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Abstract

With the development of pre-trained language001
models, remarkable success has been wit-002
nessed in dialogue understanding (DU) direc-003
tion. However, the current DU approaches004
just employ an individual model for each005
DU task, independently, without considering006
the shared knowledge across different DU007
tasks. In this paper, we investigate a uni-008
fied generative dialogue understanding frame-009
work, namely UniDU, to achieve information010
exchange among DU tasks. Specifically, we011
reformulate the DU tasks into unified genera-012
tive paradigm. In addition, to consider different013
training data for each task, we further intro-014
duce model-agnostic training strategy to opti-015
mize unified model in a balanced manner. We016
conduct the experiments on ten dialogue under-017
standing datasets, which span five fundamental018
tasks: dialogue summary, dialogue completion,019
slot filling, intent detection and dialogue state020
tracking. The proposed UniDU framework out-021
performs task-specific well-designed methods022
on all 5 tasks. We further conduct comprehen-023
sive analysis experiments to study the effect024
factors. The experimental results also show025
that the proposed method obtains promising026
performance on unseen dialogue domain. Our027
code will be open-sourced, once the paper is028
accepted.029

1 Introduction030

The development of the conversational system031

plays an important role on the spread of the intel-032

ligence devices, such as intelligence assistant and033

car play. In recent years, there has been a growing034

interest in neural dialogue system (Li et al., 2017;035

Bao et al., 2020; Adiwardana et al., 2020; Ham036

et al., 2020; Peng et al., 2020). The dialogue under-037

standing is a core technology and hot topic in the038

dialogue system, which aims to accurately analyze039

a dialogue from different fine-grained angles.040

There are five classical dialogue understanding041

tasks: dialogue summary (DS) (Liu et al., 2019a),042

dialogue completion (DC) (Su et al., 2019; Quan 043

et al., 2020), intent detection (ID) (Kim et al., 2016; 044

Casanueva et al., 2020), slot filling (SF) (Zhang 045

et al., 2017; Haihong et al., 2019) and dialogue 046

state tracking (DST) (Kim et al., 2020; Liao et al., 047

2021). For dialogue summary, it is normally formu- 048

lated as a sequence-to-sequence generation prob- 049

lem. Recently, the advance methods adopt two- 050

step generation strategy (Wu et al., 2021). They 051

first generate the dialogue keywords as the sketch 052

and then generate the summary based on the pre- 053

dicted keywords. For dialogue completion, Chen 054

et al. (2021b) regard the co-reference and infor- 055

mation ellipsis as the noises and directly leverage 056

BART (Lewis et al., 2020) as the rewrite model. 057

The intent detection is formulated as a classifica- 058

tion problem (Liu and Lane, 2016). The advance 059

method uses the big pre-trained model as utterance 060

encoder learned by the classification loss (Mehri 061

et al., 2020). The excellent slot filling methods 062

normally formulate the task as a sequence labeling 063

task (Zhang et al., 2017; Coope et al., 2020). For 064

dialogue state tracking task, the advance models 065

are hybrid of classification (Mrkšić et al., 2017) 066

and generation (Wu et al., 2019; Tian et al., 2021). 067

The five different tasks aim to interpret a dialogue 068

from five different perspectives. To date, these DU 069

tasks are still learned independently due to different 070

task formats. However, they are intuitively related, 071

for example dialogue completion task should have 072

positive effect on dialogue state tracking task (Han 073

et al., 2020). On the other hand, the dialogue data is 074

expensive to gather and its annotations also need to 075

consume substantial human and financial resource, 076

which constraints the scale of annotated dialogue 077

corpora. It is important and imperative to study 078

how to enhance the dialogue understanding capa- 079

bility with the existing different dialogue corpora. 080

There are two main challenges to share the 081

knowledge across the dialogue understanding tasks. 082

The first is how to construct a unified dialogue 083
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understanding model, which can eliminate the im-084

pacts of DU models and focus on the effects of085

DU tasks. In this paper, we propose a Unifined086

Dialogue Uderstanding (UniDU) framework to val-087

idate the effects between different DU tasks. We088

unify five fundamental DU tasks as a sequence-to-089

sequence generation task. The second challenge is090

that there are huge differences between DU tasks,091

especially on the output space of different DU tasks.092

For example, there are only a few classification093

names in the intent detection task, while the output094

vocabulary of the dialogue summary task may ex-095

ceed 10K. It is a nontrivial problem to efficiently096

learn a unified model with different dialogue cor-097

pora. In this paper, we explore eight different train-098

ing strategies under UniDU framework and deeply099

analyze the effected factors.100

The main contributions of this paper are summa-101

rized as below:102

• To the best of our knowledge, we are the103

first to formulate the different dialogue un-104

derstanding tasks as the unified generation105

task spanned five DU tasks. The proposed106

UniDU outperforms well-designed models107

on five well-studied dialogue understanding108

benchmarks.109

• We validate the effects of eight different train-110

ing strategies under UniDU framework. We111

find that the intuitive multitask mixture train-112

ing method makes the unified model to bias113

convergence to more complex tasks. The pro-114

posed model-agnostic training method can ef-115

ficiently relieve this problem.116

• The experimental results show that the pro-117

posed UniDU method has excellent general-118

ization ability, which achieves advance perfor-119

mance both on few-shot and zero-shot setups.120

121

2 Dialogue Understanding Tasks122

We denote dialogue context as C = (Hn, Un),123

where Hn = (U1, U2, . . . , Un−1) represents the di-124

alogue history containing the first n − 1 turns of125

utterances. Un is n-th turn utterance, which may126

consist of multiple sentences stated by one speaker.127

For the task-oriented dialogue, the domain scope128

is restricted by the dialogue ontology, which is de-129

signed by the dialogue expert. The ontology O130

is composed of dialogue domains D = {d} (like131

hotel), domain slots (like price) S = {s} and user132

intent candidates I = {i} (like find_hotel). There133

are five fundamental tasks to interpret a dialogue 134

from different perspectives. 135

Dialogue Summary (DS) aims to extract impor- 136

tant information of the dialogue. It is a typical gen- 137

eration problem, which takes the whole dialogue 138

context C as input and generates the summary de- 139

scription. DS requires the model to focus on the 140

whole dialogue flow and the important concepts. 141

Dialogue Completion (DC) purposes to relieve 142

the co-reference and information ellipsis problems, 143

which occur frequently in the dialogue context. It 144

is also a typical generation task, which inputs the 145

dialogue history Hn and the current utterance Un 146

and then infers the semantic-completed statement 147

of the current utterance Un. DC requires the model 148

to focus on connection between current utterance 149

and dialogue history. 150

Slot Filling (SF) is to extract the slot types S of the 151

entities mentioned by the user. It is a slot tagging 152

problem, where the utterance is labeled in the IOB 153

(Inside, Outside and Beginning) format. The input 154

is only the current utterance Un. 155

Intent Detection (ID) is to recognize the intent 156

from predefined abstracted intent expresses I . It 157

is normally formulated as a classification problem. 158

The input is the current utterance Un and the out- 159

put is the possibility distribution of all the intent 160

candidates I . 161

Dialogue State Tracking (DST) aims to record 162

the user’s constraints, which consists of the triple 163

set of domain-slot-value. For example, hotel-price- 164

cheap means the user wants a cheap hotel. The 165

input of DST at the n-th turn is the first n turns 166

(U1, . . . , Un). 167

3 UniDU 168

In this section, we first introduce the unified 169

sequence-to-sequence format for five different dia- 170

logue understanding tasks. Then we introduce the 171

formulation of each task in detail, especially how 172

to reformulate the intent detection, slot filling and 173

dialogue state tracking as the generation task. 174

There are three components in the input of 175

UniDU: task identification, dialogue content, task 176

query. The task identification represents with a 177

special token, e.g., dialogue summary identified 178

by “[DS]”. The dialogue content means the task- 179

dependent input, such as dialogue history for dia- 180

logue summary. The task query can be regarded as 181

the task-specific prompt, which includes the task 182

definition and domain-related information. There 183
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[DS] Emma: Buy me some earplugs please [T] Paul: How many
pairs? [T] Emma: 4 or 5 packs [T] Paul: I’ll get you 5 [T] Emma:
Thanks [C] what is the summary of this dialogue?

[DC] anna politkovskaya [T] the murder remains unsolved,
2016 [T] did they have any clues? [C] what is the semantic 
completion statement of ‘did they have any clues?’? 

[ID] What can I do if my card still hasn’t arrived after 2 weeks?
[C] what is the user’s intent on the bank business? 

[SF] I am Lakesha Mocher [C] what is last name in general
domain?

[DST] I am looking for a place to to stay that has cheap price 
range it should be in a type of hotel [C] what is the user’s 
constraint about the price range of the hotel? 

[DS] Maya will buy 5 packs of earplugs 
for Randolph at the pharmacy.

[DC] did investigators have any clues in 
the unresolved murder of anna 
politkovskaya?

[ID] card arrival

[SF] Mocher

[DST] cheap

update

MTL Training Strategy

Task Identification Dialogue Content Task Query Task Identification Query Answer

UniDU

Figure 1: Overview of UniDU. Under UniDU framework, the input consists of three parts: task identification,
dialogue content and task query, where ⊕ means concatenation. The output has two components: task identification
and query answer. We train the UniDU model with different multitask learning strategies.

are two elements in the output of UniDU: task iden-184

tification and query answer. The query answer is185

the understanding result of task query given by the186

dialogue content. The unified input and output can187

be formalized as:188

INPUT: [TI] dialogue content [C] task query
OUTPUT: [TI] query answer

189

where “[C]” is separate character and “[TI]” is190

task identification (replaced by “[DS]”, “[DC]”,191

“[SF]”,“[ID]” and “[DST]”, which correspond to di-192

alogue summary, dialogue completion, slot filling,193

intent detection and dialogue state tracking respec-194

tively). At inference time, the UniDU model has to195

predict the task identification first.196

Dialogue summary and dialogue completion are197

originally generative tasks. The dialogue contents198

in the input are the whole dialogue context C and199

multi-turn utterances Hn respectively. Since these200

two tasks are independent with dialogue domain,201

there is no domain information in task query. For202

dialogue summary, the task query is “what is the203

summary of this dialogue?”. For dialogue comple-204

tion, the query is ‘‘what is the semantic completion205

statement of Un?”, where Un is the t-th utterance.206

In the output, their understanding answers are an-207

notated dialogue summary and rewritten utterance208

respectively.209

The original slot filling task demands the model210

to extract all the mentioned slot values and their slot211

types in an utterance Un. In this paper, the UniDU212

model predicts the value slot by slot, which is an213

iterated generation process on the slot candidate 214

list. Two different slot filling formats are shown 215

below: 216

I  am Lakesha   Mocher

B-LNameO B-FNameOOriginal:

UniDU: [SF] I am Lakesha Mocher [C] 
what is first name on general domain?
what is last name on general domain?
what is time on general domain?

[SF] Lakesha
[SF] Mocher
[SF] not mentioned

To be clear, we do not list all the candidate slots 217

here. In general, for each sample, it can be formal- 218

ized as: 219

INPUT: [SF] Un [C] what is s of d?
OUTPUT: [SF] slot value

220

where s and d are predefined slot and domain. If 221

s has no value in Un, slot value will be “not men- 222

tioned”. If s has multiple values, they will be sep- 223

arated by comma in slot value. When the value is 224

“not mentioned”, we call it negative sample. Other- 225

wise, it is positive sample. To balance the ratio of 226

negative and positive samples at training process, 227

we set the ratio below 2:1. If the number of nega- 228

tive samples exceeds the threshold, we randomly 229

sample twice as many negative instances as positive 230

ones. 231

For dialogue state tracking tasks, the classifica- 232

tion methods always achieve better performance 233

than generative methods. However, under UniDU 234

framework, we also formulate DST as slot-wise 235

value generation task similar to slot filling task. 236

The DST task formats are shown as below: 237
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expensive

[DST] Lakesha
[DST] not mentioned

what is the user’s constraint about the people?
what is the user’s constraint about the area?

I am looking for a place 
to stay that has cheap 
price range it should be 
in a type of hotel

Original:

UniDU: [DST] I am looking for a place to stay that has cheap price range it should be 
in a type of hotel [C] 

what is the user’s constraint about the price range?

[DST] not mentioned

price range medium
none
cheap
don’t care

Dialogue Context Slot Candidate Values Value Distribution

Input Output

where the output of the original DST model is the238

distribution of all the candidate values of the slot.239

The input and output of DST task under UniDU240

can be formalized as:241

INPUT: [DST] (Hn, Un) [C] what is the
user’s constraint about s of d?

OUTPUT: [DST] slot value
242

where (Hn, Un) is dialogue context. If slot s of243

domain d is not in the dialogue state, its value is244

“not mentioned”, which is negative sample. Note245

that different utterances are separated by special246

token “[T]” in the input. At training process, the247

ratio of negative and positive samples is also set248

below 2:1.249

For intent detection task, the original methods250

always formulate it as the intent classification prob-251

lem and output the distribution of all the candidate252

intents. The UniDU model directly generates the253

intent name of the current utterance, which can be254

formalized as:255

INPUT: [ID] Un [C] what is the user’s intent
on domain d?

OUTPUT: [ID] intent name
256

where domain d is normally known in advance. The257

specific examples of original and UniDU formats258

are shows as below:259

what is the user’s intent on the bank business?

What can I do if my card still 
hasn’t arrived after 2 weeks? 

Original:

UniDU: [ID] What can I do if my card still hasn’t arrived after 2 weeks? [C] 

[ID] card arrival

card linking
exchange rate
card arrival
age limit
change pin

Utterance Candidate Intents Intent Distribution

Input Output

where we do not list all the intents. To integrate the260

generalization capability into the UniDU model,261

we also construct negative samples for intent de-262

tection task. The intent name of negative sample263

is “not defined”, where the input utterances Un are264

sampled from out-of-domain dialogues. The ratio265

of negative and positive samples is set to 2:1. Un-266

til now, all the five dialogue understanding tasks267

are formulated as the unified sequence-to-sequence268

generation task. The specific examples are shown269

in Figure 1.270

4 Multitask Training Strategies 271

Under UniDU framework, five dialogue under- 272

standing tasks have been formulated as a unified 273

generative task. Due to large gap of the output 274

space across five DU tasks, it becomes an important 275

topic about how to efficiently train five different 276

tasks together. In this section, we mainly introduce 277

the multitask training strategies. 278

4.1 Multitask Learning Classification 279

The existing multitask training strategies can be 280

classified into three categories: average sum 281

method, manual scheduled method and learnable 282

weight method. 283

Average Sum method distributes all the samples 284

with the same weight. In other words, the losses 285

from different samples are directly averaged, for- 286

mulated as L = 1
T ∑

T
t=1Lt, where T is number of 287

the tasks and Lt is the loss of the t-th task. 288

Manual Schedule method designs a heuristic train- 289

ing schedule to plan the learning process of dif- 290

ferent tasks. For example, the curriculum learn- 291

ing (Bengio et al., 2009) is a kind of typical manual 292

scheduled method, which first trains the easier sam- 293

ples and then adds the more complicated cases. 294

The manual scheduled method can be formulated 295

as L = 1
∑ I(t) ∑

T
t=1 I(t) ⋅ Lt, where I(t) is indicator 296

function, whose value is 0 or 1. 297

Learnable Weight method aims to parameterize 298

the loss weights of different tasks. The target of 299

the parameterized weights is to balance the ef- 300

fects of task instances, which avoids the model 301

to slant to one or several tasks and achieves the 302

global optimization. There are two classical learn- 303

able weight algorithms: homoscedastic uncertainty 304

weighting (HUW) (Kendall et al., 2018) and gradi- 305

ent normalization (GradNorm) (Chen et al., 2018). 306

For the tasks, the loss function is formulated as 307

L = ∑T
t=1Wt ⋅ Lt, where Wt is learnable weights 308

and greater than 0. In the HUW algorithm, the 309

weights update as following loss function: 310

LHUW =
T

∑
t=1
(Lt ⋅Wt − log(Wt)), (1) 311

where log(Wt) is to regularize weights, which is 312

adaptive to regression tasks and classification tasks. 313

The motivation of GradNorm method is to slow 314

down the learning scale of task that has the larger 315

gradient magnitude and faster convergence rate. 316
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4.2 Model-Agnostic Training Strategy317

In Equation 1, the learnable weight Wt is only de-318

pendent on the corresponding task. Thus, we can319

regard the weight as the function of task Wϕ(t),320

where ϕ are parameters shared among five tasks.321

Under UniDU framework, five tasks share the same322

encoder-decoder model, which is a constant in323

weight function Wϕ(t). The task format depends324

on task attributes, such as input, output and data325

scale. To extract the characters of five tasks, we326

manually design a vector as the task feature to rep-327

resent a task. Each dimension in the task feature328

has its physical meaning related to model-agnostic329

setting. In this paper, we design 14 dimensional330

vector ft for each task detailly introduced in Ap-331

pendix B. Since the model-agnostic training strat-332

egy (MATS) formulates the weight as the task-333

related function and may share the function pa-334

rameters among different tasks, the weights are335

not longer independent to each other as in original336

learnable weight method. The MATS improved337

from Equation 1 is formalized as:338

LMATS =
T

∑
t=1
(Lt ⋅Wϕ(ft) − log(Wϕ(ft))). (2)339

5 Experiments340

We conduct the experiments on ten dialogue un-341

derstanding corpora. Each task has two corpora.342

We evaluate UniDU framework with eight different343

training strategies. Compared with well-designed344

models, our proposed UniDU can get better per-345

formance in five benchmarks. Then we deeply346

analyze different factors to affect the performance347

of UniDU model including DU tasks, unified for-348

mat and pre-trained language models. Last but not349

least, we conduct few-shot experiments to validate350

the generalization ability of UniDU.351

5.1 Corpora&Metrics352

There are ten dialogue understanding corpora in to-353

tal spanned five tasks: dialogue summary (DS), di-354

alogue completion (DC), slot filling (SF), intent de-355

tection (ID) and dialogue state tracking (DST). We356

choose two well-studied corpora for each task: one357

is evaluation corpus and the other is auxiliary cor-358

pus. The dataset statistics is shown in Appendix A.359

Dialogue Summary: We choose SAMSUM (Gliwa360

et al., 2019) and DIALOGSUM (Chen et al., 2021a)361

datasets. The common metrics for summary task362

are ROUGE scores, which measure the overlap of363

n-grams in the generated summary against refer-364

ence summary.365

Dialogue Completion: TASK (Quan et al., 2019) 366

and CANARD (Elgohary et al., 2019) are used. The 367

metrics are BLEU score and exact match (EM) 368

accuracy. BLEU measures how similar the rewrit- 369

ten sentences are to golden ones. Exact match 370

means the rate of the generated totally equaled to 371

the golden. 372

Intent Detection: We conduct the experiments 373

on BANKING77 (Casanueva et al., 2020) and 374

HWU64 (Liu et al., 2019c), where 77 and 64 means 375

the number of predefined intents. The evaluation 376

metric is detection accuracy (ACC.). 377

Slot Filling: We choose to conduct the experi- 378

ments on RESTAURANTS8K (Coope et al., 2020) 379

and SNIPS (Coucke et al., 2018). We report F1 380

scores for extracting the correct span per user utter- 381

ance. Note that the correct prediction on negative 382

samples are not calculated in F1 score, which is 383

comparable with traditional methods. 384

Dialogue State Tracking: WOZ2.0 (Wen et al., 385

2017) and MULTIWOZ2.2 (Zang et al., 2020) are 386

used. The metric is joint goal accuracy (JGA), 387

which measures the percentage of success in all 388

dialogue turns, where a turn is considered as suc- 389

cess if and only if all the slot values are correctly 390

predicted. Note that we only use “hotel” domain 391

data of MULTIWOZ2.2 in the training phase. 392

5.2 Eight Training Strategies 393

As introduced in Section 4, the multitask training 394

strategies can be divided into three categories: av- 395

erage sum, manual schedule and learnable weight. 396

Before introducing MTL training methods, there 397

is an intuitive baseline trained on its own data 398

named single training (ST). In ST, the sequence-to- 399

sequence models are only trained on five evaluated 400

datasets respectively. In average sum method, there 401

are two types of training strategies: task transfer 402

learning (TT) (Torrey and Shavlik, 2010; Ruder 403

et al., 2019) and mixture learning (MIX) (Wei 404

et al., 2021). The task transfer learning aims to 405

enhance the performance using external data from 406

auxiliary corpus that has the same task setup. This 407

is the main reason that we select two corpora for 408

each task. The mixture learning directly mixes up 409

all the training samples from ten corpora together. 410

In this two methods, the learning weight for each 411

sample is equally distributed. In manual schedule 412

method, we test two training routes according to 413

curriculum learning method. From the input per- 414

spective, five tasks can be divided into three classes: 415
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Methods DS(SAMSUM) DC(TASK) ID(BANKING77) SF(RESTAURANTS8K) DST(WOZ2.0)

R-1 R-L EM BLEU ACC. F1 JGA

Baselines
49.67∗ 48.95∗ 74.2 89.4 93.44 96.00 91.4

(Wu et al., 2021) (Chen et al., 2021b) (Mehri et al., 2020) (Coope et al., 2020) (Tian et al., 2021)

Eight Training Strategies under UniDU Framework
ST 49.74 47.10 76.4 89.0 91.49 95.76 89.8
TT 51.24 48.59 76.1 89.2 91.94 95.12 91.0

MIX 50.98 48.13 76.2 90.8 91.91 96.43 90.8
G2S 51.13 48.75 76.3 90.1 90.12 94.81 86.8
CL 51.04 48.36 77.2 89.8 92.17 96.02 90.8

GradNorm 51.33 48.69 77.4 90.4 92.07 96.69 90.5
HWU 50.31 47.69 76.2 90.4 93.14 97.43 91.9
MATS 50.53 47.97 76.6 90.6 93.60 97.61 92.3
Finetune 51.93 49.01 76.1 91.0 93.54 97.19 92.1

Table 1: The results on five DU tasks trained with eight learning strategies. Finetune means that the best model
(according to underlined metric values) of each task continues to be fine-tuned on separate task corpus. ∗ means that
we run their released code with BART-base instead of BART-large to fairly compare with our model.

Methods DS DC ID SF DST
Overall

(R-L) (BLEU) (ACC.) (F1) (JGA)

MIX 48.04 90.40 91.9 96.43 90.1 83.23
HWU 47.63 89.95 93.0 97.43 91.8 83.97
MATS 47.57 90.43 93.5 97.46 91.9 84.16

Table 2: The best overall performance of MIX, HWU
and MATS methods.

utterance-level input on intent detection and slot416

filling, turn-level input on dialogue completion and417

dialogue state tracking and dialogue-level input418

on dialogue summary. The inputs gradually be-419

come more complex in the order: utterance-level,420

turn-level and dialogue-level. Thus, the intuitive421

method (named CL) trains five tasks in this or-422

der. Note that the previous data are kept in the423

next training phase. From the task setup perspec-424

tive, dialogue summary and dialogue completion425

belong to domain-independent tasks. The other426

three tasks are domain-dependent tasks. There is427

another training route (G2S): from general tasks to428

domain-specific tasks. In learnable weight method,429

we evaluate three methods introduced in Section 4:430

GradNorm, HWU and our proposed MATS.431

5.3 Experimental Setup432

In this paper, we set BART-base as the backbone of433

unified encoder-decoder model. The BART model434

is implemented with HuggingFace library (Wolf435

et al., 2019). We conduct all the experiments on436

the 2080TI GPU with 11G memory. we run every437

experiment for 60 epochs spent 72 hours. The438

batch size is 32 with gradient accumulation strategy439

(updated per 8 steps). The learning rates of the440

unified model and learnable weights are 1e-5 and441

1e-4 respectively. In MATS method, the weight 442

function consists of two linear layers with ReLU 443

activation function, whose hidden sizes are 64. 444

5.4 Results 445

In Table 1, we report the best evaluation perfor- 446

mance on five tasks with eight training strategies. 447

The well-designed models as baselines are intro- 448

duced in Section 1. The experimental results show 449

that different training strategies greatly affect the 450

performance on five tasks under UniDU frame- 451

work. Our proposed MATS achieves the best or 452

near best performance except on dialogue summary. 453

On the atypical generation tasks (intent detection, 454

slot filling and dialogue state tracking), the UniDU 455

with MATS methods can achieve promising im- 456

provement compared to well-designed models. The 457

simple task transfer learning method (TT) can not 458

largely increase the performance compared with 459

single training. The mixture operation leads consis- 460

tent performance improvement on five tasks. How- 461

ever, compared with TT, the improvement is still 462

limited except on dialogue completion. Compared 463

with our proposed MATS, MIX biases convergence 464

to more complex DU tasks (dialogue summary and 465

dialogue completion). Two manual schedule meth- 466

ods (G2S and CL) do not have any distinct advan- 467

tage. In learnable weight methods, GradNorm only 468

achieves excellent performance on dialogue sum- 469

mary. HWU achieves performance gain on intent 470

detection, slot filling and dialogue state tracking. 471

We continue fine-tuning the best UniDU models 472

(signed with underline) on the corresponding cor- 473

pus. We find that only the dialogue summary and 474
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Method DS DC ID SF DST
(R-L) (BLEU) (ACC.) (F1) (JGA)

MATS 47.97 90.6 93.60 97.61 92.3
- DS - 90.2▼0.4 93.20▼0.4 97.35▼0.2692.8▲0.5

- DC 47.77▼0.20 - 93.41▼0.1997.39▼0.2291.8▼0.5

- ID 47.81▼0.1690.5▼0.1 - 97.45▼0.16 92.3<0.0

- SF 47.77▼0.2090.5▼0.1 93.60<0.0 - 92.0▼0.3

- DST 47.85▼0.12 90.6<0.0 93.47▼0.1397.58▼0.03 -

Table 3: Ablation study on the effects of each task cor-
pora.

dialogue completion have obvious performance475

gain, which also reflects the necessity of the UniDU476

framework for simpler generative tasks.477

In Table 1, we report the task-specific perfor-478

mance of the UniDU model, whose checkpoints479

are selected by the task-specific metric. Table 2480

shows unified performance on five tasks with MIX,481

HWU and MATS methods. We evaluate the single482

checkpoint of UniDU model, which has the highest483

evaluated overall score, on the five tasks. The over-484

all score is the average value of five main metrics485

shown on Table 2. We can see that our proposed486

MATS gets the highest overall performance and487

also get the best performance on four DU tasks.488

5.5 Analysis489

In this subsection, we analyze factors to affect the490

performance of UniDU model including DU tasks,491

unified format and pre-trained language models.492

5.5.1 Effects of DU Tasks493

To validate the effects of the dialogue understand-494

ing tasks, we directly remove one of five DU cor-495

pora and train UniDU model with MATS method496

shown in Table 3. In general, the five DU tasks497

benefit each other, except that dialogue summary498

has negative effects on dialogue state tracking task.499

We guess that the general dialogue summary task500

just summarizes a dialogue into a sentence, which501

ignores the domain-specific information. On the502

other hand, we find that the dialogue completion503

task has the biggest effects on the other four DU504

tasks. It indicates that the co-reference and infor-505

mation ellipsis are still main factors to impact the506

dialogue understanding ability. The phenomenon507

can facilitate the dialogue understanding commu-508

nity to pay more attention to dialogue completion.509

For example, when pre-training a scaling dialogue510

model, the pre-trained tasks should be close to dia-511

logue completion task.512

Backbone DS DC ID SF DST
(R-L) (BLEU) (ACC.) (F1) (JGA)

around 100M
Trans.-B 34.84 74.2 86.36 83.01 72.5
BART-B 47.97 90.6 93.60 97.61 92.3

T5-S 41.63 85.9 87.04 96.94 89.9
around 400M

Trans.-L 34.10 67.4 86.46 71.65 71.0
BART-L 48.89 88.6 93.44 97.12 92.6

T5-B 48.89 90.7 93.90 98.14 92.6

Table 4: Ablation study on the effects of different pre-
trained language models with encoder-decoder architec-
ture. 100M and 400M are parameter sizes.

47.9748.21

92.3

89.2

88.9
90.6

90.21

93.60
94.42 97.61

Figure 2: Ablation study of different unified understand-
ing format.

5.5.2 Effects of Unified Format 513

As introduce in Section 3, we formulate dialogue 514

understanding tasks as QA format. There is an in- 515

tuitive alternative: prefix format, where the task 516

query is concatenated on the decoder side. At in- 517

ference time, the decoder is directly fed with task 518

query and then generates the answer. As shown 519

in Figure 2, the QA format achieves performance 520

boost on four of five DU tasks (except for dialogue 521

summary) compared to prefix format. 522

5.5.3 Effects of PLMs 523

To validate the effects of the different pre- 524

trained backbones, we initialize the encoder- 525

decoder of UniDU model with random mecha- 526

nism, BART (Lewis et al., 2020) and T5 (Raf- 527

fel et al., 2020). The Trans.-B and Trans.-L in 528

Table 4 mean the random-initialized Transformer 529

trained from scratch, which has the same parame- 530

ters with BART-base model (BART-B) and BART- 531

large model (BART-L). T5-S and T5-B mean T5- 532

small and T5-base respectively. We can see that the 533

pre-trained language models get absolute perfor- 534

mance gain compared to random-initialized mod- 535

els. BART-B can get better performance than T5- 536
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Figure 3: Few-shot learning results on slot filling fine-
tuned on BART and UniDU. 1%, 2% and 5% are the
percents of the training data on unseen “Bus” domain.

S. When the parameter scale increases, T5-base537

achieves the best performance than other models.538

The results show that the large PLMs can improve539

complex dialogue summary task by a large margin.540

5.6 Generalization Ability541

To further evaluate the generalization ability of542

UniDU model, we first conduct few-shot learning543

experiments on the domain-dependent slot filling544

task. We test the zero-shot capability of UniDU on545

unseen dialogue data.546

Few-shot Learning: We select UniDU model that547

gets the best evaluation overall performance on548

five tasks learned with MATS method. For slot549

filling task, we extend another dialogue corpus550

DSTC8 (Rastogi et al., 2020). We choose the “Bus”551

domain data in DSTC8, which is unseen in the552

training process of UniDU. Compared with vanilla553

BART, UniDU has obvious advantages, especially554

on extremely resource-limited situation. When555

there is only 1% training data, the vanilla BART is556

disable to learn as shown in Figure 3. The few-shot557

experiment on DST task is shown in Appendix C.558

Zero-shot Performance: We validate UniDU559

model trained with MATS method on unseen “Taxi”560

domain dialogue data collected from MULTIWOZ2.2561

corpus. UniDU model can get 18.24% accuracy on562

ID, 39.69% F1 score on SF and 1.6% JGA on DST.563

The case study as shown in Appendix D indicates564

that the UniDU can generate reasonable results for565

five DU tasks on unseen domain.566

6 Related Work567

Our work relates to several broad research areas568

including prompting, dialogue modelling and mul-569

titask learning. Due to the content limitation, here570

we describe one subarea: multitask learning in NLP571

applications, that relates most closely to our work.572

Luong et al. (2016) apply a sequence-to-sequence573

model on three general NLP tasks and study dif-574

ferent parameter-sharing strategies. Kumar et al.575

(2016); McCann et al. (2018) try to cast NLP tasks576

as QA over a context. The main topics in these 577

work are how to design efficient model to integrate 578

the knowledge between question and context. Liu 579

et al. (2019b) combine four natural language under- 580

standing tasks, which utilizes BERT as the shared 581

representation model. The model corresponding to 582

each task still has the well-designed part to solve 583

the intrinsic problem. It hampers the analysis of 584

the interaction among the different tasks. 585

Recently, Wei et al. (2021) formulate the NLP 586

tasks as the generation task by directly mixing 587

scaling annotated data up. They only focus on 588

zero-shot and few-shot ability on the NLP tasks 589

and ignore the impacts of the different multitask 590

training strategies, which can not achieve better 591

performance on general NLP tasks compared to su- 592

pervised learning methods on well-designed mod- 593

els. In task-oriented dialogue (TOD) modelling, 594

Peng et al. (2020); Su et al. (2021) reformulate the 595

pipeline TOD model as the sequential end-to-end 596

generation problem. The end-to-end model needs 597

to generate dialogue state, dialogue action and re- 598

sponse at the same time, which is not scalable when 599

the number of tasks increases. The sequential for- 600

mat needs all the annotations of the same context, 601

which is unavailable in DU area. Most recently, 602

PPTOD (Su et al., 2021) unifies the TOD task as 603

multiple generation tasks including intent detection, 604

DST and response generation. However, they focus 605

on the response generation ability and ignore the 606

effects of different tasks. In this paper, we deeply 607

dive into analyzing the effects of five DU tasks. 608

7 Conclusion&Future Work 609

In this paper, we propose a unified generative dia- 610

logue understanding framework (UniDU) to share 611

the knowledge across five dialogue understanding 612

tasks. To alleviate the biased generation problem, 613

we improve the existing learnable weight method, 614

which can achieve the best overall performance. 615

Our proposed UniDU method achieves better per- 616

formance compared to well-designed models on 617

total five DU tasks. We further deeply dive into 618

studying the effected factors. Finally, experimental 619

results indicate that our proposed UniDU model 620

can also get excellent performance under few-shot 621

and zero-shot settings. In the future, we will in- 622

crease the scale of the DU corpora and integrate 623

the unsupervised dialogue pre-training tasks. We 624

will further examine the task-level transferability 625

of the UniDU model. 626

8



References627

Daniel Adiwardana, Minh-Thang Luong, David R So,628
Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang,629
Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu,630
et al. 2020. Towards a human-like open-domain chat-631
bot. arXiv preprint arXiv:2001.09977.632

Siqi Bao, Huang He, Fan Wang, Hua Wu, and Haifeng633
Wang. 2020. Plato: Pre-trained dialogue generation634
model with discrete latent variable. In Proceedings635
of the 58th Annual Meeting of the Association for636
Computational Linguistics, pages 85–96.637

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,638
and Jason Weston. 2009. Curriculum learning. In639
Proceedings of the 26th annual international confer-640
ence on machine learning, pages 41–48.641

Inigo Casanueva, Tadas Temcinas, Daniela Gerz,642
Matthew Henderson, and Ivan Vulic. 2020. Efficient643
intent detection with dual sentence encoders. ACL644
2020, page 38.645

Yulong Chen, Yang Liu, and Yue Zhang. 2021a. Di-646
alogSum challenge: Summarizing real-life scenario647
dialogues. In Proceedings of the 14th International648
Conference on Natural Language Generation, pages649
308–313, Aberdeen, Scotland, UK. Association for650
Computational Linguistics.651

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and652
Andrew Rabinovich. 2018. Gradnorm: Gradient653
normalization for adaptive loss balancing in deep654
multitask networks. In International Conference on655
Machine Learning, pages 794–803. PMLR.656

Zhi Chen, Lu Chen, Hanqi Li, Ruisheng Cao, Da Ma,657
Mengyue Wu, and Kai Yu. 2021b. Decoupled dia-658
logue modeling and semantic parsing for multi-turn659
text-to-sql. In Findings of ACL 2021.660

Samuel Coope, Tyler Farghly, Daniela Gerz, Ivan Vulić,661
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Appendix869

A Dialogue Understanding Corpora870

Corpora #Sample I(Token) I(Turn) O(Token) Task
SAMSUM 14732 104.95 11.16 20.31 DS
DIALOGSUM 12460 140.48 9.49 22.86 DS

TASK 2205 34.92 2.75 10.84 DC
CANARD 31526 102.67 9.80 11.55 DC

BANKING77 12081 21.64 1 3.14 ID
HWU64 25715 17.69 1 2.05 ID

RESTAURANTS8K 15270 14.44 1 3.38 SF
SNIPS 35748 15.31 1 1.77 SF

WOZ2.0 7608 78.96 4.63 1.30 DST
MULTIWOZ2.2 35119 115.80 5.99 1.45 DST

Table 5: The ten DU corpora trained on UniDU model.
I(Token) and I(Turn) mean the average length of the split to-
kens and the average turns of the input dialogue content.
O(Token) means the average length of the split tokens of
the task-specific output.

In this paper, we train our proposed unified genera-871

tive model on ten dialogue understanding corpora,872

as shown in Table 5. For each DU tasks, we select873

two well-studied datasets. The first one is used to874

evaluate and the second one is an auxiliary corpus.875

The main reason to select two datasets for each876

task is to compare the multitask learning with the877

task transfer learning. We aim to know whether878

the knowledge sharing between different dialogue879

understanding data is only happening in the same880

DU task rather than all the DU tasks. The experi-881

mental results show that the annotated data from882

the other DU tasks are also important to enhance883

the performance, which indicates that it is an effi-884

cient way to transfer the knowledge among all the885

DU tasks. Note that the selected DU data are from886

different corpora, which means that the distribution887

of the input dialogue content is totally different. As888

shown in Table 5, the inputs and the outputs of the889

five DU tasks are greatly different from each other.890

The longest average input reaches to 140.48 and891

the shortest is only 14.44. The longest output is892

22.86 from dialogue summary and the shortest is893

1.30 from dialogue state tracking. These charac-894

ters lead a big challenge to train all the dialogue895

understanding data in multitask learning way. The896

experimental results show that the intuitive mix-897

ture learning method makes UniDU model bias898

convergence to the more complex tasks like dia-899

logue summary and dialogue completion. In this 900

paper, we compare eight multitask training strate- 901

gies. Our proposed MATS method can achieve the 902

best overall performance on the five tasks under 903

UniDU framework. 904

weight function

model task format

UniDU
input output scale

M
odel-A

gnostic Feature

• Input length
• Turn num of input
• Sent num of input
• Input 1-gram
• Input 2-gram
• Input 3-gram
• Input PPL
• Output length
• Sent num of output
• Output 1-gram
• Output 2-gram
• Output 3-gram
• Output PPL
• Training Scale

𝑊∅ 𝑡 ∗ 𝐿"− log	(𝑊∅(𝑡))

𝑊" = 𝑊∅(𝑓" )

disentangled

Figure 4: Overview of model-agnostic training strategy.

B Model-Agnostic Training Strategy 905

In traditional HWU algorithm, the learnable weight 906

Wt is only dependent on the corresponding task. 907

Thus, we can regard the weight function of task 908

Wϕ(t), where ϕ are parameters shared among five 909

tasks. Generally, the task is associated with two 910

factors: its corresponding model and task format. 911

Under UniDU framework, five tasks share the same 912

encoder-decoder model, which can be regarded as 913

a constant in weight function Wϕ(t). The task 914

format dependents on model-agnostic task setting, 915

such as input, output and data scale. To distinguish 916

the five tasks under UniDU framework, we manu- 917

ally design a vector as the task feature to represent 918

a task. Each dimension in the task feature has its 919

physical meaning related to model-agnostic setting. 920

In this paper, we design 14 dimensional vector ft, 921

as shown in Figure 4. For input and output, we add 922

the average length of token, the average sentence 923

number, the n-grams and the perplexity (PPL) as 924

the attributes of the DU tasks. Especially for in- 925

put, the average turn number is also an important 926

character. The last attribute is training scale for 927

each task. The language model calculated the PPL 928

is LSTM-based1. Since the model-agnostic train- 929

ing strategy (MATS) formulates the weight as the 930

task-related function and may share the function 931

parameters among different tasks, the weights are 932

not longer independent to each other as in original 933

learnable weight method. 934

1We run the released code at https://github.
com/pytorch/examples/tree/master/word_
language_model for language model.
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Unseen Dialogue Content UniDUMATS

[DS] USER : I’d like a taxi to take me to ruskin gallery [T] SYSTEM : Sure! What is your
departure site? [T] USER : I will depart from saffron brasserie at 7:15. What is the car type
and contact number so I know who and where you will pick me up? [T] SYSTEM : Booking
completed! A grey ford will be picking you up. The contact number is 07689877132. [T]
USER : That is all I needed, thank you. [C] what’s the summary of this dialogue?

[DS] a grey ford will take
USER to ruskin gallery at
7:15.

[DC] USER : Please reserve for me a taxi that will pick me up at cambridge arts theatre after
09:30 [T] SYSTEM : And where will you be going? [T] USER : I’m going to restaurant one
seven. [T] SYSTEM : Your booking is complete, a black audi will be picking you up. [T]
USER : Thank you. I need the contact number, as well. [C] what is the semantic completion
statement of “Thank you. I need the contact number, as well.”?

[DC] I need the contact
number of a black audi to
pick me up at cambridge
arts theatre

[ID] help me get a taxi to the cambridge museum of technology please. [C] what is the user’s
intent on the taxi? [ID] transport taxi

[SF] I need a taxi to pick me up at Ashley Hotel to leave after 10:45. [C] what is leaving
time of taxi? [SF] 10:45

[DST] USER : I need a taxi. I am going to avalon and I need to leave after 16:15 [C] what
is the user’s constraint about the destination of the taxi? [DST] avalon

Table 6: Case study of the zero-shot performance of the best unified model trained with MATS method. The input
dialogue contents are sampled from unseen “Taxi” domain.

Figure 5: Few-shot learning results on DST fine-tuned
on BART and UniDU. 1%, 2% and 5% are the percents
of the training data on unseen “Taxi” domain.

C Few-shot Learning935

We select UniDU model that gets the best evalua-936

tion overall performance on five tasks learned with937

MATS method. For dialogue state tracking, we938

utilize the “Train” domain data in MULTIWOZ2.2,939

which is unseen in MTL training phase. Compared940

with vanilla BART, UniDU has obvious advantages,941

especially on extremely resource-limited situation.942

When there is only 1% and 2% training data, the943

vanilla BART is disable to learn. UniDU model944

warmed up by MATS method can quickly adapt the945

model on the unseen domain.946

D Case Study947

We directly validate UniDU model trained with948

MATS method on unseen “Taxi” domain dialogue949

data collected from MULTIWOZ2.2 corpus. As950

shown in Table 6, we find that UniDU model can951

generate reasonable dialogue summary and com-952

pletion. Note that UniDU model did not seen any953

task-oriented dialogue in these two tasks. For the954

domain-specific tasks, UniDU model can still gen-955

erate accurate query answers in some cases. It indi-956

Figure 6: The reduce-dimension map of task embed-
dings collected from UniDU model trained by MDTS.
The task embedding is the final decoder representation
of task identification token.

cates that our proposed generative UniDU model 957

has excellent generalization ability, which not only 958

can adapt to unseen dialogue and also directly gen- 959

erate reasonable answers on five DU tasks in zero- 960

shot setting. 961

To further explore the relations among five tasks, 962

we plot the reduced-dimension map of the task em- 963

beddings of five tasks with t-SNE algorithm shown 964

in Figure 6. The task embeddings are the final 965

decoder layer representation of task identification 966

token, whose model is trained with MDTS. The 967

dialogue data is from above unseen “Taxi” domain 968

to eliminate the impacts of dialogue context. We 969

find that the embeddings of dialogue summary, di- 970

alogue completion and intent detection cluster to- 971

gether. These three tasks under UniDU framework 972

are more general than slot filling and dialogue state 973

tracking, whose task queries are slot-wise. The 974

task formats between slot filling and dialogue state 975

tracking are close. However, UniDU model can 976

still have good performance to distinct between 977

these two tasks as shown in Figure 6. 978
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