UniteFormer: Unifying Node and Edge Modalities in
Transformers for Vehicle Routing Problems

Dian Meng' Zhiguang Cao? Jie Gao® Yaoxin Wu* Yaqing Hou!**

School of Computer Science and Technology, Dalian University of Technology (DUT)
2School of Computing and Information Systems, Singapore Management University
3Department of Transport and Planning, Delft University of Technology
“Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology
Key Laboratory of Social Computing and Cognitive Intelligence (DUT), Ministry of Education, China
mengdian@mail.dlut.edu.cn, zhiguangcao@outlook.com, J.Gao-1@tudelft.nl,
wyxacc@hotmail.com, houyq@dlut.edu.cn

Abstract

Neural solvers for the Vehicle Routing Problem (VRP) have typically relied on
either node or edge inputs, limiting their flexibility and generalization in real-world
scenarios. We propose UniteFormer, a unified neural solver that supports node-
only, edge-only, and hybrid input types through a single model trained via joint
edge-node modalities. UniteFormer introduces: (1) a mixed encoder that integrates
graph convolutional networks and attention mechanisms to collaboratively process
node and edge features, capturing cross-modal interactions between them; and
(2) a parallel decoder enhanced with query mapping and a feed-forward layer for
improved representation. The model is trained with REINFORCE by randomly
sampling input types across batches. Experiments on the Traveling Salesman
Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) demonstrate
that UniteFormer achieves state-of-the-art performance and generalizes effectively
to TSPLib and CVRPLIib instances. These results underscore UniteFormer’s ability
to handle diverse input modalities and its strong potential to improve performance
across various VRP tasks.

1 Introduction

Vehicle Routing Problems (VRPs) are fundamental in logistics [21]], navigation systems [12]], and
drone delivery [45]], with significant theoretical and practical relevance. Recent advances have seen
increasing interest in deep learning-based neural solvers for VRPs, offering strong generalization and
improved computational efficiency over traditional exact and heuristic algorithms [[14} |3, 4]. These
methods include both autoregressive models that learn construction policies from data [24,10,|31], as
well as learning-based improvement solvers that enhance classical optimization procedures. However,
many of these models, particularly construction-based ones, make an overly simplifying assumption:
they rely solely on either node coordinates or edge distances as input. This leads to several limitations.
First, training separate models for each input modality (node or edge) is inflexible and impractical for
real-world applications. Second, switching between different input types requires retraining from
scratch, incurring substantial computational costs. Third, such single-modality training neglects
the complementary information between node and edge inputs, preventing the model from learning
transferable features and reducing its capacity to discover high-quality solutions.
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We argue that hybrid training with both node and edge information offers a more general and
informative representation of the problem. While existing methods train only on a single modality,
our approach allows joint encoding and interaction across modalities, leading to better-informed
policies and improved solution quality. To this end, we propose UniteFormer, a unified neural solver
for VRPs that supports hybrid training and generalizes across input modalities. Unlike conventional
solvers, UniteFormer is trained once and can handle node-only, edge-only, or mixed edge-node inputs
without retraining. This makes it more flexible and applicable to diverse real-world scenarios.

Specifically, UniteFormer consists of a mixed encoder and a parallel-attention decoder. The mixed
encoder includes two sub-encoders: edge-aware sub-encoder and node-focused sub-encoder. The
edge-aware sub-encoder integrates residual gated graph convolutional networks (GCNs) with self-
attention to jointly process node and edge features, facilitating cross-modality interaction. The node-
focused sub-encoder encodes node features independently using attention mechanisms, thereby further
enhancing the ability to encode node information. Together, they produce rich global embeddings
that capture complementary structural information. The decoder features a parallel architecture and
nonlinear query mechanisms, incorporating query mapping and a feed-forward (FF) layer to enhance
its representational capacity. Our contributions are outlined as follows:

* We present UniteFormer, the first unified neural solver capable of solving VRPs with
node-only, edge-only, or hybrid inputs using a single trained model.

* We introduce a novel mixed encoder that combines residual gated GCNs with attention
mechanisms, which can effectively and jointly process node and edge features to capture
cross-modal interactions between them.

* We design a decoder with a parallel-attention architecture and nonlinear query mechanisms,
which enhance the expressiveness of the policy network.

* Experiments on TSP and CVRP with all three input types show that UniteFormer achieves
state-of-the-art results. It also generalizes well to real-world TSPLib and CVRPLib bench-
marks, and supports applications such as the Asymmetric TSP (Appendix [F).

2 Related Work

Modality-Specific Neural Solvers for VRPs. Neural approaches have emerged as powerful al-
ternatives for solving VRPs by leveraging advances in deep learning and neural combinatorial
optimization [3}, 35,32l 47} 26,27, |17|]. The introduction of pointer networks [42] and the Trans-
former architecture [40] laid the foundation for early neural VRP solvers such as in [2] and [34].

1) Node-based models: Most existing neural solvers focus on node coordinate inputs. Notable
examples include AM [22[], POMO [24], and Sym-NCO [19], which significantly improved solution
quality for classical VRPs. More recent works have advanced training strategies. For instance, Bdeir
et al. [[1]], Drakulic et al. [[10], and Luo et al. [31] applied dynamic input re-encoding during training
to enhance generalization. Among them, Drakulic et al. [10] introduced Bisimulation Quotienting
(BQ) to reformulate the MDP for more robust generalization. Luo et al. [31] proposed a light encoder
heavy decoder (LEHD) model trained via supervised learning on partially reconstructed 100-node
instances. These methods are all fundamentally built on node coordinate inputs, capturing spatial
structure through positional embeddings.

2) Edge-based models: Edge-centric models are a more recent development. Kwon et al. [23]]
introduced MatNet, a matrix encoding network that operates on pairwise distance matrices, and
demonstrated strong performance on the asymmetric traveling salesman (ATSP) and flexible flow
shop (FFSP) problems. Lischka et al. [28]] proposed GREAT, a sparse graph edge attention model that
constructs high-quality solutions by exploiting sparse edge relationships. Building on this, Meng et
al. [33] proposed an efficient edge-based EFormer, which further extends and optimizes edge-based
problems and achieves excellent results on the TSP and CVRP.

3) Hybrid edge-node models: A smaller body of work explores models that jointly use node and
edge information. Joshi et al. [[18]] proposed a GCN-based edge probability predictor that uses both
node coordinates and edge weights to guide beam search. Wang et al. [44] developed a distance-
aware reshaping method (DAR) that biases attention mechanisms using Euclidean distances. Zhou
et al. [49]] introduced an instance-conditional adaptive model (ICAM) that integrates both node and
edge features to improve adaptability across instance sizes.
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Figure 1: Overview of the UniteFormer framework.

Unified Neural Solvers for VRPs. Unified models that generalize across VRP variants have gained
attention due to their versatility and practicality. Wang and Yu [43]] proposed a multi-task neural
solver using a multi-armed bandit framework to train across multiple combinatorial optimization
problems. Drakulic et al. [9] introduced GOAL, a supervised learning-based agent capable of solving
diverse COPs. Within the VRP domain, Ruis et al. [37]] used attribute composition for zero-shot
generalization across multiple VRP variants. Liu et al. [[29] extended the reinforcement learning-based
POMO model to a multi-task setting (POMO-MTL), and Zhou et al. [50] further proposed MVMOE,
a mixture-of-experts model to improve generalization. Building on this, Liu et al.. [30] proposed
a curvature-aware pre-training framework that effectively improved their performance. Federico
et al. [5]] introduced RouteFinder, a modular baseline framework for VRP variant modeling. Our
work aligns with this line of research but focuses on input-modality unification rather than task-level
generalization. UniteFormer is the first model that simultaneously processes VRPs defined by node,
edge, or hybrid representations in a single framework, offering strong generalization, improved
efficiency, and broad applicability to real-world VRPs.

3 UniteFormer

Transformer-based neural VRP solvers typically adopt light decoder architectures [22}24]], where
the decoder uses static node embeddings as keys and values throughout the attention layers. In
contrast, we replace these static embeddings with two context-aware embeddings that encode both
edge relationships and node coordinates, and process them in parallel within the decoder. To
effectively encode heterogeneous input modalities, we introduce a novel mixed encoder architecture
that combines residual gated GCNs with attention mechanisms. The mixed encoder includes two
sub-encoders: an edge-aware sub-encoder and a node-focused sub-encoder, collaboratively processing
node and edge features to capture cross-modal interactions between them. In addition, we enhance
the parallel-attention decoder with query mapping and a feed-forward layer to form our proposed
UniteFormer. The overall architecture of UniteFormer is illustrated in Figure[T} In the following, we
first present three input modalities in UniteFormer, then introduce the two sub-encoders of the mixed
encoder in detail, and finally report the specific implementation of the decoder.

3.1 Input Modalities in UniteFormer

A VRP instance is defined over a graph G = {X, E'}, where X = {z;}}, denotes the nodes (with
xo as the depot), and e(z;, ;) € E represents the edge between nodes z; and x;. UniteFormer
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Figure 2: Three input modalities for UniteFormer: (a) Edge-only input. (b) Node-only input. (c)
Hybrid input. The Mixed Encoder includes: Edge-aware (left) and Node-focused Sub-encoder (right).

supports three input modalities: edge-only input, where only edge weights E are provided; node-only
input, where only node coordinates X are provided; hybrid input, where both node coordinates X
and edge weights I are available.

The three input configurations are shown in Figure[2] Different input types activate different branches
of the edge-aware sub-encoder (left) and the node-focused sub-encoder (right). A single unified
model is trained, with encoder components dynamically adapted to each input type. Specifically,
Edge-only input (Figure [2[a)): The node-focused sub-encoder is disabled (i.e., replaced with a
zero embedding), and only the edge-aware sub-encoder processes edge features; Node-only input
(Figure[2(b)): Without edge weights, node features are passed to the GCNs directly, while the edge
features are set to zero embeddings. Hybrid input (Figure[2c)): Both node and edge features are
used. The mixed-score Multi-Head Attention (mixed-score MHA) is bypassed, and the GCNs receive
the raw edge and node features.

3.2 Edge-aware Sub-encoder: Efficient Fusion of GCNs and Attention Mechanisms

To simultaneously capture edge and node information, we propose a novel sub-encoder architecture,
i.e., the Edge-aware Sub-encoder, that integrates GCNs with attention mechanisms. When edge
information is provided, we apply a mixed-score MHA block to derive intermediate node features.
Across all three input modalities, we then apply residual gated GCNss to jointly process edge and
node features in a unified representation space. Finally, we introduce an additional self-attention
layer, which proves especially effective in edge-based settings.

Mixed-Score Attention Layer. Inspired by [23]], we adopt a multi-head mixed-score attention
mechanism to encode the edge weight matrix. This module follows the structure of standard
Transformer attention [40]], but replaces the traditional scaled dot-product computation with a mixed-
score formulation (see Appendix [A). Inputs to this block include: a zero vector hg, a randomly
selected one-hot vector h, from a predefined pool, and the edge weight matrix D;;. This setup
allows dynamic embedding generation and facilitates instance-level augmentation by feeding the
same instance multiple times with varying vector combinations. The zero vector can optionally be
replaced by another one-hot vector, though we default to using the zero vector. The encoded relation

matrix hEP) is computed only when edge inputs are present:
5" = NORM(ho + mixed-scoreMHA (ho, b, Dy;)), 1)

(P) ~ (P)
) )

+ FF(h;
where mixed-scoreMHA (-) denotes the mixed-score attention layer, FF () is a feed-forward network
with one hidden layer and ReLU activation, and NORM(+) denotes batch normalization [[16].

h{F) = NORM(h;



Residual Gated Graph Convolution Layer. We next feed node and edge features into residual
gated GCNs. Node coordinates x; are embedded as h-dimensional vectors. The edge weight matrix
D;; and the edge adjacency matrix @i-‘;”‘ are embedded as %-dimensional vectors:
a; = wix; + by, 3
Bij = waDij + ba|ws - O™, 4)
where w; € R”, wa, w3 € R% , b1, by are biases, and || denotes vector concatenation. The input node
and edge embeddings for the GCN are adaptively initialized according to input types. Particularly, 1)
Edge only: y{ = h(P), ?J = Bij; 2) Node-only: y) = o, e Zj = ho, 3) Edge and Node: 39 = «;,
ed. = = f3;;. We denote node and edge embeddings at layer [ as y! and el ;» respectively. Following 6],
we apply ReLU activation and residual connections to obtain the next-layer embeddings:

0’(6@)

yi ™" = y; + ReLUNORM(Wiy; + ¢}; © Wyy))), with ¢y = | 2 v

Y miolely) +
el — el + ReLU(NORM (Wiel, + Why! + Whyl)), ©

where W! are learnable weight matrices, o is the sigmoid function, £ is a small constant for nu-
merical stability, and ® denotes element-wise multiplication. This formulation enables anisotropic
information diffusion on graphs by incorporating learned edge attention maps ¢! ;- To further process
the node embeddings, we apply the MLP to the GCN output %!, yielding values m! = MLP(y!)
constrained to [0, 1]2.

Self-Attention Layer. To enhance the model’s capacity for global context encoding, we introduce
an additional self-attention layer after the MLP. This is particularly important in the edge-only setting,
where the node-focused sub-encoder is disabled. In such cases, this layer significantly improves the
model’s ability to propagate and transform information across the graph:

R = self-attention(m®), 7

where m® is the MLP output, and k27 is the final output of the edge-aware sub-encoder. The detailed
computational process in self-attention layer is provided in Appendix [A]

3.3 Node-focused Sub-encoder: Expressive Encoding of Node Information

The edge-aware sub-encoder, which is built on GCNs and augmented with a self-attention layer for
encoding, offers a significant boost for edge-based input. However, it falls short in handling node
features compared to the conventional encoder mechanism [24]]. Therefore, we introduce the classic
attention mechanism (i.e., Node-focused Sub-encoder) to make up for this deficiency, which can
effectively improve the performance of node-based input. The node-focused sub-encoder consists
of L stacked layers, each comprising two sublayers: a multi-Head attention (MHA) sublayer and a
feed-forward (FF) sublayer. Each sublayer incorporates residual connections [[13]] and layer normal-
ization [16]. Let h;l) denote the embedding of node i at layer [, and let H(!) = {hgl), hg), ce h%)}
represent the node embeddings at layer [. The forward computation at the [-th layer is given by:

A" = NORM (h§ U4 MHA ( (=0 po- 1>)) ®)
n? = NORM (A + FF (R{")), )

where MHA(:) denotes the multi-head attention, FF(-) is a feed-forward network, and NORM(-)
applies layer normalization. This structure allows the sub-encoder to capture complex dependencies
between nodes in a permutation-invariant manner. H (%) represents the final output of the L-th
attention layer. Specifically, when the input consists of edges only, the sub-encoder is deactivated,
and its output is set as hY = h(9); when the input includes nodes, the output is taken as Y =H (),

3.4 Decoder: Parallel-Attention Decoding with Enhanced Query Representation

A critical component of the decoder is the context query vector g, which is used to compute attention
scores over node embeddings and generate the probability distribution for the next node. In prior



works, g is often constructed as a linear combination of node embeddings, which limits its represen-
tational capacity due to its inherent linearity [|15]]. To better capture contextual dependencies, we
design a decoder architecture with two key enhancements: (1) a parallel-attention architecture that
separately computes attention scores using two sets of encoded embeddings, and (2) a nonlinear
query mechanism that increases the expressive power of the query vector. Specifically, we apply
query mapping and a feed-forward network with residual connections following the MHA layers.

Parallel-Attention Decoding. The edge-aware sub-encoder and node-focused sub-encoder produce
two global embeddings, denoted as hﬁ/f and hg , where the superscripts M and N indicate the
edge-aware and node-focused encoding paths, respectively. During decoding, these embeddings
are processed in parallel to obtain the decoder context vectors at decoding step ¢, given by HM =
[RM hM] and HY = [hY, h¥]. These vectors are used to form temporary queries:

" =W+ Wtht, (10)
" =WRY + W hY (11)
¢=q""+q", (12)

where WM WM W and WV are learnable matrices that transform the start node embeddings
hM, hY and current node embeddings h, hlY, respectively. Next, we apply MHA [24] separately
to each set of context embeddings to obtain two intermediate outputs:

AM = MHA(q, KM, 0M), (13)
AN = MHA (q, k™, o), (14)

where kM, vM and k', vV are the keys and values derived from 1}/ and h¥, respectively. These
outputs are linearly projected and aggregated:

A2 = WM AM L W AN, (15)

where WM and W4 are learnable matrices.

Query Mapping and Feed-Forward Layer. To further enrich the query representation, we intro-
duce a query mapping transformation and a feed-forward layer with residual connection:

¢ = A+ QMT(g), (16)

¢* = ¢ +FF(J), (17
where QMT(-) is a linear projection that maps ¢ to the same dimensionality as A2, defined as:

QMT(q) = 6*MTq. (18)

Here, 69MT js a learnable weight matrix. Given the final context vector qA, we compute a score ;
for each node j using a masked single-head attention mechanism:

qA(k§\4+k§V)
C - tanh (m

—00, otherwise

> , if j unvisited (19)

Vi =

where dy, is the dimensionality of the key vectors, and C'is a scaling constant. The final selection
probability for node j is computed via the softmax function:

p; = softmax(vy;). (20)

At each decoding step, a node 7; is sampled according to p;. Repeating this process for n steps yields
the full solution 7 = (71, ..., 7,)”". In addition, we report the training algorithm in Appendix

4 Experiments

We evaluate the performance of UniteFormer on synthetic TSP and CVRP instances of varying
sizes, under three input settings: node-only, edge-only, and hybrid. We also report results on standard
real-world benchmarks from TSPLib and CVRPLib. The code is publicly availableﬂ

"https://github.com/Regina921/UniteFormer
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Baselines. 1) Traditional Solvers: Concorde [8]], LKH3 [14]], OR-Tools [25], and HGS [41]].
2) Learning-based Solvers: MatNet [23], GREAT [28]], POMO [24]], LEHD [31]], GCN-BS [18]],
DAR [44]] and ICAM [49]]. In order to compare POMO with UniteFormer on edge-base input, we
re-implement POMO using edge-only inputs (denoted as POMO-edge). More detailed descriptions
of these baselines are presented in Appendix

Problem Setting. We follow the standard data generation procedures from prior work [24] to create
training and testing datasets for TSP and CVRP with n = 20, 50, 100, where n denotes the number
of nodes. The problem setups and implementation details are presented in Appendix [C]

Model Setting. The edge-aware sub-encoder consists of one layer of mixed-score MHA, three
layers of GCN and MLP, and one self-attention layer. The node-focused sub-encoder consists of
three attention layers. In each attention layer, the head number of MHA is set to 16, the embedding
dimension is set to 256, and the feed-forward layer dimension is set to 512.

Training and Inference. We use the REINFORCE algorithm [46], training each model for 1,010
epochs with 100,000 instances per epoch. The Adam [20] optimizer is used with an initial learning
rate of 4e~* and weight decay is set to 1e~5. We adopt the POMO inference algorithm [24] and
report both the optimality gap and inference time. A separate set of 10,000 uniformly generated
instances is used for testing. All experiments were conducted on a single Tesla V100-SXM2-32GB
GPU. More experiment setup details are presented in Appendix [D]

4.1 Experimental Results

We train a single unified model capable of handling three input types: edge-only, node-only, and hybrid
input. Table [T|reports the performance of UniteFormer on uniformly distributed TSP and CVRP
instances across various problem sizes and input modalities. UniteFormer consistently outperforms
existing learning-based methods in both greedy (x1) and instance-augmented (x8) inference, while
maintaining competitive inference times. Additionally, following MatNet [23]], we also report results
under large-scale augmentation (x128) for edge-based input.

TSP. For edge-based input, UniteFormer significantly outperforms both POMO-edge, MatNet
and GREAT across all sizes studied. Notably, its performance with X8 augmentation exceeds that of
MatNet’s x128 augmentation, highlighting the efficiency of the UniteFormer. For node-based input,
UniteFormer achieves superior results over node-based neural solvers, including POMO and even
the strong LEHD model, in both greedy and x8 inference. For hybrid edge-node input, UniteFormer
also surpasses methods such as GCN-BS, DAR, and ICAM across all scales studied. The advantage
is particularly evident on TSP100, where UniteFormer achieves the lowest optimality gap of just
0.0589% among all neural baselines in Table[I} Furthermore, our edge-based UniteFormer even
outperforms not only node-based models like POMO, but also hybrid models like DAR and ICAM,
demonstrating its strong generalization and representational capacity.

CVRP. Similarly, for CVRP, UniteFormer exhibits robust performance across all input types.
In the edge-based setting, UniteFormer outperforms both POMO-edge and MatNet in greedy and
instance-augmented inference. Its performance with X8 augmentation even exceeds MatNet’s x128
augmentation results. In the node-based and hybrid settings, UniteFormer again achieves the best
results among all compared neural solvers. Specifically, on CVRP100, the hybrid-input version of
UniteFormer achieves the lowest average optimality gap of 0.5963%. Notably, in the edge-only
setting, UniteFormer even surpasses several node-based or hybrid methods, including POMO, DAR,
and ICAM. These results comprehensively demonstrate the effectiveness, robustness, and versatility
of UniteFormer across a range of problem sizes and input modalities.

4.2 Ablation Study

Edge only vs. Node only vs. Edge and Node only vs. UniteFormer. Table 2] presents the results
of our ablation study comparing UniteFormer with three training variants. At test time, we evaluate
models under three input configurations: Input-edge (only edge features are provided), Input-node
(only node features are provided), and Input-XE (both edge and node features are available). The
first variant, denoted as w.o. UF-Edge, is trained exclusively with edge inputs. The second variant,



Table 1: Experimental results on TSP and CVRP with uniformly distributed instances. The results of
methods with an asterisk (#) are directly obtained from the original paper. BS: Beam search, BS*:
Beam search and shortest tour heuristic. UniteFormer-E: Our UniteFormer takes edge as input; *-X’:
the UniteFormer takes node as input; *-XE’: the UniteFormer takes edge and node as input.

Method TSP20 TSP50 TSP100
Len. Gap(%) Time(m)| Len. Gap(%) Time(m)| Len. Gap(%) Time(m)
Concorde 3.831 0.000 4.43 5.691  0.000 23.53 7.763  0.000 66.45
LKH3 3.831 0.000 2.78 5.691  0.000 17.21 7.763  0.000 49.56
OR-Tools 3.864 0.864 1.16 5.851  2.795 10.75 8.057 3.782 39.05
POMO-edge 3.837 0.164 0.10 5719 0482 0.24 7919  2.003 1.34
MatNet(x1) 3.832 0.044 0.11 5.709  0.303 0.13 7.836  0.940 0.52
° MatNet(x8) 3.831 0.002 0.22 5.694  0.050 1.24 7.795 0410 5.28
2 | MatNet(x128) 3.831 0.000 5.71 5.692 0.013 16.47 7776  0.170 60.11
© | GREAT(x1)# - - - - - - 7.850 1.210 2.00
GREAT(x8)# - - - - - - 7.820 0.810 18.00
UniteFormer-E(x1) 3.831 0.020 0.11 5.697  0.095 0.32 7.789  0.332 1.61
UniteFormer-E(x8) 3.831 0.000 0.22 5.692  0.004 1.05 7770  0.086 5.12
UniteFormer-E(x128) | 3.831 0.000 2.74 5.691 0.000 19.67 7.765 0.019 65.21
POMO(x1) 3.831 0.018 0.08 5.698 0.119 0.24 7.792  0.364 1.03
POMO(x8) 3.831 0.001 0.11 5.693  0.024 0.45 7774  0.142 2.01
» | LEHD Greedy 3.867 0.961 0.14 5.721 0.519 0.24 7.808  0.577 1.37
B | UniteFormer-X(x1) 3.831 0.011 0.11 5.696 0.072 0.32 7.788  0.316 1.62
= | UniteFormer-X(x8) 3.831 0.000 0.22 5.692 0.004 1.04 7.770  0.085 5.15
GCN 3.855 0.650 0.25 5.901 3.678 1.21 8.413  8.373 6.25
» | GCN-BS 3.835 0.128 0.81 5710 0.317 4.62 7.931 2.155 17.73
2 | GCN-BS* 3.831 0.000 21.25 5.694  0.041 37.63 7.869 1.368 58.34
E DAR(x1) 3.831 0.021 0.08 5.702  0.181 0.26 7.803  0.512 1.12
Eﬁ DAR(x8) 3.831 0.001 0.12 5.694 1.040 0.52 7779  0.201 1.72
o | ICAM(x1) 3.831 0.022 0.07 5.701 0.172 0.22 7.806 0.55 0.99
ICAM(x8) 3.831 0.002 0.11 5.694 0417 0.48 7.780 0.22 1.34
UniteFormer-XE(x1) | 3.831 0.009 0.11 5.695 0.055 0.32 7782  0.243 1.62
UniteFormer-XE(x8) | 3.831 0.000 0.22 5.692 0.003 1.06 7.768  0.059 5.19
Method CVRP20 CVRP50 CVRP100
Len. Gap(%) Time(m)| Len. Gap(%) Time(m)| Len. Gap(%) Time(m)
LKH3 6.117 0.000 2.15h 10.347  0.000 8.52h 15.647  0.000 13.46h
HGS 6.112 -0.079 1.48h 10.347 -0.001 4.67h 15.584 -0.401 6.54h
OR-Tools 6.414 4.863 2.37 11.219 8.430 19.35 17.172  9.749 2.61h
POMO-edge 6.160  0.700 0.12 10.525 1.725 0.35 15.943  1.893 1.53
MatNet(x1) 6.172 0.907 0.12 10.787 4.253 0.21 16.280 4.401 1.02
o | MatNet(x8) 6.146  0.469 0.58 10.635 2.787 1.23 16.117 3.356 4.65
20 | MatNet(x128) 6.131 0.229 9.93 10.538 1.847 17.93 15.989 2.530 69.05
© | UniteFormer-E(x1) 6.146  0.486 0.06 10.471 1.204 0.56 15.868 1.416 1.95
UniteFormer-E(x8) 6.125 0.140 0.23 10.416  0.668 1.29 15.766  0.765 6.01
UniteFormer-E(x128) | 6.119 0.036 3.47 10.387 0.384 19.44 15.705 0.374 76.43
POMO(x1) 6.160 0.698 0.06 10.533  1.799 0.18 15.837 1.216 0.64
POMO(x8) 6.132 0.254 0.20 10.437 0.875 0.48 15.754 0.689 2.11
» | LEHD Greedy 6.462 5.647 0.07 10.872  5.075 0.18 16.217 3.648 0.55
8 | UniteFormer-X(x1) 6.145 0.454 0.06 10.472  1.210 0.56 15.856  1.335 1.95
= | UniteFormer-X(x8) 6.126  0.155 0.22 10.419 0.694 1.26 15.753 0.672 6.05
DAR(x1) 6.161 0.715 0.08 10.537 1.842 0.19 15.906 1.659 1.02
o | DAR(x8) 6.132 0.240 0.13 10.441 0.907 0.49 15.783 0.873 2.23
3 ICAM(x1) 6.160 0.703 0.08 10.502 1.504 0.13 15955 1972 0.62
F ICAM(x8) 6.132 0.246 0.12 10.439 0.886 0.39 15.833  1.192 1.77
_%0 UniteFormer-XE(x1) | 6.143  0.430 0.06 10.465 1.139 0.56 15.837 1.219 1.95
O | UniteFormer-XE(x8) | 6.126  0.146 0.22 10.415 0.660 1.28 15.740 0.596 6.05

w.o. UF-Node, is trained only with node inputs. The third variant, w.o. UF-XE, is trained solely
on combined edge-node inputs. In contrast, our full UniteFormer model is trained using a hybrid
strategy, where the input type (edge, node, or both) is randomly selected for each batch during
training. As shown in Table |2} each variant performs well on its respective training input type but
shows significant performance drops on other types. In contrast, UniteFormer consistently performs
well in all input settings, demonstrating its ability to generalize effectively regardless of the input



Table 2: Ablations of three input variants of UniteFormer on uniformly distributed instances.

TSP50 w.o. UF-Edge w.o. UF-Node w.o. UF-XE UniteFormer
Len. Gap(%) Time(m) Len. Gap(%) Time(m) Len. Gap(%) Time(m) Len. Gap(%) Time(m)
‘ Concorde ‘ 5.691 0.000 23.53 ‘ 5.691 0.000 23.53 ‘ 5.691 0.000 23.53 ‘ 5.691 0.000 23.53
2, | input-edge(x1) | 5.694 0.041 0.32 11.922 109.479 0.32 12.349 116.976 0.32 5.697 0.095 0.32
2 | input-edge(x8) | 5.692 0.002 1.05 10.033  76.278 1.05 10.161  78.524 1.04 5.692 0.004 1.05
2 | input-node(x1) | 8.424  48.010 0.32 5.698 0.121 0.32 5.951 4.566 0.32 5.696 0.072 0.32
2 | input-node(x8) | 7.473  31.293 1.04 5.692 0.011 1.05 5.801 1.929 1.05 5.692 0.004 1.04
L_U‘_ input-XE(x1) 6.620 16.316 0.32 5.726 0.604 0.32 5.695 0.069 0.32 5.695 0.055 0.32
> | input-XE(x8) 6.225 9.370 1.04 5.696 0.085 1.04 5.692 0.003 1.04 5.692 0.003 1.04
CVRP50 w.o. UF-Edge w.o. UF-Node w.o. UF-XE UniteFormer
Len. Gap(%) Time(m)| Len. Gap(%) Time(m)| Len. Gap(%) Time(m)| Len. Gap(%) Time(m)
‘LKHS ‘ 10.347 0.000 8.52h ‘ 10.347 0.000 8.52h ‘ 10.347 0.000 8.52h ‘ 10.347 0.000  8.52h
2, | input-edge(x1) | 10.457 1.069 0.56 32.755 216.567 0.56 28.768 178.041 0.56 10.471 1.204 0.56
B | input-edge(x8) | 10.412 0.633 1.26 31.360 203.092 1.26 27.555 166.317 1.27 10.416 0.668 1.26
2 | input-node(x1) | 24.763 139.332 0.56 10.455 1.048 0.56 11.280 9.018 0.56 10.472 1.206 0.56
2 | input-node(x8) | 17.780  71.840 1.26 10.410 0.614 1.26 10.966 5.987 1.26 10.419 0.694 1.26
L_U'_ input-XE(x1) | 12.491 20.720 0.56 10.455 1.048 0.56 10.449 0.991 0.56 10.465 1.139 0.56
> | input-XE(x8) | 11.576  11.877 1.26 10.410 0.614 1.26 10.407 0.577 1.27 10.415 0.660 1.26
Table 3: Experimental results on TSPLIB and CVRPLIB.
Method TSPLIB1-100 TSPLIB101-300 TSP301-500
Len. Gap(%) Time(m) Len. Gap(%) Time(m) Len. Gap(%) Time(m)
| OPT | 19499.583  0.000 - | 56902.800  0.000 - | 35772.500  0.000 -
POMO-edge 26434.493 38.177 0.11 86680.094 52.557 0.13 66931.096  85.899 0.24
MatNet(x1) 20222.358 4.948 0.09 63182.822  9.061 0.19 50811.854 41.948 0.28
o | MatNet(x8) 19748.707 2.119 0.16 61892.651  7.426 0.26 49611.249  38.678 0.37
20 | UniteFormer-E(x1) | 20263.171  4.419 0.09 62497.070 11.322 0.12 49688.931  38.359 0.21
© | UniteFormer-E(x8) | 19723.757 1.621 0.17 58916.975 3.028 0.25 42414.251  18.308 0.35
POMO(x1) 19625.737  1.069 0.08 59779.103  3.405 0.11 48074.882  33.955 0.10
POMO(x8) 19552.937 0.781 0.14 59595.007 2.838 0.23 45171.931  26.200 0.11
» | LEHD Greedy 19891.001  2.382 0.11 58443261 2.382 0.24 39391.629  10.630 0.32
2 | UniteFormer-X(x1) |20079.525 4.316 0.09 58632.537 2.678 0.12 39599.271  10.807 0.22
= | UniteFormer-X(x8) | 19549.664 0.614 0.18 57726.770  1.092 0.26 38983.657  9.252 0.35
DAR(x1) 19767.780  1.981 0.08 58354.624 2.014 0.11 41488.967 15.856 0.21
o | DAR(x8) 19616.985  1.123 0.14 57948.545  1.447 0.23 39834.717 12.376 0.33
2 | ICAM(x1) 19657.984  1.066 0.08 59456.423  3.125 0.11 41754.691  16.507 0.21
E ICAM(x8) 19622.840 0.843 0.14 58512.789  2.004 0.23 40771.396  13.923 0.31
.20 | UniteFormer-XE(x1) | 19916.707 ~ 2.585 0.10 58051.056 1.919 0.12 40213.122  12.482 0.21
© | UniteFormer-XE(x8) | 19567.880  0.653 0.18 57848.545 1.238 0.24 39775.667 11.111 0.35
Method CVRPLIB1-100 CVRP101-300 CVRP301-500
Len. Gap(%) Time(m) Len. Gap(%) Time(m) Len. Gap(%) Time(m)
OPT 915.574  0.000 - 33184.483  0.000 - 97160.000  0.000 -
POMO-edge 1787.383  94.693 0.21 61150.353 108.337 0.23 195349.248 135.174  0.45
MatNet(x1) 990.186 8.355 0.16 | 41257.808 27.962 0.25 119378.472 24.976 0.42
o | MatNet(x8) 974.015 6.485 0.22 37060.391 12.766 0.32 111725.107 16.338 0.68
20 | UniteFormer-E(x1) 968.487  5.783 0.19 | 40601.853 23.299 0.25 112460.491 18.192 0.45
© | UniteFormer-E(x8) 942.392  3.040 0.23 36259.083  9.485 0.38 110828.859 14.657 0.72
POMO(x1) 980.137  7.893 0.11 36514.578  9.260 0.18 113101.594 17.037 0.35
POMO(x8) 953.564  4.727 0.22 36004.930 7.561 0.26 110642211 14.488 0.45
» | LEHD Greedy 1411.705  5.517 0.28 43841.532 11.734 0.45 116158.490 15.194 0.77
8 | UniteFormer-X(x1) 953203  4.266 0.19 35784.084 8.945 0.26 112799.943  13.897 0.45
= | UniteFormer-X(x8) 934.185 2.116 0.22 34971.075 5.353 0.38 105541.708  7.855 0.73
DAR(x1) 959.278  5.060 0.18 35482.062  7.426 0.26 109347.025 9.449 0.44
o | DAR(x8) 937.261 2.568 0.24 34990.418 5.530 0.37 104165.243  7.758 0.62
2 | ICAM(x1) 960.942  5.272 0.17 38232511 11.489 0.25 117786.209 15.771 0.42
E ICAM(x8) 940.882 3.003 0.24 35881.780 7.338 0.39 110088.655 10.823 0.67
20 | UniteFormer-XE(x1) | 951.386  3.994 0.19 36184.185 7.306 0.25 107177.981  8.798 0.45
© | UniteFormer-XE(x8) | 932.698 1.940 0.22 34989.507 5.146 0.38 104911.995  6.889 0.72

modality. This result highlights the strength of our unified training approach in producing a robust
and versatile model.

Further architectural ablation studies of the three components of the UniteFormer architecture are
reported in Appendix [E] These experimental results also demonstrate their positive contribution to
the UniteFormer, proving the effectiveness and indispensability of each component.



4.3 Generalization

Table 3] summarizes the results on real-world TSPLIB [36] and CVRPLIB [39] instances of various
sizes and distributions. We categorize them into three groups by size: N=1-100, N=101-300, and
N=301-500. Generalization results show that the UniteFormer performs best on instances with no
more than 100 nodes and slightly less effectively on 101-300 node instances. Overall, UniteFormer
shows excellent generalization ability on both TSPLIB and CVRPLIB. For TSP, UniteFormer
generalizes better with node-only input. For CVRP, it performs exceptionally well with hybrid input.

Additionally, to demonstrate UniteFormer’s strong generalization and scalability, we extend our
investigation to the Asymmetric Traveling Salesman Problem (ATSP). Due to the asymmetric nature
of ATSP, we can naturally solve it using the edge-based UniteFormer framework, which also exhibits
superior performance. The detailed experimental results are shown in Appendix [F}

5 Conclusion, Limitation and Future work

Conclusion: In this work, we propose UniteFormer, a unified neural solver that supports three
input types through a single model trained via joint edge-node modalities. We propose a mixed
encoder that integrates GCNs and attention mechanisms to collaboratively process node and edge
features, capturing cross-modal interactions. Furthermore, we implement a parallel decoding strategy
and enhance the decoder’s representation ability by adding query mapping and nonlinear layers.
Extensive experimental comparisons with other modality-specific models demonstrate UniteFormer’s
promising performance. Due to the efficiency and practicality of UniteFormer, we believe it can
provide valuable insights and inspire follow-up work to explore more powerful unified neural solvers
for edge-node modalities.

Limitation and Future Work: Although our UniteFormer performs well on all three input types,
its heavy encoder results in high training and equipment demands, making large-scale problem
training challenging. Trimming UniteFormer into a lightweight model for large-scale VRPs [48] is a
worthwhile direction for future research. Another promising future work is to extend UniteFormer to
solve multi-task VRPs [50,|5] with joint modalities.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims presented in the abstract and introduction of this article clearly
reflect the contribution of the paper and are consistent with the experimental results.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations of our method is addressed in the conclusion, Limitation and
Future (Section [3)).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our experiments are reproducible, as we clearly articulate our methodology in
the manuscript. In Section[3] we provide the architecture of the main model, and in Section[d]
and Appendix D] we detail the experimental settings including parameters, optimizers, and
other configurations.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

14



5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Due to certain corporate restrictions, we are unable to release the code at this
time, but it will be made available publicly upon acceptance. The implementation methods
and detailed descriptions of the experiments can be found in Section [3]and Section ] as
well as in Appendix [C|and Appendix D}

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provided the all experimental settings in Section[4]and Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experimental results are obtained by testing a set of 10,000 uniformly
generated instances from different problems, and we report relevant metrics, such as path
length and gap, to evaluate the performance. Our model follows the POMO training
algorithm [24]], which has been subjected to t-test.

Guidelines:

* The answer NA means that the paper does not include experiments.
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10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The GPU used in our experiments is detailed in Section 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have thoroughly examined the NeurIPS Code of Ethics to ensure that our
submission adheres to the anonymization requirements and does not include any identifying
details that could compromise the double-blind review process.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: Both potential positive and negative societal impacts of our work are analyzed
in Section [5)and Appendix [G|

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: The data we utilize consists of node coordinates, detailed in Section 4] and
Appendix [C] Additionally, the unified Neural Solver is employed to construct tours for
VRPs. We assess that there are no significant risks of misuse associated with our paper.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited the original paper of the assets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

17



13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We will make our source code publicly available upon the acceptance of this
paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, and non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details of Attention Computation

A.1 Mixed-Score Attention

To incorporate external relational priors—such as graph adjacency or edge distances—alongside
content-based similarity scores, we replace each head’s standard scaled dot-product attention with a
mixed-score attention mechanism, while preserving the remaining components of the Transformer’s
multi-head attention block (as in MatNet [23]]). The original scaled dot-product attention computes
attention weights by applying SoftMax to the pairwise scaled dot-products of queries and keys and
then uses those weights to form a weighted sum of the value vectors. By contrast, the mixed-score
attention supplements these internal attention scores with externally given relationship scores for
every query-key pair. Specifically, the mixed-score attention mechanism mixes the internal attention
scores and the external relationship scores before passing them to the next "SoftMax" stage. Similar
mixing strategies have been explored by [38]] and [11]].

Formally, by defining dimensions d, and d,,, we compute the key k; € R% value v; € R%, and
query ¢; € R4 for each node by projecting the embedding h;:

¢ =W%h;, ki=WFEnh, v =W"h,, (21)

where W< e R+ xdr WK ¢ RdxXdn and WV e R%*dn gre learnable weight matrices.

Internal and External Scores: Afterwards, we compute the internal attention scores Si?‘ by taking

the scaled dot-products of each query—key pair and derive the external relationship scores Sf;“ from
the edge weight matrix D;;:

S;Ij“ Y dJ7 S;I;t c ]Rnxn, (22)
VvV Uk
S = go(Dyj), St e RV, (23)

where Sfj‘-‘ denotes internal attention scores, S‘f}“ denotes the external relationship scores, D;; € R"*"

encodes a known relationship (edge weight matrix) between positions (4, j), and gy is an optional
learnable scalar or nonlinear mapping applied element-wise.

Mixed Score via Element-Wise MLP: For each attention head i, we employ a compact two-layer
perceptron fy, : R? — R, parameterized by ¢, = {W{, blt, W[, bk}, to fuse the internal and
external scores on an element-wise basis:

SN = fo, (S, S5 = W3 o (W [S)), S5 +bY) + b, (24)

ij s Pij ij 7 Mg

where o is the ReLLU function, and S;‘}ix denotes the mixed scores.

Softmax Normalization: Then, we perform softmax normalization on the mixed scores S;‘]‘»ix:

L (s ,
Qij = n Gmix) ’ (25)
Zj/=1 eXP( ij’ )
Subsequently, the attention vector a?j is transformed into a convex combination of the messages v;-”,
and the specific-head attention output z is obtained:

rn

n
th:Za?jv?, Zh =20, ... 2] e RInXdw, (26)
=1

A.2 Self-Attention

Self-attention is a mechanism that dynamically assigns weights to each position within a sequence,
capturing global dependencies by allowing each element in the sequence to interact with itself
and other elements. We interpret the attention mechanism in [40] as a weighted message-passing
algorithm between nodes in a graph. The weight of the message value that a node receives from
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its neighbors depends on the compatibility of its query with the keys of its neighbors. Formally, we
define dimensions dj and d,, and compute the key k; € R, value v; € R% and query g; € R for
each node by projecting the embedding h;:

g =W%hi, ki=WFEn;, v =W"h,, 27
where W& € R¥%>dn WK c Rdkxdn and WV € R%*?r are learnable weight matrices. From the

queries and keys, we compute the compatibility u;; € R of the query ¢; of node 7 with the key k; of
node j as the (scaled) dot product:

Vd ?

qF'k; if i adi .
L tt

- { if 7 a Ja.lcen 0J 28)
—oo. otherwise

From the compatibilities u;;, we compute the attention weights a;; € [0, 1] using a softmax function:

o 29
= Zj, et 29
After that, the vector h} that is received by node ¢ is the convex combination of messages v,
h; = Zaijvj. (30)
J

Finally, we normalize the vector h; and use the feed-forward sublayer to compute the node-by-node
projection:

b = NORM (h; + h%), (31)
he = NORM (i + FF (i), (32)
where, FF(-) is a feed-forward layer, and NORM(-) applies batch normalization. The feed-forward
sublayer computes node-wise projections using a hidden (sub)sublayer with dimension dg = 512

and a ReLU activation. We use batch normalization with learnable dj,-dimensional affine parameters
wP™ and bP". The two sublayers are defined in detail as follows:

FF(h;) = WHT . ReLUWTh; 4 10) 4 p1, (33)
BN(h;) = wP" ® BN(h;) + b°". (34)

Here, ® denotes the element-wise product and BN refers to batch normalization without affine
transformation.

B Training Details

We adopt the same reinforcement learning framework as POMO [24], using the REINFORCE
algorithm [46] to train the UniteFormer. At each training step, we sample a set of n solution
trajectories {7!,-+,7™}, compute their corresponding rewards f(7*), and apply approximate gradient
ascent to maximize the expected return £. The gradient of the objective £(6) with respect to model
parameters 6 is estimated as:

D_L(f(7") = b(5))V log po(7']s)], (35)

i=1

VoL(0) ~

S|

where b () is a baseline used to reduce variance in the gradient estimate. Following common practice,
we use a shared baseline defined as the average reward across the sampled trajectories:

. 1 <& )
b"(8) = bshared(s) = n Z (), (36)
i=1

and the probability of a trajectory 7% under the policy is factorized as:
M
po(r" | s) =[] po(ai | s,ai,_1), (37)
t=2

where a! denotes the action at step ¢ in trajectory 7°, and M is the length of the solution.
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Table 4: Experiment Hyperparameters.

Hyperparameter Value || Hyperparameter Value
Model Training

Embedding dimension d, 256 Input choice . edge/node/edge+node
Number of attention heads M}, 16 Batch size 1024/256/64
Number of encoder layers L. 3 Optimizer Adam
Number of GCN layers L, 3 Learning rate (LR)  4e~*
Number of MLP layers L), 3 Weight decay le 6
K-nearest neighbors 20 LR scheduler MultiStepLLR
Feedforward hidden dimension d; 512 LR milestones [901,1001]
Feedforward activation ReLU || LR gamma 0.1

Tanh clipping & 10.0 || Train data per epoch 100,000
Normalization Batch || Training epochs 1010

C Implementation Details for TSP and CVRP

C.1 Problem Setup

TSP. Solving a TSP instance with n nodes requires finding the shortest loop that visits each node
exactly once and eventually returns to the first visited node, where the distance between two nodes is
the Euclidean distance. We generate TSP instances following AM [22], where the coordinates of n
nodes are randomly and uniformly sampled from the unit square.

CVRP. The CVRP instance involves n customer nodes and one depot node, where the coordinates
of the customer nodes and the depot node are uniformly sampled from the unit square. Each customer

node ¢ has a normalized demand 0; = ¢;/D, where §; is sampled from the discrete set {1, 2, ...,9}
and the vehicle capacity D = 30, 40, 50 for problem sizes N = 20, 50, 100, respectively. A delivery
vehicle with unit capacity makes round trips starting and ending at the depot, delivering goods to
customer nodes according to their demands and replenishing inventory at the depot, where each
customer node is only allowed to be visited once. Our objective is to determine the shortest feasible
set of routes that visits all nodes while respecting the vehicle’s capacity constraint D.

C.2 Implementation Details

For a TSP/CVRP instance G = {X, E'}, the node features {x1, ..., z, } are the 2D-coordinates of
the n nodes in the graph, and the edge features e(x;, z;) € E are the edges between nodes x; and z;
in the graph G. Our UniteFormer supports three input modalities: 1) Edge-only input, where only
edge weights E are provided; 2) Node-only input, where only node coordinates X are provided; 3)
Hybrid input, where both node coordinates X and edge weights E are available.

To formalize this, we introduce a modality-selection function v, € {0, 1,2}, where

0, edge-only input,
1. = { 1, node-only input, (33)
2, hybrid input.

During training, we employ the REINFORCE algorithm to randomly select v at each batch. This
stochastic modality sampling encourages the model to learn robust representations under all three
input scenarios.

D Experimental Details for UniteFormer

D.1 Experiment Baselines

1) Traditional Solvers: For TSP, we use the non-learning solvers Concorde [8], LKH3 [14]], and
OR-Tools [25]], which are known for providing strong results on TSP. Consistent with prior works [24]
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Table 5: Ablations of three key components of UniteFormer on uniformly distributed instances.

TSP50 w.o. self-attention w.o0. node-focused sub w.o0. edge-aware sub-E UniteFormer
Len. Gap(%) Time(m)| Len. Gap(%) Time(m)| Len. Gap(%) Time(m)| Len. Gap(%) Time(m)
| Concorde | 5691  0.000 23.53 | 5.691  0.000 2353 | 5.691  0.000 2353 | 5.691  0.000 23.53
g, | input-edge(x1) | 5.699  0.126 0.32 5.697  0.097 0.34 6.402  12.490 0.32 5.697  0.095 0.32
2 | input-edge(x8) | 5.692  0.007 1.01 5.692  0.004 1.15 5765  1.294 1.06 5.692  0.004 1.05
3 | input-node(x1) | 5.697  0.098 0.31 5.695  0.069 034 |5.6978 0.111 0.33 5.696  0.072 0.32
2 | input-node(x8) | 5.692  0.009 1.02 5.692  0.004 1.14 5.692  0.006 1.06 5.692  0.004 1.04
2 | input-XE(x1) | 5.695  0.068 0.31 5.695  0.054 0.35 5.697  0.105 0.35 5.695  0.055 0.32
> | input-XE(x8) | 5.692  0.004 1.02 5.692  0.003 1.16 5.692  0.005 1.08 5.692  0.003 1.04
CVRP50 w.o. self-attention w.0. node-focused sub w.0. edge-aware sub-E UniteFormer
Len. Gap(%) Time(m)| Len. Gap(%) Time(mn)| Len. Gap(%) Time(m)| Len. Gap(%) Time(in)
| LKH3 [ 10.347  0.000 8.52h |10.347  0.000 8.52h | 10.347  0.000 8.52h |10.347  0.000 8.52h

input-edge(x1) | 10.483  1.312 0.54 10.529 1.763 0.58

15.111 46.043 0.56 ‘10.471 1.204 0.56

input-edge(x8) | 10.426  0.770 1.24 10.434 0.841 1.32 14203 37.266 1.29 10.416  0.668 1.26
10.472  1.206 0.56
input-node(x8) | 10.421  0.721 1.24 10.461 1.103 1.26

input-XE(x1) | 10.470 1.192 0.56
input-XE(x8) | 10.417  0.680 1.25

10.531 1.781 0.59
10.453  1.028 1.35

10.660  3.028 0.56 10.465 1.139 0.56
10.526  1.734 1.28 10.415  0.660 1.26

X+E | node | edge

input-node(x1) | 10.490  1.379 0.54 10.544  1.909 0.58 10.677  3.192 0.56
10.537 1.835 1.28 10.419  0.694 1.26

31|, we calculate the performance gap relative to Concorde. For CVRP, we use the non-learning
solvers LKH3 [[14]], HGS [41]], and OR-Tools [25]]. We calculate the performance gap relative to
LKH3.

2) Learning-based Solvers: Edge-only input: We compare with the current state-of-the-art Mat-
Net [23]] and GREAT [28]], both of which use edge relationships as input for the problems. Among
them, MatNet is retrained and evaluated on symmetric instances according to the original model
design. Since GREAT has not published the code and data, the results are taken from their paper.
Additionally, to fairly compare POMO-based models with UniteFormer, we also re-implemented
POMO using edge-only input (denoted as POMO-edge). Node-only input: We use the public models
of the classic node-based POMO [24]] and LEHD [31]] for comparative testing. Hybrid input: GCN-
BS [18], DAR [44] and ICAM [49] all use edge and node as model input. Since the codes of DAR
and ICAM are unavailable, we re-implement and retrain DAR and ICAM according to the official
settings, and the number of training epochs and data sets are consistent with our UniteFormer.

D.2 Experimental Hyperparameters

We report the hyperparameter details common across the main experiments in Table 4] In the table,
"Input choice" indicates that during training we randomly select one of the three input modalities for
each batch. We employ three layers for the GCN, the MLP, and the node-focused sub-encoder. All
normalization operations within the model are implemented using batch normalization [16].

E Ablation Study of UniteFormer Architecture

Table 5] reports ablation studies comparing UniteFormer against three structural variants to isolate the
contributions of each component. One may ask: why incorporate self-attention into the edge-aware
sub-encoder? Why disable the node-focused sub-encoder when edge-only input is used? And what if
the edge-aware sub-encoder were to operate solely on edge features, ignoring node attributes?

To answer these questions, we design three ablations: The first variant removes self-attention from the
edge-aware sub-encoder (denoted by w.o. self-attention). The second variant adds the node-focused
sub-encoder, transferring temporary node features to it when edge is as input (denoted by w.o. node-
focused sub). The third variant feeds only edge features into the edge-aware sub-encoder, setting
node features to zero embeddings (denoted as w.o. edge-aware sub-E). Across all input modalities,
each variant trails the full UniteFormer configuration, as shown in Table E} These results confirm
that (a) self-attention in the edge-aware encoder is crucial for capturing edge-node interactions, (b)
adding the node-focused sub-branch under edge-only input degrades performance, and (c) jointly
leveraging both node and edge features yields superior representations. Overall, the ablation study
demonstrates each component’s positive contribution to the model and validates the effectiveness and
design rationality of the UniteFormer architecture.
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Table 6: Experimental results on 10,000 instances of ATSP.

Method ATSP20 ’ ATSP50 . ATSP100 ,
Len. Gap(%) Time(m) | Len. Gap(%) Time(m)| Len. Gap(%) Time(m)

CPLEX 1.540 0.000 12.14 | 1.559 0.000 60.03 1.571 0.000 5.01h
Nearest Neighbor | 2.010 30.390 - 2.101 34.610 - 2.140 36.100 -
Nearest Insertion 1.800 16.560 - 1.950 25.160 - 2.050 30.790 -
Furthest Insertion 1.710 11.230 - 1.840 18.220 - 1.940 23.370 -
LKH3 1.540 0.000 0.12 1.560 0.000 0.24 1.570  0.000 1.12
MatNet(x1) 1.548 0.533 0.06 1.580 1.350 0.15 1.622 3.242 0.62
MatNet(x8) 1.542 0.084 0.31 1.566 0.472 1.23 1.603 2.086 4.24
MatNet(x128) 1.540 0.012 4.72 1.561 0.144 16.55 1.590 0.934 61.03

UniteFormer(x1) 1.543  0.245 0.15 1.573 0917 0.24 1.621 3.170 0.76
UniteFormer(x8) 1.540 0.043 0.36 1.564 0.339 1.22 1.600 1.841 5.07
UniteFormer(x128) | 1.540  0.001 4.01 1.561 0.129 18.09 | 1.585 0.880 1.32h

F Asymmetric Traveling Salesman Problem (ATSP)

F.1 Problem Setup

In the classic TSP, the objective is to determine a tour over /V nodes that minimizes the total round-trip
distance. For any two nodes z; and z;, the edge distance satisfies d(«x;, x;) = d(z;, z;), yielding
an N x N symmetric distance matrix. To demonstrate UniteFormer’s strong generalization and
scalability beyond this symmetric setting, we extend our investigation to the Asymmetric Traveling
Salesman Problem (ATSP). In ATSP, one seeks the shortest Hamiltonian circuit in a directed, weighted
graph that visits each vertex exactly once and returns to the start. Unlike the classic TSP, the ATSP’s
distance matrix is non-symmetric, with edge weights satisfying d(xz;, z;) # (z;, z;). Thus, it must
accommodate both directional and weight asymmetries.

Our edge-only UniteFormer framework naturally accommodates these asymmetric instances without
modification and continues to exhibit excellent performance. Following MatNet’s experimental
protocol, we evaluate on tmat class ATSP instances that satisfy the triangle inequality and are widely
used in the operations-research (OR) community [[7]. We solve three problem sizes (N=20, 50, and
100) and confirm that UniteFormer retains its robustness and scalability under the more general ATSP
setting.

F.2 Experiment Results

Our UniteFormer is able to take edge-only information as input and can be easily extended to solve
ATSP. We use randomly generated asymmetric distance matrices as input. Both the training and test
datasets follow the data generation method of MatNet.

Table 6] reports the performance of our trained model compared with other representative baseline
algorithms on 10,000 test instances of tmat class ATSP. For each method, we report the average tour
length (shown in units of 10%) and the percentage gap relative to CPLEX’s optimal solutions. One of
the key baselines compared in the table is the MatNet, which is an edge-based construction method
designed for solving ATSP.

The results in Table 6] demonstrate that UniteFormer consistently outperforms MatNet under both
greedy inference (x 1) and instance augmentation (<8, x 128) inference, while maintaining relatively
reasonable inference times. In particular, on the largest ATSP100 instances, our UniteFormer attains
a modest performance advantage, albeit with a slightly increased runtime. These experiments
confirm that our edge-driven UniteFormer achieves competitive performance on ATSP, showcasing
its extensive adaptability and strong generalization. Collectively, they validate the effectiveness of
the UniteFormer architecture for a broad spectrum of optimization challenges.
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G Broader impacts

The paper introduces UniteFormer, a unified neural solver for VRPs that flexibly accommodates
three distinct input modalities through joint edge—node training. This design significantly enhances
the practicality of neural solvers for real-world applications. Moreover, the underlying techniques
generalize beyond VRPs, opening the door to a wide array of combinatorial optimization tasks.

Our experiments demonstrate that, compared to state-of-the-art neural solvers trained on a single
input modality, UniteFormer consistently delivers superior performance across diverse VRP variants.
This unified approach not only streamlines training by eliminating the need for separate models
per modality but also reduces overall engineering complexity. Nonetheless, the heavy encoder
underpinning UniteFormer demands substantial computational resources, which poses a challenge
for scaling to very large problem instances. Future work will focus on architecting more lightweight
yet expressive models to bridge this gap.
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