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ABSTRACT

Recently, numerous tensor SVD (t-SVD)-based tensor recovery methods have
emerged, showing promise in processing visual data. However, these methods
often suffer from performance degradation when confronted with high-order tensor
data exhibiting non-smooth changes, commonly observed in real-world scenarios
but ignored by the traditional t-SVD-based methods. Our objective in this study is
to provide an effective tensor recovery technique for handling non-smooth changes
in tensor data and efficiently exploring the correlations of high-order tensor data
across its various dimensions, without the need for introducing numerous variables
and weights. To this end, we introduce a new tensor decomposition and a new ten-
sor norm called the Tensor U1 norm. We utilize these novel techniques in solving
the problem of high-order tensor completion problem and provide theoretical
guarantees for the exact recovery of the resulting tensor completion models.
An optimization algorithm is proposed to solve the resulting tensor completion
model iteratively by combining the proximal algorithm with the Alternating Direc-
tion Method of Multipliers. Theoretical analysis showed the convergence of the
algorithm to the Karush–Kuhn–Tucker (KKT) point of the optimization problem.
Numerical experiments demonstrated the effectiveness of the proposed method in
high-order tensor completion, especially for tensor data with non-smooth changes.

1 INTRODUCTION

In recent years, lots of tensor methods have been proposed for better studying the low-rankness in
massive high-dimensional tensor data such as color images, hyperspectral images, and videos Kajo
et al. (2019); Lu et al. (2019a); Zhang et al. (2014); Lu et al. (2019b; 2018); Madathil & George
(2018), as the traditional matrix methods Candes & Plan (2010); Candès & Recht (2009); Candès
et al. (2011); Chandrasekaran et al. (2009); Xu et al. (2012); Wright et al. (2009) fail on handling
the tensor data. Depending on different adopted low-rank prior, these tensor methods can be mainly
categorized as: (1) CP (Canonical Polyadic) Decomposition-based methods Hitchcock (1927; 1928);
Kolda & Bader (2009), (2) Tucker Decomposition-based methods Tucker (1963); Gandy et al. (2011);
Liu et al. (2013), and (3) t-SVD-based methods Lu et al. (2019b; 2018); Zheng et al. (2020); Qin
et al. (2022).

Recently, the t-SVD-based methods for three-order tensor recovery have garnered growing attention
and achieved great success in the applications of visual data processing, such as data denoising
Lu et al. (2019a), image and video inpainting Zhang et al. (2014); Lu et al. (2019b; 2018), and
background modeling and initialization Lu et al. (2019a); Kajo et al. (2018). In these t-SVD-based
methods, a fixed invertible transform, such as Discrete Fourier Transform (DFT) Lu et al. (2018) and
Discrete Cosine Transform (DCT) Lu et al. (2019b), is applied to a three-order tensor data along its
third dimension, and the low-rankness prior of each frontal slice of the resulting tensor (corresponding
to the different frequency information along the third dimension of tensor data) has been used to
explore global low-rankness of tensor data.

However, the approach of performing invertible transform and analyzing the low rankness of the slices
along a specific dimension of tensor data poses challenges in generalizing t-SVD-based methods
directly to higher order tensor cases, such as color video, compared to CP decomposition-based
and Tucker Decomposition-based methods. A common solution for easily handling the high-order
tensors is to utilize tensor unfolding operators Zheng et al. (2020); Qin et al. (2022). For example,
in Zheng et al. (2020), the Weighted Sum of Tensor Nuclear Norm of all mode-k1k2 unfolding



Table 1: Illustration to the slice permutation variability (SPV) of t-SVD: mean PSNR (MPSNR)
results for same tensor data (including templet, bus, and mobile.) but with different slice order for
video reconstruction (best rank 50 estimating) are reported.

DFT-based t-SVD DCT-based t-SVD

Random shuffling for frames mobile bus tempete mobile bus tempete

No 25.74 30.22 29.43 24.81 29.74 29.00

Yes 23.80 28.71 28.58 23.79 28.72 28.54

tensors (WSTNN) has been proposed to study the correlations along different modes of higher
order tensors. It is worth noting that

(
h
2

)
different unfolding tensors are considered in WSTNN

for h-order tensor recovery, which leads to a difficult setting for tunable parameters. On the other
hand, as shown in Table 11, the t-SVD-based methods exhibit tensor slices permutation variability
(SPV). That is, interchanging the frontal slice of the tensor affects the effectiveness of tensor
recovery significantly. This is simply because a fixed invertible transform, such as DFT or DCT, is
performed on tensor along certain dimensions, making the t-SVD sensitive to non-smooth changes
in tensor slices, particularly when the sequence of these slices is disordered. This scenario is
frequently observed within classification tasks, as the sequence of samples is often disordered
prior to classification. Although Zheng et al. (2022) have proposed an effective solution by solving
a Minimum Hamiltonian circle problem for the case of DFT, a general solution is still lacking as
the similarity among slices does not consistently correlate with the tensor’s low-rank property, in
contexts beyond DFT. For the same reason (the use of a fixed transform), the recovery performance
of the t-SVD-based methods is also susceptible to non-continue and non-smooth of the tensor data
itself Kong et al. (2021). These data include videos with rapidly changing content between frames or
tensor data obtained by concatenating different scenes.

This study aims to address these challenges by developing an efficient tensor recovery technique.
To the best of our knowledge, this is the first work to investigate the impact of non-smooth changes
on t-SVD-based methods for high-order tensor recovery and provide an effective solution. Our
contributions can be summarized as follows:

• Based on the t-SVD-based methods, we proposed a new tensor decomposition named Tensor
Decomposition Based on Slices-Wise Low-Rank Prior (TDSL) by introducing a set of
unitary matrices that can be either learned (to effectively address SPV and non-smoothness
issues in the traditional t-SVD-based methods) or derived from known prior information,
thereby allowing our model to harness the inherent data characteristics.

• To address challenges in generalizing t-SVD-based methods directly to higher-order tensor
cases, we give a new tensor norm named the Tensor U1 norm, which is designed for
extending TDSL further to higher-order tensor completion without the need for additional
variables and weights.

• To solve the resulting models (TC-SL and TC-U1) based on TDSL and Tensor U1 norm
effectively, we present an optimization algorithm that combines the proximal algorithm with
the Alternating Direction Method of Multipliers, along with a corresponding convergence
analysis in theory. We theoretical analysis the conditions for exact recovery of the
proposed models, and give upper bound of estimation errors by given methods when
tensor data contaminated by noise. Our experiments on synthetic data demonstrate the
exact recovery of TC-U1 under fairly broad conditions.

2 TENSOR RECOVERY WITH NEW TENSOR NORM

Before introducing the proposed methods, we summarize some notations in Table 2 that will be used
later.

1The three gray videos are chosen from http://trace.eas.asu.edu/yuv/
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Table 2: Notations

Notations Descriptions Notations Descriptions

a, b, c, · · · scalars a, b, c, · · · vectors

A, B, C, · · · matrices A, B, C, · · · tensors

A, B, C, · · · sets A, B, C, · · · operators

I identity tensor 0 null tensor

AT conjugate transpose of A F n Discrete Fourier Matrix (DFM) with size of n× n

[A]i1,i2,··· ,ih (i1, i2, · · · , ih)-th element of A A(k) (or [A](n)) Mode-n Unfolding of A
Ac complementary set of A |A| number of elements of A

[A]:,:,i3,··· ,ih slice along the (k1, k2)-th mode ×n Mode-n product

∥A∥0 the number of non-zero elements of A ∥A∥1 ∥A∥1 =
∑

i1,i2,··· ,ih |[A]i1,i2,··· ,ih |

2.1 TENSOR DECOMPOSITION BASED ON SLICES-WISE LOW-RANK PRIORS (TDSL)
Differing from CP rank and Tucker rank, the t-SVD-based tensor rank operates on the assumption
that an h-order tensor data A ∈ RI1×I2×···×Ih in the real world can be decomposed as

A = Z ×k3
LT

k3
· · · ×kh

LT
kh
, (1)

where {Lkt}ht=3 are a set of given invertible transforms, and rank(k1,k2)(Z) << min(Ik1 , Ik2).

Here, rank(k1,k2)(Z) = maxik3
,ik4

,··· ,ikh
rank

(
[Z]:,:,ik3

,··· ,ikh

)
is called as the slice wise tensor

rank along the (k1, k2)-th mode of Z . If taken {Lkt}ht=3 as {F Ikt
}ht=3, rank(k1,k2)(Z) is referred

as to tensor tubal rank of A Lu et al. (2018). And we can observe that when an h-order tensor
data A exhibits smooth changes along the k-th dimension, the mode-k unfolding matrix of Z is
approximately column-sparse, meaning that most columns of the unfolding matrix are close to
0. Therefore, A will be approximately low tensor tubal rank if it shows smoothness across all
dimensions. However, this assumption is rarely met in real-world scenarios. For instance, tensor
data may exhibit non-smooth changes caused by disordered images sequence, which often occur
in image classification tasks Zheng et al. (2022). (Similar behavior can be observed for other
invertible transforms, such as DCT.) In such cases, there exists a permutation matrix P such that
A ×kn

P = Z ×k3
LT

k3
· · · ×kn

(Lkn
P )T × kn · · · ×kh

LT
kh

exhibits a better low-rank property
than A. Furthermore, to deal with other cases where the initially given transform doesn’t work,
such as videos with rapidly changing content, it becomes necessary to learn more suitable invertible
transforms. Therefore, we introduce a set of learnable unitary matrices to (1).

Additionally, leveraging fixed transforms based on known priors for tensor data can lead to effective
tensor decomposition and reduce the computational burden associated with updating the learnable
unitary matrices. Therefore, we incorporate fixed transforms {Ûkn

}sn=3 determined by the priors of
the tensor data. For instance, in the case of a color image with smoothness along its first dimension,
we can set Û1 as DFM or Discrete Cosine Matrix (DCM). Given the fixed transforms {Ûkn

}sn=3,
we can find a value 0 ≤ r ≤ min(Ik1

, Ik2
) such that

A = Z1 ×k3 Û
T

k3
· · · ×ks Û

T

ks
×ks+1 U

T
ks+1

· · · ×kh
UT

kh
, (2)

where rank(k1,k2)(Z1) = r, and {Ukn}hn=s+1 are the unitary matrices. For any given value of r and
tensor A, we can obtain an approximate tensor decomposition for A using Algorithm 2 given in the
supplementary material. We refer to A as having slices-wise low-rankness along the (k1, k2)-the
mode if rank(k1,k2)(Z1) << min(Ik1

, Ik2
). We denote (2) as Tensor Decomposition Based on

Slices-Wise Low-Rank Priors (TDSL) of A.

Considering the tensor data may with missing elements, we apply the proposed TDSL to Tensor
Completion and obtain the following model (TC-SL) based on the given {Ûkn

}sn=3:

min
X ,Z,UT

kn
Ukn=I(n=s+1,··· ,h)

∥Z∥(k1,k2)
∗,U

s.t. ΨI(M) = ΨI(X ), X = Z ×ks+1
UT

ks+1
· · · ×kh

UT
kh
, (3)
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where ∥Z∥(k1,k2)
∗,U =

∑
ik3

,ik4
,··· ,ikh

∥[U(Z)]:,:,ik3
,ik4

,··· ,ikh
∥∗, U(Z) = Z ×k3

Ûk3
· · · ×ks

Ûks
,

and ΨI is a linear project operator on the support set I such that

[ΨI(M)]i1,i2,··· ,ih =

{
[M]i1,i2,··· ,ih , if (i1, i2, · · · , ih) ∈ I;
0, if (i1, i2, · · · , ih) /∈ I. (4)

From the result given in Lu et al. (2019b), we know that, when h = 3 and U3 is orthogonal,
∥ · ∥(1,2)∗,U is the tightest convex envelope of rank(1,2)(U(·)) on the set {A|∥A∥(1,2)2,U ≤ 1}, where
∥A∥(1,2)2,U = maxi3 ∥[U(A)]:,:,i3∥2. This conclusion can be easily extended to our case, and thus
we have the following conclusion.
Property 1. ∥ · ∥(k1,k2)

∗,U is the dual norm of tensor ∥ · ∥(k1,k2)
2,U norm, and ∥ · ∥(k1,k2)

∗,U is the tightest
convex envelope of rank(k1,k2)(U(·)) on the set {A|∥A∥(k1,k2)

2,U ≤ 1}.

2.2 TENSOR COMPLETION WITH TENSOR U1 NORM

From (2), we observe that the Tensor Decomposition Based on Slices-Wise Low-Rank Priors (TDSL)
of A depends on the choice of k1 and k2, and it considers different kinds of low-rankness of
information in the tensor data for different (k1, k2). Therefore, if we only consider one mode, it may
lead to the loss of correlation information across the remaining modes. Inspired by the sparsity
prior in natural signals Wright et al. (2008), i.e., the natural signals are often sparse if expressed
on a proper basis, we propose an alternative approach by assuming that Z1 exhibits sparsity
along its (k1, k2)-th mode, i.e., there exists Uk1

and Uk2
such that Z2 = Z1 ×k1

Uk1
×k2

Uk2
is

sparse. Therefore, we present the following tensor decomposition:

A = Z2 ×k1
UT

k1
×k2

UT
k2

×k3
Û

T

k3
· · · ×ks

Û
T

ks
×ks+1

UT
ks+1

· · · ×kh
UT

kh
. (5)

We refer to (5) as Tensor Decomposition Based on Sparsity Priors (TDST) for given fixed transforms
{Ûkn

}sn=3 of A. Comparing (5) with the CP decomposition and Tucker decomposition, we find that
if a tensor has a low CP rank or Tucker rank, there exists {Uk}hk=1 such that A×1 U1 ×2 U2 · · · ×h

Uh = Z2 being a sparse tensor.

Based on TDST, we get the following tensor completion model by using given {Ûkn}sn=1:
min

X ,Z,UT
kn

Ukn=I(n=s+1,··· ,h)
∥Z∥U,0 (6)

s.t. ΨI(M) = ΨI(X ), X = Z ×ks+1
UT

ks+1
· · · ×kh

UT
kh
, (7)

where ∥Z∥U,0 = ∥U(Z)∥0 named tensor U0 norm of Z , and U(Z) = Z ×k1 Ûk1 · · · ×ks Ûks .
Since the tensor U0 norm is discrete and non-convex, it will make related optimization problems
NP-hard. Therefore, we introduce the following convex tensor norm.
Definition 1. (Tensor U1 Norm) For any tensor A ∈ RI1×I2×···×Ih and given {Ûk}hk=1, the tensor
U1 norm of A is defined as ∥A∥U,1 = ∥U(A)∥1, where U(A) = A×1 Û1 ×2 · · · ×h Ûh.

As we will see in Property 2, the tensor U1 norm is the tightest convex envelope of the tensor U0

norm within the unit sphere of the tensor U∞ norm given in Definition 2. The proof of the Property 2
is given in the supplementary material.
Definition 2. (Tensor U∞ Norm) For any tensor A ∈ RI1×I2×···×Ih , the tensor U1 norm of A is
defined as ∥A∥U,∞ = ∥U(A)∥∞, where U(A) = A×1 Û1 ×2 · · · ×h Ûh.

Property 2. Given {Ûk}hk=1, we have the following conclusions for the Definitions 1-2:

(i) Convexity: tensor U1 norm and tensor U∞ norm are convex;

(ii) Duality: tensor U1 norm is the dual norm of tensor U∞ norm;

(iii) Convex Envelope: tensor U1 norm is the tightest convex envelope of the tensor U0 norm
within S = {A|∥A∥U,∞ ≤ 1}.

Therefore, based on the tensor U1 norm, we get the following model (TC-U1):
min

X ,Z,UT
kn

Ukn=I(n=s+1,··· ,h)
∥Z∥U,1

s.t. ΨI(M) = ΨI(X ), X = Z ×ks+1 U
T
ks+1

· · · ×kh
UT

kh
. (8)
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3 OPTIMIZATION ALGORITHM

In this section, we will provide a detailed discussion of the optimization of (8). Due to space
limitations, we will leave out the optimization of (3), as we can obtain a similar result by following
the same idea.

3.1 OPTIMIZATION ALGORITHM FOR TC-U1
For easily solving the problem (8), we introduce auxiliary variable E ∈ E = {E|ΨI(E) = 0}.
Therefore, we turn to solve the following equivalence problem:

min
Z,UT

kn
Ukn=I(n=s+1,··· ,h)

∥Z∥U,1 s.t. ΨI(M) = Z ×ks+1 U
T
ks+1

· · · ×kh
UT

kh
+ E. (9)

The Lagrangian function of (9) is formulated as

L(Z, {Ukn}hn=s+1,E,Y , µ) =∥Z∥U,1 + ⟨ΨI(M)−Z ×ks+1 U
T
ks+1

· · · ×kh
UT

kh
− E,Y⟩

+
µ

2
∥ΨI(M)−Z ×ks+1

UT
ks+1

· · · ×kh
UT

kh
− E∥2F , (10)

where E ∈ E, Y is Lagrange multiplier, and µ is a positive scalar. We solve (9) iteratively by
combining the proximal algorithm with the Alternating Direction Method of Multipliers (PADMM)
as follows.
Step 1 Calculate Z(t+1) by

Z(t+1) =argmin
Z

∥Z∥U,1 +
µ(t)

2
∥P̂ ×ks+1

U
(t)
ks+1

· · · ×kh
U

(t)
kh

−Z∥2F +
η(t)

2
∥Z(t) −Z∥2F

=U−1
((

U
(µ(t)P̂ ×ks+1

U
(t)
ks+1

· · · ×kh
U

(t)
kh

+ η(t)Z(t)

µ(t) + η(t)

)
,

1

µ(t) + η(t)

)
+

)
, (11)

where P̂ = ΨI(M)− E(t) +
1

µ(t)
Y(t).

Step 2 Calculate U
(t+1)
kn

(s+ 1 ≤ n ≤ h) by

U
(t+1)
kn

= argmin
UT

kn
Ukn=I

µ(t)

2
∥P̂ ×ks+1 U

(t+1)
ks+1

· · · ×kn Ukn −Z(t+1) ×kh
U

(t)T
kh

×kh−1 · · · ×kn+1 U
(t)T
kn+1∥

2
F +

η(t)

2
∥U (t)

kn
−Ukn

∥2F . (12)

Since

µ(t)∥P̂ ×ks+1 U
(t+1)
ks+1

· · · ×kn Ukn −Z(t+1) ×kh
U

(t)T
kh

· · · ×kn+1 U
(t)T
kn+1∥

2
F + η(t)∥Ukn −U

(t)
kn
∥2F

=µ(t)∥Ukn
B(kn) −A(kn)∥

2
F + η(t)∥Ukn

−U
(t)
kn
∥2F

=∥Ukn
[
√
µ(t)B(kn),

√
η(t)I]− [

√
µ(t)A(kn),

√
η(t)U

(t)
kn
]∥2F , (13)

the optimal solution of (12) can be given by U
(t+1)
kn

= UV T Zou et al. (2006), where

A = Z(t+1) ×kh
U

(t)T
kh

×kh−1 · · · ×kn+1 U
(t)T
kn+1, B = P̂ ×s+1 U

(t+1)
ks+1

· · · ×kn−1

U
(t+1)
kn−1, U and V can be obtained by SVD of [

√
µ(t)A(kn),

√
η(t)U

(t)
kn
][
√

µ(t)B(kn),
√

η(t)I]T :

[
√

µ(t)A(kn),
√
η(t)U

(t)
kn
][
√
µ(t)B(kn),

√
η(t)I]T = UΣV T .

Step 3 Calculate E(t+1) by

E(t+1) =argmin
E∈E

µ(t)

2
∥ΨI(M)−X (t+1) − E +

1

µ(t)
Y(t)∥2F +

η(t)

2
∥E − E(t)∥2F

=ΨIc(
1

µ(t) + η(t)
(µ(t)(ΨI(M)−X (t+1) +

1

µ(t)
Y(t)) + η(t)E(t))), (14)
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Algorithm 1: PADMM-based Iterative Solver to (9)

Input: Ψ(M), {U (0)
kn

}hn=s+1, {Û
(0)

kn
}sn=1, E(0), Y(0), t = 0, ρµ, ρη > 1, µ̄, η̄, µ(0), and η(0).

Output: Z(t+1) ,{U (t+1)
kn

}hn=s+1, and

X (t+1) = Z(t+1) ×kh
U

(t+1)T
kh

×kh−1
· · · ×ks+1 U

(t+1)T
ks+1

.
1. While not converge do
2. Calculate Z(t+1) by

Z(t+1) = U−1
((

U
(µ(t)P̂ ×ks+1

U
(t)
ks+1

· · · ×kh
U

(t)
kh

+ η(t)Z(t)

µ(t) + η(t)

)
,

1

µ(t) + η(t)

)
+

)
;

3. Compute U
(t+1)
kn

by U
(t+1)
kn

= UV T (n = s+ 1, · · · , h);
4. Calculate X (t+1) by X (t+1) = Z(t+1) ×kh

U
(t+1)T
kh

×kh−1
· · · ×ks+1

U
(t+1)T
ks+1

;

5. Calculate E(t+1) by

E(t+1) = ΨIc(
1

µ(t) + η(t)
(µ(t)(ΨI(M)−X (t+1) +

1

µ(t)
Y(t)) + η(t)E(t)));

6. Calculate Y(t+1) by Y(t+1) = µ(t)(ΨI(M)−X (t+1) − E(t+1)) +Y(t);
7. Compute µ(t+1) and η(t+1) by (16) and (17), respectively;
8. Check the convergence condition: ∥Z(t+1) −Z(t)∥∞ < ε, ∥X (t+1) −X (t)∥∞ < ε,

∥U (t+1)
kn

−U
(t)
kn
∥∞ < ε for n = s+ 1, s+ 2, · · · , h;

9. t=t+1.
10. end while

where X (t+1) ×ks+1
U

(t+1)
ks+1

· · · ×kh
U

(t+1)
kh

= Z(t+1).

Step 4 Calculate Y(t+1) by

Y(t+1) = µ(t)(ΨI(M)−X (t+1) − E(t+1)) +Y(t). (15)

Step 5 Calculate µ(t+1) and η(t+1) by

µ(t+1) = min(µ̄, ρµ(t)) (16)
and

η(t+1) = min(η̄, ρηη
(t)), (17)

where ρµ, ρη > 1, µ̄ and η̄ are the upper bound of µ(t+1) and η(t+1), respectively.

To solve (9), we repeat Steps 1-5 until convergence is achieved. The entire process is detailed in
Algorithm 1.

3.2 COMPUTATIONAL COMPLEXITY

Based on the discussions in the previous subsection, the most time-consuming steps in the algorithm
1 are the computations of Z , and Ukn . Since the computational complexity of n-mode product of
P̂ ∈ RI1×I2×···×Ih and Un ∈ RIn×In is O(InI1I2 · · · Ih), the computational complexity of the
computation of Z is O(hI(1)I1I2 · · · Ih), where maxk(Ik) = I(1). Besides, the computational com-
plexity of the computation of Ukn

is O((h− 1)I(1)I1I2 · · · Ih + I2kI1I2 · · · Ih), therefore the overall

computational complexity of each iteration of Algorithm 1 is O
(
(h−s)(h+I(1)−1)I(1)I1I2 · · · Ih+

hI(1)I1I2 · · · Ih
)

.

3.3 CONVERGENCE ANALYSIS

Although the optimization problem (9) is non-convex because of the constraints UT
kn
Ukn

= I(n =
s+ 1, s+ 2, · · · , h) and the global optimality for (9) is hardly guaranteed, we can still prove some
excellent convergence properties of the Algorithm 1, as stated in the following theorem.

Theorem 1. For the sequence {[Z(t), {U (t)
kn
}hn=s+1,E

(t),Y(t), µ(t)]} generated by the proposed
algorithm 1, we have the following properties if {Y(t)} is bounded,

∑∞
t=1(µ

(t))−2µ(t+1) < +∞

and lim
n−→∞

µ(n)
∞∑
t=n

(η(t))−1/2 = 0.
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(i) lim
t−→∞

ΨI(M)−X (t) − E(t) = 0, where X (t) = Z(t) ×kh
(U

(t)
kh
)T · · · ×ks+1

(U
(t)
ks+1

)T .

(ii) {[Z(t), {U (t)
kn
}hn=s+1},X

(t),E(t)]} is bounded.

(iii)
∑∞

t=1 η
(t)∥[Z(t), {U (t)

kn
}hn=s+1},E

(t)] − [Z(t+1), {U (t+1)
kn

}hn=s+1},E
(t+1)]∥2F

is convergent. Thus, we have ∥[Z(t), {U (t)
kn
}hn=s+1},E

(t)] −

[Z(t+1), {U (t+1)
kn

}hn=s+1},E
(t+1)]∥2F ≤ O(

1

η(t)
).

(iv) lim
t−→∞

∥Y(t+1) −Y(t)∥F = 0.

(v) Let [Z∗, {U∗
kn
}hn=s+1,E

∗,Y∗] be any limit point of {[Z(t), {U (t)
kn
}hn=s+1,E

(t),Y(t)]}.
Then, [Z∗, {U∗

kn
}hn=s+1,E

∗,Y∗] is a KKT point to (9).

Please refer to the supplementary material of this paper for the proof of the Theorem 1. Theorem 1
shows that, if {Y(t)} is bounded, the sequence [Z(t), {U (t)

kn
}hn=s+1,E

(t)] generated by the proposed

algorithm 1 is Cauchy convergent, with a convergence rate of at least O(
1

η(t)
). Moreover, any

accumulation point of the sequence converges to the KKT point of (9).

4 STABLE TC-U1
Considering the case that the tensor data may contaminated by noise, we utilize the proposed
TDST to derive the following model (STC-U1) based on the given {Ûkn

}sn=3:
min

X ,UT
kn

Ukn=I(n=s+1,··· ,h)
∥X ×ks+1 Uks+1 · · · ×kh

Ukh
∥U,1

s.t. ∥ΨI(M)−ΨI(X )∥F ≤ δ, (18)

where δ ≥ 0 represents the magnitude of the noise.
Lemma 1. For A ∈ RI1×I2×···×Ih , the subgradient of ∥A∥1,U is given as ∂∥A∥1,U =

{U−1(sgn(U(A)) +F |ΨĤ(U(F)) = 0, ∥F∥U,∞ ≤ 1}, where Ĥ denotes the support of U(A).

Let (X̂ , {Ûk}hk=1) be the result by (18) and H be the support of Û(M). Defining PS(A) =

ΨH(Û(A)) = A− PS⊥(A) for any A ∈ RI1×I2×···×Ih , we have the following result.
Theorem 2. If the dual certificate G = ΨIPS(PSΨIPS)

−1(Û−1(sgn(Û(M)))) satisfies
∥PS⊥(G)∥Û,∞ ≤ C1 < 1 and PSΨIPS ≽ C2pI , then we can obtain the following inequality:

∥M− X̂∥F ≤ 1

1− C1

√
1/C2 + p

p
I1I2δ + δ, (19)

where X̂ is obtained by (18) and p denotes the sampling rate.

From the theorem 2, we obtain a theoretical guarantee for the exact recovery of TC-U1 when
δ = 0. Similar results for TC-SL can be found in the supplementary material.

5 EXPERIMENTAL RESULTS

In this section, we conducted two sets of experiments to illustrate the effectiveness of our proposed
method in high-order tensor completion: in the first set, we ran a series of numerical experiments
on tensors with (1 − p)I1 · · · Ih missing entries to investigate the exact recovery capability of
TC-U1 in a more intuitive manner; in the second set, we compared the TC-SL and TC-U1 2 with

2For real-world applications, the parameters in TC-SL and TC-U1 were configured as {s =

2, (k3, k4) = (1, 4)} and {s = 2, (Ûk1 , Ûk2) = (F I1 ,F I2)}, respectively. The configurations are
based on an assumption that the first two dimensions of images exhibit smoothness characteristics and
similarity of different channel of images.

7



1

0.2 

0.4 

0.6 

0.8
Sa

m
pl

in
g 

ra
te

 
5 9 13 17 21 25

p

(a)

7 13 19 25
0

0.5

1
p
p

(b)

0 0.2 0.4 0.6 0.8
0

0.5

1

p

(c)

Figure 1: Recovery performance of TC-U1 on the synthetic data with varying (R, p) and size of
30× 30× 30× 30.

several state-of-the-art methods, including TNN-DCT Lu et al. (2019b), TNN-DFT Lu et al. (2018),
SNN Liu et al. (2013), KBR Xie et al. (2017), WSTNN Zheng et al. (2020), and HTNN-DCT Qin
et al. (2022), in the context of image sequences inpainting and color video inpainting. To ensure the
reliability of our experiments, we conducted each experiment five times and reported the average
results as the final outcomes. All experiments were implemented using Matlab R2022b.3

5.1 SYNTHETIC EXPERIMENTS

For given rank parameter R, we generated a h-order tensor data with size of (I1, I2, · · · , Ih) as
M = G0 ×h Uh ×h−1 · · · ×1 U1. Here, G0 ∈ RR×R×···×R is i.i.d. sampled from a normal
distribution N (0, 1) and Uk ∈ RIk×R is matrix obtained by randomly selecting R columns from
Discrete Cosine Matrix (DCM). We use the relative error (RE) defined as ||M− M̂||F /||M||F to
measure estimation errors, where M̂ is the recovered tensor by our method. All results are presented
in Fig. 1. In the Fig. 1 (a), a successful trial, i.e., RE ≤ 10−2, is presented in white region. From
the figure, it is evident that TC-U1 can accurately recover the true tensor when the values of p and
R satisfy a fairly broad condition. Furthermore, in Fig. 1(b), we observe that as the value of R
decreases for a fixed p, the RE tends to approach zero rapidly. This indicates that TC-U1 is capable
of achieving high accuracy in tensor recovery for the case of small R. Besides, in Figure 1(c), the RE
remains stable for a fixed value of R as the sampling rate varies. This stability further highlights the
effectiveness of TC-U1 in practical scenarios.

5.2 REAL-WORLD APPLICATIONS

In this subsection, we evaluated different tensor completion methods using three image sequence
databases: Berkeley Segmentation Dataset (BSD) Martin et al. (2001), Unfiltered Faces for Gender
and Age Classification (UFGAC), Labeled Faces in the Wild (LFW), and Georgia Tech Face database
(GTF)4, as well as the color video database HMDB515 (the comparison on HMDB51 is given in the
supplementary material of this paper). The observation tensors for the three-order tensor methods
(TNN-DCT and TNN-DFT) were obtained by the mode-12 unfolding tensor, i.e., [ΨI(M)](12) ∈
RI1×I2×I3I4 . Here, I1×I2 represents the size of each image (frame), I3 = 3 is RGB channel number
of each image, and I4 is the number of images (frames). Random shuffling was applied to the image
sequences to ensure unbiased evaluation before testing. We used the Peak Signal-To-Noise Ratio
(PSNR) to evaluate the performance of different methods in tensor completion. The best results for
each case are shown in bold.

Table 3 presents the PSNR values achieved by each method on the image sequence databases
with different scenes. From the table, most of the higher tensor methods (KBR, WSTNN, HTNN-

3For a fair comparison, we implemented the compared methods using the code provided by the respective
authors in our experimental environment.The code for our proposed method is available at the following link:
https://github.com/nobody111222333/MatlabCode.git.

4Specifically, for the BSD database (https://www2.eecs.berkeley.edu/Research/
Projects/CS/vision/bsds/), we randomly selected 50 color images. For UFGAC
(https://talhassner.github.io/home/projects/Adience/Adience-data.html),
we chose all color images from the first class. For LFW (http://vis-www.cs.umass.edu/lfw/), we
selected the first 50 classes. For GTF (http://www.anefian.com/research/face_reco.htm), we
selected the first five classes.

5https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
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Table 3: Comparing various methods on BSD at different sampling rates.

Sampling Rate p TNN-DCT TNN-DFT SNN KBR WSTNN HTNN-DCT TC-SL TC-U1
0.3 23.25 23.21 21.86 25.45 25.75 25.21 26.32 26.95
0.5 27.25 27.20 25.50 31.57 31.07 30.72 31.55 34.53
0.7 32.04 31.95 29.84 38.81 37.11 38.22 38.33 41.76

Table 4: Comparing various methods on the three datasets at sampling rates p = 0.3.

Data TNN-DCT TNN-DFT SNN KBR WSTNN HTNN-DCT TC-SL TC-U1
UFGAC 36.42 36.36 36.94 41.58 34.13 30.84 41.27 44.42

GTF 25.46 25.41 23.54 25.83 26.66 22.11 32.10 32.85
LFW 28.14 28.10 22.75 33.86 35.10 31.28 32.06 36.91

Average 30.01 29.96 27.74 33.76 31.96 28.08 35.14 38.06

DCT, TC-SL, and TC-U1) achieved better performance for all cases compared with the three-order
tensor methods (TNN-DCT and TNN-DFT). This indicates that high-order tensor methods are more
effective in accurately capturing the low-rank structure in four-order tensor data. Notably, TC-U1
outperforms the other methods by about 3 dB for p ∈ {0.5, 0.7} and demonstrates particularly
impressive improvements compared to the other higher tensor methods. Furthermore, in Table 4,
we compared the tensor recovery performance of all methods on the cases when the tensor data suffer
the random slices permutations. Notably, both TC-SL and TC-U1 achieve the best performance for
all cases. In particular, the average PSNR results obtained by TC-SL and TC-U1 outperform
the other methods by more than 1 dB and 4 dB, respectively. In the case of GTF, TC-U1 even
outperforms WSTNN by more than 6 dB and surpasses the other methods by more than 7 dB in terms
of PSNR!

These results suggest that the proposed TC-U1 is able to exploit the correlations of tensor data along
different dimensions effectively and can more accurately exploit the low-rank structure of four-order
tensor data (the one with non-continue change) than other methods. And the superiority of TC-SL
and TC-U1 over other methods can be attributed to the introduction of both the given transforms
{Ûkn

}sn=1 from smooth priors and learnable unitary matrices {Ukn
}hn=s+1, which enable it to

better handle the non-smooth in tensor data caused by random shuffling image sequences (such as
UFGAC, LFW, and GTF) or the concatenation of different scene images (such as BSD) and capture
the underlying low-rank structures in the tensor data more effectively.

6 CONCLUSIONS

This paper studied a high-order tensor completion problem that aims to more accurately recover
the true low-rank tensor from the observed tensor with missing elements and non-smooth change.
To achieve this goal, we introduced a new tensor decomposition named TDSL and a new norm
named tensor U1 norm successively. The PADMM is proposed for solving the proposed two tensor
completion models (including TC-SL and TC-U1). The both theoretical analysis and synthetic
experiments provided strong evidence for the exact recovery capabilities of the proposed tensor
completion methods under a fairly broad condition, supporting the applicability of the proposed
method to practical problems involving tensor recovery. The experimental results in real-world
applications showcased the superiority of our methods over previous methods in high-order tensor
completion, especially for the tensor data with non-smooth changes. Additionally, thanks to the
proposed methods, we no longer need to introduce

(
h
2

)
variables and tune weighted parameters

to study the correlation information of the tensor across different dimensions. It is worth
noting that the tensor decomposition methods and norms we propose can extend beyond tensor
completion alone and are applicable to diverse tasks, such as tensor robust PCA, stable tensor
completion, and tensor low-rank representation.
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