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Abstract

Scaling hyperparameter optimisation to very large datasets remains an open prob-
lem in the Gaussian process community. This paper focuses on iterative methods,
which use linear system solvers, like conjugate gradients, alternating projections
or stochastic gradient descent, to construct an estimate of the marginal likelihood
gradient. We discuss three key improvements which are applicable across solvers:
(i) a pathwise gradient estimator, which reduces the required number of solver
iterations and amortises the computational cost of making predictions, (ii) warm
starting linear system solvers with the solution from the previous step, which leads
to faster solver convergence at the cost of negligible bias, (iii) early stopping linear
system solvers after a limited computational budget, which synergises with warm
starting, allowing solver progress to accumulate over multiple marginal likelihood
steps. These techniques provide speed-ups of up to 72× when solving to tolerance,
and decrease the average residual norm by up to 7× when stopping early.

1 Introduction

Gaussian processes [22] (GPs) are a versatile class of probabilistic machine learning models which are
used widely for Bayesian optimisation of black-box functions [24], climate and earth sciences [10, 26],
and data-efficient learning in robotics and control [6]. However, their effectiveness depends on good
estimates of hyperparameters, such as kernel length scales and observation noise. These quantities
are typically learned by maximising the marginal likelihood, which balances model complexity with
training data fit. In general, the marginal likelihood is a non-convex function of the hyperparameters
and evaluating its gradient requires inverting the kernel matrix. Using direct methods, this requires
compute and memory resources which are respectively cubic and quadratic in the number of training
examples. This is intractable when dealing with large datasets of modern interest.

Methods to improve the scalability of Gaussian processes can roughly be grouped into two categories.
Sparse methods [20, 27, 12] approximate the kernel matrix with a low-rank surrogate, which is
cheaper to invert. This reduced flexibility may result in failure to properly fit increasingly large or
sufficiently complex data [15]. On the other hand, iterative methods [11] express GP computations in
terms of systems of linear equations. The solution to these linear systems is approximated up to a
specified numerical precision with linear system solvers, such as conjugate gradients (CG) [11, 9,
30], alternating projections (AP) [23, 28, 33], or stochastic gradient descent (SGD) [15, 16]. These
methods allow for a trade-off between compute time and accuracy. However, convergence can be
slow in the large data regime, where system conditioning is often poor.

In this paper, we focus on iterative GPs and identify techniques, which were important to the success
of previously proposed methods, but did not receive special attention in the literature. Many of these
amount to amortisations which leverage previous computations to accelerate subsequent ones. We
analyse and adapt these techniques, and show that they can be applied to accelerate different linear
solvers, obtaining speed-ups of up to 72× without sacrificing predictive performance (see Figure 1).
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Figure 1: Comparison of relative runtimes for different methods, linear system solvers, and datasets.
The linear system solver (hatched areas) dominates the total training time (coloured patches). The
pathwise gradient estimator requires less time than the standard estimator. Initialising at the previous
solution (warm start) further reduces the runtime of the linear system solver for both estimators.

In the following, we summarise our contributions:

• We introduce a pathwise estimator of the marginal likelihood gradient and show that, under
real-world conditions, the solutions to the linear systems required by this estimator are closer
to the origin than those of the standard estimator, allowing our solvers to converge faster.
Additionally, these solutions transform into samples from the GP posterior without further
matrix inversions, amortising the computational costs of predictive posterior inference.

• We propose to warm start linear system solvers throughout marginal likelihood optimisation
by reusing linear system solutions to initialise the solver in the subsequent step. This results
in faster convergence. Although this technically introduces bias into the optimisation, we
show that, theoretically and empirically, the optimisation quality does not suffer.

• We investigate the behaviour of linear system solvers on a limited compute budget, such
that reaching the specified tolerance is not guaranteed. Here, warm starting allows the linear
system solver to accumulate solver progress across marginal likelihood steps, progressively
improving the solution quality of the linear system solver despite early stopping.

• We demonstrate empirically that the methods above either reduce the required number of
iterations until convergence without sacrificing performance or improve the performance if
a limited compute budget hinders convergence. Across different UCI regression datasets
and linear system solvers, we observe average speed-ups of up to 72× when solving until
the tolerance is reached, and increased performance when the compute budget is limited.

Source code available at: https://github.com/jandylin/iterative-gaussian-processes

2 Gaussian Process Regression and Marginal Likelihood Optimisation

Formally, a GP is a stochastic process f : X → R, such that, for any finite subset {xi}ni=1 ⊂ X , the
set of random variables {f(xi)}ni=1 is jointly Gaussian. In particular, f is uniquely identified by a
mean function µ(·) = E[f(·)] and a positive-definite kernel function k(·, ·′;ϑ) = Cov(f(·), f(·′))
with kernel hyperparameters ϑ. We use a Matérn-3/2 kernel with length scales per dimension and a
scalar signal scale and write f ∼ GP(µ, k) to express that f is a GP with mean µ and kernel k.

For GP regression, let the training data consist of n inputs x ⊂ X and targets y ∈ Rn. We consider
the Bayesian model yi = f(xi)+ ϵi, where each ϵi ∼ N (0, σ2) i.i.d. and f ∼ GP(µ, k). We assume
µ = 0 without loss of generality. The posterior of this model is f |y ∼ GP(µf |y, kf |y), with

µf |y(·) = k(·,x;ϑ)(k(x,x;ϑ) + σ2I)−1y, (1)

kf |y(·, ·′) = k(·, ·′;ϑ)− k(·,x;ϑ)(k(x,x;ϑ) + σ2I)−1k(x, ·′;ϑ), (2)

where k(·,x;ϑ), k(x, ·;ϑ) and k(x,x;ϑ) refer to pairwise evaluations, resulting in a 1 × n row
vector, a n× 1 column vector and a n× n matrix respectively.

Pathwise Conditioning Wilson et al. [31, 32] express a GP posterior sample as a random function
(f |y)(·) = f(·) + k(·,x;ϑ)(k(x,x;ϑ) + σ2I)−1(y − (f(x) + ϵ)), (3)
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where ϵ ∼ N (0, σ2I) is a random vector, f ∼ GP(0, k) is a zero-mean prior function sample, and
f(x) is its evaluation at the training data. Following previous work [31, 32, 15, 16], we efficiently
approximate the prior function sample using random features [21, 25] (see Appendix B for details).
Using pathwise conditioning, a single linear solve suffices to evaluate a posterior function sample
at arbitrary locations without further linear solves. In Section 3, we amortise the cost of this single
linear solve during marginal likelihood optimisation to obtain posterior samples efficiently.

The Marginal Likelihood and Its Gradient With hyperparameters θ = {ϑ, σ} and regularised
kernel matrix Hθ = k(x,x;ϑ) + σ2I ∈ Rn×n, the marginal likelihood L as a function of θ and its
gradient∇θkL with respect to θk can be expressed as

L(θ) = −1

2
yTH−1

θ y − 1

2
log detHθ −

n

2
log 2π, (4)

∇θkL(θ) =
1

2
(H−1

θ y)T
∂Hθ

∂θk
H−1

θ y − 1

2
tr

(
H−1

θ

∂Hθ

∂θk

)
, (5)

where the partial derivative of Hθ with respect to θk is a n× n matrix. We assume n is too large to
compute the inverse or log-determinant of Hθ and iterative methods are used instead.

2.1 Hierarchical View of Marginal Likelihood Optimisation for Iterative Gaussian Processes

Outer-Loop Optimiser
e.g. L-BFGS, Adam

Gradient Estimator
e.g. Hutchinson trace estimator

Linear System Solver
e.g. conjugate gradients

Figure 2: Marginal likelihood
optimisation for iterative GPs.

Marginal likelihood optimisation for iterative GPs consists of bi-
level optimisation, where the outer loop maximises the marginal
likelihood (4) using stochastic estimates of its gradient (5). Comput-
ing these gradient estimates requires the solution to systems of linear
equations. These solutions are obtained using an iterative solver in
the inner loop. Figure 2 illustrates this three-level hierarchy.

Outer-Loop Optimiser The outer-loop optimiser maximises the
marginal likelihood L (4) using its gradient (5). Common choices
are L-BFGS [3], when exact gradients are available, and Adam [14]
in the large-data setting, when stochastic approximation is required.
We consider the case where gradients are stochastic and use Adam.

Gradient Estimator The gradient (5) involves two computationally expensive components: linear
solves against the targets H−1

θ y and the trace term tr
(
H−1

θ ∂Hθ/∂θk
)
. An unbiased estimate of the

latter can be obtained using s probe vectors and Hutchinson’s trace estimator [13],

tr

(
H−1

θ

∂Hθ

∂θk

)
= Ez

[
zTH−1

θ

∂Hθ

∂θk
z

]
≈ 1

s

s∑
j=1

zT
j H

−1
θ

∂Hθ

∂θk
zj , (6)

where the probe vectors zj ∈ Rn satisfy ∀j : E[zjzT
j ] = I, and zT

j H
−1
θ is obtained using a linear

solve. We refer to this as the standard estimator and set s = 64, unless otherwise specified.

Linear System Solver Substituting the trace estimator (6) back into the gradient (5), we obtain an
unbiased gradient estimate in terms of the solution to a batch of systems of linear equations,

Hθ [vy,v1, . . . ,vs ] = [y, z1, . . . ,zs ] , (7)

which share the same coefficient matrix Hθ. Since Hθ is positive-definite, the solution v = H−1
θ b

to the system Hθ v = b can be obtained by finding the unique minimiser of the quadratic objective

v = argmin
u

1

2
uTHθ u− uTb, (8)

facilitating the use of iterative solvers. Most popular in the GP literature are conjugate gradients (CG)
[9, 30–32], alternating projections (AP) [23, 28, 33] and stochastic gradient descent (SGD) [15, 16].
We consider these in our study and provide detailed descriptions of them in Appendix B. Solvers are
often run until the relative residual norm ∥b−Hθu∥/∥b∥ reaches a certain tolerance τ [30, 18, 33].
We set τ = 0.01, following Maddox et al. [18]. The linear system solver in the inner loop dominates
the computational costs of marginal likelihood optimisation for iterative GPs, as shown in Figure 1.
Therefore, improving linear system solvers is the main focus of our work.
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Figure 3: On the POL and ELEVATORS datasets, the pathwise estimator results in a lower RKHS dis-
tance (12) between solver initialisation and solution, as predicted by theory (14,15) (left). This results
in fewer AP iterations until reaching the tolerance (left middle). When using the standard estimator,
the initial distance follows the top eigenvalue of H−1

θ (right middle), which is strongly related to the
noise precision (right). The latter tends to increase during marginal likelihood optimisation when
fitting the data. The effects are greater on POL due to the higher noise precision.

3 Pathwise Estimation of Marginal Likelihood Gradients

We introduce the pathwise estimator, an alternative to the standard estimator (6) which reduces the
required number of linear system solver iterations until convergence (see Figure 3). Additionally,
the estimator simultaneously provides us with posterior function samples via pathwise conditioning,
hence the name pathwise estimator. This facilitates predictions without further linear solves.

We modify the standard estimator (6) to absorb H−1
θ into the distribution of the probe vectors [2],

tr

(
H−1

θ

∂Hθ

∂θk

)
= tr

(
H

− 1
2

θ

∂Hθ

∂θk
H

− 1
2

θ

)
= Eẑ

[
ẑT ∂Hθ

∂θk
ẑ

]
≈ 1

s

s∑
j=1

ẑT
j

∂Hθ

∂θk
ẑj , (9)

where ∀j : E[ẑj ẑT
j ] = H−1

θ . Probe vectors ẑ with the desired second moment can be obtained as

f(x) ∼ N (0, k(x,x;ϑ))

ϵ ∼ N (0, σ2I)
=⇒ ξ ∼ N (0,Hθ) =⇒ ẑ = H−1

θ ξ ∼ N (0,H−1
θ ), (10)

where ξ = f(x) + ϵ. Akin to the standard estimator in Section 2.1, we obtain vy and ẑj by solving
Hθ [vy, ẑ1, . . . , ẑs ] = [y, ξ1, . . . , ξs ] . (11)

Initial Distance to the Linear System Solution Under realistic conditions, the pathwise estimator
moves the solution of the linear system closer to the origin. To show this, we consider the generic
linear system Hθu = b and measure the RKHS distance between the initialisation uinit and the
solution u = H−1

θ b as ∥uinit − u∥2Hθ
. With uinit = 0, which is standard [9, 30, 1, 15, 33, 16],

∥uinit − u∥2Hθ
= ∥u∥2Hθ

= uTHθu = bTH−1
θ HθH

−1
θ b = bTH−1

θ b. (12)
Since b is a random vector (z in (7) and ξ in (11)), we analyse the expected squared distance

E
[
bTH−1

θ b
]
= E

[
tr
(
bTH−1

θ b
)]

= E
[
tr
(
bbTH−1

θ

)]
= tr

(
E
[
bbT

]
H−1

θ

)
. (13)

For the standard estimator (6), we substitute b := z with E
[
zzT

]
= I, yielding

E
[
∥uinit − u∥2Hθ

]
= tr

(
E
[
zzT

]
H−1

θ

)
= tr

(
IH−1

θ

)
= tr

(
H−1

θ

)
. (14)

For the pathwise estimator (9), we substitute b := ξ with E
[
ξξT

]
= Hθ, yielding

E
[
∥uinit − u∥2Hθ

]
= tr

(
E
[
ξξT

]
H−1

θ

)
= tr

(
Hθ H

−1
θ

)
= tr (I) = n. (15)

The initial distance for the standard estimator is equal to the trace of H−1
θ , whereas it is constant for

the pathwise estimator. Figure 3 illustrates that this trace follows the top eigenvalue, which roughly
matches the noise precision. As the model fits the data better, the noise precision increases, increasing
the initial distance for the standard but not for the pathwise estimator. In practice, the latter leads to
faster solver convergence, especially for problems with high noise precision (see Table 1).
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Figure 4: On the POL dataset, increasing the number of posterior samples improves the performance
of pathwise conditioning until diminishing returns start to manifest with more than 64 samples (left).
Furthermore, with 4× as many probe vectors, the total cumulative runtime only increases by around
10% because the computational costs are dominated by shared kernel function evaluations (right).

Amortising Linear Solves for Optimisation and Prediction The name of the pathwise estimator
comes from the fact that solving the linear systems (11) provides us with all of the terms we need to
construct a set of s posterior samples via pathwise conditioning (3). Each of these is given by

(f |y)(·) = f(·) + k(·,x;ϑ)H−1
θ (y − ξ) = f(·) + k(·,x;ϑ)(vy − ẑ). (16)

We can use these to make predictions without requiring any additional linear system solves.

How Many Probe Vectors and Posterior Samples Do We Need? In the literature [9, 18, 2, 33],
it is common to use s ≤ 16 probe vectors for marginal likelihood optimisation. However, a larger
number of posterior samples, around s = 64, is necessary to make accurate predictions [2, 15, 16]
(see Figure 4). Thus, to amortise linear system solves across marginal likelihood optimisation and
prediction, we must use the same number of probes for both. Interestingly, as shown in Figure 4, using
64 instead of 16 probe vectors only increases the runtime by around 10% because the computational
costs are dominated by kernel function evaluations, which are shared among probe vectors.

Estimator Variance The standard estimator with Gaussian probe vectors and the pathwise estimator
have the same variance if Hθ and ∂Hθ/∂θk commute with each other (see Appendix A.1). There
has been work developing trace estimators with lower variance [19, 8], however, we did not pursue
these as we find variance to be sufficiently low, even when relying on only s = 16 probe vectors.

Approximate Prior Function Samples Using Random Features In practice, the pathwise estima-
tor requires samples from the prior f ∼ GP(0, k), which are intractable for large datasets without the
use of random features [31, 32]. In Figure 5, we show that, despite using random features, most of the
time the marginal likelihood optimisation trajectory of the pathwise estimator matches the trajectory
of exact optimisation using Cholesky factorisation and backpropagation. Further, we confirm that
deviations of the pathwise estimator are indeed due to the use of random features by demonstrating
that we can remove these deviations using exact samples from the prior instead.
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pathwise estimator deviates due to the use of random features to approximate prior function samples.
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optimisation on the POL and ELEVATORS datasets. Warm starting with the previous solution reduces
the required number of iterations to reach the tolerance without sacrificing predictive performance.

4 Warm Starting Linear System Solvers

Linear system solvers are typically initialised at zero [9, 30, 1, 15, 33, 16].1 However, because the
outer-loop marginal likelihood optimisation does not change the hyperparameters much between
consecutive steps, we expect that the solution to inner-loop linear systems also does not change much
between consecutive steps (see Appendix A.2 for a more formal argument). Therefore, we suggest to
warm start linear system solvers by initialising them at the solution of the previous [17]. This requires
that the targets of the linear systems, zj or ξj , are not resampled throughout optimisation, which can
introduce bias [5]. However, we find that warm starting consistently provides gains across all linear
system solvers for both the standard and the pathwise estimator, and that the bias is negligible.

Visualising Warm Starts Figure 6 visualises the two top eigendirections of the inner-loop quadratic
objective on POL. Throughout training, warm starting solvers at the solution to the previous linear
system results in a substantially smaller initial distance to the current solution.

Effects on Linear System Solver Convergence Reducing the initial RKHS distance to the solution
reduces the required number of solver iterations until the tolerance τ = 0.01 is reached for all solvers
and all five datasets, as shown in Figure 7, Table 1 and Appendix C. However, the effectiveness
depends on the solver type. CG is more sensitive to the direction of descent rather than the distance
to the solution because it uses line searches to take big steps. It only obtains a 2.1× speed-up on
average. AP and SGD benefit more, with average speed-ups of 18.9× and 5.1×, respectively.

1Notable exceptions are Artemev et al. [3], who warm start vy in a sparse lower bound on L, and Antorán et
al. [2], who warm start a stochastic gradient descent solver for finite-dimensional linear models.
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Table 1: Test log-likelihoods, total training times, and average speed-up among datasets for CG, AP,
and SGD after 100 outer-loop marginal likelihood steps with learning rate of 0.1. We consider five
datasets with n < 50k, which allows us to solve to tolerance, and report the mean over 10 data splits.

path warm Test Log-Likelihood Total Time (min) Average
wise start POL ELEV BIKE PROT KEGG POL ELEV BIKE PROT KEGG Speed-Up

C
G

1.27 -0.39 2.15 -0.59 1.08 4.83 1.58 5.08 29.9 28.0 —
✓ 1.27 -0.39 2.07 -0.62 1.08 3.96 1.49 4.41 20.0 26.4 1.2 ×

✓ 1.27 -0.39 2.15 -0.59 1.08 2.28 1.03 2.74 11.5 12.8 2.1 ×
✓ ✓ 1.27 -0.39 2.06 -0.62 1.08 2.47 1.00 3.07 13.7 13.0 1.9 ×

A
P

1.27 -0.39 2.15 -0.59 — 493. 77.8 302. 131. > 24 h —
✓ 1.27 -0.39 2.07 -0.62 1.08 27.9 1.67 19.9 16.4 211. > 5.4 ×

✓ 1.27 -0.39 2.15 -0.59 1.08 44.0 36.4 35.1 55.8 491. > 18.9 ×
✓ ✓ 1.27 -0.39 2.06 -0.62 1.08 3.90 1.21 5.40 12.3 14.0 > 72.1 ×

SG
D

1.27 -0.39 2.15 -0.59 1.08 139. 5.54 412. 75.2 620. —
✓ 1.27 -0.39 2.07 -0.63 1.08 73.6 4.58 156. 24.0 412. 2.1 ×

✓ 1.27 -0.39 2.15 -0.59 1.08 26.5 1.22 74.3 11.2 168. 5.1 ×
✓ ✓ 1.27 -0.39 2.06 -0.62 1.07 17.9 1.14 64.2 11.9 58.7 7.2 ×
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Figure 8: Across all marginal likelihood steps and datasets, warm starting results in hyperparameter
trajectories which barely differ from exact optimisation, as shown by the histogram (left). On the
same selected length scales from Figure 5, warm starting matches exact optimisation (right).

Does Warm Starting Introduce Bias? A potential concern when warm starting is that the latter
introduces bias into the optimisation trajectory because the linear system targets are not resampled
throughout optimisation. Although individual gradient estimates are unbiased, estimates are correlated
along the optimisation trajectory. In fact, after fixing the targets, gradients become deterministic and
it is unclear whether the induced optimum converges to the true optimum.2 Fortunately, one can show
that the marginal likelihood at the optimum implied by these gradients will converge in probability to
the marginal likelihood of the true optimum.
Theorem 1. (informal) Under reasonable assumptions, the marginal likelihood L of the hyperparam-
eters obtained by maximising the objective implied by the warm-started gradients θ̃∗ will converge in
probability to the marginal likelihood of a true maximum θ∗: L(θ̃∗)

p→ L(θ∗) as s→∞.

See Appendices A.3 and A.4 for details. In practice, a small number of samples seems to be sufficient.
In Appendix C, we illustrate that optimisation trajectories of warm-started solvers are almost identical
to trajectories obtained by non-warm-started solvers across solver types and datasets.

Warm Starting the Pathwise Estimator One advantage of the pathwise estimator from Section 3 is
the reduced RKHS distance between the origin and the solution. When warm starting, the inner-loop
solver no longer initialises at the origin, and thus, one may be concerned that we lose this advantage.
However, empirically, this is not the case. As shown in Table 1, combining both techniques further
accelerates AP and SGD, reaching 72.1× and 7.2× average speed-ups across our datasets relative to
the standard estimator without warm starting. Furthermore, since we run solvers until reaching the
tolerance, the predictive performance is almost identical among all methods and solvers.

2The concern might be likened to how pointwise convergence of integrable functions does not always imply
convergence of the integrals of those functions, potentially biasing the optima of the limit of the integrals.
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Figure 9: Relative residual norms of the probe vector linear systems at each marginal likelihood
step on the POL dataset when solving until the tolerance or a maximum number of solver epochs
is reached. Increasing the compute budget generally reduces the residual norm. Given the same
compute budget, the pathwise estimator reaches lower residual norms than the standard estimator.
Adding warm starts further reduces the residual norm for both estimators. However, the final test
log-likelihood does not always match the residual norm. Surprisingly, good predictive performance
can be obtained even if the residual norm is much higher than the tolerance τ = 0.01.

5 Solving Linear Systems on a Limited Compute Budget

Our experiments so far have only considered relatively small datasets with n< 50k, such that inner-
loop solvers can reach the tolerance in a reasonable amount of time. However, on large datasets,
where linear system conditioning may be poor, reaching a low relative residual norm can become
computationally infeasible. Instead, linear system solvers are commonly given a limited compute
budget. Gardner et al. [9] limit the number of CG iterations to 20, Wu et al. [33] use 11 epochs of
AP, Antorán et al. [2] run SGD for 50k iterations, and Lin et al. [15, 16] run SGD for 100k iterations.
While effective for managing computational costs, it is not well understood how early stopping before
reaching the tolerance affects different solvers and marginal likelihood optimisation. Furthermore, it
is unclear whether a certain tolerance is required to obtain good downstream predictive performance.

The Effects of Early Stopping We repeat the experiments from Table 1 but introduce limited
compute budgets: 10, 20, 30, 40 or 50 solver epochs, where one epoch refers to computing each value
in Hθ once (see Appendix B for details).3 In this setting, solvers terminate upon either reaching the
relative residual norm tolerance or when the compute budget is exhausted, whichever occurs first.

In Figure 9, we illustrate the relative residual norms reached for each compute budget on the POL
dataset (see Figures 14 to 17 in Appendix C for other datasets). In general, the residual norms increase
as Hθ becomes more ill-conditioned during optimisation, and as the compute budget is decreased.
The increase in residual norms is much larger for CG than the other solvers, which is consistent with
previous reports of CG not being amenable to early stopping [15]. AP seems to behave slightly better
than SGD under a limited compute budget. Both the pathwise estimator and warm starting combine
well with early stopping, reaching lower residual norms when using a budget of 10 solver epochs
than the standard estimator without warm starting using a budget of 50 solver epochs.

In terms of predictive performance, we see that CG with the standard estimator and no warm starting
suffers the most from early stopping. Changing to the pathwise estimator and warm starting recovers
good performance most of the time. SGD also shows some sensitivity to early stopping, but there
seems to be a stronger correlation between invested compute and final performance. Surprisingly, AP
generally achieves good predictive performance even on the smallest compute budget, despite not
reaching the tolerance of τ = 0.01. Overall, the relationship between reaching a low residual norm
and obtaining good predictive performance seems to be weak. This is an unexpected yet interesting
observation, and future research should investigate the suitability of the relative residual norm as a
metric to determine solver convergence.

3Because kernel function evaluations dominate the computational costs of linear system solvers, this results
in similar time budgets across methods while preventing compute wastage due to time-based stopping.
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Figure 10: Relative residual norms and test log-likelihoods during marginal likelihood optimisation
on large datasets using the pathwise estimator. Warm starting allows solver progress to accumulate
over multiple marginal likelihood steps, leading to decreasing residual norms. Without warm starting,
residual norms tend to remain similar or increase during optimisation. Despite reaching significantly
lower residual norms, the predictive performance does not always improve, akin to Figure 9.

Demonstration on Large Datasets After analysing early stopping on small datasets, we now
turn to larger UCI datasets 391k<n< 1.8M, where solving until reaching the tolerance becomes
computationally infeasable. Thus, we introduce a compute budget of 10 solver epochs per marginal
likelihood step. Hyperparameters are initialised with the heuristic of Lin et al. [15] and optimised
using a learning rate of 0.03 for 30 Adam steps (15 for HOUSEELECTRIC due to high computational
costs). We use the pathwise estimator because it accelerates solver convergence (see Section 3), and it
enables efficient tracking of predictive performance during optimisation. See Appendix B for details.

Figure 10 visualises the evolution of the relative residual norm of the probe vector linear systems and
the predictive test log-likelihood during marginal likelihood optimisation. A full set of results is in
Appendix C. For all solvers, warm starting leads to lower residual norms throughout outer-loop steps.
This suggests a synergistic behaviour between early stopping and warm starting: the latter allows
solver progress to accumulate across marginal likelihood steps. This can be interpreted as amortising
the inner-loop linear system solve over multiple outer-loop steps. Despite the lower residual norm,
CG is brittle under early stopping, obtaining significantly worse performance than AP and SGD on
BUZZ and HOUSEELECTRIC. AP and SGD seem to be more robust to early stopping. However, lower
residual norms do not always translate to improved predictive performance. Furthermore, we find
that SGD can suffer due to the optimal learning rate changing as the hyperparameters change.

6 Conclusion

Building upon a hierarchical view of marginal likelihood optimisation, this paper consolidates several
iterative GP techniques into a common framework, analysing them and showing their applicability
across different linear system solvers. Overall, these provide speed-ups of up to 72× when solving
until a specified tolerance is reached, and decrease the average relative residual norm by up to 7×
under a limited compute budget. Additionally, our analyses lead to the following findings: Firstly, the
pathwise gradient estimater accelerates linear system solvers by moving solutions closer to the origin,
and also provides amortised predictions as an added benefit by turning probe vectors into posterior
samples via pathwise conditioning. Secondly, warm starting solvers at previous solutions during
marginal likelihood optimisation reduces the number of solver iterations to tolerance at the cost of
introducing negligible bias into the optimisation trajectory. Furthermore, warm starting combines
well with pathwise gradient estimation. Finally, stopping linear system solvers after exhausting a
limited compute budget generally increases the relative residual norm. However, when paired with
warm starting, solver progress accumulates, amortising inner-loop linear system solves over multiple
outer-loop steps. Nonetheless, we observe that low relative residual norms are not always necessary
to obtain good predictive performance, which presents an interesting avenue for future research.
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A Mathematical Derivations

In this appendix, we provide mathematical derivations for claims in the main paper.

A.1 Variance of Standard and Pathwise Gradient Estimator

To compare the variances of the standard estimator (6) and the pathwise estimator (9), we calculate

Var

(
zTH−1

θ

∂Hθ

∂θk
z

)
with z ∼ N (0, I) and Var

(
ẑT ∂Hθ

∂θk
ẑ

)
with ẑ ∼ N (0,H−1

θ ). (17)

The variance of the standard estimator is given by

Var

(
zTH−1

θ

∂Hθ

∂θk
z

)
= tr

(
H−1

θ

∂Hθ

∂θk

(
H−1

θ

∂Hθ

∂θk
+

∂Hθ

∂θk
H−1

θ

))
, (18)

= tr

(
H−1

θ

∂Hθ

∂θk
H−1

θ

∂Hθ

∂θk

)
+ tr

(
H−1

θ

∂Hθ

∂θk

∂Hθ

∂θk
H−1

θ

)
. (19)

The variance of the pathwise estimator is given by

Var

(
ẑT ∂Hθ

∂θk
ẑ

)
= 2 tr

(
∂Hθ

∂θk
H−1

θ

∂Hθ

∂θk
H−1

θ

)
, (20)

= tr

(
H−1

θ

∂Hθ

∂θk
H−1

θ

∂Hθ

∂θk

)
+ tr

(
H−1

θ

∂Hθ

∂θk
H−1

θ

∂Hθ

∂θk

)
. (21)

Therefore, the variances of both estimators share the first trace term and only differ in the second
trace term. Hence, their variances will be identical if

tr

(
H−1

θ

∂Hθ

∂θk

∂Hθ

∂θk
H−1

θ

)
!
= tr

(
H−1

θ

∂Hθ

∂θk
H−1

θ

∂Hθ

∂θk

)
, (22)

which is the case if H−1
θ and ∂Hθ/∂θk commute with each other.

For example, consider the derivative with respect to the noise scale σ,
∂Hθ

∂σ
=

∂

∂σ

(
k(x,x;ϑ) + σ2I

)
= 2σI. (23)

In this case, H−1
θ and ∂Hθ/∂σ commute with each other, such that both estimators have the same

variance. In general, a sufficient condition for matrix multiplication to be commutative is simultaneous
diagonalisability of two matrices.

A.2 Taylor Approximation View of Warm Start

At iterations t and t + 1 of the outer-loop marginal likelihood optimiser, associated with θ(t) and
θ(t+1), the linear system solver must solve two batches of linear systems, namely

H
(t)
θ

[
v(t)
y ,v

(t)
1 , . . . ,v(t)

s

]
=
[
y, z

(t)
1 , . . . ,z(t)

s

]
and (24)

H
(t+1)
θ

[
v(t+1)
y ,v

(t+1)
1 , . . . ,v(t+1)

s

]
=
[
y, z

(t+1)
1 , . . . ,z(t+1)

s

]
, (25)

where H
(t)
θ and H

(t+1)
θ are related through the change from θ(t) to θ(t+1) and v

(t)
y and v

(t+1)
y are

further related through sharing the same right-hand side y in the linear system. In such a setting,
where the coefficient matrix only changes slightly and the right-hand side remains fixed, we can
approximate v(t+1) using a first-order Taylor expansion of H(t+1)

θ ,(
H

(t+1)
θ

)−1

≈
(
H

(t)
θ

)−1

−
(
H

(t)
θ

)−1 (
H

(t+1)
θ −H

(t)
θ

)(
H

(t)
θ

)−1

, (26)

v(t+1) ≈ v(t) −
(
H

(t)
θ

)−1 (
H

(t+1)
θ −H

(t)
θ

)
v(t). (27)

If ∆ = H
(t+1)
θ − H

(t)
θ is small then v(t) will be close to v(t+1), such that we can reuse v(t) to

initialise the linear system solver when solving for v(t+1). To satisfy the condition of fixed right-hand
sides, we must set z(t)

j = zj at the cost of introducing some bias throughout optimisation, which
turns out to be negligible in practice (see Section 4 and Appendices A.3 and A.4 for details).
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A.3 Convergence of Warm Starting Marginal Likelihood Optimisation

Recall the gradient of the marginal likelihood objective:

∂L(θ)
∂θk

=
1

2
(H−1

θ y)T
∂Hθ

∂θk
H−1

θ y − 1

2
tr

(
H−1

θ

∂Hθ

∂θk

)
k ∈ {1, . . . , dθ},

where Hθ ∈ Rn×n is a positive semi-definite symmetric matrix, y ∈ Rn is a real vector, n is the
number of “data” examples, and dθ is the number of hyperparameters. Also, recall the the warm start
estimator g̃k(θ) to the gradient ∂L(θ)/∂θk:

g̃k(θ) =
1

s

s∑
j=1

zT
j H

−1
θ

∂Hθ

∂θk
zj ,

where the probe vectors zj are random variables with identity second moments: E[zjz⊺
j ] = I , and s

is the number of probe vectors in the trace estimator.

Notation We will write Sn−1 def
= {x ∈ Rn : ∥x∥2 = 1} for a sphere in Rn. For a real matrix

A ∈ Rm×n, we will denote the operator (spectral) norm supx∈Sn−1 supy∈Sm−1 y⊺Ax with ∥A∥op.

Definition 2 (Sub-gaussian norm). The sub-gaussian norm of a sub-gaussian random variable X is
defined as:

∥X∥ψ2
= inf{t > 0 : E

[
X2/t2

]
≤ 2}

Definition 3 (Sub-exponential norm). The sub-exponential norm of a sub-exponential random
variable X is defined as:

∥X∥ψ2
= inf{t > 0 : E [|X|/t] ≤ 2}

We will denote the optimisation domain for the hyperparameters as Θ, where we assume Θ ⊆ Rdθ .

Theorem 4. Assume that the probe vectors (z1, . . . ,zs) are zero mean, coordinate-wise independent,
and that elements of zj are sub-gaussian with norm ∥zji∥ψ2

= σ∀i ∈ {1, . . . , n}, j ∈ {1, . . . , s}.
Assume that the sum of the singular values of H−1

θ
∂Hθ

∂θk
is, for all k ∈ {1, . . . , dθ}, upper-bounded

on the domain of θ by λmax. Then, for all δ > 0:

P

[∥∥∥∥g̃(θ)− ∂L
∂θ

(θ)

∥∥∥∥
∞

< max

(√
n

s
C1 log

(
9dθ
2δ

)
,
n

s
C1 log

(
9dθ
2δ

))
C2σλ

max

]
> 1− δ,

The crux of the proof of Theorem 4 comes from bounding the spectral norm of the difference((∑s
j=1 zjz

T
j

)
− I
)

. To do so, it is useful to introduce the following definitions and lemmas.

Lemma 5 (Computing the operator norm on a net [29, Exercise 4.4.3]). Let A be an n×n matrix
and ε ∈ [0, 1). Then, for any ε-net Σε of the unit sphere Sn−1, we have:

sup
x∈Σε

x⊺Ax ≤ ∥A∥op ≤
1

1− 2ε
sup
x∈Σε

x⊺Ax.

Lemma 6 (Size of ε-net on Sn−1 [29, Corollary 4.2.13]). There exists an ε-net on Sn−1 with
cardinality at most

(
2
ε + 1

)n
.

Lemma 7. Let M = 1
s

∑s
j=1 zjz

⊺
j − I be an n× n random matrix, where zji are independent and

identically distributed sub-gaussian random variables with sub-gaussian norm ∥zij∥ψ2
= σ, and

x ∈ Sn−1 any unit vector in Rn. Then:

P[x⊺Mx ≥ β] ≤ 2e
−C1 min

(
β2

C2
2σ2 ,

β
C2σ

)
s
,

where C1, C2 are absolute constants.
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Proof. We can rewrite:

x⊺Mx = x⊺ 1

s

s∑
j=1

(
zjz

⊺
j − I

)
x =

1

s

s∑
j=1

(x⊺zj)
2 − x⊺x =

1

s

s∑
j=1

(
n∑
i=1

xizij

)2

− 1.

Since
∑n
i=1 xizij is a weighted sum of independent sub-gaussian random variables, it is also sub-

gaussian with squared norm:∥∥∥∥∥
n∑
i=1

xizij

∥∥∥∥∥
2

ψ2

≤ C

n∑
i=1

∥xizij∥2ψ2
= C

n∑
i=1

x2
i ∥zij∥2ψ2

= Cσ2,

where C is an absolute constant [29, Proposition 2.6.1]. Hence, since (
∑n
i=1 xizij)

2 is the square of
a sub-gaussian random variable, it must be sub-exponential with the sub-exponential norm (see [29,
Lemma 2.7.6]): ∥∥∥∥∥∥

(
n∑
i=1

xizij

)2
∥∥∥∥∥∥
ψ1

=

∥∥∥∥∥
n∑
i=1

xizij

∥∥∥∥∥
2

ψ2

≤ Cσ2,

Lastly, since (
∑n
i=1 xizij)

2 is sub-exponential, so will the mean-centered counterpart
(
∑n
i=1 xizij)

2 −E[(
∑n
i=1 xizij)

2
] = (

∑n
i=1 xizij)

2 − 1 [29, Exercise 2.7.10] with sub-exponential
norm: ∥∥∥∥∥∥

(
n∑
i=1

xizij

)2

− 1

∥∥∥∥∥∥
ψ1

≤ C2σ
2,

where C2 is another absolute constant. Hence, since (
∑n
i=1 xizij)

2 − 1 for j ∈ {1, . . . , s} are
sub-exponential, zero-mean and independent, we can apply Bernstein’s inequality to bound the tail
probability of x⊺Mx:

P[x⊺Mx > β] = P

1
s

s∑
j=1

( n∑
i=1

xizij

)2

− 1

 > β

 ≤ 2e
−C1 min

(
β2

C2
2σ2 ,

β
C2σ

)
s

holds for any β ≥ 0, where C1, C2 are absolute constants.

Lemma 8. Let M = 1
s

∑s
j=1 zjz

⊺
j − I be an n× n random matrix, where zji are independent and

identically distributed sub-Gaussian random variables with sub-gaussian norm ∥zij∥ψ2 = σ. Then:

P

[
∥M∥op ≥ max

(√
n

s
C1 log

(
9

2δ

)
,
n

s
C1 log

(
9

2δ

))
C4σ

]
≤ δ ∀δ > 0,

where C1, C4 are absolute constants.

Proof. Pick an ε-net Σε on Sn−1 of size at most
(
2
ε + 1

)n
(Lemma 6). Then, we can bound the tail

probability of the operator norm as:

P
[
∥M∥op ≥ β

]
≤ P

[
sup
x∈Σε

x⊺Mx ≥ (1− 2ε)β

]
△ By Lemma 5

≤
∑
x∈Σε

P [x⊺Mx ≥ (1− 2ε)β] △ Union bound

≤ ∥Σε∥2e
−C1 min

(
β2(1−2ε)2

C2
2σ2 ,

β(1−2ε)
C2σ

)
s

△ By Lemma 7

≤
(
2

ε
+ 1

)n
2e

−C1 min

(
β2(1−2ε)2

C2
2σ2 ,

β(1−2ε)
C2σ

)
s

Setting ε = 1
4 gives:

P
[
∥M∥op ≥ β

]
≤ 9n2e

−C1 min

(
β2

C2
4σ2 ,

β
C4σ

)
s
,
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where C4 is an absolute constant.

Lastly, to get the bound into the form P
[
∥M∥op ≥ f(δ, n, s)

]
≤ δ, we can note that:

9n2e
−C1 min

(
β2

C2
4σ2 ,

β
C4σ

)
s
≤ δ ⇔ min

(
β2

C2
4σ

2
,

β

C4σ

)
≥ n

s
C1 log

(
9

2δ

)
⇔ β

C4σ
≥ max

(√
n

s
C1 log

(
9

2δ

)
,
n

s
C1 log

(
9

2δ

))
,

and so by setting β = max
(√

n
sC1 log

(
9
2δ

)
, nsC1 log

(
9
2δ

))
C4σ we get the desired result:

P

[
∥M∥op ≥ max

(√
n

s
C1 log

(
9

2δ

)
,
n

s
C1 log

(
9

2δ

))
C4σ

]
≤ δ

Proof of Theorem 4. Let
∑n
i=1 qiλip

T
i be a singular value decomposition (SVD) of A def

= H−1
θ

∂Hθ

∂θk
,

where {qi}ni=1 and {pi}ni=1 are two sets of orthonormal vectors. First, note that we can rewrite:

g̃k(θ)−
∂L(θ)
∂θk

=

s∑
j=1

zT
j Azj − Ez

[
zTAz

]
=

s∑
j=1

zT
j

(
n∑
i=1

λiqip
T
i

)
zj − Ez

[
zT

(
n∑
i=1

λiqip
T
i

)
z

]
(28)

=

n∑
i=1

λi

s∑
j=1

zT
j qip

T
i zj −

n∑
i=1

λi Ez

[
zTqip

T
i z
]

=

n∑
i=1

λi

 s∑
j=1

zT
j qip

T
i zj − Ez

[
zTqip

T
i z
]

=

n∑
i=1

λi

qT
i

 s∑
j=1

zjz
T
j

pi − qT
i Ez

[
zzT

]︸ ︷︷ ︸
I

pi


=

n∑
i=1

λiq
T
i

 s∑
j=1

zjz
T
j

− I


︸ ︷︷ ︸

M

pi. (29)

Therefore, we can bound the norm of the difference as

|g̃k(θ)− gk(θ)| ≤
n∑
i=1

|λi|
∣∣qT
i Mpi

∣∣ (30)

≤
n∑
i=1

|λi|∥M∥op = λmax∥M∥op. (31)

By Lemma 8, with probability at least 1− δ we can bound the operator norm of M as:

|g̃k(θ)− gk(θ)| ≤ λmax∥M∥op < max

(√
n

s
C1 log

(
9

2δ

)
,
n

s
C1 log

(
9

2δ

))
C2σλ

max,

with C1, C2 absolute constants.
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We can apply a union bound over all k ∈ {1, . . . , dθ} to bound the probability of the ℓ∞-norm of the
gradient deviating by a certain amount:

P

[∥∥∥∥g̃(θ)− ∂L
∂θ

(θ)

∥∥∥∥
∞

< max

(√
n

s
C1 log

(
9

2δ

)
,
n

s
C1 log

(
9

2δ

))
C2σλ

max

]
> 1− dθδ,

or:

P

[∥∥∥∥g̃(θ)− ∂L
∂θ

(θ)

∥∥∥∥
∞

< max

(√
n

s
C1 log

(
9dθ
2δ

)
,
n

s
C1 log

(
9dθ
2δ

))
C2σλ

max

]
> 1− δ.

Now, if g̃(θ) is a conservative field, and so is implicitly a gradient of some (approximate) objective
L̃ : Θ → R, the above result allows us to bound the error on the solution found when optimising
using the approximate gradient g̃ instead of the actual gradient g = ∇L. However, in general, g̃(θ)
need not be strictly conservative. In practice, since g̃(θ) converges to a conservative field the more
samples we take, we may assume that it is close enough to being conservative for the purposes of
optimisation on hardware with finite numerical precision. Assuming that g̃(θ) is conservative allows
us to show the following bound on the optimum found when optimising using g̃(θ), which is a
restatement of Theorem 1:
Theorem 9. Let g̃ and L be defined as in Theorem 4. Assume g̃ : Θ → R is a conservative field.
Assume the optimisation domain Θ is convex, closed and bounded. Then, with probability at least
1− δ:

L(θ̃∗) ≥ L(θ∗)−max

(√
n

s
C1 log

(
9dθ
2δ

)
,
n

s
C1 log

(
9dθ
2δ

))
C2σλ

max∆Θ
√
dθ,

where ∆Θ
def
= supθ,θ′∈Θ ∥θ′ − θ∥ is the maximum distance between two elements in Θ.

Proof. Let L̃ : Θ→ R be an approximate objective implied by the gradient field g̃, namely a scalar
field such that ∇L̃ = g̃. Such a scalar field exists if g̃ is a conservative field, and is unique up to a
constant (which does not affect the optimum).

For any two points θ,θ′ ∈ Θ, with ∆θ
def
= θ′ − θ, we have that∣∣∣(L(θ′)− L(θ)) +

(
L̃(θ′)− L̃(θ)

)∣∣∣
△ Replace difference in values with integral along path from θ to θ′

=

∣∣∣∣∫ 1

0

∂

∂t
L (θ +∆θt) dt−

∫ 1

0

∂

∂t
L̃ (θ +∆θt) dt

∣∣∣∣
=

∣∣∣∣∫ 1

0

∆θ · ∇L (θ +∆θt) dt−
∫ 1

0

∆θ · ∇L̃ (θ +∆θt) dt

∣∣∣∣
=

∣∣∣∣∫ 1

0

∆θ ·
(
∇L (θ +∆θt)−∇L̃ (θ +∆θt)

)
dt

∣∣∣∣
≤
∫ 1

0

∣∣∣∆θ ·
(
∇L (θ +∆θt)−∇L̃ (θ +∆θt)

)∣∣∣ dt
=

∫ 1

0

∥∆θ∥
∥∥∥(∇L (θ +∆θt)−∇L̃ (θ +∆θt)

)∥∥∥ dt
≤
∫ 1

0

∥∆θ∥
∥∥∥(∇L (θ +∆θt)−∇L̃ (θ +∆θt)

)∥∥∥
∞

√
dθdt

△ Bound ℓ2-norm by the ℓ∞-norm

≤
∫ 1

0

∥∆θ∥max

(√
n

s
C1 log

(
9dθ
2δ

)
,
n

s
C1 log

(
9dθ
2δ

))
C2σλ

max
√
dθdt
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△ Difference of gradients bounded with probability at least (1− δ) by Theorem 4

≤ max

(√
n

s
C1 log

(
9dθ
2δ

)
,
n

s
C1 log

(
9dθ
2δ

))
C2σλ

max∆Θ
√

dθ.

The above inequality holds with probability at least (1− δ). Hence,

L(θ∗)− L(θ̃∗) ≤ L(θ∗)− L(θ̃∗)−

Negative because θ̃∗ is
a maximum of L̃︷ ︸︸ ︷(
L̃(θ∗)− L̃(θ̃∗)

)
,

≤
∣∣∣L(θ∗)− L(θ̃∗)−

(
L̃(θ∗)− L̃(θ̃∗)

)∣∣∣
≤ max

(√
n

s
C1 log

(
9dθ
2δ

)
,
n

s
C1 log

(
9dθ
2δ

))
C2σλ

max∆Θ
√
dθ.

Remark 10. Theorem 9 above implies that the objective of the optimum θ̃∗ obtained with the
approximate gradients converges to the objective of the true optimum θ∗ in probability:

∀α > 0 : P
[∣∣∣L(θ̃∗)− L(θ∗)

∣∣∣ > α
]
→ 0 as s→∞ (32)

which trivially follows from the implication of Theorem 9 that for every α, δ > 0, we can find an
s ∈ N such that L(θ̃∗) ≥ L(θ∗)− α with probability at least 1− δ.
Remark 11 (Convexity of Θ). We also note that the convexity of the hyperparameter domain Θ is a
fairly mild assumption which is satisfied in the majority of practical settings. For example, optimising
kernel length scales and noise scale on bounded intervals (10−10, 1010) falls within the assumptions,
but introducing a “hole” into the domain (e.g. introducing a constraint like ∥ϑ− 1∥ ≥ 0.5) would
break the assumption. In particular, this assumption is not a statement about the convexity of the
objective L— in the proof, we allow for the objective to be arbitrarily non-convex, and only assume
its differentiability.

A.4 Convergence of Warm Starting the Pathwise Estimator

The result in Appendix A.3 can be trivially extended for the pathwise estimator in (9) for any
pairwise independent probe vectors ẑj (with second moment H−1

θ ) that upon rescaling by H
1
2

θ will
be zero-mean with independent coordinates. This is true for probe vectors ẑj that are either i.i.d.

N (0,H−1
θ )-distributed or obtained by transforming Radamacher random variables by H

− 1
2

θ .

B Implementation and Experiment Details

In this appendix, we provide details about our implementation and experiments.

General Our implementation uses the JAX library [4]. All reported experiments were conducted on
internal NVIDIA A100-SXM4-80GB GPUs using double floating point precision. Some additional
experiments and ablations were performed on Google Cloud TPUs (v4). The total compute time,
including preliminary and failed experiments, and evaluation is around 4500 hours. The compute
time of individual runs is reported in Tables 2 to 10. The source code is available here.

Datasets Our experiments are conducted using the datasets and data splits from the popular UCI
regression benchmark [7]. They consist of various high-dimensional, multivariate regression tasks
and are available under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.
In particular, we used the POL (n = 13500, d = 26), ELEVATORS (n = 14940, d = 18), BIKE
(n = 15642, d = 17), PROTEIN (n = 41157, d = 9), KEGGDIRECTED (n = 43945, d = 20),
3DROAD (n = 391387, d = 3), SONG (n = 463811, d = 90), BUZZ (n = 524925, d = 77), and
HOUSEELECTRIC (n = 1844352, d = 11) datasets.
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Kernel Function and Random Features In all experiments, we used the Matérn-3/2 kernel, param-
eterised by a scalar signal scale and a length scale per input dimension. For pathwise conditioning
(3) and the pathwise gradient estimator (9), we used random Fourier features [21, 25] (1000 sin/cos
pairs, 2000 features in total) to draw approximate samples from the Gaussian process prior. For an
explanation about how to efficiently sample prior functions from a Gaussian process using random
features, we refer to existing literature [31, 32, 15]. However, we want to discuss some details in
terms of using this technique for the pathwise estimator from Section 3.

For pathwise gradient estimation, the linear system solver must solve linear systems of the form

Hθ [vy, ẑ1, . . . , ẑs ] = [y, ξ1, . . . , ξs ] , (33)

with ξ = f(x) + ε, where f(x) ∼ N (0, k(x,x;ϑ)) is a prior function f sample evaluated at the
training data x, and ϵ ∼ N (0, σ2I) is a Gaussian random vector. Both quantities are resampled in
each outer-loop marginal likelihood step if the pathwise estimator is used without warm starting.
With warm starting enabled, the right-hand sides of the linear system must not be resampled. In this
case, f and ϵ are sampled once and fixed afterwards. However, f depends on ϑ and ϵ depends on σ,
and both ϑ and σ are hyperparameters which change in each outer-loop step. Therefore, what does it
mean to keep f and ϵ fixed?

For ϵ, this amounts to the reparameterisation ϵ = σw, where w ∼ N (0, I) is sampled once and
fixed afterwards, such that ϵ becomes deterministic. For f , this refers to fixing the parameters of the
random features, for example the frequencies in the case of random Fourier features. Intuitively, this
corresponds to selecting a particular instance of a prior sample, although the distribution of the sample
can change due to changes in the hyperparameters. In each outer-loop step, the random features are
evaluated using the fixed random feature parameters and the updated kernel hyperparameters, and the
prior function sample is then evaluated at the training data using the updated random features. Both
of these operations are O(n) and efficient as long as the number of random features is reasonable.

Iterative Optimiser To optimise hyperparameters θ given an estimate of∇L, we used the Adam
optimiser [14] with default settings except for the learning rate. For all small datasets (n< 50k),
we initialised the hyperparameters at 1.0 and used a learning rate of 0.1 to perform 100 steps of
Adam. For all large datasets (n> 50k), we initialised the hyperparameters using a heuristic and
used a learning rate of 0.03 to perform 30 steps of Adam (15 for HOUSEELECTRIC due to high
computational costs). The heuristic to obtain initial hyperparameters for the large datasets consists of:

1. Select a centroid data example uniformly at random from the training data.
2. Find the 10k data examples with the smallest Euclidean distance to the centroid.
3. Obtain hyperparameters by maximising the exact marginal likelihood using this subset.
4. Repeat the procedure with 10 different centroids and average the hyperparameters.

This heuristic has previously been used by Lin et al. [15, 16] to avoid aliasing bias.

To enforce positive value constraints during hyperparameter optimisation, we used the softplus
function. In particular, we reparameterise each hyperparameter θk ∈ R>0 as θk = log(1 + exp(νk))
and apply optimiser steps to νk ∈ R instead, to facilitate unconstrained optimisation.

Gradient Estimator For all experiments, unless otherwise specified, the number of probe vectors
was set to s = 64 for both the standard and the pathwise estimator. The distributions of the probe
vectors are z ∼ N (0, I) for the standard estimator and ẑ := H−1

θ ξ ∼ N (0,H−1
θ ) for the pathwise

estimator. See Section 3 for details about how to generate samples from N (0,H−1
θ ).

The probe vectors used by Gardner et al. [9] have conceptual similarities but the motivation is different.
They used probe vectors z ∼ N (0,P), where P is constructed using a low-rank pivoted Cholesky
decomposition to implement the preconditioner. In contrast, our pathwise probe vectors are sampled
using random features, and, for CG, we used the pivoted Cholesky preconditioner in addition to the
pathwise probe vectors. Furthermore, we used the solution of the pathwise probe vector systems to
construct posterior samples via pathwise conditioning, which has not been done by Gardner et al. [9].

The name of the pathwise estimator can be related to the reparameterisation trick by viewing a sample
from the GP posterior as a deterministic transformation of a sample from the GP prior, and observing
that the latter itself is an affine transformation of a standard normal random variable.
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Linear System Solver We conducted two sets of experiments which only differ in the termination
criterion of the linear system solver. In the first set, we stop linear system solvers once they reach a
relative residual norm tolerance of τ = 0.01. In the second set, we also restrict the maximum number
of solver epochs to 10, 20, 30, 40 or 50, such that most of the time the residual norm does not reach τ .

For a generic system of linear equations Hθ u = b, the residual is defined as r = b−Hθ u and the
relative residual norm is defined as ∥r∥/∥b∥. In practice, to improve numerical stability, the relative
residual norm tolerance is implemented by solving the system Hθ ũ = b̃, where b̃ := b/(∥b∥+ ϵ),
until ∥r̃∥ := ∥b̃−Hθ ũ∥ ≤ τ and then returning u := (∥b∥+ ϵ) ũ, where epsilon is set to a small
constant value to prevent division by zero. Since we are solving batches of systems of linear equations
of the form Hθ [vy,v1, . . . ,vs ] = [y, z1, . . . ,zs ], we track the residuals of each individual system
and calculate separate residual norms for the mean and for the probe vectors, where the residual
norm for the mean ∥ry∥ corresponds to the system Hθ vy = y and the residual norm for the probe
vectors ∥rz∥ is defined as the arithmetic average over residual norms corresponding to the systems
Hθ [v1, . . . ,vs ] = [ z1, . . . ,zs ]. Both relative residual norms must reach the tolerance τ to satisfy
the termination criterion. We use separate residual norms because ∥ry∥ typically converges faster
than ∥rz∥, such that an average other all systems tends to dilute the latter (see Figures 14 to 17).

Conjugate Gradients The conjugate gradients algorithm [9, 30] computes necessary residuals as
part of the algorithm. In terms of counting solver epochs, every conjugate gradient iteration counts as
one solver epoch because in every iteration each value of Hθ is computed once. Following previous
work, we used a pivoted Cholesky preconditioner of rank 100 for all experiments [30]. We initialised
conjugate gradients either at zero (no warm start) or at the previous solution (warm start). Otherwise,
conjugate gradients does not have any other parameters. Pseudocode is provided in Algorithm 1.

Algorithm 1 Conjugate gradients for solving Hθ [vy,v1, . . . ,vs ] = [y, z1, . . . ,zs ]

Require: Linear operator Hθ(·), targets b = [y, z1, . . . ,zs ], tolerance τ , maximum epochs T
Require: Preconditioner P(·)

1: Let (·)∗ denote parallel execution over (·)y, (·)1, . . . , (·)s
2: v∗ ← 0 (or previous solution if warm start)
3: r∗ ← b∗ −Hθ(v∗)
4: p∗ ← P(r∗)
5: d∗ ← p∗
6: γ∗ ← rT∗p∗
7: t← 0
8: while t < T and ∥ry∥ > τ and 1

s

∑s
j=1 ∥rj∥ = ∥rz∥ > τ do

9: α∗ ← γ∗/dT
∗Hθ(d∗)

10: v∗ ← v∗ + α∗d∗
11: r∗ ← r∗ − α∗Hθ(d∗)
12: p∗ ← P(r∗)
13: β∗ ← rT∗p∗/γ∗
14: γ∗ ← rT∗p∗
15: d∗ ← p∗ + β∗d∗
16: t← t+ 1
17: end while
18: return [vy,v1, . . . ,vs ]

Alternating Projections The alternating projections algorithm [33] also keeps track of the residuals
as part of the algorithm. In terms of counting solver epochs, we convert the number of maximum
solver epochs to a maximum number of solver iterations by multiplying with n/b, where b is the
block size, because every iteration of alternating projections computes b/n of all entries of Hθ. We
used a block size of b = 1000 for all datasets, except PROTEIN and KEGGDIRECTED, where we
used b = 2000 instead. We initialised alternating projections either at zero (no warm start) or at the
previous solution (warm start). During each marginal likelihood step, the Cholesky factorisation of
every block is computed once and cached afterwards (although, in practice, the Cholesky factorisation
does not dominate the computational costs). In each iteration of alternating projections, the block
with largest residual norm is selected to be processed. Pseudocode is provided in Algorithm 2.
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Algorithm 2 Alternating projections for solving Hθ [vy,v1, . . . ,vs ] = [y, z1, . . . ,zs ]

Require: Linear operator Hθ(·), targets b = [y, z1, . . . ,zs ], tolerance τ , maximum epochs T
Require: Block size b, block partitions [1], [2], . . . , [⌈nb ⌉]

1: Let (·)∗ denote parallel execution over (·)y, (·)1, . . . , (·)s
2: v∗ ← 0 (or previous solution if warm start)
3: r∗ ← b∗ −Hθ(v∗)
4: t← 0
5: while t < n

b T and ∥ry∥ > τ and 1
s

∑s
j=1 ∥rj∥ = ∥rz∥ > τ do

6: [i]← arg_max(∥ry[1] +
∑s
j=1 rj [1]∥, . . . , ∥ry[⌈

n
b ⌉] +

∑s
j=1 rj [⌈

n
b ⌉]∥)

7: v∗[i]← v∗[i] + chol_solve(Hθ[i, i], r∗[i])
8: r∗ ← r∗ −Hθ[:, i](chol_solve(Hθ[i, i], r∗[i]))
9: t← t+ 1

10: end while
11: return [vy,v1, . . . ,vs ]

Stochastic Gradient Descent The stochastic gradient descent algorithm [15, 16] does not compute
residuals as part of the algorithm. Therefore, we estimate the current residual by keeping a residual
vector in memory and updating it sparsely whenever we compute the gradient on a batch of data,
leveraging the property that the negative gradient is equal to the residual. In practice, we find that this
estimates an approximate upper bound on the true residual, which becomes fairly accurate after a
few iterations. In terms of counting solver epochs, we apply the same procedure as for alternating
projections. The number of maximum solver epochs is converted to a maximum number of solver
iterations by multiplying with n/b, where b is the batch size. We used a batch size of b = 500,
momentum of ρ = 0.9, and no Polyak averaging, because averaging is not strictly necessary [16] and
would interfere with our residual estimation heuristic. We use learning rates of 30, 20, 30, 20, and 20
respectively for the POL, ELEVATORS, BIKE, KEGGDIRECTED and PROTEIN datasets, picking the
largest learning rate from a grid [5, 10, 20, 30, 50, 60, 70, 80, 90, 100] that does not cause the inner
linear system solver to diverge on the very first outer marginal likelihood loop. For the larger datasets,
we use learning rates of 10, 10, 50, and 50 for 3DROAD, BUZZ, SONG and HOUSEELECTRIC, picking
half of the largest learning rate as above. We find that the larger datasets are more sensitive to
diverging when the hyperparameters change, and therefore we choose half of the largest learning rate
possible at initialisation. Pseudocode is provided in Algorithm 3.

Algorithm 3 Stochastic gradient descent for solving Hθ [vy,v1, . . . ,vs ] = [y, z1, . . . ,zs ]

Require: Linear operator Hθ(·), targets b = [y, z1, . . . ,zs ], tolerance τ , maximum epochs T
Require: Batch size b, learning rate γ, momentum ρ

1: Let (·)∗ denote parallel execution over (·)y, (·)1, . . . , (·)s
2: v∗ ← 0 (or previous solution if warm start)
3: r∗ ← b∗
4: m∗ ← 0
5: t← 0
6: while t < n

b T and ∥ry∥ > τ and 1
s

∑s
j=1 ∥rj∥ = ∥rz∥ > τ do

7: [i]← uniform_batch_sample(1, . . . , n)
8: g∗ ← 0
9: g∗[i]← Hθ[i, :](v∗)− b∗[i]

10: m∗ ← ρm∗ − γ
b g∗

11: v∗ = v∗ +m∗
12: r∗[i]← g∗[i]
13: t← t+ 1
14: end while
15: return [vy,v1, . . . ,vs ]
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C Additional Empirical Results

In this appendix, we provide additional result from our experiments.

For our first experiment (solving until reaching the relative residual norm tolerance), we present the
predictive performance, time taken, and speed-ups in Tables 2 to 6. Hyperparameter trajectories are
illustrated in Figures 11 to 13. Required number of solver iterations are shown in Figure 21.

For our second experiment (solving until reaching the tolerance or exhausting the compute budget),
we tabulate the predictive performance, time taken, and average residual norms in Tables 7 to 10. The
behaviour of residual norms is visualised in Figures 14 to 17. The evolution of residual norms and
predictive performance via pathwise conditioning is depicted in Figures 18 to 20.

Table 2: Results on POL when solving until convergence (mean ± standard error over 10 splits).

path warm POL (n = 13 500, d = 26)
wise start Test RMSE Test LLH Total Time (min) Solver Time (min) Speed-Up

C
G

0.0750 ± 0.0010 1.2682 ± 0.0084 4.8263 ± 0.0356 4.6138 ± 0.0355 —
✓ 0.0754 ± 0.0010 1.2716 ± 0.0077 3.9567 ± 0.0204 3.7148 ± 0.0205 1.2 ×

✓ 0.0750 ± 0.0010 1.2681 ± 0.0084 2.2844 ± 0.0131 2.0755 ± 0.0131 2.1 ×
✓ ✓ 0.0758 ± 0.0010 1.2666 ± 0.0074 2.4652 ± 0.0133 2.2513 ± 0.0133 2.0 ×

A
P

0.0750 ± 0.0010 1.2682 ± 0.0084 493.05 ± 3.0738 492.84 ± 3.0737 —
✓ 0.0754 ± 0.0010 1.2715 ± 0.0077 44.006 ± 0.0722 43.765 ± 0.0725 11.2 ×

✓ 0.0750 ± 0.0010 1.2681 ± 0.0084 27.915 ± 0.2707 27.706 ± 0.2708 17.7 ×
✓ ✓ 0.0758 ± 0.0010 1.2666 ± 0.0074 3.8962 ± 0.0174 3.6831 ± 0.0173 126.6 ×

SG
D

0.0750 ± 0.0010 1.2681 ± 0.0084 138.63 ± 0.8169 138.60 ± 0.8170 —
✓ 0.0754 ± 0.0010 1.2708 ± 0.0074 73.546 ± 0.2661 73.434 ± 0.2661 1.9 ×

✓ 0.0750 ± 0.0010 1.2682 ± 0.0084 26.483 ± 0.1002 26.461 ± 0.1001 5.2 ×
✓ ✓ 0.0757 ± 0.0010 1.2678 ± 0.0076 17.938 ± 0.1083 17.854 ± 0.1083 7.7 ×

Table 3: Results on ELEV when solving until convergence (mean ± standard error over 10 splits).

path warm ELEVATORS (n = 14 940, d = 18)
wise start Test RMSE Test LLH Total Time (min) Solver Time (min) Speed-Up

C
G

0.3550 ± 0.0034 -0.3856 ± 0.0065 1.5811 ± 0.0063 1.3661 ± 0.0062 —
✓ 0.3562 ± 0.0033 -0.3868 ± 0.0065 1.4940 ± 0.0039 1.2484 ± 0.0039 1.1 ×

✓ 0.3550 ± 0.0034 -0.3856 ± 0.0065 1.0308 ± 0.0037 0.8191 ± 0.0036 1.5 ×
✓ ✓ 0.3558 ± 0.0034 -0.3856 ± 0.0066 0.9977 ± 0.0029 0.7835 ± 0.0028 1.6 ×

A
P

0.3550 ± 0.0034 -0.3856 ± 0.0065 77.787 ± 0.2694 77.572 ± 0.2693 —
✓ 0.3562 ± 0.0033 -0.3868 ± 0.0065 36.346 ± 0.0821 36.100 ± 0.0820 2.1 ×

✓ 0.3550 ± 0.0034 -0.3856 ± 0.0065 1.6658 ± 0.0081 1.4541 ± 0.0081 46.7 ×
✓ ✓ 0.3558 ± 0.0034 -0.3856 ± 0.0066 1.2065 ± 0.0032 0.9928 ± 0.0031 64.5 ×

SG
D

0.3550 ± 0.0034 -0.3855 ± 0.0066 5.5408 ± 0.0101 5.4091 ± 0.0101 —
✓ 0.3562 ± 0.0033 -0.3868 ± 0.0065 4.5758 ± 0.0086 4.4146 ± 0.0086 1.2 ×

✓ 0.3550 ± 0.0034 -0.3855 ± 0.0066 1.2221 ± 0.0042 1.0927 ± 0.0041 4.5 ×
✓ ✓ 0.3558 ± 0.0034 -0.3854 ± 0.0068 1.1437 ± 0.0033 1.0105 ± 0.0032 4.8 ×
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Table 4: Results on BIKE when solving until convergence (mean ± standard error over 10 splits).

path warm BIKE (n = 15 642, d = 17)
wise start Test RMSE Test LLH Total Time (min) Solver Time (min) Speed-Up

C
G

0.0326 ± 0.0031 2.1500 ± 0.0180 5.0797 ± 0.0280 4.8412 ± 0.0280 —
✓ 0.0326 ± 0.0030 2.0674 ± 0.0167 4.4147 ± 0.0225 4.1410 ± 0.0221 1.2 ×

✓ 0.0327 ± 0.0031 2.1508 ± 0.0181 2.7392 ± 0.0137 2.5039 ± 0.0135 1.9 ×
✓ ✓ 0.0329 ± 0.0030 2.0615 ± 0.0151 3.0658 ± 0.0168 2.8268 ± 0.0167 1.7 ×

A
P

0.0326 ± 0.0031 2.1504 ± 0.0180 302.26 ± 1.7735 302.03 ± 1.7735 —
✓ 0.0325 ± 0.0030 2.0668 ± 0.0167 35.081 ± 0.0773 34.811 ± 0.0772 8.6 ×

✓ 0.0326 ± 0.0031 2.1503 ± 0.0181 19.892 ± 0.2146 19.657 ± 0.2146 15.2 ×
✓ ✓ 0.0330 ± 0.0030 2.0616 ± 0.0150 5.4041 ± 0.0394 5.1653 ± 0.0393 56.0 ×

SG
D

0.0326 ± 0.0031 2.1535 ± 0.0181 412.17 ± 10.460 412.03 ± 10.450 —
✓ 0.0324 ± 0.0030 2.0692 ± 0.0174 156.24 ± 2.2113 156.05 ± 2.2109 2.6 ×

✓ 0.0327 ± 0.0031 2.1524 ± 0.0179 74.341 ± 1.2532 74.184 ± 1.2524 5.5 ×
✓ ✓ 0.0332 ± 0.0030 2.0562 ± 0.0144 64.145 ± 1.1086 63.983 ± 1.1083 6.4 ×

Table 5: Results on PROT when solving until convergence (mean ± standard error over 10 splits).

path warm PROTEIN (n = 41 157, d = 9)
wise start Test RMSE Test LLH Total Time (min) Solver Time (min) Speed-Up

C
G

0.5024 ± 0.0036 -0.5871 ± 0.0096 29.849 ± 0.2463 28.208 ± 0.2463 —
✓ 0.4909 ± 0.0035 -0.6210 ± 0.0082 19.984 ± 0.1429 18.317 ± 0.1430 1.5 ×

✓ 0.5026 ± 0.0036 -0.5871 ± 0.0096 11.542 ± 0.1058 9.8816 ± 0.1059 2.6 ×
✓ ✓ 0.4912 ± 0.0034 -0.6214 ± 0.0079 13.744 ± 0.0959 12.085 ± 0.0956 2.2 ×

A
P

0.5024 ± 0.0036 -0.5871 ± 0.0096 130.93 ± 1.0450 129.29 ± 1.0451 —
✓ 0.4907 ± 0.0035 -0.6214 ± 0.0082 55.790 ± 0.2054 54.125 ± 0.2053 2.3 ×

✓ 0.5027 ± 0.0036 -0.5871 ± 0.0097 16.425 ± 0.1816 14.765 ± 0.1818 8.0 ×
✓ ✓ 0.4912 ± 0.0034 -0.6213 ± 0.0079 12.341 ± 0.0347 10.682 ± 0.0346 10.6 ×

SG
D

0.5026 ± 0.0036 -0.5871 ± 0.0096 75.205 ± 1.4358 72.932 ± 1.4357 —
✓ 0.4894 ± 0.0035 -0.6268 ± 0.0077 24.030 ± 0.1364 21.726 ± 0.1364 3.1 ×

✓ 0.5027 ± 0.0037 -0.5878 ± 0.0096 11.226 ± 0.1430 8.9541 ± 0.1433 6.7 ×
✓ ✓ 0.4911 ± 0.0034 -0.6217 ± 0.0078 11.939 ± 0.0700 9.6617 ± 0.0700 6.3 ×

Table 6: Results on KEGG when solving until convergence (mean ± standard error over 10 splits).

path warm KEGGDIRECTED (n = 43 945, d = 20)
wise start Test RMSE Test LLH Total Time (min) Solver Time (min) Speed-Up

C
G

0.0837 ± 0.0016 1.0818 ± 0.0170 27.974 ± 0.3172 25.543 ± 0.3120 —
✓ 0.0837 ± 0.0016 1.0818 ± 0.0169 26.362 ± 0.2851 23.897 ± 0.2804 1.1 ×

✓ 0.0837 ± 0.0016 1.0816 ± 0.0171 12.754 ± 0.1314 10.326 ± 0.1266 2.2 ×
✓ ✓ 0.0836 ± 0.0016 1.0819 ± 0.0166 12.998 ± 0.1383 10.559 ± 0.1330 2.2 ×

A
P

— — > 24 h > 24 h —
✓ 0.0837 ± 0.0016 1.0820 ± 0.0166 491.41 ± 0.4624 488.95 ± 0.4657 > 2.9 ×

✓ 0.0837 ± 0.0016 1.0818 ± 0.0172 211.28 ± 1.9504 208.85 ± 1.9556 > 6.8 ×
✓ ✓ 0.0836 ± 0.0016 1.0817 ± 0.0166 14.013 ± 0.0768 11.574 ± 0.0711 > 102.8 ×

SG
D

0.0837 ± 0.0016 1.0816 ± 0.0173 620.07 ± 6.3224 617.35 ± 6.3194 —
✓ 0.0837 ± 0.0016 1.0822 ± 0.0164 411.58 ± 6.1065 408.86 ± 6.0874 1.5 ×

✓ 0.0837 ± 0.0016 1.0821 ± 0.0170 168.38 ± 1.6669 165.66 ± 1.6636 3.7 ×
✓ ✓ 0.0839 ± 0.0016 1.0725 ± 0.0136 58.679 ± 0.5457 55.952 ± 0.5418 10.6 ×
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Figure 11: Evolution of hyperparameters during marginal likelihood optimisation on different datasets
using conjugate gradients as linear system solver. Most of the time, the behaviour of exact gradient
computation using Cholesky factorisation is resembled.
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Figure 12: Evolution of hyperparameters during marginal likelihood optimisation on different datasets
using alternating projections as linear system solver. Most of the time, the behaviour of exact gradient
computation using Cholesky factorisation is resembled.
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Figure 13: Evolution of hyperparameters during marginal likelihood optimisation on different datasets
using stochastic gradient descent as linear system solver. Most of the time, the behaviour of exact
gradient computation using Cholesky factorisation is resembled.

25



Table 7: Results on 3DROAD with 10 maximum solver epochs (mean ± standard error over 10 splits).

warm 3DROAD (n = 391 387, d = 3) Average Residual Norm
start Test RMSE Test LLH Total Time (h) of Mean of Probe Vectors

C
G 1.2177 ± 0.0296 -1.5463 ± 0.0187 1.9308 ± 0.0073 0.9815 ± 0.0217 0.9174 ± 0.0106

✓ 0.5371 ± 0.0598 -0.9143 ± 0.0336 1.9411 ± 0.0047 0.6530 ± 0.0152 0.9003 ± 0.0077

A
P 0.1042 ± 0.0017 0.8237 ± 0.0172 2.1782 ± 0.0059 0.0950 ± 0.0017 0.0541 ± 0.0010

✓ 0.0563 ± 0.0009 0.9309 ± 0.0186 2.1805 ± 0.0047 0.0469 ± 0.0010 0.0651 ± 0.0010

SG
D 0.1430 ± 0.0014 -0.4662 ± 0.0399 1.2717 ± 0.0014 0.1130 ± 0.0017 0.0633 ± 0.0020

✓ 0.0654 ± 0.0010 0.9276 ± 0.0126 1.2772 ± 0.0031 0.0561 ± 0.0010 0.0797 ± 0.0022

Table 8: Results on SONG with 10 maximum solver epochs (mean ± standard error over 10 splits).

warm SONG (n = 463 811, d = 90) Average Residual Norm
start Test RMSE Test LLH Total Time (h) of Mean of Probe Vectors

C
G 2.1573 ± 0.0672 -2.0688 ± 0.0303 18.107 ± 0.0602 1.6528 ± 0.0773 1.6356 ± 0.0716

✓ 0.8698 ± 0.0091 -1.3025 ± 0.0140 17.879 ± 0.1979 0.3793 ± 0.0171 0.4147 ± 0.0186

A
P 0.7428 ± 0.0019 -1.1197 ± 0.0024 18.256 ± 0.0272 0.0421 ± 0.0016 0.0499 ± 0.0011

✓ 0.7420 ± 0.0019 -1.1184 ± 0.0023 15.114 ± 0.2373 0.0085 ± 0.0004 0.0125 ± 0.0002

SG
D 0.7426 ± 0.0019 -1.1205 ± 0.0024 17.160 ± 0.0669 0.0688 ± 0.0017 0.0834 ± 0.0014

✓ 0.7419 ± 0.0019 -1.1184 ± 0.0023 16.756 ± 0.0842 0.0100 ± 0.0003 0.0117 ± 0.0001

Table 9: Results on BUZZ with 10 maximum solver epochs (mean ± standard error over 10 splits).

warm BUZZ (n = 524 925, d = 77) Average Residual Norm
start Test RMSE Test LLH Total Time (h) of Mean of Probe Vectors

C
G 2.0042 ± 0.0382 -1.8249 ± 0.0393 22.012 ± 0.0047 1.9248 ± 0.0340 3.0380 ± 0.1826

✓ 4.5317 ± 0.4186 -11.973 ± 1.4876 21.725 ± 0.2588 2.1218 ± 0.1021 1.6968 ± 0.0424

A
P 0.2770 ± 0.0030 -0.0483 ± 0.0039 22.466 ± 0.0048 0.0516 ± 0.0017 0.0851 ± 0.0009

✓ 0.2743 ± 0.0030 -0.0366 ± 0.0034 22.470 ± 0.0056 0.0143 ± 0.0004 0.0263 ± 0.0001

SG
D 0.2851 ± 0.0035 -0.1029 ± 0.0152 16.722 ± 0.0012 0.2252 ± 0.0004 0.3906 ± 0.0115

✓ 0.2735 ± 0.0030 -0.0457 ± 0.0045 16.702 ± 0.0016 0.0767 ± 0.0022 0.1544 ± 0.0039

Table 10: Results on HOUSE with 10 maximum solver epochs (mean ± standard error over 10 splits).

warm HOUSEELECTRIC (n = 1 844 352, d = 11) Average Residual Norm
start Test RMSE Test LLH Total Time (h) of Mean of Probe Vectors

C
G 0.8328 ± 0.0215 -4.0695 ± 0.2445 32.368 ± 0.3881 0.7495 ± 0.0224 1.4922 ± 0.0826

✓ 0.4519 ± 0.0220 -1.2631 ± 0.2168 32.770 ± 0.0029 0.6063 ± 0.0252 1.1958 ± 0.0454

A
P 0.0320 ± 0.0005 1.9051 ± 0.1403 29.090 ± 0.0075 0.0215 ± 0.0005 0.0598 ± 0.0027

✓ 0.0292 ± 0.0007 2.3509 ± 0.0654 29.058 ± 0.0064 0.0104 ± 0.0002 0.0409 ± 0.0014

SG
D 0.0449 ± 0.0003 0.9635 ± 0.2071 23.646 ± 0.0135 0.0409 ± 0.0005 0.1645 ± 0.0085

✓ 0.0334 ± 0.0002 1.6021 ± 0.0652 23.445 ± 0.1611 0.0321 ± 0.0006 0.1230 ± 0.0081
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Figure 14: Relative residual norms of the mean at each marginal likelihood step and final test root-
mean-square errors using the standard estimator on different datasets. The linear system solver is
terminated upon either reaching the tolerance or exhausting a maximum number of solver epochs.
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Figure 15: Relative residual norms of the mean at each marginal likelihood step and final test root-
mean-square errors using the pathwise estimator on different datasets. The linear system solver is
terminated upon either reaching the tolerance or exhausting a maximum number of solver epochs.
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Figure 16: Relative residual norms of the probe vectors at each marginal likelihood step and final
test log-likelihoods using the standard estimator on different datasets. The linear system solver is
terminated upon either reaching the tolerance or exhausting a maximum number of solver epochs.
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Figure 17: Relative residual norms of the probe vectors at each marginal likelihood step and final
test log-likelihoods using the pathwise estimator on different datasets. The linear system solver is
terminated upon either reaching the tolerance or exhausting a maximum number of solver epochs.
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Figure 18: Relative residual norms, test root-mean-square errors and test log-likelihoods during
marginal likelihood optimisation on large datasets using the pathwise gradient estimator and conjugate
gradients as linear system solver.
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Figure 19: Relative residual norms, test root-mean-square errors and test log-likelihoods during
marginal likelihood optimisation on large datasets using the pathwise gradient estimator and alternat-
ing projections as linear system solver.
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Figure 20: Relative residual norms, test root-mean-square errors and test log-likelihoods during
marginal likelihood optimisation on large datasets using the pathwise gradient estimator and stochastic
gradient descent as linear system solver.
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Figure 21: Required number of solver iterations until reaching the tolerance τ = 0.01 at each step of
marginal likelihood optimisation and final predictive test log-likelihoods on different datasets. On
the KEGGDIRECTED dataset, alternating projections with the standard estimator and without warm
starting did not complete the experiment within 24 hours.
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