THE IMAGE DOMAIN ŝi

Unlike previous works on data reconstruction that directly reconstruct training images, our method
reconstructs embedding vectors. To evaluate the effectiveness of our reconstructed candidates, we
must first map them back to the image domain. In this section we describe how we achieve training
images from image-embeddings. Namely, given reconstructed image-embeddings x̂i, our goal is to
compute ŝi = F−1(x̂i). To this end we apply model-inversion methods and in particular, the method
proposed in Tumanyan et al. (2022).

Given a vector x̂i (an output candidate from the reconstruction optimization in Section 3.1), we search
for an input image ŝi to F that maximizes the cosine-similarity between F(ŝi) and x̂i. Formally:

ŝi = F−1(x̂i) = argmax
ν

F(ν) · x̂i

∥F(ν)∥∥x̂i∥
. (3)

We further apply a Deep-Image Prior (DIP) (Ulyanov et al., 2018) to the input of F . I.e., ν = g(z)
where g is a CNN U-Net model applied to a random input z sampled from Gaussian distribution.
The only optimization variables of the inversion method are the parameters of g. See Appendix B.3
further explanation and full implementation details.

By applying model-inversion to DINO embeddings, Tumanyan et al. (2022) demonstrated that the
[CLS] token contains a significant amount of information about the visual appearance of the original
image from which it was computed. Even though their work was done in the context of image to
image style transfer, their results inspired our work and motivated us to apply their approach in the
context of reconstructing training image samples.

A significant modification to Tumanyan et al. (2022) in our work is by employing a cosine-
similarity loss instead of their proposed MSE loss. We find that using MSE loss (i.e., F−1(x̂) =
argminν∥F(ν)− x̂i∥2) is highly sensitive to even small changes in the scale of x̂. The scales of x̂
can be very different from the unknown x = F(s). Using cosine similarity alleviates this issue while
simultaneously achieving similar quality for the inverted image result (see also Appendix A.1).

The above-mentioned technique is used for mapping embeddings to images for most transformers
that we consider in our work. However, this technique did not produce good results when applied to
CLIP (Radford et al., 2021). Therefore, to map CLIP image embeddings to the image domain, we
employ a diffusion-based generator conditioned on CLIP embeddings by Lee et al. (2022) (similar in
spirit to the more popular DALL-E2 (Ramesh et al., 2022); see also Appendix A.7 and Appendix B.4).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 SELECTING RECONSTRUCTED EMBEDDINGS TO BE INVERTED

Applying the model-inversion described in Section 3.2 to a large pretrained model is computationally
intensive. Inverting a single embedding vector takes about 30 minutes on an NVIDIA-V100-32GB
GPU. Therefore, it is not feasible to invert all 25k-50k output candidates of Section 3.1.

To determine which reconstructed candidates to invert, we pair each training embedding xi with its
nearest reconstructed candidate x̂j (measured by cosine similarity) and select the top 40 vectors with
the highest similarity for inversion. This approach proves effective in practice, yielding images with
high visual similarity to the original training images, as demonstrated in the results (e.g., Fig. 1).

In practice, the original training embeddings are not available (and inverting all candidates is compu-
tationally prohibitive). In Section 5 we introduce a novel method to identify good reconstructions
without relying on either ground-truth embeddings or exhaustive inversion.

4 RESULTS

We demonstrate reconstructed training images from models trained in a transfer learning setup, on
the embeddings of large pretrained models. We train several MLPs to solve learning tasks for various
choices of training images and choices of the large pretrained backbones from which the image
embeddings are computed.

Datasets. Since we simulate a model that is trained in a transfer learning manner, it is reasonable to
assume that such tasks involve images that were not necessarily included in the training sets on which
the pretrained backbone was trained (typically, ImageNet (Deng et al., 2009)). In our experiments we
use images from Food-101 (Bossard et al., 2014) (most popular dishes from foodspotting website)
and iNaturalist (Van Horn et al., 2018) (various animals/plants species) datasets. The resolution of
the images vary between 250-500 pixels, but resized and center-cropped to 224× 224.

Pretrained Backbones (F) for Image Embeddings. We select several Transformer-based founda-
tion models that are popular choices for transfer learning in the visual domain:

• ViT (Dosovitskiy et al., 2020): vit-base-patch16-224 from TIMM Wightman (2019).
• DINO-ViT (Caron et al., 2021): dino-vitb16 from the official implementation3.
• DINOv2 (Oquab et al., 2023): dinov2-vitb14-reg from the official implementation4.
• CLIP-ViT (Radford et al., 2021): ViT-L/14 as provided by OpenAI’s CLIP repository 5.

The dimension of the output embeddings is consistent across all backbones F , and equal to d=768.

Multilayer Perceptron (ϕ) consists of a single hidden layer of dimension 500 (d-500-C) that is
optimized with gradient descent for 10k epochs, weight-decay of 0.08 or 0.16 and learning rate 0.01.
All models achieve zero training error.

RECONSTRUCTING TRAINING DATA FROM ϕ(F)

We train classifiers ϕ(F(s)) on two binary classification tasks: (1) binary iNaturalist is fauna
(bugs/snails/birds/alligators) vs. flora (fungi/flowers/trees/bush) and (2) binary Food101 is beef-
carpaccio/bruschetta/caesar-salad/churros/cup-cakes vs. edamame/gnocchi/paella/pizza/tacos. Each
binary class mixes images from several classes of the original dataset (images are not mixed between
different datasets). Each training set contains 100 images (50 per class). The test sets contains
1000/1687 images for iNaturalist/Food101 respectively. All models achieve test-accuracy above 95%
(except for DINO on Food101 with 85%. Also see Fig. 31).

In Fig. 3 we show the results of reconstructing training samples from 8 models (for two binary tasks
and 4 choices of F). For each reconstructed image (ŝ = F−1(x̂)), we show the nearest image from

3https://github.com/facebookresearch/dino
4https://github.com/facebookresearch/dinov2
5https://github.com/openai/CLIP

5

https://github.com/facebookresearch/dino
https://github.com/facebookresearch/dinov2
https://github.com/openai/CLIP

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Pretrained
Model (F)

Dataset
Food101 iNaturalist

ViT

DINO-ViT

DINOv2-ViT

CLIP

Figure 3: Training samples (red) and their best reconstructed candidate, from MLPs trained on
embeddings of various backbone models for two datasets.

the training set, in terms of cosine-similarity between the embeddings of both (dcosine(x̂,F(s))). As
can be seen, many reconstructed images clearly have high semantic similarity to their corresponding
nearest training images.

The quality of the results greatly depends on the effectiveness of the inversion method, which can
vary across different backbones F . DINO and ViT yield the highest quality reconstructed samples.
DINOv2 proves harder to invert, resulting in lower reconstruction quality. With CLIP, we utilize
UnCLIP6 to project embeddings into good natural images, maintaining semantic similarity even as
reconstruction quality decreases (e.g., same class). In Section 6 we further discuss the differences
and limitations of inversion.

Our approach is also applicable to multiclass setting by using Buzaglo et al. (2023) extension of the
method described in Section 3.1 (see Appendix B.5 for details). This is demonstrated in Fig. 4 where
we show reconstructed training samples from models trained on multiclass tasks.

QUANTITATIVE EVALUATION OF THE RECONSTRUCTED DATA

We evaluate our results by how well they corroborate with the theory on which the reconstruction
method is based, and also by how well the reconstructed images resemble the original training
samples.

6We use the UnCLIP implementation from https://github.com/kakaobrain/karlo

6

https://github.com/kakaobrain/karlo

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) DINO Food101 10 classes (b) DINO iNaturalist 4 classes

Figure 4: Reconstructions from a multiclass models trained 100 images from Food101/iNaturalist
with C=10/4 classes (10/25 images per class), with test-accuracy 84%/96% (on a/b respectively).
Color-padded images are training images, where color represents different classes.
Measuring Reconstruction Quality and Alignment with Theory. Convergence to the KKT
solution of the maximum-margin implies that reconstruction is only possible for samples lying on
the margin, i.e., those with the smallest model outputs.7 This can be demonstrated by plotting each
training sample’s reconstruction quality (typically measured using SSIM (Wang et al., 2004)) between
the original and reconstructed images), against its proximity to the decision boundary (measured by
the model output).

When reconstructing images from embeddings, as in our work, the reconstructed samples may exhibit
small translations or subtle artifacts that are hard to pinpoint, despite appearing visually similar. As
a result, conventional image metrics like SSIM, which are sensitive to pixel alignment, may not be
effective for this task.

Quantitative Evaluation. In Fig. 5a, we show results for several metrics for reconstruction quality,
including SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018), and Split-product (Somepalli et al.,
2022), as well as cosine similarity in the embedding domain (dcosine(x̂,F(s))). Notably, cosine
similarity aligns most closely with the theoretical predictions: higher values correspond to samples
that are closer to the margin. In Fig. 5b we demonstrates that cosine-similarity between embeddings
also aligns well with visual similarity. To this end we sort all reconstructed samples according to
dcosine(x̂,F(s)). Note how samples with high cosine-similarity also appear visually similar.

5 0 5
0.00

0.25

0.50

0.75

1.00

Cosine Similarity
(embeddings)

5 0 5

SSIM

5 0 5

1 - LPIPS

5 0 5

Split Product

5 0 5

PSNR

5 0 5

Cosine Similarity
(images)

0.0 0.2 0.4 0.6 0.8 1.0

Model Output
0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

(e
m

be
dd

in
gs

)

(a) Various metrics for reconstruction quality (normalized to [0,1]. I.e., (x− min(x))/(max(x)−
min(x)) where x is the array containing the metric values).

0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.96 0.96

Co
sin

e
Si

m
ila

rit
y

(e
m

be
dd

in
gs

)

(b) Reconstructed samples sorted by dcosine(x̂,F(s)) (values shown above images)

Figure 5: Cosine-Similarity between embeddings (top-left) aligns well with both theoretical
properties and visual similarity. Results for DINO Food101 model. Complete results for all models
and metrics are in Appendix A.2.

Such plots (reconstruction-quality vs. model-output) are a good way to summarize the reconstruction
results for each model, since they show the full reconstruction quality for all samples. In Fig. 6

7In addition to the condition in Eq. (1), λi ̸= 0 holds only for samples xi that lie on the classification margin,
closest to the decision boundary. See Sections 3.2 & 5.3 in Haim et al. (2022).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

we show such plots for every model from Figs. 3 and 4 (where reconstruction-quality is measured
by cosine similarity between embeddings). This analysis hints that samples that are closer to the
classification margin (either in the binary or multiclass case) are more vulnerable to reconstruction
(since their reconstruction quality is higher).

5 0 5
0.25

0.50

0.75

1.00

d c
os

in
e(

x,
x)

ViT
 Food101

5 0 5

ViT
 iNaturalist

5 0 5

DINO
 Food101

5 0 5

DINO
 iNaturalist

5 0 5

DINOv2
 Food101

5 0 5

DINOv2
 iNaturalist

5 0 5

CLIP
 Food101

5 0 5

CLIP
 iNaturalist

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
0.4

0.6

0.8

1.0

d c
os

in
e(

x,
x)

DINO Food101, 10 Classes

5 6 7 8 9

DINO iNaturalist, 4 Classes

Distance from Decision Boundary ((xi)yi max
j yi

(xi)j)

Figure 6: Quantitative summary for all models whose reconstructed samples are in Figs. 3 and 4.

5 IDENTIFYING GOOD RECONSTRUCTION WITHOUT THE ORIGINAL
TRAINSET

In this section, we introduce a clustering-based approach to identify “good” reconstructed candidates
without relying on the original training data. This is an important step towards an effective privacy
attack. Previous works (Haim et al., 2022; Buzaglo et al., 2023; Loo et al., 2023), including Section 3.3
in this work, rely on the original training images for demonstrating that training images are embedded
in the model parameters. However, it is not applicable to real-world privacy attacks, as attackers don’t
have access to the original training data.

When directly reconstructing training images, this issue can be mitigated by manual inspection of
the thousands of output image candidates – a time-consuming but feasible approach. However, this
approach is irrelevant when reconstructing image embeddings. The reconstructed embeddings must
first be inverted into images, which is computationally expensive (inverting a single vector takes
about 30 minutes on an NVIDIA-V100-32GB GPU, as detailed in Section 3.3). Inverting thousands
of embeddings is simply infeasible.

Figure 7: Clustering-Based Reconstruction. Inversion of clusters representatives (blue) compared
to training samples whose embeddings are in the same cluster (in red).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Pretrained
Model (F): ViT DINO-ViT DINOv2-ViT CLIP

Dataset

Food101
s

F−1(F(s))

F−1(x̂)

iNaturalist
s

F−1(F(s))

F−1(x̂)

Figure 9: Training samples (red), inversion of original embeddings (blue), and inversion of recon-
structed embeddings.

This is where our proposed clustering approach comes in. We observe that reconstructed candidates
whose inversions are visually similar to training samples tend to cluster together. By applying
clustering algorithms, we group similar candidates and only invert representative samples from the
largest clusters. This reduces the total number of inversions by two orders of magnitude (from
thousands to tens) and eliminates reliance on training data for identifying good reconstructed samples.

We demonstrate this by using agglomerative clustering8 on 25,000 candidates reconstructed from a
Dino-ViT-based model trained on the Food101 dataset (same as in Fig. 3). We use cosine similarity
as the distance metric with “average” linkage and 1,000 clusters, from which we select the 45 largest
ones (containing between 100 and 8,000 candidates each). Within each cluster, a representative is
chosen by averaging all candidate embeddings. Finally, these representatives are inverted using the
methods described in Section 3.2. Fig. 7 shows the results of inverting these cluster representatives
(blue), along with a training sample whose embedding belongs to the same cluster (red). As can be
seen, the clustering-based approach provides a very good method for reconstructing training samples
without requiring the training data.

0 5000 10000 15000 20000
Clusters (maxclust)

0

5

10

15

20

25

30

Go

od
 R

ec
on

st
ru

ct
io

ns

Using Trainset
Cluster-Mean
Nearest Candidate

Figure 8: Impact of Num. Clusters
on Reconstruction Quality (for
CIFAR10 model with n=500)

The choice of the number of clusters (MAXCLUST) significantly
affect the results of our clustering-based approach. Since as-
sessing this effect in our current image-embedding setup is
computationally prohibitive, we evaluate our approach on 50k
reconstructed candidates from a model trained on 500 CIFAR-
10 images (same as in Haim et al. (2022)). For each MAXCLUST,
we select the representatives of the largest 150 clusters by either
averaging all cluster candidates (red) or selecting the nearest
candidate to the cluster-mean (blue). We compare each repre-
sentative to a training image in the same cluster (using SSIM)
and count the numbers of good representatives (SSIM> 0.4),
the results are in Fig. 8.

Notably, beyond a certain small threshold, any MAXCLUST

yields a considerable amount of good reconstructed samples
(see also Appendix A.8).

6 LIMITATIONS

In this work, we made design choices when training the models to align with realistic transfer learning
practices. However, some choices led to better reconstruction results than others, revealing limitations
of our method. Here we discuss these limitations, their impact on our results, and identify potential
future research directions:

8
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html

9

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

• The quality of reconstructed images relies heavily on the backbone model (F) and the inversion
method (Section 3.2). Fig. 9 shows the inverted original embeddings F−1(F(s)) (blue), which
are the “best” we can achieve (independent of our reconstruction method). It also shows how some
backbones are easier or harder to invert, as evident in the difference between F−1(F(s)) (blue)
and the original image s (red), for different F ’s. It can also be seen that the inverted reconstructed
embeddings F−1(x̂) are sometimes more similar to F−1(F(s)) than to s, which may hint that the
challenge lies in the inversion more than in the reconstruction part. Certainly, improving model
inversion techniques is likely to enhance the quality of reconstructed samples.

• CNN-based backbones F (e.g., VGG (Simonyan & Zisserman, 2014)) proved more challenging
for inversion than Transformer-based backbones F . Since Transformers are also being more
frequently employed due to their better generalization, we decided to focus our work on them and
leave CNN-based backbones for future research.

• Linear-Probing (i.e. train a single linear layer ϕ) is common practice in transfer learning. However,
current reconstruction methods, including ours, struggle to perform well on linear models. This
may stem from the small number of parameters in linear models (see Appendix A.5).

• We use weight-decay regularization since it is a fairly common regularization technique. However,
the reconstruction method is known to perform much worse on models that are trained without
it (Buzaglo et al., 2023).

• We experimented with an embedding vector that is a concatenation of [CLS] and the average of
all other output tokens (of F). This had minor effect on the results, see Appendix A.6 for details.

• Fine-tuning the entire model F (together with ϕ) is resource-intensive and less common compared
to training only on fixed embedding vectors. While we followed the latter approach, full fine-tuning
can be an interesting future direction.

7 CONCLUSION

In this work, we extend previous data reconstruction methods to more realistic transfer learning
scenarios. We demonstrate that certain models trained with transfer learning are susceptible to training
set reconstruction attack. Given the widespread adoption of transfer learning, our results highlight
potential privacy risks. By examining the limitations of our approach, we identify simple mitigation
strategies, such as employing smaller or even linear models, increasing training set size or training
without weight-decay regularization. However, some of these mitigation (removing regularization or
using smaller models) may also come at a cost to the generalization of the model. Furthermore, these
techniques may not be effective against future advanced reconstruction attacks. We aim for our work
to inspire the development of new defense methods and emphasize the importance of research on
data reconstruction attacks and defenses.

REFERENCES

Borja Balle, Giovanni Cherubin, and Jamie Hayes. Reconstructing training data with informed
adversaries. arXiv preprint arXiv:2201.04845, 2022.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.
com/. Software available from wandb.com.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part VI 13, pp. 446–461. Springer, 2014.

Gon Buzaglo, Niv Haim, Gilad Yehudai, Gal Vardi, Yakir Oz, Yaniv Nikankin, and Michal Irani.
Deconstructing data reconstruction: Multiclass, weight decay and general losses. In Advances in
Neural Information Processing Systems, volume 36, pp. 51515–51535, 2023.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In 28th USENIX Security
Symposium (USENIX Security 19), pp. 267–284, 2019.

10

https://www.wandb.com/
https://www.wandb.com/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2633–2650, 2021.

Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramèr,
Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models.
arXiv preprint arXiv:2301.13188, 2023.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC conference on
computer and communications security, pp. 1322–1333, 2015.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-how
easy is it to break privacy in federated learning? Advances in Neural Information Processing
Systems, 33:16937–16947, 2020.

Niv Haim, Gal Vardi, Gilad Yehudai, Ohad Shamir, and Michal Irani. Reconstructing training data
from trained neural networks. NeurIPS, 2022.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Zecheng He, Tianwei Zhang, and Ruby B Lee. Model inversion attacks against collaborative inference.
In Proceedings of the 35th Annual Computer Security Applications Conference, pp. 148–162,
2019.

Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models under the gan: information
leakage from collaborative deep learning. In Proceedings of the 2017 ACM SIGSAC conference on
computer and communications security, pp. 603–618, 2017.

Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. Evaluating gradient
inversion attacks and defenses in federated learning. Advances in Neural Information Processing
Systems, 34:7232–7241, 2021.

Mohammadreza Iman, Hamid Reza Arabnia, and Khaled Rasheed. A review of deep transfer learning
and recent advancements. Technologies, 11(2):40, 2023.

Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. Advances in
Neural Information Processing Systems, 33:17176–17186, 2020.

Hee E Kim, Alejandro Cosa-Linan, Nandhini Santhanam, Mahboubeh Jannesari, Mate E Maros, and
Thomas Ganslandt. Transfer learning for medical image classification: a literature review. BMC
medical imaging, 22(1):69, 2022.

Donghoon Lee, Jiseob Kim, Jisu Choi, Jongmin Kim, Minwoo Byeon, Woonhyuk Baek, and Saehoon
Kim. Karlo-v1.0.alpha on coyo-100m and cc15m. https://github.com/kakaobrain/
karlo, 2022.

11

https://github.com/kakaobrain/karlo
https://github.com/kakaobrain/karlo

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Noel Loo, Ramin Hasani, Mathias Lechner, and Daniela Rus. Dataset distillation fixes dataset
reconstruction attacks. arXiv preprint arXiv:2302.01428, 2023.

Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks.
arXiv preprint arXiv:1906.05890, 2019.

Aravindh Mahendran and Andrea Vedaldi. Visualizing deep convolutional neural networks using
natural pre-images. International Journal of Computer Vision, 120:233–255, 2016.

Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A Feder Cooper, Daphne Ippolito,
Christopher A Choquette-Choo, Eric Wallace, Florian Tramèr, and Katherine Lee. Scalable
extraction of training data from (production) language models. arXiv preprint arXiv:2311.17035,
2023.

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level
image representations using convolutional neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1717–1724, 2014.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical image computing and computer-assisted intervention–MICCAI
2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III
18, pp. 234–241. Springer, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffu-
sion art or digital forgery? investigating data replication in diffusion models. arXiv preprint
arXiv:2212.03860, 2022.

Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. A survey
on deep transfer learning. In Artificial Neural Networks and Machine Learning–ICANN 2018:
27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part III 27, pp. 270–279. Springer, 2018.

Narek Tumanyan, Omer Bar-Tal, Shai Bagon, and Tali Dekel. Splicing vit features for semantic
appearance transfer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10748–10757, 2022.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 9446–9454, 2018.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8769–8778,
2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–612,
2004.

Yuxin Wen, Jonas Geiping, Liam Fowl, Micah Goldblum, and Tom Goldstein. Fishing for user data
in large-batch federated learning via gradient magnification. arXiv preprint arXiv:2202.00580,
2022.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Ziqi Yang, Jiyi Zhang, Ee-Chien Chang, and Zhenkai Liang. Neural network inversion in adversarial
setting via background knowledge alignment. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pp. 225–240, 2019.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? Advances in neural information processing systems, 27, 2014.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in Neural
Information Processing Systems, 32, 2019.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and
Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):43–76,
2020.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendix

Table of Contents
A Additional Experiments 14

A.1 Importance of Cosine-Similarity for Inversion (as opposed to MSE) 14
A.2 Full Results for Fig. 5 . 15
A.3 Cosine-Similarity as a proxy for Good Reconstructions 17
A.4 Does Training Data Reconstructability Require Overtraining? 17
A.5 Impact of Model Size and Training Set Size on Reconstructability 18
A.6 Effect of Using [CLS]+MEAN vs [CLS] as Feature Vector 19
A.7 Model Inversion for CLIP vs UnCLIP Decoder 19
A.8 Further Insights on Clustering-based Reconstruction (Section 5) 20
A.9 More Clustering-Based Reconstruction Results 21
A.10 Comparison to Activation Maximization . 21
A.11 GT Inversion . 22

B Implementation Details 27
B.1 Data Preprocessing . 27
B.2 Reconstruction Hyperparameter Search . 27
B.3 Further Details about Inversion Section 3.2 . 28
B.4 Inversion with UnCLIP . 28
B.5 Reconstruction in Multiclass Setup . 28
B.6 Choice of Weight Decay . 28

C Datasets - Full Details 30
C.1 Image Resolution . 30
C.2 Food-101 (Bossard et al., 2014) . 30
C.3 iNaturalist (Van Horn et al., 2018) . 30

A ADDITIONAL EXPERIMENTS

A.1 IMPORTANCE OF COSINE-SIMILARITY FOR INVERSION (AS OPPOSED TO MSE)

Original 1.0 0.1 0.5 2 10

Figure 10: Inverting DINO (F−1(aF(s))) with different scales a

In Fig. 10, we illustrate the significance of having the correct scale when inverting an embedding
(using the inversion described in Section 3.2). For several images s (left-most column), we display

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

the inversion of their embeddings F−1(F(s)) (second from left column) alongside other inversions
of the same vector multiplied by varying scales, namely, F−1(aF(s)) for a =

[
1
10 ,

1
2 , 2, 10

]
. As

clearly evident, inverting the same vector without knowing the ”true” scale (a = 1.0) would result in
very different results, sometimes making them hard to recognize.

The original paper Tumanyan et al. (2022) uses MSE in its inversion scheme. However, the output
candidates from the reconstruction method (described in Section 3.1) can have significantly different
norms than their corresponding original training embedding.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cosine Similarity

0

100

200

300

400

L 2
 N

or
m

xi of Nearest Candidate (cos-sim)
xi = (si)

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cosine Similarity

0

5

10

15

x i
/x

i

(a) (b)

Figure 11: Comparing (a) the norms of F(s) (red) and its NN x̂ (blue), and (b) their ratios

To conduct a comparison, we employ a binary model trained on DINO embeddings of images
from Food101, reconstructing candidates x̂ from this model. In Fig. 11a, for each training image
s we compare the norm of its DINO embedding ∥F(s)∥ (red), to the norm of its nearest neighbour
embedding ∥x̂∥ (blue), where x̂ = argmin

x
dcosine(x,F(s)) (and the value of dcosine is the x-axis).

In Fig. 11b we show the ratio between the two, highlighting that candidates can have very different
norm compared to their corresponding training image. This variation in norms is a result of the
reconstruction scheme that we use (Section 3.1), whose nature we don’t fully understand yet. However,
using cosine-similarity loss in our inversion scheme eliminates this issue.

A.2 FULL RESULTS FOR FIG. 5

In Fig. 2 we showed the results of various metrics for reconstruction-quality for a model that was
trained on embeddings of DINO on Food101 dataset. We also showed alignment for visual similarity
of cosine-similarity in embedding space.

In Fig. 12 we provide the full results (same as in Fig. 5a) for all other models from Fig. 3 and all
metrics.

The complete results for Fig. 5b are provided in the supplementary material (sorted reconstructed
sample by all 6 metrics, for each of the 8 models from Fig. 3)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

5 0 5
0.4

0.6

0.8

1.0

Cosine Similarity
(embeddings)

5 0 5
0.2
0.3
0.4
0.5
0.6

SSIM

5 0 5
0.2

0.3

0.4

1 - LPIPS

5 0 5
14000

16000

18000

Split Product

Vi
T

5 0 55.0
7.5

10.0
12.5
15.0

PSNR

5 0 5

0.1
0.2
0.3
0.4

Cosine Similarity
(images)

5 0 5
0.4

0.6

0.8

1.0

5 0 5
0.2
0.3
0.4
0.5
0.6

5 0 5
0.2
0.3
0.4
0.5

5 0 5
500
750

1000
1250

Di
NO

5 0 5
7.5

10.0
12.5
15.0
17.5

5 0 50.0
0.1
0.2
0.3
0.4

5 0 5

0.6

0.8

1.0

5 0 5
0.1
0.2
0.3
0.4

5 0 5
0.1

0.2

0.3

0.4

5 0 5

75000

80000

85000

DI
NO

v2

5 0 5
7.5

10.0

12.5

5 0 5
0.1

0.2

0.3

5 0 5

0.6

0.8

1.0

5 0 5
0.2

0.3

0.4

0.5

5 0 5

0.2

0.3

0.4

5 0 5

45000

50000

55000

CL
IP

5 0 5
5.0

7.5

10.0

12.5

5 0 5
0.1
0.2
0.3
0.4
0.5

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
Si

m
ila

rit
y

(e
m

be
dd

in
gs

)

Model Output

Food101

5 0 5

0.4
0.6
0.8
1.0

Cosine Similarity
(embeddings)

5 0 5

0.2
0.4
0.6
0.8

SSIM

5 0 5
0.2
0.3
0.4
0.5
0.6
0.7

1 - LPIPS

5 0 5
14000
16000
18000
20000

Split Product

Vi
T

5 0 5

10.0

12.5

15.0

PSNR

5 0 50.0

0.2

0.4

0.6

Cosine Similarity
(images)

5 0 50.2
0.4
0.6
0.8
1.0

5 0 5

0.2
0.4
0.6
0.8

5 0 5
0.2
0.3
0.4
0.5
0.6

5 0 5

500
750

1000
1250

Di
NO

5 0 5
7.5

10.0
12.5
15.0
17.5

5 0 50.0

0.2

0.4

5 0 5
0.4

0.6

0.8

1.0

5 0 5

0.2

0.4

0.6

5 0 5
0.1
0.2
0.3
0.4
0.5

5 0 5
70000

75000

80000

DI
NO

v2

5 0 5
7.5

10.0
12.5
15.0

5 0 50.0

0.2

0.4

5 0 5

0.4
0.6
0.8
1.0

5 0 5

0.2

0.4

0.6

5 0 5
0.1
0.2
0.3
0.4
0.5

5 0 5
40000
45000
50000
55000
60000

CL
IP

5 0 5
7.5

10.0

12.5

5 0 5

0.2

0.4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
Si

m
ila

rit
y

(e
m

be
dd

in
gs

)

Model Output

iNaturalist

Figure 12: Various Metrics for Reconstruction-Quality vs. Model-Output

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.3 COSINE-SIMILARITY AS A PROXY FOR GOOD RECONSTRUCTIONS

Determining whether a candidate is a reconstruction of an original sample is a difficult challenge.
It is highly unlikely that the two will be exactly the same, which is why selecting an appropriate
similarity measure is important. Unfortunately, there is no ”best” metric for comparing two images,
which is a known open problem in computer vision (see e.g., Zhang et al. (2018)).

The task becomes even more complex when dealing with reconstructed embedding vectors, as in
our work. Given our computational constraints, we must choose wisely which embeddings to invert,
adding another layer of complexity to the comparison process. Throughout our work, we frequently
employ cosine similarity as a metric for evaluating embedding similarities. However, whether this
metric accurately reflects visual quality is unclear. We set out to explore this question empirically.

Previous work on data reconstruction (Haim et al., 2022; Buzaglo et al., 2023) directly reconstruct
training images, allowing us to a directly compare between cosine similarity and image similarity
measures. Both works established SSIM (Wang et al., 2004) as a good visual metric for CIFAR10
images (see Appendix A.2 in Buzaglo et al. (2023)), and defined SSIM> 0.4 as a good threshold
for declaring two images as sufficiently similar. In fact these works also use cosine similarity to
find nearest neighbors between candidates and training images when normalized to [−1, 1], and only
after shifting the images to [0,1] they use SSIM. Which means that they also implicitly assume that
cosine-similarity is a good proxy for visual similarity.

In Fig. 13, we quantitatively evaluate this assumption using reconstructed images from a CIFAR10-
trained model (as in Haim et al. (2022)). The left panel is for simply reproducing the results of Haim
et al. (2022). By looking at both middle and right panel, we see that CosSim=0.75 is a good cut-off
for determining ”good” reconstruction, since from this point there is a good correlation between the
two metrics. This is also the reason that we use this threshold for determining good reconstruction in
other experiments in the paper.

By further observing the middle panel: if SSIM> 0.4 (horizontal black line) is considered a criterion
for good image reconstruction, then cosine similarity (CosSim> 0.75, vertical black line) may
overlook some potentially high-quality reconstructions, indicating room for further improvement in
our approach.

15 10 5 0 5 10 15
(x)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

SS
IM

0.3 0.4 0.5 0.6 0.7 0.8
Cosine-Similarity

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

SS
IM

15 10 5 0 5 10 15
(x)

0.3
0.4
0.5
0.6
0.7
0.8

Co
sin

e-
Si

m
ila

rit
y

Figure 13: Comparing Cos-Sim to SSIM of training data (model trained on CIFAR10)

A.4 DOES TRAINING DATA RECONSTRUCTABILITY REQUIRE OVERTRAINING?

0 2000 4000 6000 8000 10000
Training Iterations

0

25

50

75

Go

od
Re

co
ns

tru
ct

io
ns

0.840

0.845

0.850

0.855

Te
st

 A
cc

ur
ac

y

Figure 14: Does Training Data Reconstructability Require Overtraining? – Seems Not.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We set to explore how ”reconstructability” (i.e., how many good samples we can reconstruct from) de-
pends on the number of training iterations. We note from empirical observations that reconstructability
certainly improves with longer training, which should not be surprising because according to theory,
the model converges more to the KKT solution.

But the key question is - does the model have to be ”overtrained” before becoming reconstructable,
or not? To define ”overtrained”, we observe how the generalization accuracy increases. Obviously,
the longer we train, the better the model will be reconstructable. But is it reconstructable before the
generalization accuracy saturates? (Or do we have to keep training long after that?)

In Fig. 14 we show the test accuracy per training iteration (red) for a model trained on DINO
embeddings from the Food101 dataset. We also show reconstruction quality (blue) by counting the
number of training samples whose cosine similarity to its nearest neighbor candidate was above 0.75.
As can be seen, reconstructability increases after about 1000 iterations and starts saturating at about
2000 iterations, where the test accuracy (even though quite high in the beginning), keeps increasing
by more than 1.5% until 10k iterations.

The implication is that reconstructability is achieved in a reasonable time (measured by the time taken
to achieve good generalization accuracy). This observation is important to assert the realism of our
method as a viable privacy threat to models trained in a similar fashion.

A.5 IMPACT OF MODEL SIZE AND TRAINING SET SIZE ON RECONSTRUCTABILITY

10 50 10
0

30
0

50
0

10
00

20
00

N - #Samples

2000

1000

500

100

50

W
 -

#N
eu

ro
ns

 o
f h

id
de

n
la

ye
r

10
100%

49
98%

90
90%

108
36%

79
15%

40
4%

23
1%

10
100%

50
100%

80
80%

49
16%

43
8%

0
0%

12
0%

10
100%

50
100%

73
73%

31
10%

13
2%

7
0%

3
0%

10
100%

33
66%

22
22%

3
1%

0
0%

0
0%

1
0%

10
100%

20
40%

6
6%

2
0%

1
0%

0
0%

0
0%

Good Reconstructions

0

20

40

60

80

100

Figure 15: Effect of model size and dataset size on reconstructability.

Previous works Buzaglo et al. (2023) observed that the quality of reconstruction results is influenced
by the size of the model (i.e., number of parameters) and the size of the training set. We conduct
similar analysis for our models.

This relationship can be intuitively understood by considering Eq. (2) as a system of equations to
be inverted, where the number of equations corresponds to the number of parameters in the model,
θ ∈ Rp, and the unknowns are the coefficients λi ∈ R and the reconstructed embeddings xi ∈ Rd

for each training sample i ∈ {1, ..., n}. The ratio p
n(d+1) represents the number of model parameters

relative to the total number of unknowns. As this ratio increases, i.e., when the model has more
parameters compared to the number of unknowns, we hypothesize that the system of equations
becomes more well-determined, leading to higher reconstructability.

This hypothesis is supported by the empirical results presented in Fig. 15, where we train 2-layer
MLPs with architecture D-W -1 on N training samples from binary Food101. Each cell reports
the number of good reconstructions (cosine similarity between training embedding and its nearest

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

neighbor candidate > 0.75), both in absolute terms and as a percentage relative to N. As shown,
when the model has more parameters relative to the number of training examples (further left and
higher up in the table), our method can extract more reconstructions from the model.

This figure also show that our method can be extended to larger datasets, up to N=2000 (and probably
beyond).

A.6 EFFECT OF USING [CLS]+MEAN VS [CLS] AS FEATURE VECTOR

In our work we use the [CLS] token as the feature vector for a given image. However, there may
be other ways to use the outputs of transformer-based foundation models as feature vectors. As
suggested in Caron et al. (2021) (linear probing section), one might use a concatenation of the
[CLS] token and the mean of the rest of the other output tokens ([CLS]+MEAN). In Fig. 16 we
show reconstructed results for a model that was trained using such [CLS]+MEAN feature vector
(using DINO on Food101). As seen, the extra information in the feature vector does not seem to have
a significant effect on the total results of the reconstruction (as opposed to a possible assumption that
extra information would result in higher reconstructability). While this is by no means an exhaustive
evaluation of this design choice (using [CLS]+MEAN vs. just [CLS]), it does look like this may not
change the results of the reconstruction too much.

Figure 16: Reconstruction from a DINO model trained on [CLS]+MEAN embedding vector (original
training image in red)

A.7 MODEL INVERSION FOR CLIP VS UNCLIP DECODER

As described in Section 3.2, for inverting CLIP embeddings, we use an UnCLIP decoder instead
of the model inversion approach used for other backbone models (ViT/DINO/DINOv2). The main
reason behind this choice is that the same inversion method did not seem to provide satisfactory
results for CLIP. In Fig. 17, we show output images of inverted embeddings using the approach from
Tumanyan et al. (2022) (with the modifications described in our paper). The results do not produce
comparable quality to using the UnCLIP decoder.

(a) iNaturalist (b) Food101

Figure 17: Model-Inversion reconstructions from a model trained on CLIP embeddings

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.8 FURTHER INSIGHTS ON CLUSTERING-BASED RECONSTRUCTION (SECTION 5)

0 10000 20000 30000 40000 50000
Clusters (maxclust)

0

10

20

30

Go

od
 R

ec
on

st
ru

ct
io

ns
Effect of #Clusters (n=500, CIFAR10)

Cluster
Representative:
SSIM>0.4
CosSim>0.75

Cluster
Mean

Nearest
Candidate

Using
Trainset

Figure 18: Extended Results for the figure in Section 5

In Fig. 18, we show extended results of the inset Figure in Section 5, displaying the same graph up to
larger MAXCLUST values (red and blue solid lines), together with similar results that count the number
of “good” reconstructions with CosSim > 0.75 (dashed blue and red lines).

The reason for the decrease in the number of good reconstructions as the number of clusters increases,
is that we only consider the largest 150 clusters (per partition of the candidates, as determined by
MAXCLUST). Consequently, when there are too many clusters, the probability that the largest ones
correspond to a cluster of a training sample decreases (for 50k clusters, this becomes totally random).
Note that the largest number of clusters in the graph is slightly smaller than 50k, and there exist
several clusters with 2-3 candidates.

Another insight from this graph is that averaging several candidates together results in better can-
didates, an observation also made by Haim et al. (2022). In our work, we don’t use such candidate
averaging (except for the clustering experiments), but this may lead to improved results. We leave
this for future research.

We note that since the similarity measure between candidates is cosine similarity, this implicitly
applies a spherical topography for comparing candidates. Therefore, it is not straightforward to
compute the mean of several candidates. In our work, we use the simple arithmetic mean, which
empirically seems to work well. We considered computing the Fréchet mean, i.e., the mean of the
candidates that lies on the sphere, but could not find a working implementation for this. This may
also be an interesting direction for future research.

For completeness, we show how the reconstructed samples look for the choice of the ”peak” SSIM
from Fig. 18, which occurs at 3294 clusters. These are shown in Fig. 19.

Figure 19: Reconstructed candidates of CIFAR10 model, obtained with our clustering-based approach
for the ”peak” value in Fig. 18 (3294)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.9 MORE CLUSTERING-BASED RECONSTRUCTION RESULTS

In Fig. 20 we more results of our clustering-based approach, in addition to the results in Fig. 7 (for a
model trained on DINO embeddings of Food101 images).

(a) ViT embeddings of Food101 images

(b) CLIP embeddings of Food101 images

Figure 20: Clustering-based Reconstruction for models trained on (a) ViT embeddings of Food101
images; (b) CLIP embeddings of Food101 images

A.10 COMPARISON TO ACTIVATION MAXIMIZATION

Figure 21: Reconstructions using activation maximization on the input to ϕ

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 22: Reconstructions using activation maximization on the input to F

We compare our reconstruction results to a popular baseline for reconstructing data from trained
model. It is called “model inversion” in the context of privacy(Fredrikson et al., 2015) or “activation
maximization” in the context of visualization techniques (Mahendran & Vedaldi, 2016) (we prefer
the term activation maximization as it is more accurate). We are searching for inputs to the model
that achieve high activations for the model’s outputs that correspond to each class. We consider two
options in our case:

The first, by performing activation maximization on the inputs to ϕ:

argmin
x

L (Φ(x), y)

This results in multiple candidates {x} that minimize the loss function (binary cross-entropy) w.r.t
to the classes y ∈ {−1, 1}. We then search for candidates that are nearest neighbours of original
training embeddings, and invert them to images by computing F−1(x) (this is the same pipeline as
we use for the reconstructed candidates of our approach). The results of this approach can be seen
in Fig. 21.

The second approach, is to optimize over the inputs to F (instead of the inputs to ϕ) in the same
manner that is described in Appendix B.3:

x = gν(z) s.t. ν = argmin
ν

L (ϕ (F (gν(z))) , y)

Where g is the U-Net model with parameters ν. This is equivalent to performing the inversion method
as described in Appendix B.3, but feeding the output of F into the trained ϕ and then into the loss
L, with a given y ∈ {−1, 1} (instead of comparing the output of F to a given embedding vector).
Note that as described in Appendix B.3, the only optimization variables are the parameters of the
Deep-Image Prior g (denoted as ν in the equation above). The results of this approach are shown
in Fig. 22.

As evident from the results, while activation maximization techniques manage to reconstruct some
interesting outputs, that are somewhat semantically related to the training classes, the results of both
methods are inferior to the results of our proposed approach.

A.11 GT INVERSION

Here are the full results (on all reconstructed candidates) of the results shown in Fig. 9.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 23: ViT on Food101: Training Image (red), Inversion of Original Embedding (blue) and
Inversion of Reconstructed Embedding.

Figure 24: ViT on iNaturalist: Training Image (red), Inversion of Original Embedding (blue) and
Inversion of Reconstructed Embedding.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 25: DINO on Food101: Training Image (red), Inversion of Original Embedding (blue) and
Inversion of Reconstructed Embedding.

Figure 26: DINO on iNaturalist: Training Image (red), Inversion of Original Embedding (blue) and
Inversion of Reconstructed Embedding.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 27: DINO2 on Food101: Training Image (red), Inversion of Original Embedding (blue) and
Inversion of Reconstructed Embedding.

Figure 28: DINO2 on iNaturalist: Training Image (red), Inversion of Original Embedding (blue) and
Inversion of Reconstructed Embedding.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 29: CLIP on Food101: Training Image (red), UnCLIP of Original Embedding (blue) and
UnCLIP of Reconstructed Embedding.

Figure 30: CLIP on iNaturalist: Training Image (red), UnCLIP of Original Embedding (blue) and
UnCLIP of Reconstructed Embedding.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

B IMPLEMENTATION DETAILS

Our code is implemented with PYTORCH (Paszke et al., 2019) framework.

B.1 DATA PREPROCESSING

We resize each image to a resolution of 224 pixels (the smaller side of the image) and then apply
a center crop to obtain a 224 × 224 image. We then normalize the image per pixel following the
normalization used in the original paper of each model, as shown in the table below:

Model Mean Std
DiNO, DiNOv2 [0.485, 0.456, 0.406] [0.229, 0.224, 0.225]

ViT [0.5, 0.5, 0.5] [0.5, 0.5, 0.5]
CLIP [0.481, 0.458, 0.408] [0.269, 0.261, 0.276]

After feeding the images through the backbone F to obtain the image embeddings F(si), we
normalize each embedding by subtracting the mean-embedding and dividing by the std. Formally:

xi =
F(si)−µ

σ , where µ = 1
n

∑n
i=1 F(si), and σ =

√
1

n−1

∑n
i=1 (F(si)− µ)

2.

This is a fairly common approach when training on small datasets. µ and σ can be thought as being
part of the model ϕ as they are also applied for embeddings from outside the training set.

B.2 RECONSTRUCTION HYPERPARAMETER SEARCH

As mentioned in Section 3.1, we run the reconstruction optimization 100 times with different choice
of the 4 hyperparameters of the reconstruction algorithm:

1. Learning rate
2. σ – the initial s.t.d. of the initialization of the candidates
3. λmin – together with the loss Eq. (2), the reconstruction includes another loss term to require

λi > λmin (a consequence of the KKT conditions is that λi > 0, but if λi = 0 it has no
relevance in the overall results, therefore a minimal value λmin is set.).

4. α – Since the derivative of ReLU is piecewise constant and non-continuous, the backward
function in each ReLU layer in the original model is replaced with the derivative of SoftRelu
with parameter α.

For full explanation of the hyperparameters, please refer to Haim et al. (2022). Note that for m = 500,
running 100 times would result in 50k candidates.

The hyperparameter search is done via Weights&Biases (Biewald, 2020), with the following random-
ization (it is in the format of a W&B sweep):

parameters:
random_init_std:

distribution: log_uniform_values
max: 1
min: 1e-06

optimizer_reconstructions.lr:
distribution: log_uniform_values
max: 1
min: 1e-06

loss.lambda_regularizer.min_lambda:
distribution: uniform
max: 0.5
min: 0.01

activation.alpha:
distribution: uniform
max: 500
min: 10

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

B.3 FURTHER DETAILS ABOUT INVERSION SECTION 3.2

We follow similar methodology to Tumanyan et al. (2022), using their code9 and changing the recon-
struction loss from MSE to Cosine-Similarity as mentioned in Section 3.2, and specifically Eq. (3)
(see justifications in Appendix A.1).

The Deep-Image Prior model g is a fully convolutional U-Net model (Ronneberger et al., 2015)
(initialized at random with the default pytorch implementation). The optimization is run for 20,000
iterations, where at each iteration the input to g is z+r, where z is initialized from z ∼ N (0ds , Ids×ds)
and kept fixed throughout the optimization, and r is sampled at each iteration as follows:

iteration i < 10,000: r ∼ N (0ds
, 10 · Ids×ds

)
iteration 10,000 < i ≤ 15,000: r ∼ N (0ds

, 2 · Ids×ds
)

iteration 15,000 < i ≤ 20,000: r ∼ N (0ds
, 0.5 · Ids×ds

)

Note that the input to g is of the same size of the input to F , which is simply and image of dimensions
ds = c × h × w. At each iteration, the output of g is fed to F , and the output of F (which is an
embedding vector of dimension d = 768), is compared using cosine-similarity to the embedding
vector that we want to invert. At the end of the step, the parameters of g are changed to increase the
cosine similarity between the embeddings.

B.4 INVERSION WITH UNCLIP

While the method in Appendix B.3 is used for ViT, DINO and DINOv2, for CLIP we use a different
method to invert, which is by using the UnCLIP implementation of Lee et al. (2022). Unlike the
inversion in Appendix B.3 that uses cosine-similarity, with UnCLIP, the embeddings (that go into
to UnCLIP decoder) should have the right scale. For each CLIP embedding of a training image (x),
we search for its nearest neighbour candidate (x̂) with cosine similarity, but before feeding x̂ into
the UnCLIP decoder, we re-scale it to have the same scale as x, so that the input to the decoder is
in fact (∥x∥/∥x̂∥)x̂. Unfortunately we could not resolve this reliance on the training set (as is also
done in previous reconstruction works, and discussed in the main paper), but we believe this may be
mitigated by computing and using general statistics of the training set (instead of specific training
samples). We leave this direction for future research.

B.5 RECONSTRUCTION IN MULTICLASS SETUP

The method in Section 3.1 was extended to multiclass settings by Buzaglo et al. (2023). In a nutshell,
the reconstruction loss in Eq. (2) contains the gradient (w.r.t. θ) of yiϕ(xi) which is the distance from
the decision boundary. For multiclass model ϕ : Rd → RC , the distance to the decision boundary is
ϕ(xi)yi

− maxj ̸=yi
ϕ(xi)j . Replaced into the reconstruction loss in Eq. (2), we have:

Lrec(x̂1, . . . , x̂m, λ1, . . . , λm) :=

∥∥∥∥∥θ −
m∑
i=1

λi∇θ

[
ϕ(x̂i,θ)yi

− max
j ̸=yi

ϕ(x̂i,θ)j

]∥∥∥∥∥
2

2

B.6 CHOICE OF WEIGHT DECAY

When training our model, we apply weight decay regularization. However, determining the optimal
weight decay (WD) value is not straightforward. To find a WD value, we conduct a search across
different WD values and observe their impact on test accuracy. The reuslts are shown in Fig. 31. We
notice that for most values, the test accuracy increases until approximately 0.1 and then decreases
from about 0.3 (indicating that WD is too large). We select the WD from this range, either 0.08 or
0.16. A red-x marks the run which was selected for reconstruction (and whose results are shown
in Fig. 3).

9https://splice-vit.github.io/

28

https://splice-vit.github.io/

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

WD
0.80
0.85
0.90
0.95
1.00

Te
st

 A
cc

food vit

WD

Te
st

 A
cc

inat vit

WD
0.80
0.85
0.90
0.95
1.00

Te
st

 A
cc

food dino

WD

Te
st

 A
cc

inat dino

WD
0.80
0.85
0.90
0.95
1.00

Te
st

 A
cc

food dinov2

WD

Te
st

 A
cc

inat dinov2

10 4 10 3 10 2 10 1 100

WD
0.80
0.85
0.90
0.95
1.00

Te
st

 A
cc

food CLIP

10 4 10 3 10 2 10 1 100

WD

Te
st

 A
cc

inat CLIP

Figure 31: Test-Accuracy for different choices of Weight-Decay Value. Red-X marks the specific run
used for reconstruction in Fig. 3

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

C DATASETS - FULL DETAILS

C.1 IMAGE RESOLUTION

Fig. 32 illustrates how images in the datasets we used may have different resolutions. To standardize
the input, we use the pre-processing described in Appendix B.1.

200 250 300 350 400 450 500
Resolutions

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

widths occurances
heights occurances

250 300 350 400 450 500
Resolutions

0

250

500

750

1000

1250

1500

1750

Fr
eq

ue
nc

y

widths occurances
heights occurances

(a) (b)

Figure 32: Resolution frequency of the images in use from iNaturalist (a) and Food101 (b) datasets

C.2 FOOD-101 (BOSSARD ET AL., 2014)

The dataset comprises real images of the 101 most popular dishes from the foodspotting website.

Binary Tasks We use the following classes:

• Class I: ”beef carpaccio”, ”bruschetta”, ”caesar salad”, ”churros” and ”cup cakes”

• Class II: ”edamame”, ”gnocchi”, ”paella”, ”pizza” and ”tacos”

For any choice of training samples amount, we randomly pick half from every such combined class
in order to create our new dataset.

Multiclass Tasks We use the following classes:

”beef carpaccio”, ”beet salad”, ”carrot cake”, ”cup cakes”, ”dumplings”, ”gnocchi”, ”guacamole”,
”nachos”, ”pizza” and ”samosa”

Here the classes are not combined. For every choice of N classes we choose the first N out of the list
above and randomly pick examples according to the training set size and in such a way that the newly
formed dataset is balanced.

C.3 INATURALIST (VAN HORN ET AL., 2018)

The dataset encompasses a total of 10,000 classes, each representing a distinct species.

Binary Tasks Classes are combined in the same manner as for the Food101 dataset. All classes
names below appear as they are in the dataset.

Fauna

02590 Animalia Arthropoda Insecta Odonata Macromiidae Macromia taeniolata
02510 Animalia Arthropoda Insecta Odonata Libellulidae Libellula forensis

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

02193 Animalia Arthropoda Insecta Lepidoptera Sphingidae Eumorpha vitis
02194 Animalia Arthropoda Insecta Lepidoptera Sphingidae Hemaris diffinis
00828 Animalia Arthropoda Insecta Hymenoptera Vespidae Polistes chinensis
00617 Animalia Arthropoda Insecta Hemiptera Pentatomidae Dolycoris baccarum
02597 Animalia Arthropoda Insecta Orthoptera Acrididae Acrida cinerea
05361 Animalia Mollusca Gastropoda Stylommatophora Philomycidae Megapallifera mutabilis
04863 Animalia Chordata Reptilia Crocodylia Crocodylidae Crocodylus niloticus
04487 Animalia Chordata Aves Procellariiformes Diomedeidae Phoebastria nigripes
04319 Animalia Chordata Aves Passeriformes Tyrannidae Myiozetetes cayanensis

Flora

05690 Fungi Basidiomycota Agaricomycetes Polyporales Polyporaceae Trametes coccinea
05697 Fungi Basidiomycota Agaricomycetes Russulales Auriscalpiaceae Artomyces pyxidatus
05982 Plantae Tracheophyta Liliopsida Asparagales Iridaceae Olsynium douglasii
05988 Plantae Tracheophyta Liliopsida Asparagales Iridaceae Sparaxis tricolor
06988 Plantae Tracheophyta Magnoliopsida Asterales Asteraceae Silphium laciniatum
06665 Plantae Tracheophyta Magnoliopsida Asterales Asteraceae Calendula arvensis
07032 Plantae Tracheophyta Magnoliopsida Asterales Asteraceae Syncarpha vestita
07999 Plantae Tracheophyta Magnoliopsida Fabales Fabaceae Lupinus arcticus
07863 Plantae Tracheophyta Magnoliopsida Ericales Primulaceae Myrsine australis
08855 Plantae Tracheophyta Magnoliopsida Malpighiales Rhizophoraceae Rhizophora mangle
09143 Plantae Tracheophyta Magnoliopsida Ranunculales Berberidaceae Berberis bealei
09974 Plantae Tracheophyta Polypodiopsida Polypodiales Pteridaceae Cryptogramma acrostichoides

Multiclass Tasks

1. Insects

02590 Animalia Arthropoda Insecta Odonata Macromiidae Macromia taeniolata
01947 Animalia Arthropoda Insecta Lepidoptera Nymphalidae Phaedyma columella
02194 Animalia Arthropoda Insecta Lepidoptera Sphingidae Hemaris diffinis
02195 Animalia Arthropoda Insecta Lepidoptera Sphingidae Hemaris fuciformis
02101 Animalia Arthropoda Insecta Lepidoptera Pieridae Pontia occidentalis
02138 Animalia Arthropoda Insecta Lepidoptera Riodinidae Apodemia virgulti

2. Aquatic Animals

02715 Animalia Arthropoda Malacostraca Decapoda Grapsidae Grapsus grapsus
02850 Animalia Chordata Actinopterygii Perciformes Lutjanidae Ocyurus chrysurus
02799 Animalia Chordata Actinopterygii Perciformes Centrarchidae Ambloplites rupestris
02755 Animalia Arthropoda Merostomata Xiphosurida Limulidae Limulus polyphemus
02704 Animalia Arthropoda Malacostraca Decapoda Cancridae Cancer borealis
02706 Animalia Arthropoda Malacostraca Decapoda Cancridae Cancer productus

3. Reptiles

04859 Animalia Chordata Reptilia Crocodylia Alligatoridae Alligator mississippiensis
04868 Animalia Chordata Reptilia Squamata Agamidae Agama picticauda
04862 Animalia Chordata Reptilia Crocodylia Crocodylidae Crocodylus moreletii
04865 Animalia Chordata Reptilia Rhynchocephalia Sphenodontidae Sphenodon punctatus
04954 Animalia Chordata Reptilia Squamata Colubridae Pituophis deppei

4. Birds

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

04487 Animalia Chordata Aves Procellariiformes Diomedeidae Phoebastria nigripes
04319 Animalia Chordata Aves Passeriformes Tyrannidae Myiozetetes cayanensis
04570 Animalia Chordata Aves Suliformes Phalacrocoracidae Microcarbo melanoleucos
04587 Animalia Chordata Aves Suliformes Sulidae Sula nebouxii
04561 Animalia Chordata Aves Strigiformes Strigidae Surnia ulula
04576 Animalia Chordata Aves Suliformes Phalacrocoracidae Phalacrocorax capensis

32

	Introduction
	Prior Work
	Method
	Reconstructing Embedding Vectors from
	Mapping Embedding Vectors to the Image Domain
	Selecting Reconstructed Embeddings to be Inverted

	Results
	Identifying Good Reconstruction Without the Original Trainset
	Limitations
	Conclusion
	Appendix
	 Appendix
	Additional Experiments
	Importance of Cosine-Similarity for Inversion (as opposed to MSE)
	Full Results for fig:metricsoutputs
	Cosine-Similarity as a proxy for Good Reconstructions
	Does Training Data Reconstructability Require Overtraining?
	Impact of Model Size and Training Set Size on Reconstructability
	Effect of Using [CLS]+MEAN vs [CLS] as Feature Vector
	Model Inversion for CLIP vs UnCLIP Decoder
	Further Insights on Clustering-based Reconstruction (sec:clustering)
	More Clustering-Based Reconstruction Results
	Comparison to Activation Maximization
	GT Inversion

	Implementation Details
	Data Preprocessing
	Reconstruction Hyperparameter Search
	Further Details about Inversion sec:methodinversion
	Inversion with UnCLIP
	Reconstruction in Multiclass Setup
	Choice of Weight Decay

	Datasets - Full Details
	Image Resolution
	Food-101 bossard2014food
	iNaturalist van2018inaturalist

