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ABSTRACT

Current methods for reconstructing training data from trained classifiers are re-
stricted to very small models, limited training set sizes, and low-resolution images.
Such restrictions hinder their applicability to real-world scenarios. In this paper,
we present a novel approach enabling data reconstruction in realistic settings for
models trained on high-resolution images. Our method adapts the reconstruction
scheme of [Haim et al.| (2022)) to real-world scenarios — specifically, targeting mod-
els trained via transfer learning over image embeddings of large pre-trained models
like DINO-VIiT and CLIP. Our work employs data reconstruction in the embed-
ding space rather than in the image space, showcasing its applicability beyond
visual data. Moreover, we introduce a novel clustering-based method to identify
good reconstructions from thousands of candidates. This significantly improves
on previous works that relied on knowledge of the training set to identify good
reconstructed images. Our findings shed light on a potential privacy risk for data
leakage from models trained using transfer learning.

1 INTRODUCTION

Understanding when training data can be reconstructed from trained neural networks is an intriguing
question that attracted significant interest in recent years. Successful reconstruction of training sam-
ples has been demonstrated for both generative models (Carlini et al., 2021; 2023) and classification
settings (Haim et al., 2022). Exploring this question may help understand the extent to which neural
networks memorize training data and their vulnerability to privacy attacks and data leakage.

Existing results on training data reconstruction from neural network classifiers focus on restricted and
unrealistic settings. These methods require very small training datasets, which strongly limit their
ability to generalize. Additionally, they are constrained to low-resolution images, such as CIFAR or
MNIST images, and simple models like multilayered perceptrons (MLPs) or small CNNss.

We aim to overcome these limitations in a transfer-learning setting. Transfer Learning leverages
knowledge gained from solving one problem to address a related problem, often by transferring
learned representations from large pre-trained models (known as Foundation Models) to tasks with
limited training data. In the context of deep learning, transfer learning is commonly implemented by
fine-tuning the final layers of pre-trained models or training small MLPs on their output embeddings,
known as deep features (Oquab et al., 2014). This approach often achieves high generalization even
for learning tasks with small training sets, while also requiring less computing power. Thus, transfer
learning is very common in practice.

In this work, we demonstrate reconstruction of training samples in more realistic scenarios. Specifi-
cally, we reconstruct high-resolution images from models that achieve good test performance, within
a transfer learning framework. Our approach involves training an MLP on the embeddings of
common pre-trained transformer-based foundation models, such as CLIP (Radford et al.| 2021)) or
DINO-VIiT (Caron et al.| 2021)) (see Fig.[I). Our findings have implications for privacy, particularly
when transfer learning is being used on sensitive training data, such as medical data. Consequently,
preventing data leakage in transfer learning necessitates the development of appropriate defenses.

Additionally, our work addresses a key limitation of prior reconstruction works: their reliance on
training images for identifying good reconstructions from thousands of candidates. While this
approach demonstrated that training images are embedded within the model’s parameters, it’s
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Figure 1: Reconstructed Data from a binary classifier trained on 100 DINO-VIT embeddings

unrealistic for attackers to have access to the training data. To overcome this, we introduce a novel
clustering-based approach to effectively identify reconstructed training samples, eliminating the
need for prior knowledge of the training set. This marks a significant step towards establishing
reconstruction techniques as real-world privacy attacks.

Our Contributions:

* We demonstrate reconstruction of high-resolution training images from models trained in a
transfer learning approach, a significant advancement from previous reconstruction methods
that were limited to small images and models with low generalization.

¢ We demonstrate, for the first time, reconstruction of non-visual data (feature vectors of
intermediate layers).

* We introduce a novel clustering-based approach for effectively identifying training samples
without a-priori knowledge of training images, a significant step towards a more realistic
privacy attack.

2 PRIOR WORK

Data Reconstruction Attacks. Reconstruction attacks attempt to recover the data samples on
which a model is trained, posing a serious threat to privacy. Earlier examples of such attacks include
activation maximization (model-inversion) (Fredrikson et all, 2015}, [Yang et al., [2019), although they
are limited to only a few samples per class or assume knowledge of all-but-one sample (Balle et al,
2022). Reconstruction in a federated learning setup (Zhu et al.} 2019} [He et al., 2019; Hitaj et al.,|2017;
Geiping et al},[2020; [Huang et al, 2021}, [Wen et al., 2022)) where the attacker assumes knowledge
of samples’ gradients. Other works studied reconstruction attacks on generative models like LLMs
(Carlini et al} 2019} Nasr et al.} [2023)) and diffusion-based image generators (Somepalli et al,
[2022} (Carlini et al.l [2023). Our work is based on the reconstruction method from [Haim et al.| (2022),
which relies only on knowledge of the parameters of the trained model, and is based on theoretical
results of the implicit bias in neural networks (Lyu & Lil 2019; Ji & Telgarsky, 2020). This work was

generalized to multi-class setting (Buzaglo et al.,2023) and to the NTK regime 2023).

Transfer Learning. Deep transfer learning, a common technique across various tasks (see surveys:
(Tan et al.| 2018};[Zhuang et al., 2020} Tman et al,2023))), leverages pre-trained models from large
datasets to address challenges faced by smaller, domain-specific datasets (e.g., in the medical do-
main [2022))). While convolutional neural networks (CNNs) have been the go-to approach
for transfer learning (Oquab et all 2014} [Yosinski et al.| 2014)), recent research suggests that vision
transformers (ViTs) may offer stronger learned representations for downstream tasks
2021} 2022). For example, ViT (Dosovitskiy et al.l 2020), pre-trained on ImageNet
et al.,[2009), provides robust general visual features. Beyond supervised pre-training, self-supervised
learning methods like DINO (Caron et all, 2021}; [Oquab et all,[2023) learn informative image rep-
resentations without requiring labeled data, allowing the model to capture strong image features
suitable for further downstream tasks. Additionally, CLIP (Radford et al,[202T)) has emerged as a
powerful technique, leveraging a massive dataset of paired text-image examples and contrastive loss
to learn semantically meaningful image representations.
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Figure 2: Overview of our training and data reconstruction scheme.

3 METHOD

Our goal is to reconstruct training samples (images) from a classifier that was trained on the corre-
sponding embedding vectors of a large pre-trained model in a transfer learning manner.

The classifier training is illustrated in Fig. 2h. Formally, given an image classification task Dy =
{(si,y:)}y € R% x {1,...,C}, where d; is the dimension of the input imageﬂ and C is the
number of classes, we employ a large pre-trained model F : R% — R? (e.g., DINO) to transfer each
image s; to its corresponding deep feature embedding x; = F(s;) € R, where d is the dimension of
the feature embedding vector (the output of F). We then train a model ¢(-, 8) : R? — R to classify
the embedding dataset D, = (x;,y;)"_; € R x {1,...,C}, where @ € R? is a vectorization of the
trained parameters. Typically, ¢ is a single hidden-layer multilayer perceptron (MLP). Also note that
F is kept fixed during the training of ¢. The overall trained image classifier is ¢(F(s)).

Our reconstruction approach is illustrated in Fig. b and presented in detail below. Given the trained
classifier ¢ and the pre-trained model F, our goal is to reconstruct training samples s; from the
training set D,. The reconstruction scheme comprises two parts:

1. Reconstructing embedding vectors from the training set of the classifier ¢.

2. Mapping the reconstructed embedding vectors back into the image domain. Namely, computing
F~1(e.g., by “inverting” the pre-trained model F).

3.1 RECONSTRUCTING EMBEDDING VECTORS FROM ¢

Given a classifier ¢ : R? — R€ trained on an embedding training-set D,, = {(x;,y;)}™,, we apply
the reconstruction scheme of (Haim et al.| 2022} [Buzaglo et alJ, [2023) to obtain {%;},, which
are m “candidates” for reconstructed samples from the original training set D,. In this section we
provide a brief overview of the reconstruction scheme of (Haim et al., 2022} [Buzaglo et al.,[2023)

(for elaboration see Sec. 3 in[Haim et al(2022)):

Implicit Bias of Gradient Flow: |Lyu & Li (2019); Ji & Telgarsky| (2020) show that given a
homogeneouﬂ neural network ¢(-, @) trained using gradient flow with a binary cross-entropy loss

on a binary classification dataset {(x;,v;)}",; € R? x {£1}, its parameters 8 converge to a KKT
point of the maximum margin problem. In particular, there exist A; > 0 for every ¢ € [n] such that
the parameters of the trained network 6 satisfy the following equation:

'"Typically ds = 3 x h X w, where h and w are the height and width of the image, respectively.
W.r.t the parameters 8. Namely Ve > 0 : ¢(-, c8) = ¢ (-, @) for some L.
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Data Reconstruction Scheme: Given such a trained model ¢ with trained (and fixed) parameters
0, the crux of the reconstruction scheme is to find a set of {x;, \;, y; } that satisfy Eq. . This is
done by minimizing the following loss function:
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Where the optimization variables {X;, A;} are initialized at random from \; ~ ¢/(0,1) and %; ~
N (0, 0) (o is a hyperparameter). This generates m vectors {X; } ; that we consider as “candidates’
for reconstructed samples from the original training set of the classifier ¢. The number of candidates
m should be “large enough” (e.g., m > 2n, and see discussion in|Haim et al.| (2022)). The y; are
assigned in a balanced manner (i.e., 1, - - -, Ymy2 = L and ¥y {42, - - -, Ym = —1). Lastly, Buzaglo
et al.|(2023) extended this scheme to multi-class classification problems.

[l

The data reconstruction scheme is conducted multiple times for different choices of hyperparameters
(e.g., learning rate and o). For each trained model, we run about 50-100 reconstruction runs with
m = 500, resulting in about 25k-50k candidates. See Appendix [B.2]for full details.

3.2 MAPPING EMBEDDING VECTORS X; TO THE IMAGE DOMAIN §;

Unlike previous works on data reconstruction that directly reconstruct training images, our method
reconstructs embedding vectors. To evaluate the effectiveness of our reconstructed candidates, we
must first map them back to the image domain. In this section we describe how we achieve training
images from image-embeddings. Namely, given reconstructed image-embeddings X;, our goal is to
compute §; = F~1(X;). To this end we apply model-inversion methods and in particular, the method
proposed inTumanyan et al.[(2022]).

Given a vector X; (an output candidate from the reconstruction optimization in Section|3.1)), we search
for an input image §; to F that maximizes the cosine-similarity between F(8;) and X;. Formally:

_ f (l/) . )A(Z
§; = F (%) = argmax———/——"— . 3)
' ' v [IF@I1%]l
We further apply a Deep-Image Prior (DIP) (Ulyanov et al., 2018)) to the input of F. Le., v = g(z)
where g is a CNN U-Net model applied to a random input z sampled from Gaussian distribution.
The only optimization variables of the inversion method are the parameters of g. See Appendix [B.3]
further explanation and full implementation details.

By applying model-inversion to DINO embeddings, Tumanyan et al.[(2022) demonstrated that the
[CLS] token contains a significant amount of information about the visual appearance of the original
image from which it was computed. Even though their work was done in the context of image to
image style transfer, their results inspired our work and motivated us to apply their approach in the
context of reconstructing training image samples.

A significant modification to Tumanyan et al.| (2022)) in our work is by employing a cosine-
similarity loss instead of their proposed MSE loss. We find that using MSE loss (i.e., 7 1(%X) =
argmin,, || F(v) — %;||?) is highly sensitive to even small changes in the scale of X. The scales of X
can be very different from the unknown x = F(s). Using cosine similarity alleviates this issue while
simultaneously achieving similar quality for the inverted image result (see also Appendix [A.T)).

The above-mentioned technique is used for mapping embeddings to images for most transformers
that we consider in our work. However, this technique did not produce good results when applied to
CLIP (Radford et al.,[2021). Therefore, to map CLIP image embeddings to the image domain, we
employ a diffusion-based generator conditioned on CLIP embeddings by [Lee et al.|(2022) (similar in
spirit to the more popular DALL-E2 (Ramesh et al.| 2022); see also Appendix [A.7]and Appendix [B.4).
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3.3 SELECTING RECONSTRUCTED EMBEDDINGS TO BE INVERTED

Applying the model-inversion described in Section[3.2]to a large pretrained model is computationally
intensive. Inverting a single embedding vector takes about 30 minutes on an NVIDIA-V100-32GB
GPU. Therefore, it is not feasible to invert all 25k-50k output candidates of Section[3.1]

To determine which reconstructed candidates to invert, we pair each training embedding x; with its
nearest reconstructed candidate X; (measured by cosine similarity) and select the top 40 vectors with
the highest similarity for inversion. This approach proves effective in practice, yielding images with
high visual similarity to the original training images, as demonstrated in the results (e.g., Fig.[I).

In practice, the original training embeddings are not available (and inverting all candidates is compu-
tationally prohibitive). In Section[5] we introduce a novel method to identify good reconstructions
without relying on either ground-truth embeddings or exhaustive inversion.

4 RESULTS

We demonstrate reconstructed training images from models trained in a transfer learning setup, on
the embeddings of large pretrained models. We train several MLPs to solve learning tasks for various
choices of training images and choices of the large pretrained backbones from which the image
embeddings are computed.

Datasets. Since we simulate a model that is trained in a transfer learning manner, it is reasonable to
assume that such tasks involve images that were not necessarily included in the training sets on which
the pretrained backbone was trained (typically, ImageNet (Deng et al.,|2009)). In our experiments we
use images from Food-101 (Bossard et al., 2014} (most popular dishes from foodspotting website)
and iNaturalist (Van Horn et al.}2018]) (various animals/plants species) datasets. The resolution of
the images vary between 250-500 pixels, but resized and center-cropped to 224 x 224.

Pretrained Backbones (F) for Image Embeddings. We select several Transformer-based founda-
tion models that are popular choices for transfer learning in the visual domain:

* ViT (Dosovitskiy et al., [2020): vit-base-patch16-224 from TIMM Wightman| (2019).

¢ DINO-VIT (Caron et al.,[2021)): dino-vitb16 from the official implementationﬂ

* DINOV2 (Oquab et al., [2023)): dinov2-vitb14-reg from the official implementatio

e CLIP-ViT (Radford et al., 2021): ViT-L/14 as provided by OpenAI’s CLIP repositoryﬂ

The dimension of the output embeddings is consistent across all backbones F, and equal to d=768.

Multilayer Perceptron (¢) consists of a single hidden layer of dimension 500 (d-500-C) that is
optimized with gradient descent for 10k epochs, weight-decay of 0.08 or 0.16 and learning rate 0.01.
All models achieve zero training error.

RECONSTRUCTING TRAINING DATA FROM ¢(F)

We train classifiers ¢(F(s)) on two binary classification tasks: (1) binary iNaturalist is fauna
(bugs/snails/birds/alligators) vs. flora (fungi/flowers/trees/bush) and (2) binary Food101 is beef-
carpaccio/bruschetta/caesar-salad/churros/cup-cakes vs. edamame/gnocchi/paella/pizza/tacos. Each
binary class mixes images from several classes of the original dataset (images are not mixed between
different datasets). Each training set contains 100 images (50 per class). The test sets contains
1000/1687 images for iNaturalist/Food101 respectively. All models achieve test-accuracy above 95%
(except for DINO on Food101 with 85%. Also see Fig. .

In Fig. 3] we show the results of reconstructing training samples from 8 models (for two binary tasks
and 4 choices of F). For each reconstructed image (§ = F~1(X)), we show the nearest image from

*https://github.com/facebookresearch/dino
Ynttps://github.com/facebookresearch/dinov2
Shttps://github.com/openai/CLIP
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Figure 3: Training samples (red) and their best reconstructed candidate, from MLPs trained on
embeddings of various backbone models for two datasets.

the training set, in terms of cosine-similarity between the embeddings of both (d.osine (X, F(s))). As
can be seen, many reconstructed images clearly have high semantic similarity to their corresponding
nearest training images.

The quality of the results greatly depends on the effectiveness of the inversion method, which can
vary across different backbones . DINO and ViT yield the highest quality reconstructed samples.
DINOV2 proves harder to invert, resulting in lower reconstruction quality. With CLIP, we utilize
UnCLIB|to project embeddings into good natural images, maintaining semantic similarity even as
reconstruction quality decreases (e.g., same class). In Section [l we further discuss the differences
and limitations of inversion.

Our approach is also applicable to multiclass setting by using [Buzaglo et al.| (2023)) extension of the
method described in Section [3.1](see Appendix [B.3]for details). This is demonstrated in Fig. ] where
we show reconstructed training samples from models trained on multiclass tasks.

QUANTITATIVE EVALUATION OF THE RECONSTRUCTED DATA

We evaluate our results by how well they corroborate with the theory on which the reconstruction
method is based, and also by how well the reconstructed images resemble the original training
samples.

®We use the UnCLIP implementation from https://github.com/kakaobrain/karlo
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(a) DINO Food101 10 classes (b) DINO 1Natura11st 4 classes

Figure 4: Reconstructions from a multiclass models trained 100 images from Food101/iNaturalist
with C=10/4 classes (10/25 images per class), with test-accuracy 84%/96% (on a/b respectively).
Color-padded images are training images, where color represents different classes.

Measuring Reconstruction Quality and Alignment with Theory. Convergence to the KKT
solution of the maximum-margin implies that reconstruction is only possible for samples lying on
the margin, i.e., those with the smallest model outputsﬂ This can be demonstrated by plotting each
training sample’s reconstruction quality (typically measured using SSIM 2004)) between
the original and reconstructed images), against its proximity to the decision boundary (measured by
the model output).

When reconstructing images from embeddings, as in our work, the reconstructed samples may exhibit
small translations or subtle artifacts that are hard to pinpoint, despite appearing visually similar. As
a result, conventional image metrics like SSIM, which are sensitive to pixel alignment, may not be
effective for this task.

Quantitative Evaluation. In Fig.[5h, we show results for several metrics for reconstruction quality,
including SSIM [2004), LPIPS (Zhang et al,[2018), and Split-product
, as well as cosine similarity in the embedding domain (d;osine (X, F(s))). Notably, cosine
similarity aligns most closely with the theoretical predictions: higher values correspond to samples
that are closer to the margin. In Fig.[Sb we demonstrates that cosine-similarity between embeddings
also aligns well with visual similarity. To this end we sort all reconstructed samples according to
deosine (X, F(s)). Note how samples with high cosine-similarity also appear visually similar.

Cosine Similarity Cosine Similarity 1.0
(embeddings) SSIM 1 - LPIPS Split Product PSNR (images) ’
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(@) Various metrics for reconstruction quality (normalized to [0,1]. Le., (z — min(x))/(max(z) —
min(z)) where z is the array containing the metric values).
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Figure 5: Cosine-Similarity between embeddings (top-left) aligns well with both theoretical
properties and visual similarity. Results for DINO Food101 model. Complete results for all models
and metrics are in Appendix [A.2]

Such plots (reconstruction-quality vs. model-output) are a good way to summarize the reconstruction
results for each model, since they show the full reconstruction quality for all samples. In Fig.[§]

"In addition to the condition in Eq. , Ai 7 0 holds only for samples x; that lie on the classification margin,
closest to the decision boundary. See Sections 3.2 & 5.3 in[Haim et al.| (2022).
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we show such plots for every model from Figs. [3|and ] (where reconstruction-quality is measured
by cosine similarity between embeddings). This analysis hints that samples that are closer to the
classification margin (either in the binary or multiclass case) are more vulnerable to reconstruction
(since their reconstruction quality is higher).

ViT ViT DINO DINO DINOv2 DINOv2 CLIP CLIP
Food101 iNaturalist Food101 iNaturalist Food101 iNaturalist Food101 iNaturalist
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Figure 6: Quantitative summary for all models whose reconstructed samples are in Figs. andEl

5 IDENTIFYING GOOD RECONSTRUCTION WITHOUT THE ORIGINAL
TRAINSET

In this section, we introduce a clustering-based approach to identify “good” reconstructed candidates
without relying on the original training data. This is an important step towards an effective privacy
attack. Previous works (Haim et al.| 2022} Buzaglo et al.| 2023; Loo et al.| 2023), including Section[3.3]
in this work, rely on the original training images for demonstrating that training images are embedded
in the model parameters. However, it is not applicable to real-world privacy attacks, as attackers don’t
have access to the original training data.

When directly reconstructing training images, this issue can be mitigated by manual inspection of
the thousands of output image candidates — a time-consuming but feasible approach. However, this
approach is irrelevant when reconstructing image embeddings. The reconstructed embeddings must
first be inverted into images, which is computationally expensive (inverting a single vector takes
about 30 minutes on an NVIDIA-V100-32GB GPU, as detailed in Section[3.3). Inverting thousands
of embeddings is simply infeasible.

Figure 7: Clustering-Based Reconstruction. Inversion of clusters representatives (blue) compared
to training samples whose embeddings are in the same cluster (in red).
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Figure 9: Training samples (red), inversion of original embeddings (blue), and inversion of recon-
structed embeddings.

This is where our proposed clustering approach comes in. We observe that reconstructed candidates
whose inversions are visually similar to training samples tend to cluster together. By applying
clustering algorithms, we group similar candidates and only invert representative samples from the
largest clusters. This reduces the total number of inversions by two orders of magnitude (from
thousands to tens) and eliminates reliance on training data for identifying good reconstructed samples.

We demonstrate this by using agglomerative clusterinﬂ on 25,000 candidates reconstructed from a
Dino-ViT-based model trained on the Food101 dataset (same as in Fig.[3). We use cosine similarity
as the distance metric with “average” linkage and 1,000 clusters, from which we select the 45 largest
ones (containing between 100 and 8,000 candidates each). Within each cluster, a representative is
chosen by averaging all candidate embeddings. Finally, these representatives are inverted using the
methods described in Section[3.2] Fig.[7]shows the results of inverting these cluster representatives
(blue), along with a training sample whose embedding belongs to the same cluster (red). As can be
seen, the clustering-based approach provides a very good method for reconstructing training samples
without requiring the training data.

The choice of the number of clusters (MAXCLUST) significantly

affect the results of our clustering-based approach. Since as- 30

sessing this effect in our current image-embedding setup is é 25

computationally prohibitive, we evaluate our approach on 50k S

reconstructed candidates from a model trained on 500 CIFAR- § 20

10 images (same as 1n (2022)). For each MAXCLUST, 8.,

we select the representatives of the largest 150 clusters by either %

averaging all cluster candidates (red) or selecting the nearest § 10

candidate to the cluster-mean (blue). We compare each repre- % T gf&!f’efrﬁ'e"jﬁt
sentative to a training image in the same cluster (using SSIM) —— Nearest Candidate
and count the pumbers of good representatives (SSIM> 0.4), o 00010600 15500 30000
the results are in Fig.[§] # Clusters (maxclust)

Notably, beyond a certain small threshold, any MAXCLUST Figure 8: Impact of Num. Clusters
yields a considerable amount of good reconstructed samples  on Reconstruction Quality (for

(see also Appendix [A.8). CIFAR10 model with n=500)

6 LIMITATIONS

In this work, we made design choices when training the models to align with realistic transfer learning
practices. However, some choices led to better reconstruction results than others, revealing limitations
of our method. Here we discuss these limitations, their impact on our results, and identify potential
future research directions:

8https ://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.fcluster.html
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* The quality of reconstructed images relies heavily on the backbone model (F) and the inversion
method (Section [3.2). Fig.[9]shows the inverted original embeddings F~!(F(s)) (blue), which
are the “best” we can achieve (independent of our reconstruction method). It also shows how some
backbones are easier or harder to invert, as evident in the difference between F~1(F(s)) (blue)
and the original image s (red), for different F’s. It can also be seen that the inverted reconstructed
embeddings F ! (x) are sometimes more similar to F~!(F(s)) than to s, which may hint that the
challenge lies in the inversion more than in the reconstruction part. Certainly, improving model
inversion techniques is likely to enhance the quality of reconstructed samples.

* CNN-based backbones F (e.g., VGG (Simonyan & Zisserman, |[2014))) proved more challenging
for inversion than Transformer-based backbones F. Since Transformers are also being more
frequently employed due to their better generalization, we decided to focus our work on them and
leave CNN-based backbones for future research.

* Linear-Probing (i.e. train a single linear layer ¢) is common practice in transfer learning. However,
current reconstruction methods, including ours, struggle to perform well on linear models. This
may stem from the small number of parameters in linear models (see Appendix [A.5).

* We use weight-decay regularization since it is a fairly common regularization technique. However,
the reconstruction method is known to perform much worse on models that are trained without
it (Buzaglo et al.| 2023).

* We experimented with an embedding vector that is a concatenation of [CLS] and the average of
all other output tokens (of ). This had minor effect on the results, see Appendix for details.

* Fine-tuning the entire model F (together with ¢) is resource-intensive and less common compared
to training only on fixed embedding vectors. While we followed the latter approach, full fine-tuning
can be an interesting future direction.

7 CONCLUSION

In this work, we extend previous data reconstruction methods to more realistic transfer learning
scenarios. We demonstrate that certain models trained with transfer learning are susceptible to training
set reconstruction attack. Given the widespread adoption of transfer learning, our results highlight
potential privacy risks. By examining the limitations of our approach, we identify simple mitigation
strategies, such as employing smaller or even linear models, increasing training set size or training
without weight-decay regularization. However, some of these mitigation (removing regularization or
using smaller models) may also come at a cost to the generalization of the model. Furthermore, these
techniques may not be effective against future advanced reconstruction attacks. We aim for our work
to inspire the development of new defense methods and emphasize the importance of research on
data reconstruction attacks and defenses.
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A ADDITIONAL EXPERIMENTS

A.1 IMPORTANCE OF COSINE-SIMILARITY FOR INVERSION (AS OPPOSED TO MSE)

Figure 10: Inverting DINO (F~*(aF(s))) with different scales a

In Fig.[I0] we illustrate the significance of having the correct scale when inverting an embedding
(using the inversion described in Section[3.2). For several images s (left-most column), we display
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the inversion of their embeddings F~1(F(s)) (second from left column) alongside other inversions
of the same vector multiplied by varying scales, namely, F ! (aF (s)) for a = |15, 3,2,10]. A
clearly evident, inverting the same vector without knowing the “’true” scale (a = 1. O) would result in

very different results, sometimes making them hard to recognize.

The original paper Tumanyan et al.[(2022) uses MSE in its inversion scheme. However, the output
candidates from the reconstruction method (described in Section [3.1)) can have significantly different
norms than their corresponding original training embedding.

200 |IXi|| of Nearest Candidate (cos-sim) 151
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Figure 11: Comparing (a) the norms of F(s) (red) and its NN x (blue), and (b) their ratios

To conduct a comparison, we employ a binary model trained on DINO embeddings of images
from Food101, reconstructing candidates % from this model. In Fig. [T, for each training image
s we compare the norm of its DINO embedding || 7 (s)|| (red), to the norm of its nearest neighbour
embedding ||X]|| (blue), where X = argmin dcosine(z, F(s)) (and the value of deogine is the x-axis).

X
In Fig.[ITp we show the ratio between the two, highlighting that candidates can have very different
norm compared to their corresponding training image. This variation in norms is a result of the
reconstruction scheme that we use (Section[3.1)), whose nature we don’t fully understand yet. However,
using cosine-similarity loss in our inversion scheme eliminates this issue.

A.2 FULL RESULTS FOR FIG.

In Fig. 2] we showed the results of various metrics for reconstruction-quality for a model that was
trained on embeddings of DINO on Food101 dataset. We also showed alignment for visual similarity
of cosine-similarity in embedding space.

In Fig. [I2) we provide the full results (same as in Fig. [Sh) for all other models from Fig. [3|and all
metrics.

The complete results for Fig.[5p are provided in the supplementary material (sorted reconstructed
sample by all 6 metrics, for each of the 8 models from Fig.
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A.3 COSINE-SIMILARITY AS A PROXY FOR GOOD RECONSTRUCTIONS

Determining whether a candidate is a reconstruction of an original sample is a difficult challenge.
It is highly unlikely that the two will be exactly the same, which is why selecting an appropriate
similarity measure is important. Unfortunately, there is no ’best” metric for comparing two images,
which is a known open problem in computer vision (see e.g.,/Zhang et al.|(2018))).

The task becomes even more complex when dealing with reconstructed embedding vectors, as in
our work. Given our computational constraints, we must choose wisely which embeddings to invert,
adding another layer of complexity to the comparison process. Throughout our work, we frequently
employ cosine similarity as a metric for evaluating embedding similarities. However, whether this
metric accurately reflects visual quality is unclear. We set out to explore this question empirically.

Previous work on data reconstruction (Haim et al.| [2022; Buzaglo et al., [2023) directly reconstruct
training images, allowing us to a directly compare between cosine similarity and image similarity
measures. Both works established SSIM (Wang et al.| 2004) as a good visual metric for CIFAR10
images (see Appendix A.2 in|Buzaglo et al.|(2023))), and defined SSIM> 0.4 as a good threshold
for declaring two images as sufficiently similar. In fact these works also use cosine similarity to
find nearest neighbors between candidates and training images when normalized to [—1, 1], and only
after shifting the images to [0,1] they use SSIM. Which means that they also implicitly assume that
cosine-similarity is a good proxy for visual similarity.

In Fig.[T3] we quantitatively evaluate this assumption using reconstructed images from a CIFAR10-
trained model (as in|Haim et al.|(2022)). The left panel is for simply reproducing the results of Haim
et al.| (2022). By looking at both middle and right panel, we see that CosSim=0.75 is a good cut-off
for determining ”good” reconstruction, since from this point there is a good correlation between the
two metrics. This is also the reason that we use this threshold for determining good reconstruction in
other experiments in the paper.

By further observing the middle panel: if SSIM> 0.4 (horizontal black line) is considered a criterion
for good image reconstruction, then cosine similarity (CosSim> 0.75, vertical black line) may
overlook some potentially high-quality reconstructions, indicating room for further improvement in
our approach.
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Figure 13: Comparing Cos-Sim to SSIM of training data (model trained on CIFAR10)

A.4 DOES TRAINING DATA RECONSTRUCTABILITY REQUIRE OVERTRAINING?
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Figure 14: Does Training Data Reconstructability Require Overtraining? — Seems Not.
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We set to explore how “reconstructability” (i.e., how many good samples we can reconstruct from) de-
pends on the number of training iterations. We note from empirical observations that reconstructability
certainly improves with longer training, which should not be surprising because according to theory,
the model converges more to the KKT solution.

But the key question is - does the model have to be ~overtrained” before becoming reconstructable,
or not? To define overtrained”, we observe how the generalization accuracy increases. Obviously,
the longer we train, the better the model will be reconstructable. But is it reconstructable before the
generalization accuracy saturates? (Or do we have to keep training long after that?)

In Fig. [I4 we show the test accuracy per training iteration (red) for a model trained on DINO
embeddings from the Food101 dataset. We also show reconstruction quality (blue) by counting the
number of training samples whose cosine similarity to its nearest neighbor candidate was above 0.75.
As can be seen, reconstructability increases after about 1000 iterations and starts saturating at about
2000 iterations, where the test accuracy (even though quite high in the beginning), keeps increasing
by more than 1.5% until 10k iterations.

The implication is that reconstructability is achieved in a reasonable time (measured by the time taken
to achieve good generalization accuracy). This observation is important to assert the realism of our
method as a viable privacy threat to models trained in a similar fashion.

A.5 IMPACT OF MODEL SIZE AND TRAINING SET SIZE ON RECONSTRUCTABILITY

Good Reconstructions
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Figure 15: Effect of model size and dataset size on reconstructability.

Previous works Buzaglo et al.|(2023) observed that the quality of reconstruction results is influenced
by the size of the model (i.e., number of parameters) and the size of the training set. We conduct
similar analysis for our models.

This relationship can be intuitively understood by considering Eq. (2) as a system of equations to
be inverted, where the number of equations corresponds to the number of parameters in the model,
6 € R?, and the unknowns are the coefficients \; € R and the reconstructed embeddings x; € R?
for each training sample ¢ € {1, ..., n}. The ratio % represents the number of model parameters
relative to the total number of unknowns. As this ratio increases, i.e., when the model has more
parameters compared to the number of unknowns, we hypothesize that the system of equations
becomes more well-determined, leading to higher reconstructability.

This hypothesis is supported by the empirical results presented in Fig. [T5] where we train 2-layer
MLPs with architecture D-WW-1 on N training samples from binary Food101. Each cell reports
the number of good reconstructions (cosine similarity between training embedding and its nearest
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neighbor candidate > 0.75), both in absolute terms and as a percentage relative to N. As shown,
when the model has more parameters relative to the number of training examples (further left and
higher up in the table), our method can extract more reconstructions from the model.

This figure also show that our method can be extended to larger datasets, up to N=2000 (and probably
beyond).

A.6 EFFECT OF USING [CLS]+MEAN vs [CLS] AS FEATURE VECTOR

In our work we use the [CLS] token as the feature vector for a given image. However, there may
be other ways to use the outputs of transformer-based foundation models as feature vectors. As
suggested in [Caron et al.| (2021)) (linear probing section), one might use a concatenation of the
[CLS] token and the mean of the rest of the other output tokens ([CLS]+MEAN). In Fig. @ we
show reconstructed results for a model that was trained using such [CLS]+MEAN feature vector
(using DINO on Food101). As seen, the extra information in the feature vector does not seem to have
a significant effect on the total results of the reconstruction (as opposed to a possible assumption that
extra information would result in higher reconstructability). While this is by no means an exhaustive
evaluation of this design choice (using [CLS]+MEAN vs. just [CLS]), it does look like this may not
change the results of the reconstruction too much.

Figure 16: Reconstruction from a DINO model trained on [CLS]+MEAN embedding vector (original
training image in red)

A.7 MODEL INVERSION FOR CLIP vs UNCLIP DECODER

As described in Section [3.2] for inverting CLIP embeddings, we use an UnCLIP decoder instead
of the model inversion approach used for other backbone models (ViT/DINO/DINOv2). The main
reason behind this choice is that the same inversion method did not seem to provide satisfactory
results for CLIP. In Fig. |17} we show output images of inverted embeddings using the approach from
Tumanyan et al.|(2022)) (with the modifications described in our paper). The results do not produce
comparable quality to using the UnCLIP decoder.

% 5, N o %
(a) iNaturalist (b) Food101

Figure 17: Model-Inversion reconstructions from a model trained on CLIP embeddings
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A.8 FURTHER INSIGHTS ON CLUSTERING-BASED RECONSTRUCTION (SECTION [5))

Effect of #Clusters (n=500, CIFAR10)
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Figure 18: Extended Results for the figure in SectionEl

In Fig. [T8] we show extended results of the inset Figure in Section 5] displaying the same graph up to
larger MAXCLUST values (red and blue solid lines), together with similar results that count the number
of “good” reconstructions with CosSim > 0.75 (dashed blue and red lines).

The reason for the decrease in the number of good reconstructions as the number of clusters increases,
is that we only consider the largest 150 clusters (per partition of the candidates, as determined by
MAaXxcLUST). Consequently, when there are too many clusters, the probability that the largest ones
correspond to a cluster of a training sample decreases (for 50k clusters, this becomes totally random).
Note that the largest number of clusters in the graph is slightly smaller than 50k, and there exist
several clusters with 2-3 candidates.

Another insight from this graph is that averaging several candidates together results in better can-
didates, an observation also made by [Haim et al.|(2022). In our work, we don’t use such candidate
averaging (except for the clustering experiments), but this may lead to improved results. We leave
this for future research.

We note that since the similarity measure between candidates is cosine similarity, this implicitly
applies a spherical topography for comparing candidates. Therefore, it is not straightforward to
compute the mean of several candidates. In our work, we use the simple arithmetic mean, which
empirically seems to work well. We considered computing the Fréchet mean, i.e., the mean of the
candidates that lies on the sphere, but could not find a working implementation for this. This may
also be an interesting direction for future research.

For completeness, we show how the reconstructed samples look for the choice of the ’peak” SSIM
from Fig. [T8] which occurs at 3294 clusters. These are shown in Fig.[T9]

ﬁIIIEIWEﬂEILﬂ
TRy R L L L

Figure 19: Reconstructed candidates of CIFAR10 model, obtained with our clustering-based approach
for the “peak” value in Fig.[T8](3294)
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A.9 MORE CLUSTERING-BASED RECONSTRUCTION RESULTS

In Fig. [20| we more results of our clustering-based approach, in addition to the results in Fig.|7| (for a
model trained on DINO embeddings of Food101 images).

(b) CLIP embeddings of Food101 images

Figure 20: Clustering-based Reconstruction for models trained on (a) ViT embeddings of Food101
images; (b) CLIP embeddings of Food101 images

A.10 COMPARISON TO ACTIVATION MAXIMIZATION

Figure 21: Reconstructions using activation maximization on the input to ¢
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Figure 22: Reconstructions using activation maximization on the input to F

We compare our reconstruction results to a popular baseline for reconstructing data from trained
model. It is called “model inversion™ in the context of privacy(Fredrikson et al.,[2015]) or “activation
maximization” in the context of visualization techniques (Mahendran & Vedaldi, |2016) (we prefer
the term activation maximization as it is more accurate). We are searching for inputs to the model
that achieve high activations for the model’s outputs that correspond to each class. We consider two
options in our case:

The first, by performing activation maximization on the inputs to ¢:

argmin £ (2(x), y)

This results in multiple candidates {x} that minimize the loss function (binary cross-entropy) w.r.t
to the classes y € {—1,1}. We then search for candidates that are nearest neighbours of original
training embeddings, and invert them to images by computing F ~*(x) (this is the same pipeline as
we use for the reconstructed candidates of our approach). The results of this approach can be seen
in Fig.[21]

The second approach, is to optimize over the inputs to F (instead of the inputs to ¢) in the same
manner that is described in Appendix [B.3}

x=g,(2) st.v= arglllnin L(o(F(9.(2)),y)

Where g is the U-Net model with parameters v. This is equivalent to performing the inversion method
as described in Appendix [B.3] but feeding the output of F into the trained ¢ and then into the loss
L, with a given y € {—1, 1} (instead of comparing the output of F to a given embedding vector).
Note that as described in Appendix [B.3] the only optimization variables are the parameters of the
Deep-Image Prior g (denoted as v in the equation above). The results of this approach are shown
in Fig.[22]

As evident from the results, while activation maximization techniques manage to reconstruct some
interesting outputs, that are somewhat semantically related to the training classes, the results of both
methods are inferior to the results of our proposed approach.

A.11 GT INVERSION

Here are the full results (on all reconstructed candidates) of the results shown in Fig.
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Figure 23: ViT on Food101: Training Image (red), Inversion of Original Embedding (blue) and
Inversion of Reconstructed Embedding.

Figure 24: ViT on iNaturalist: Training Image (red), Inversion of Original Embedding (blue) and
Inversion of Reconstructed Embedding.
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Figure 25: DINO on Food101: Training Image (red), Inversion of Original Embedding (blue) and
Inversion of Reconstructed Embedding.

Figure 26: DINO on iNaturalist: Training Image (red), Inversion of Original Embedding (blue) and
Inversion of Reconstructed Embedding.
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Figure 27: DINO2 on Food101: Training Image (red), Inversion of Original Embedding (blue) and
Inversion of Reconstructed Embedding.

Figure 28: DINO?2 on iNaturalist: Training Image (red), Inversion of Original Embedding (blue) and
Inversion of Reconstructed Embedding.

25



Under review as a conference paper at ICLR 2025

Figure 29: CLIP on Food101: Training Image (red), UnCLIP of Original Embedding (blue) and
UnCLIP of Reconstructed Embedding.

Figure 30: CLIP on iNaturalist: Training Image (red), UnCLIP of Original Embedding (blue) and
UnCLIP of Reconstructed Embedding.
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B IMPLEMENTATION DETAILS
Our code is implemented with PYTORCH (Paszke et al.,[2019) framework.

B.1 DATA PREPROCESSING

We resize each image to a resolution of 224 pixels (the smaller side of the image) and then apply
a center crop to obtain a 224 x 224 image. We then normalize the image per pixel following the
normalization used in the original paper of each model, as shown in the table below:

Model Mean Std
DiNO, DiNOv2 | [0.485,0.456,0.406] | [0.229,0.224,0.225]
ViT [0.5,0.5,0.5] [0.5,0.5,0.5]
CLIP [0.481,0.458,0.408] | [0.269,0.261,0.276]

After feeding the images through the backbone F to obtain the image embeddings F(s;), we
normalize each embedding by subtracting the mean-embedding and dividing by the std. Formally:

x; = 2B where p = L " | F(s;), and 0 = \/ﬁ Sy (Flsi) = )’

o

This is a fairly common approach when training on small datasets. 1 and o can be thought as being
part of the model ¢ as they are also applied for embeddings from outside the training set.

B.2 RECONSTRUCTION HYPERPARAMETER SEARCH

As mentioned in Section [3.1] we run the reconstruction optimization 100 times with different choice
of the 4 hyperparameters of the reconstruction algorithm:

1. Learning rate
2. o — the initial s.t.d. of the initialization of the candidates

3. Amin — together with the loss Eq. (2)), the reconstruction includes another loss term to require
Ai > Amin (a consequence of the KKT conditions is that A; > 0, but if A; = 0 it has no
relevance in the overall results, therefore a minimal value Ay, is set.).

4. o — Since the derivative of ReLU is piecewise constant and non-continuous, the backward
function in each ReLU layer in the original model is replaced with the derivative of SoftRelu
with parameter o.

For full explanation of the hyperparameters, please refer to [Haim et al.[(2022)). Note that for m = 500,
running 100 times would result in 50k candidates.

The hyperparameter search is done via Weights&Biases (Biewald, [2020), with the following random-
ization (it is in the format of a W&B sweep):

parameters:
random_init_std:
distribution: log_uniform_values
max: 1
min: le-06
optimizer_reconstructions.lr:
distribution: log_uniform_values
max: 1
min: le-06
loss.lambda_regularizer.min_lambda:
distribution: uniform
max: 0.5
min: 0.01
activation.alpha:
distribution: uniform
max: 500
min: 10

27



Under review as a conference paper at ICLR 2025

B.3 FURTHER DETAILS ABOUT INVERSION SECTION[3.2]

We follow similar methodology to Tumanyan et al.|(2022)), using their codeﬂ and changing the recon-
struction loss from MSE to Cosine-Similarity as mentioned in Section [3.2] and specifically Eq. (3]
(see justifications in Appendix [A.T).

The Deep-Image Prior model g is a fully convolutional U-Net model (Ronneberger et al., 2015)
(initialized at random with the default pytorch implementation). The optimization is run for 20,000
iterations, where at each iteration the input to g is z+r, where z is initialized from z ~ N (04,_, 14 x4, )
and kept fixed throughout the optimization, and r is sampled at each iteration as follows:

iteration 7 < 10,000: r~N(0g,,10 Iy, xa.)
iteration 10,000 < 7 < 15,000: 7 ~ N (04,, 214 xa.)
iteration 15,000 < ¢ < 20,000: 7 ~ AN (04,,0.5 - Iy, xq.)

Note that the input to g is of the same size of the input to F, which is simply and image of dimensions
ds = ¢ X h X w. At each iteration, the output of g is fed to F, and the output of F (which is an
embedding vector of dimension d = 768), is compared using cosine-similarity to the embedding
vector that we want to invert. At the end of the step, the parameters of g are changed to increase the
cosine similarity between the embeddings.

B.4 INVERSION WITH UNCLIP

While the method in Appendix is used for ViT, DINO and DINOV2, for CLIP we use a different
method to invert, which is by using the UnCLIP implementation of [Lee et al.| (2022). Unlike the
inversion in Appendix [B.3|that uses cosine-similarity, with UnCLIP, the embeddings (that go into
to UnCLIP decoder) should have the right scale. For each CLIP embedding of a training image (x),
we search for its nearest neighbour candidate (%) with cosine similarity, but before feeding X into
the UnCLIP decoder, we re-scale it to have the same scale as x, so that the input to the decoder is
in fact (||x||/||%X||)%X. Unfortunately we could not resolve this reliance on the training set (as is also
done in previous reconstruction works, and discussed in the main paper), but we believe this may be
mitigated by computing and using general statistics of the training set (instead of specific training
samples). We leave this direction for future research.

B.5 RECONSTRUCTION IN MULTICLASS SETUP

The method in Section@] was extended to multiclass settings by Buzaglo et al.|(2023). In a nutshell,
the reconstruction loss in Eq. (2) contains the gradient (w.r.t. 8) of y;¢(x;) which is the distance from
the decision boundary. For multiclass model ¢ : R? — R, the distance to the decision boundary is
¢(xi)y, — max;,y, ¢(x;); . Replaced into the reconstruction loss in Eq. (2), we have:

2

Lrec(fcl,...,fcm,)\l,.. 7)\m) =

0 — Z AiVe [¢(>A<i, 0),, — maxeo(x;, 9)3}
=1

J#Yi

2

B.6 CHOICE OF WEIGHT DECAY

When training our model, we apply weight decay regularization. However, determining the optimal
weight decay (WD) value is not straightforward. To find a WD value, we conduct a search across
different WD values and observe their impact on test accuracy. The reuslts are shown in Fig. We
notice that for most values, the test accuracy increases until approximately 0.1 and then decreases
from about 0.3 (indicating that WD is too large). We select the WD from this range, either 0.08 or
0.16. A red-x marks the run which was selected for reconstruction (and whose results are shown

in Fig. [3).

hnttps://splice-vit.github.io/
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Figure 31: Test-Accuracy for different choices of Weight-Decay Value. Red-X marks the specific run
used for reconstruction in Fig. [3]

29



Under review as a conference paper at ICLR 2025

C DATASETS - FULL DETAILS

C.1 IMAGE RESOLUTION

Fig.[32]illustrates how images in the datasets we used may have different resolutions. To standardize
the input, we use the pre-processing described in Appendix [B.1]
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Figure 32: Resolution frequency of the images in use from iNaturalist (a) and Food101 (b) datasets

C.2 FooD-101 (BOSSARD ET AL.,[2014)

The dataset comprises real images of the 101 most popular dishes from the foodspotting website.

Binary Tasks We use the following classes:

ELIRET)

* Class I: ’beef carpaccio”, ’bruschetta”, “caesar salad”, "churros” and “cup cakes”

CLENET) 33 99 LTI T)

* Class II: "edamame”, ”gnocchi”, ’paella”, ’pizza” and “tacos”

For any choice of training samples amount, we randomly pick half from every such combined class
in order to create our new dataset.

Multiclass Tasks We use the following classes:

CRINEL) ERINEE) ERINEL)

“beef carpaccio”, “beet salad”, “carrot cake”, “cup cakes”, ’dumplings”, ”gnocchi”, ”guacamole”,

ERINEL)

“nachos”, ”pizza” and “samosa”

Here the classes are not combined. For every choice of N classes we choose the first IV out of the list
above and randomly pick examples according to the training set size and in such a way that the newly
formed dataset is balanced.

C.3 INATURALIST (VAN HORN ET AL.,[2018)

The dataset encompasses a total of 10,000 classes, each representing a distinct species.
Binary Tasks Classes are combined in the same manner as for the Food101 dataset. All classes
names below appear as they are in the dataset.

Fauna

02590 Animalia_ Arthropoda_Insecta-Odonata_-Macromiidae Macromia_taeniolata
02510 Animalia_Arthropoda_Insecta_Odonata._Libellulidae_Libellula_forensis
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02193 Animalia_Arthropoda_Insecta_Lepidoptera_Sphingidae_Eumorpha-vitis

02194 Animalia_Arthropoda_Insecta_Lepidoptera_Sphingidae_Hemaris_diffinis

00828 Animalia_Arthropoda_Insecta_Hymenoptera_Vespidae_Polistes_chinensis

00617 Animalia_Arthropoda_Insecta_Hemiptera_Pentatomidae_Dolycoris_baccarum

02597 Animalia_Arthropoda_Insecta_Orthoptera_Acrididae_Acrida_cinerea

05361 Animalia_Mollusca_-Gastropoda_Stylommatophora Philomycidae Megapallifera mutabilis
04863 Animalia_Chordata_-Reptilia_Crocodylia_Crocodylidae_Crocodylus.-niloticus

04487 Animalia_Chordata_Aves_Procellariiformes_Diomedeidae_Phoebastria_nigripes

04319 Animalia_Chordata_Aves_Passeriformes_Tyrannidae Myiozetetes_cayanensis

Flora

05690_Fungi_-Basidiomycota_Agaricomycetes_Polyporales_Polyporaceae_Trametes_coccinea
05697 _Fungi_Basidiomycota_Agaricomycetes_Russulales_ Auriscalpiaceae Artomyces_pyxidatus
05982 Plantae_Tracheophyta_Liliopsida_Asparagales_Iridaceae_Olsynium_douglasii
05988_Plantae_Tracheophyta_-Liliopsida_Asparagales_Iridaceae_Sparaxis_tricolor
06988 _Plantae_Tracheophyta Magnoliopsida_Asterales_Asteraceae_Silphium_laciniatum
06665 Plantae_Tracheophyta Magnoliopsida_Asterales_Asteraceae_Calendula._arvensis
07032_Plantae_TracheophytaMagnoliopsida_-Asterales_Asteraceae_Syncarpha.vestita
07999 Plantae_Tracheophyta Magnoliopsida_-Fabales_Fabaceae_Lupinus_arcticus
07863 _Plantae_Tracheophyta Magnoliopsida_Ericales_Primulaceae Myrsine_australis
08855_Plantae_Tracheophyta Magnoliopsida-Malpighiales_Rhizophoraceae_Rhizophoramangle
09143 Plantae_TracheophytaMagnoliopsida-Ranunculales_Berberidaceae_Berberis_bealei
09974 Plantae_Tracheophyta_Polypodiopsida_Polypodiales_ Pteridaceae_Cryptogramma_acrostichoid

Multiclass Tasks
1. Insects

02590_Animalia Arthropoda_Insecta_-Odonata_-Macromiidae_ Macromia_taeniolata
01947 Animalia_Arthropoda_Insecta_-Lepidoptera Nymphalidae_Phaedyma_columella
02194 Animalia_Arthropoda_Insecta_Lepidoptera_Sphingidae_Hemaris_diffinis
02195 Animalia_Arthropoda_-Insecta_Lepidoptera_Sphingidae_Hemaris_fuciformis
02101 Animalia_Arthropoda_-Insecta_Lepidoptera_Pieridae_Pontia_occidentalis
02138 Animalia_Arthropoda_Insecta_Lepidoptera_-Riodinidae_Apodemia_virgulti

2. Aquatic Animals

02715 Animalia ArthropodaMalacostraca_-Decapoda_-Grapsidae_-Grapsus-grapsus
02850_Animalia_Chordata_Actinopterygii_Perciformes_Lutjanidae_Ocyurus_chrysurus
02799 Animalia_Chordata_Actinopterygii Perciformes_Centrarchidae Ambloplites_rupestris
02755 Animalia Arthropoda_Merostomata_-Xiphosurida_-Limulidae_Limulus_polyphemus
02704 Animalia_Arthropoda_Malacostraca_-Decapoda_-Cancridae_Cancer borealis
02706 Animalia_Arthropoda_Malacostraca_Decapoda_-Cancridae_Cancer_productus

3. Reptiles

04859 Animalia_Chordata-Reptilia_Crocodylia.Alligatoridae Alligatormississippiensis
04868 _ Animalia_Chordata_Reptilia_Squamata_Agamidae_Agama_picticauda
04862 Animalia_Chordata_ Reptilia Crocodylia Crocodylidae _Crocodylus moreletii
04865 Animalia_Chordata_-Reptilia_Rhynchocephalia_Sphenodontidae_Sphenodon_punctatus
04954 Animalia_Chordata_Reptilia_Squamata_Colubridae Pituophis_deppei

4. Birds
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04487 Animalia_Chordata-Aves_Procellariiformes_Diomedeidae_Phoebastria_-nigripes
04319 Animalia_Chordata_Aves_Passeriformes_Tyrannidae Myiozetetes_cayanensis
04570 Animalia_Chordata_Aves_Suliformes_Phalacrocoracidae Microcarbo_melanoleucos
04587 Animalia_Chordata-Aves_Suliformes_Sulidae_Sula_nebouxii
04561 Animalia_Chordata_Aves_Strigiformes_Strigidae_Surnia_ulula
04576 Animalia_Chordata_Aves_Suliformes_Phalacrocoracidae_Phalacrocorax._capensis
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