
A Competitive Analysis of Online Failure-Aware Assignment

Mengjing Chen1 Pingzhong Tang*1 Zihe Wang*2,3 Shenke Xiao1 Xiwang Yang4

1Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
2Gaoling School of Artificial Intelligence, Renmin University of China , Beijing, China

3Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing, China
4Bytedance, Beijing, China

Abstract

Motivated by a new generation of Internet adver-
tising that has emerged in the live streaming e-
commerce markets (e.g., Tiktok) over the past five
years, we study a variant of online bipartite match-
ing problem: advertisers send ad requests to in-
fluencers (aka, key opinion leaders) on a social
media platform. Each influencer has a maximum
number of ad requests she can accommodate. We
assign a fixed number of influencers to an adver-
tiser when she enters the platform. The advertiser
then matches with each of the assigned influencers
with a probability, which can be thought of as a set
of negotiations between the advertiser and the set
of assigned influencers. Unlike the standard online
assignment problems, the outcome of any of these
matches is not revealed throughout the session (ne-
gotiations take time). Our goal is to maximize the
expected number of matches between advertisers
and influencers.
We put forward a new deterministic algorithm with
a competitive ratio of 1/2 and prove that no deter-
ministic algorithm can achieve a better competitive
ratio. We also show that the competitive ratio can
be improved when randomness is allowed. We then
study a setting where a match is successful with
either probability 0 or a fixed p. We present an
optimal randomized algorithm that achieves a com-
petitive ratio of 1− 1/e in this setting.

1 INTRODUCTION

Live streaming e-commerce promotes and sells products
through live webcasts on social media platforms. Over the
past few years, such live streaming e-commerce markets
have grown fiercely. To put the numbers in perspective, in

*corresponding author

China of the year 2019 alone, the total Gross Mechanize Vol-
ume (GMV) of transactions in live streaming e-commerce is
over $63 billion, and the GMV has just doubled in 2020 Ma
[2020]. In these markets, advertisers seek online influencers
to present their products on their live webcasts. Similar to
traditional TV shopping channels, such demonstrations are
more vivid compared to those text and picture ads. Unlike
the TV shopping channels, such ads are personalized, dis-
playing only to a group of buyers known to have higher
conversion rates. It is reported that the conversion rate of
such advertisements is at least 21.1% while that of an ordi-
nary ad is less than 5% Grazian [2019], iResearch [2019].

Advertising is an important way for influencers to monetize
their fame and traffic, so social media giants such as TikTok
and Instagram provide a matching market that facilitates the
cooperation between advertisers and influencers. When an
advertiser enters such a matching market, she can see the
information of all available influencers on the platform and
send advertisement requests to them. Despite having full
information of influencers, it is difficult for an advertiser to
find the most suitable one. On the one hand, the significant
number of influencers makes it impossible for the advertiser
to look through all the information. On the other hand, a
famous influencer can receive many advertisement requests
and reject some due to time capacity. To optimize success-
ful matches between advertisers and influencers, it needs
a centralized matching algorithm that recommends several
selected influencers for each advertiser once she appears
online, without knowing any information about future ad-
vertisers. The advertiser then negotiates with each of these
influencers and matches with a given probability (the out-
come of whether any of these matches is successful will
reveal only after the whole assignment is made). In this
paper, we model this problem as a new variant of the online
assignment problem and provide algorithmic solutions. The
platform’s objective is to maximize the expected number of
successful matches, with each influencer having its service
capacity.

The problem we focus on can be formulated as the online

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

assignment problem with stochastic rewards in the setting
where the outcome of any match is not revealed before the
whole assignment process ends. We call this assignment
problem the failure-aware assignment problem. Despite the
vast literature on online bipartite matching and assignment
problems in the past Karp et al. [1990], Goel and Mehta
[2008], Feldman et al. [2009, 2010], this problem has not
been investigated to the best of our knowledge.

To compare approaches, we define the competitive ratio of
an algorithm to be the ratio of the objective value produced
by the algorithm to that produced by an optimal solution for
the worst-case. In Section 3, we propose a greedy determin-
istic algorithm whose competitive ratio is at least 1/2 and
prove that no deterministic algorithm can achieve a better
competitive ratio. This implies that our algorithm is optimal
among all deterministic algorithms.

In Section 4, we show that the randomized algorithms can
achieve higher competitive ratios even in constrained cases,
and we propose a randomized algorithm with a tight compet-
itive ratio in such cases. This is a theoretical improvement
to our greedy deterministic algorithm proposed in Section 3.
We study the setting where the probabilities of success trans-
actions are either 0 or a fixed value p in Section 5. We
propose an optimal randomized algorithm that achieves a
competitive ratio of 1− 1/e in this setting.

1.1 RELATED WORKS

Our work is closely related to the AdWords problem Mehta
et al. [2005], Devanur and Hayes [2009], Buchbinder et al.
[2007], which is a generalization of the online bipartite
matching problem. In the AdWords problem, an Internet
search engine company selects an advertisement to dis-
play when each query comes, given the advertisers’ bud-
gets and bids. The company’s goal is to design the allo-
cation rule to maximize its revenue. The AdWords model
looks similar to our model where only one influencer is
recommended to an advertiser. However, the objective val-
ues are evaluated differently by the two problems. For
example, if 1 advertiser with budget 1 is assigned to 2
queries with both bids 0.5, then the advertiser contributes
1 to the revenue of the company, but it only contributes
(1− 0.5)

2 × 0 +
(

1− (1− 0.5)
2
)
× 1 = 0.75 to the tar-

get value of our problem (see Section 2). The AdWords
problem can be formulated as a linear program while our
problem cannot. This difference makes the methods solving
the AdWords problem Mehta et al. [2005], Buchbinder et al.
[2007] not suitable for our problem.

The AdWords problem, as well as the online bipartite match-
ing problem, is a special case of the online submodular
welfare maximization problem Nemhauser et al. [1978],
Fisher et al., Nemhauser and Wolsey [1978], Kapralov et al.
where the objective function is budget-additive. The objec-

tive function is indeed submodular in our problem but not
budget-additive. In the classical submodular welfare maxi-
mization problem, each item (advertiser) is only allowed to
be allocated to one agent (influencer). We explore the more
general setting where multiple influencers are recommended
to each advertiser in our problem. Moreover, we study the
worst-case competitive ratios of randomized algorithms.

Another similar setting is studied in the literature Mehta
et al. [2014], Mehta and Panigrahi [2012], Goyal and Ud-
wani [2020]. They realize the problem of the assignment
failure and initiate the online stochastic assignment problem.
There are some fundamental differences: (1) They focus
on the matching problem where each node cannot match
with more than one other node. At the same time, either the
advertisers or the influencers can have multiple cooperators
in our setting. The matching problem is a special case of
our problem where each influencer’s capacity is 1and the
platform only recommends one available influencer to each
advertiser. (2) In their setting, the outcomes of the success
of matches of previous nodes are known when a new node
arrives, while in our setting, we never know the realization
from beginning to end.

2 PROBLEM FORMULATION

Because our model can be widely used in many scenar-
ios, we will strip the Internet-advertising background from
our model and describe it as an assigning-node-to-arrival
problem as follows. There are n nodes (corresponding to
influencers) and m arrivals (corresponding to advertisers).
These arrivals arrive one by one. For ease of representation,
we number the arrivals 1, 2, . . . ,m by the order they arrive,
that is, arrival 2 arrives after arrival 1, arrival 3 arrives af-
ter arrival 2, etc. When arrival i arrives, we are required
to immediately assign s different nodes to it. For each ar-
rival i and each node j, if we assign node j to arrival i,
arrival i will accept node j with probability pij . Whether
an arrival accepts a node is independent of each other and
remains unknown to us along the whole process. The proba-
bilities pi1, pi2, . . . , pin are revealed to us immediately after
arrival i arrives. Moreover, each node j has a capacity cj ,
meaning the maximum number of arrivals to which it is
able to be successfully assigned. More precisely, let Pij de-
note a random variable whose value is 1 with probability
pij and 0 with probability 1− pij (these random variables
are mutually independent), then for node j, if we assign
it to arrivals i1, i2, . . . , ik, it will be successfully assigned
to E (min {Pi1j + · · ·+ Pikj , cj}) arrivals in expectation1.
Our target is to maximize the expected number of successful
assignments, or formally, to solve the following program in
an online fashion.

1Since we only care the expected number of successful assign-
ments, it doesn’t matter to which arrivals this node is successfully
assigned.

max
∑
j

E

(
min

{∑
i

xijPij , cj

})
s.t.

∑
j

xij = s, for all i,

xij ∈ {0, 1} , for all i, j.

In the online setting, the values of x1j’s, x2j’s, . . . are deter-
mined in order, and when determining the value of xij , we
don’t know the values of pi′j′’s for i′ > i.

Remark Note that assigning a node to arrival is always
no worse than not assigning it whenever an arrival arrives,
so we assume exactly s nodes are assigned to the arrival
in the setting instead of no more than s nodes. This also
implies s ≤ n. If s > n, we can add some hypothetical
nodes, which are not accepted by any arrival (i.e., accepted
with probability 0), to make n ≥ s.

Example 1. Consider an instance with 2 arrivals and 2
nodes, and s = 1, i.e., each time an arrival arrives, we
only assign one node to it. In this instance, c1 = c2 = 1,
p11 = p12 = p21 = 0.5 and p22 = 0. Suppose an al-
gorithm A assigns node 1 to arrival 1. When arrival 2
arrives, since p22 = 1, it is optimal for A to assign node 1
to arrival 2. The objective value produced by A is exactly
E (min {P11 + P21, 1}) = 0.75 (recall that P11 and P12

are i.i.d. random variables which take value 1 with prob-
ability 0.5 and 0 with probability 0.5). Note the optimal
assignment for this example would assign node 2 to arrival
1 and node 1 to arrival 2, and the optimal objective value is
E (min {P12, 1}) + E (min {P21, 1}) = 1.

Measurement Given an algorithm A and an instance
ins of this problem, we define A (ins) as the expected ob-
jective value produced by A, i.e., the expected value of∑
j E (min {

∑
i xijPij , cj}) where xij’s are outputted by

A when running on the instance ins. Here we say “expected
value” because A may be a randomized algorithm. Further-
more, we define the competitive ratio of an algorithm A
as:

inf
ins

A (ins)

maxA′ A′ (ins)
.

The competitive ratio of an algorithm is the ratio of the
expected objective value produced by the algorithm to that
produced by an optimal assignment under the worst-case
instance.

3 DETERMINISTIC ALGORITHM

In this section, we put our attention to deterministic algo-
rithms. We first propose a deterministic algorithm with a
competitive ratio of 1/2; we prove 1/2 is the upper bound

of the competitive ratio that deterministic algorithms can
achieve.

Our algorithm is a greedy algorithm whose greedy policy
is to assign nodes to increase the current objective value as
much as possible whenever an arrival arrives. Formally, we
define

wij = E

(
min

{
Pij +

∑
i′:i′<i

xi′jPi′j , cj

})

− E

(
min

{ ∑
i′:i′<i

xi′jPi′j , cj

})
.

The greedy algorithm assigns xij1 , . . . , xijs to 1 (and as-
signs xij′ ’s to 0 for j′ /∈ {j1, . . . , js}) where j1, . . . , js are
indices that maximize

∑s
k=1 wijk .

To simplify the representation, we denote by pt the proba-
bility that the random variable min

{∑
i′:i′<i xi′jPi′j , cj

}
takes value t, then we have

E

(
min

{
Pij +

∑
i′:i′<i

xi′jPi′j , cj

})

=

cj−1∑
t=1

t (pt (1− pij) + pt−1pij) + cj
(
pcj + pcj−1pij

)
=

cj∑
t=1

tpt + pij
(
1− pcj

)
= E

(
min

{ ∑
i′:i′<i

xi′jPi′j , cj

})
+ pij

(
1− pcj

)
,

i.e.,

wij = pij
(
1− pcj

)
. (1)

Hence, we can maintain the distribution of
min

{∑
i′:i′<i xi′jPi′j , cj

}
so that for each arrival,

the algorithm takes O (n log n) time to find the nodes
j1, . . . , js to assign plus O (

∑s
k=1 cjs) time to update the

distribution of min
{∑

i′:i′<i xi′jPi′j , cj
}

. We call this
algorithm GREEDY.

Theorem 1. GREEDY has a competitive ratio of at least
1/2.

Proof. Suppose when following the assignment produced
by GREEDY, node j is successfully assigned to αjcj ar-
rivals in expectation, and when following an optimal as-
signment, node j is successfully assigned to bj arrivals in
expectation. Let ALG be the objective value when follow-
ing the assignment produced by GREEDY, and let OPT be
the objective value when following the optimal assignment.
We have immediately OPT =

∑
j bj and

ALG =
∑
j

αjcj ≥
∑
j

αjbj . (2)

On the other hand, suppose for arrival i, the optimal solution
assigns nodes ji1, . . . , jis while GREEDY assigns nodes
j′i1, . . . , j

′
is. By the greedy policy of GREEDY, we have (in

this proof, the variables xij’s and wij’s refer to the ones
produced by GREEDY)

s∑
k=1

wij′ik ≥
s∑

k=1

wijik (3)

Now let us fix a value k ∈ {1, . . . , s}, and suppose
min

{∑
i′:i′<i xi′jikPi′jik , cjik

}
takes value k with proba-

bility pk, then by (1) we have

wijik = pijik

(
1− pcjik

)
≥ pijik (1− αjik) (4)

where the last inequality holds because

αjik =
E (min {

∑
i′ xi′jikPi′jik , cjik})
cjik

≥
E
(
min

{∑
i′:i′<i xi′jikPi′jik , cj

})
cjik

≥
pcjik cjik
cjik

= pcjik .

By summing up (4) for k from 1 to s, we have

s∑
k=1

wijik ≥
s∑

k=1

pijik (1− αjik) . (5)

Therefore,

ALG =
∑
i

s∑
k=1

wij′ik ≥
∑
i

s∑
k=1

wijik (by (3))

≥
∑
i

s∑
k=1

pijik (1− αjik) (by (5))

=
∑
j

∑
(i,k):jik=j

(1− αj) pij ≥
∑
j

(1− αj) bj .

Combined with (2), we have

ALG ≥ 1

2

∑
j

αjbj +
∑
j

(1− αj) bj


=

1

2

∑
j

bj =
1

2
OPT.

Note the argument above works for any instance of the
problem, so the competitive ratio of GREEDY is at least
1/2.

The following theorem shows that no deterministic algo-
rithm can achieve a competitive ratio better than 1/2, mean-
ing that GREEDY is optimal among all deterministic algo-
rithms in the sense of competitive ratio.

Theorem 2. For any deterministic algorithm A for our
problem, the competitive ratio of A is no more than 1/2
even if there are only 2 arrivals and only 1 node is allowed
to be assigned to each arrival, i.e.,

inf ins
A(ins)

maxA′ A′(ins) ≤ inf ins:n≤2,s=1
A(ins)

maxA′ A′(ins) ≤
1
2 .

Proof. We construct an instance I1 with 2 arrivals and 2
nodes, and let c1 = c2 = 1, p11 = p12 = p21 = 1, and
p22 = 0. In addition, we construct another instance I2 that is
almost the same as I1 except that p21 = 0 and p22 = 1. For
I1, an algorithm can assign node 2 to arrival 1 and assign
node 1 to arrival 2 to achieve an objective value 2. For I2,
the objective value 2 can also be achieved by assigning node
1 to arrival 1 and assigning node 2 to arrival 2. Hence, we
have maxA′ A′ (I1) ≥ 2 and maxA′ A′ (I2) ≥ 2.

Now we compare the behavior of A when running on I1
and I2 respectively. Note when dealing with arrival 1, the
information given to A is the same, and since A is a deter-
ministic algorithm, it must assign the same node to arrival
1. If A assigns node 1 to arrival 1, then on instance I1, no
arrival will accept node 2 (since p22 = 0), thus A (I1) = 1.
Similarly, if A assigns node 2 to arrival 1, then no arrival
will accept node 1 on instance I2, thus A (I2) = 1. Then
we have

inf ins∈{I1,I2}
A(ins)

maxA′ A′(ins) ≤
1
2 ,

so the competitive ratio of A is at most 1/2.

4 RANDOMIZED ALGORITHM

We have proven the optimal competitive ratio of determin-
istic algorithms is 1/2. One may ask whether higher com-
petitive ratios can be achieved if randomized algorithms are
allowed. The answer is yes. In this section, we will see that
randomness helps improve the competitive ratio even in the
very constrained case where s = 1.

Recall that our optimal deterministic algorithm GREEDY
greedily assigns the node j that maximizes wij whenever an
arrival i arrives. Our randomized algorithm would consider
wij’s as the weights and randomly assign a node accord-
ing to these weights. Also by observing that when arrival
i comes, there is no benefit to assign a node whose wij
is not the largest min {m− i+ 1, n} ones (for example,
it is always optimal to assign the node with the largest
wij to the last arrival), our randomized algorithm only
chooses the node from those whose wij’s are the largest
min {m− i+ 1, n} ones. We call this algorithm RAN-
DOM, which is formally described in Algorithm 1. We
will show that RANDOM achieves a higher competitive
ratio, which is also the optimal randomized algorithm in this
case.

The following theorem shows that the competitive ratio
of RANDOM is at least 3/4 if there are no more than 2

Algorithm 1 RANDOM

When arrival i arrives,

1. For all j, let

wij = E

(
min

{
Pij +

∑
i′:i′<i

xi′jPi′j , cj

})

− E

(
min

{ ∑
i′:i′<i

xi′jPi′j , cj

})
.

Like the deterministic case, wij’s can be computed
efficiently by maintaining the distribution of
min

{∑
i′:i′<i xi′jPi′j , cj

}
.

2. Let k = min {m− i+ 1, n}, and find the k largest
wij’s: wij1 , wij2 , . . . , wijk .

3. Assign node jt with probability
wijt/ (wij1 + wij2 + · · ·+ wijk) to arrival i.

arrivals and only 1 node is allowed to be assigned to each
arrival. Note that though the sketch of RANDOM is similar
to the GREEDY, the proof techniques are pretty different.
Compared with Theorem 2, RANDOM indeed improves the
competitive ratio via randomness.

Theorem 3. RANDOM has a competitive ratio of at least
3/4 if there are no more than 2 arrivals and only 1 node is
allowed to be assigned to each arrival.

inf ins:n≤2,s=1
RANDOM(ins)
maxA′ A′(ins) ≥

3
4 .

Proof. In this proof, we will compare the assignment pro-
duced by RANDOM with an optimal assignment. To avoid
confusion, we use xij’s to refer to the ones produced by the
optimal assignment, while we use x̄ij’s to refer to the ones
produced by RANDOM (so x̄ij’s are random variables).
We assume the optimal assignment assigns node ji to ar-
rival i while RANDOM assigns node j̄i to arrival i. Note
that ji and j̄i are respectively functions of xi1, xi2, . . . , xin
and x̄i1, x̄i2, . . . , x̄in, thus j̄i is also a random variable. We
define

OPTi = EX

(
min

{
Piji +

∑
i′:i′<i

xi′jiPi′ji , cji

})

− EX

(
min

{ ∑
i′:i′<i

xi′jiPi′ji , cji

})
and

ALGi = EX

(
min

{
Pij̄i +

∑
i′:i′<i

x̄i′ j̄iPi′ j̄i , cj̄i

})

− EX

(
min

{ ∑
i′:i′<i

x̄i′ j̄iPi′ j̄i , cj̄i

})

where EX means the expectation is taken over all Pi′j’s,
thus ALGi is a random variable. Note by (1) we have

OPT1 = p1j1 , (6)
ALG1 = p1j̄1 , (7)
OPT2 = p2j2 (1− x1j2 [cj2 ≤ 1] p1j2) , (8)

where [condition] is an indicator that equals to 1 if the con-
dition is true and 0 otherwise. Now the competitive ratio of
the randomized algorithm can be expressed as

min

∑
i E (ALGi)∑
i OPTi

,

where the minimum is taken over instances.

We first analyze ALG1. Assume p1`1 and p1`2 are the largest
2 ones among all p1j’s. Recall that when RANDOM deals
with arrival 1, w1j’s are exactly p1j’s, so

E (ALG1) = E
(
p1j̄1

)
(by (7))

=
p1`1

p1`1 + p1`2

· p1`1 +
p1`2

p1`1 + p1`2

· p1`2 (9)

=
1 + (p1`2/p1`1)

2

1 + p1`2/p1`1

· p1`1

≥ 2
(√

2− 1
)

OPT1, (10)

where the inequality (10) holds by (6) and taking the mini-
mum of the function

(
1 + t2

)
/ (1 + t) over [0, 1].

We then analyze ALG2. According to the rule of RAN-
DOM, since arrival 2 is the last arrival, the algorithm will
deterministically assign node j that maximizes w2j , i.e.,

ALG2 ≥ w2j2 = p2j2 (1− x̄1j2 [cj2 ≤ 1] p1j2) . (by (1))

Hence,

E (ALG2) ≥ p2j2 (1− E (x̄1j2) [cj2 ≤ 1] p1j2) . (11)

After comparing (11) with (8), we can see if E (x̄1j2) ≤
x1j2 , we have E (ALG2) ≥ OPT2, thus

E (ALG1) + E (ALG2) ≥ 2
(√

2− 1
)

OPT1 + OPT2

≥ 3 (OPT1 + OPT2) /4,

which completes the proof. Hence, in the rest of the proof,
we assume E (x̄1j2) > x1j2 . With this assumption, we can
assert that RANDOM has a non-zero probability to assign
node j2 to arrival 1, which means j2 ∈ {`1, `2} by the rules
of RANDOM, and the optimal assignment does not assign
node j2 to arrival 1, which means j1 6= j2. Furthermore,
we can assume j1 ∈ {`1, `2}, otherwise we can change j1
to an index in {`1, `2} \ {j2}, which does not reduce the
target value of the optimal solution. As a result, we have
{j1, j2} = {`1, `2}. Hence, we can rewrite (9) as

E (ALG1) ≥
p2

1j1
+ p2

1j2

p1j1 + p1j2

. (12)

Also, according to the rules of RANDOM, node j2 is as-
signed to arrival 1 with probability p1j2/ (p1j1 + p1j2),
so E (x̄1j2) = p1j2/ (p1j1 + p1j2), and

E (ALG2) ≥ OPT2

(
1−

p2
1j2

p1j1 + p1j2

)
. (13)

By combining (6), (10) and (13), we have

E (ALG1) + E (ALG2)

OPT1 + OPT2

≥

p21j1
+p21j2

p1j1+p1j2
+ OPT2

(
1− p21j2

p1j1+p1j2

)
p1j1 + OPT2

≥ min

 p2
1j1

+ p2
1j2

p1j1 (p1j1 + p1j2)
,

p21j1
p1j1+p1j2

+ 1

p1j1 + 1

 (14)

≥ 3

4
. (15)

Here the inequality (14) uses the fact that
(ka+ b) / (a+ c) ≥ min {b/c, (k + b) / (1 + c)} for 0 ≤
a, b, c ≤ 1, and the inequality (15) holds because it is equiv-
alent to two inequalities corresponding to the two parts of
“min”, and each inequality can be turned into a quadratic
inequality, which is easy to validate.

The competitive ratio of 3/4 is tight. We formalize it as the
following theorem.

Theorem 4. For any (randomized) algorithm A for our
problem, the competitive ratio of A is no more than 3/4
even if there are no more than 2 arrivals and only 1 node is
allowed to be assigned to each arrival, i.e.,

inf ins
A(ins)

maxA′ A′(ins) ≤ inf ins:n≤2,s=1
A(ins)

maxA′ A′(ins) ≤
3
4 .

Proof. By Yao’s lemma Yao [1977], we only need to con-
sider deterministic algorithms on randomized inputs. We
construct a randomized instance I with 2 arrivals and 2
nodes, and let c1 = c2 = 1, p11 = p12. Moreover, we set
p21 = 1, p22 = 0 with probability 1/2 and p21 = 0, p22 = 1
with probability 1/2. Now consider the best deterministic al-
gorithm on this randomized instance. No matter which node
the algorithm assigns to arrival 1, the expected competitive
ratio is (1 + 1/2)/2 = 3/4, so the competitive ratio of any
(randomized) algorithm cannot exceed 3/4.

Unfortunately, RANDOM may perform asymptotically bad
when the number of arrivals increases. Consider an instance
where p11 = 1, p12 = · · · = p1n = ε, and pij = 0 for
all i ≥ 2 and all j. An optimal assignment would as-
sign node 1 to arrival 1, which obtains a target value of
1. However, RANDOM will produce an expected target

value of
(
1 + (n− 1)ε2

)
/ (1 + (n− 1)ε). So if we take

ε = 1/
√
n− 1, the expected target value produced by RAN-

DOM will converge to 0 when n tends to infinity.

5 RANKING ALGORITHM

In this section, we consider the case where all cj’s are the
same (say c), and each pij is either 0 or a fixed value p
(0 < p ≤ 1). The case can be applied to markets where
the differences of effect and fame of influencers are small.
The social media platforms that mainly display professional
production always have this feature.

For each arrival i, we define the feasible set for arrival i as
Fi = {j | pij > 0}. In this setting, when arrival i comes,
there are possibly multiple j’s that maximize wij’s. We
show that if we choose the nodes according to an order
randomly determined in advance, the competitive ratio can
be improved to 1− 1/e. The idea of this algorithm comes
from the RANKING algorithm in Karp et al. [1990]. We
call this algorithm RANKING, which is formally described
in Algorithm 2. Note the classical online bipartite matching
problem Karp et al. [1990] is exactly a special case in this
setting where p = c = s = 1. Since Karp et al. have proved
that the upper bound for the competitive ratio of the classical
online bipartite matching problem is (1− 1/e) + o(1), our
RANKING algorithm is optimal in this setting.

Algorithm 2 RANKING

1. Sort all nodes in a random order.

2. When arrival i arrives,

(a) For all j, let yij =
∑
i′:i′<i xi′j , i.e. the number

of arrivals to which node j has already been
assigned.

(b) We rename all j’s as ji,1, ji,2, . . . such that
wji,1 = · · · = wji,k1

> wji,k1+1
= · · · =

wji,k2
> · · · , where ji,1 < · · · < ji,k1 ,

ji,k1+1 < · · · < ji,k2 , and so on.
(c) Assign nodes ji,1, . . . , ji,s to arrival i.

Theorem 5. In the special case where all cj’s are the same,
and each pij is either 0 or a fixed value p (0 < p ≤ 1),
RANKING has a competitive ratio of 1− 1/e.

The proof is analogous to the one in Karp et al. [1990]. The
key idea of their proof is to turn the original setting into
a setting where arrivals are known at the beginning while
nodes arrive one by one according to the random order
generated by RANKING instead. However, in our setting,
even when s = 1, one node can be assigned to multiple
arrivals, so it does not make the problem easier to use this
idea directly. We handle this difficulty by allowing nodes to

arrive round after round. This makes our proof much more
complicated.

Proof. We first prove this algorithm has a competitive ratio
of 1− 1/e in the case where s = 1.

Given an order σ of nodes σ1, . . . , σn, we consider a setting
where arrivals are known at the beginning while nodes arrive
one by one instead according to σ. Specifically, node σ1

arrives first, then node σ2 arrives, and so on. When a node
arrives, we are asked to assign it to an arrival that has not
been assigned yet. The process above is repeated m times
(we call one complete process a turn), so a node can be
assigned to multiple arrivals through multiple turns. In this
setting, we denote by time k + n(t− 1) the moment where
node σk in the t-th turn is being assigned. Particularly, when
we say “by time t”, the assigning behavior happening at
time t is not included. We call this new setting σ-DUAL.
For any order σ, we can see that the optimal assignment
in σ-DUAL is the same as the optimal assignment in our
original setting.

Consider the following algorithm named σ-DUAL-
RANKING in the setting σ-DUAL.

Algorithm 3 σ-DUAL-RANKING

1. When node j arrives,

(a) Let i0 be the smallest index in Fi such that no
node has been assigned to arrival i0 yet.

(b) Assign node j0 to arrival i. If such i0 does not
exist, do nothing.

We claim that when the random order drawn by RANKING
is σ, σ-DUAL-RANKING generates the same assignment
as RANKING.

Lemma 1. When the random order drawn by RANKING is
σ, σ-DUAL-RANKING generates the same assignment as
RANKING.

Proof. For ease of presentation, we write “during the run-
ning of RANKING in the original setting” as “in RANK-
ING” and write “during the running of σ-DUAL-RANKING
in the new setting σ-DUAL” as “in σ-DUAL-RANKING”.
Observing that if σ-DUAL-RANKING does not assign node
σj to any arrival in some turn, it will not assign node σj in
subsequent turns. Thus we only need to prove the following
proposition.

Proposition 1. For any t, at time t in σ-DUAL-RANKING
where node σj is being assigned,

1. if node σj is assigned to arrival i at time t, then RANK-
ING will assign node σj to arrival i too;

2. if node σj is not assigned to any arrival at time t, and
has already been assigned to arrivals i1, . . . , ik by
time t, then RANKING will not assign node σj to any
arrival other than i1, . . . , ik.

We prove this proposition by mathematical induction on
t. We first consider the first part of Proposition 1, i.e., at
time t in σ-DUAL-RANKING, node σj is assigned to ar-
rival i. We assume by this time node σj has already been
assigned to arrivals i1, . . . , ik (i.e., this is the (k + 1)-th
turn). Consider the moment immediately before arrival i
arrives in RANKING. If node σj has been assigned to an
arrival i′ (i′ < i) other than i1, . . . , ik, then by the induction
hypothesis, arrival i′ should not be assigned to by time t
in σ-DUAL-RANKING. But σ-DUAL-RANKING assigns
node σj to arrival i at time t while i′ < i, which contradicts
to the rule of σ-DUAL-RANKING. Hence, immediately
before arrival i arrives in RANKING, node σj has been
assigned to at most k arrivals.

Now we suppose to the contrary that node σj is not assigned
to arrival i by RANKING, then when arrival i arrives in
RANKING, another node σj′ must be assigned to it. Let
t′ < t be a time in σ-DUAL-RANKING where node σj′
is being assigned. Note by time t′, node σj′ has not been
assigned to arrival i (otherwise σ-DUAL-RANKING cannot
assign node σj to arrival i), so node σj′ must be assigned
to some arrival i′′ at time t′ (otherwise by the induction hy-
pothesis, it will never be assigned to arrival i in RANKING).
Since σ-DUAL-RANKING assigns node σj′ to arrival i′′

rather than i, we have i′′ < i in addition by the rule of
σ-DUAL-RANKING. Hence, by the induction hypothesis,
when arrival i arrives in RANKING, node σj′ is assigned
to at least k (if j′ > j) or k + 1 (if j′ < j) arrivals. Recall
that we have shown that at the same time, node σj has been
assigned to at most k arrivals, so RANKING will choose to
assign node σj to arrival i by its rule, a contradiction, which
proves the first part of Proposition 1.

We then consider the second part of Proposition 1, i.e., σ-
DUAL-RANKING, node σj is not assigned to any arrival at
time t and has already been assigned to arrivals i1, . . . , ik
by time t. Suppose to the contrary that RANKING assigns
node σj to an arrival i other than i1, . . . , ik, then at time
t in σ-DUAL-RANKING, some node σj′ must have been
assigned to arrival i, otherwise σ-DUAL-RANKING will
assign node σj to arrival i (or an arrival i′ with i′ < i) by its
rule. By the induction hypothesis, node σj′ is also assigned
to arrival i in RANKING, a contradiction.

By Lemma 1, it is sufficient to prove when σ is randomly
generated, the ratio of the expected target value generated by
σ-DUAL-RANKING to the optimal value (note the optimal
value is the same for any σ) is at least (1 − 1/e) in the
setting σ-DUAL. Next, we focus on the setting σ-DUAL.

We define P1, P2, . . . to be i.i.d. random variables whose

value is 1 with probability p and 0 with probability 1 − p.
Let v(k) = E (min {P1 + · · ·+ Pk, c}) and d(k) = v(k)−
v(k−1). Now consider an arbitrary algorithm. For an arrival
i, if the algorithm assigns node σj to it at time t in turn k, and
node σj has already been assigned to k′ (k′ < k) arrivals
by time t, then assigning this node to arrival i increases the
target value by d(k′+1). We define the weight of arrival i to
be d(k′+1). In addition, we define the fake weight of arrival
i to be d(k). If no node is assigned to arrival i, both the fake
weight and the weight of arrival i are defined to be 0. Note
the (fake) weights of arrivals depend on the algorithm, and
the sum of the weights of all arrivals is exactly the target
value generated by the algorithm.

We call an algorithm a refusal algorithm if when a node
arrives, it either assigns it to the arrival chosen by the rule
of σ-DUAL-RANKING or does not assign it to any arrival.
We define the fake value of a refusal algorithm to be the sum
of the fake weights of all arrivals.

Lemma 2. The fake value of any refusal algorithm is
no more than the target value generated by σ-DUAL-
RANKING.

Proof. We first fix a refusal algorithmR. We respectively
denote by zi and z′i the weights and fake weights of arrival
i corresponding to σ-DUAL-RANKING and R. Suppose
σ-DUAL-RANKING andR respectively assign a node to
arrival i at time ti and t′i (if no node is assigned to arrival i,
ti or t′i is defined to be +∞), we define

zi(t) =

{
zi, if t > ti

0, otherwise
, z′i(t) =

{
z′i, if t > t′i
0. otherwise

Note zi(nm+ 1) = zi and z′i(nm+ 1) = z′i.

We prove the following stronger proposition instead by
mathematical induction on t.

Proposition 2. For any t, zi(t) ≥ z′i(t)

It trivially holds for t = 1. Consider time t − 1 in the
k-th turn. If R does nothing at time t − 1, then for any
t, z′i(t) = z′i(t − 1) while zi(t) ≥ zi(t − 1), we have
zi(t) ≥ z′i(t) by the induction hypothesis.

IfR assigns node σj to arrival i at time t− 1, then z′i(t) =
d(k). If by time t − 1, σ-DUAL-RANKING has assigned
some nodes to arrival i, then zi(t) ≥ d(k) = z′i(t) (note
d(k) is non-increasing in k). Otherwise, suppose σ-DUAL-
RANKING assigns node σj to arrival i′ at time t. Since
σ-DUAL-RANKING is able to assign node σj to arrival i at
this time, we have i′ ≤ i. If i′ < i, sinceR does not assign
node σj to arrival i′, it must have assigned some node to
arrival i′ by time t, which means z′i(t) > 0, thus zi(t) > 0
by the induction hypothesis, i.e., σ-DUAL-RANKING must
also have assigned some node to arrival i′ by time t, which
contradicts to our assumption that σ-DUAL-RANKING

assigns node σj to arrival i′ at time t. If i′ = i, we have
zi(t) = z′i(t). Note zi′′(t) = zi′′(t − 1) and z′i′′(t) =
zi′′(t− 1) for any arrival i′′ other than i, we have zi(t) ≥
z′i(t) for any i by the induction hypothesis.

Suppose algorithm O generates an optimal assignment. Let
Ak be the set of arrivals whose weight is d(k) correspond-
ing to O. Let R be a refusal algorithm that does not as-
sign any node to an arrival not in Ak in turn k. We can
seeR sequentially performs the optimal algorithm in Karp
et al. [1990] on A1, A2, and so on. Suppose R assigns
nodes to exactly Yk arrivals in Ak, then by the conclusion
of Karp et al. [1990], we have E(Yk) ≥ (1 − 1/e)|Ak|
where the expectation is taken over the random choice of
σ. Hence, by lemma 2, the expected target value gener-
ated by σ-DUAL-RANKING is no less than the expected
fake value of R, so E (

∑
k d(k)Yk) =

∑
k d(k)E (Yk) ≥∑

k d(k)(1 − 1/e)|Ak| = (1 − 1/e)
∑
k d(k)|Ak|. Note∑

k d(k)|Ak| is the optimal value, so we can conclude that
RANKING has a competitive ratio of 1− 1/e when s = 1.

Now consider the case where s > 1. We first fix an in-
stance τ and construct a new instance τ ′ as follows. We
split each arrival i into s arrivals i1, . . . , is. Moreover, for
i1, . . . , is, we remove ji,1 from the feasible set for arrival
i1, remove ji,1, ji,2 from the feasible set for arrival i2, and
so on. Specifically, for any j, we define pikj to be p if
pij = p and j /∈ {ji,1, . . . , ji,k−1}, and 0 otherwise. In
the following analysis, we restrict s = 1 whenever we talk
about τ ′. Let ALGτ and ALGτ ′ respectively be the tar-
get values of RANKING when it runs on τ and τ ′ (note
s = 1 when RANKING runs on τ ′), and let OPTτ and
OPTτ ′ respectively be the optimal target values on τ and
τ ′ (again, note s = 1 when τ ′ is analysed). We can see
ALGτ = ALGτ ′ , and ALGτ ′ ≥ (1 − 1/e)OPTτ ′ , where
the inequality holds by our previous result for s = 1. More-
over, for any assignment of τ , if nodes j1, . . . , js are as-
signed to arrival i, we can arrange them properly to ar-
rivals i1, . . . , is in τ ′ without changing the target value, so
OPTτ ′ ≥ OPTτ . By combining the inequalities above, we
have ALGτ ≥ (1 − 1/e)OPTτ . This means RANKING
also has a competitive ratio of 1− 1/e when s > 1.

6 CONCLUSION

In this paper, we study a new variant of the online bipartite
problem where each agent has a probability of rejecting an
assignment. When a new agent arrives, previous assignment
outcomes are not revealed in our setting. We give a determin-
istic algorithm with a tight competitive ratio of the problem.
Next we propose an optimal randomized algorithm with a
competitive ratio of 3/4 when there are no more than two
arrivals. We show that the competitive ratio can be 1− 1/e,
which is tight, in a special case where the probabilities are
either 0 or a fixed value p.

Acknowledgements

This work was partially supported by National Key Re-
search and Development Program of China under (Grant No.
2020AAA0103401); National Natural Science Foundation
of China (Grant No. 62172422); Beijing Outstanding Young
Scientist Program (No. BJJWZYJH012019100020098); In-
telligent Social Governance Interdisciplinary Platform, Ma-
jor Innovation & Planning Interdisciplinary Platform for the
“Double-First Class” Initiative, Renmin University of China.

References

Niv Buchbinder, Kamal Jain, and Joseph Seffi Naor. On-
line primal-dual algorithms for maximizing ad-auctions
revenue. In European Symposium on Algorithms, pages
253–264. Springer, 2007.

Nikhil R Devanur and Thomas P Hayes. The adwords
problem: online keyword matching with budgeted bidders
under random permutations. In Proceedings of the 10th
ACM conference on Electronic commerce, pages 71–78.
ACM, 2009.

Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and Shan
Muthukrishnan. Online stochastic matching: Beating
1-1/e. In 2009 50th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 117–126. IEEE, 2009.

Jon Feldman, Monika Henzinger, Nitish Korula, Vahab S
Mirrokni, and Cliff Stein. Online stochastic packing
applied to display ad allocation. In European Symposium
on Algorithms, pages 182–194. Springer, 2010.

M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An
analysis of approximations for maximizing submodular
set functions—ii.

Gagan Goel and Aranyak Mehta. Online budgeted matching
in random input models with applications to adwords. In
Proceedings of the nineteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 982–991. Society for
Industrial and Applied Mathematics, 2008.

Vineet Goyal and Rajan Udwani. Online matching with
stochastic rewards: Optimal competitive ratio via path
based formulation, 2020.

Thomas Grazian. Live-streaming triples wechat
conversion rates (and 4 other industry reports).
https://walkthechat.com/live-streaming-triples-wechat-
conversion-rates-and-4-other-industry-reports/, 2019.
Accessed: 2020-01-01.

Charles AR Hoare. Algorithm 65: find. Communications of
the ACM, 4(7):321–322, 1961.

iResearch. 2019 china’s e-commerce live streaming invest-
ment report (the full report). https://walkthechat.com/live-
streaming-triples-wechat-conversion-rates-and-4-other-
industry-reports/, 2019. Accessed: 2020-01-01.

Michael Kapralov, Ian Post, and Jan Vondrák. Online
submodular welfare maximization: Greedy is optimal,
pages 1216–1225. doi: 10.1137/1.9781611973105.88.
URL https://epubs.siam.org/doi/abs/10.
1137/1.9781611973105.88.

Richard M Karp, Umesh V Vazirani, and Vijay V Vazi-
rani. An optimal algorithm for on-line bipartite matching.
In Proceedings of the twenty-second annual ACM sym-
posium on Theory of computing, pages 352–358. ACM,
1990.

Yihan Ma. Market value of live commerce in china 2017-
2020. https://www.statista.com/statistics/1127635/china-
market-size-of-live-commerce/, 2020. Accessed: 2020-
01-01.

Aranyak Mehta and Debmalya Panigrahi. Online match-
ing with stochastic rewards. In 2012 IEEE 53rd Annual
Symposium on Foundations of Computer Science, pages
728–737. IEEE, 2012.

Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay
Vazirani. Adwords and generalized on-line matching. In
46th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS’05), pages 264–273. IEEE, 2005.

Aranyak Mehta, Bo Waggoner, and Morteza Zadimoghad-
dam. Online stochastic matching with unequal probabil-
ities. In Proceedings of the twenty-sixth annual ACM-
SIAM symposium on Discrete algorithms, pages 1388–
1404. SIAM, 2014.

G. L. Nemhauser and L. A. Wolsey. Best algorithms for
approximating the maximum of a submodular set func-
tion. Mathematics of Operations Research, 3(3):177–
188, 1978. doi: 10.1287/moor.3.3.177. URL https:
//doi.org/10.1287/moor.3.3.177.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An
analysis of approximations for maximizing submodular
set functions—i. Mathematical Programming, 14(1):265–
294, 1978. doi: 10.1007/BF01588971. URL https:
//doi.org/10.1007/BF01588971.

A. C. Yao. Probabilistic computations: Toward a unified
measure of complexity. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977), pages 222–
227, Oct 1977. doi: 10.1109/SFCS.1977.24.

https://epubs.siam.org/doi/abs/10.1137/1.9781611973105.88
https://epubs.siam.org/doi/abs/10.1137/1.9781611973105.88
https://doi.org/10.1287/moor.3.3.177
https://doi.org/10.1287/moor.3.3.177
https://doi.org/10.1007/BF01588971
https://doi.org/10.1007/BF01588971

	Introduction
	Related Works

	Problem Formulation
	Deterministic Algorithm
	Randomized Algorithm
	Ranking Algorithm
	Conclusion

