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Abstract

Self-assessment of one’s choices, i.e., confidence, is the topic of many decision
neuroscience studies. Computational models of confidence, however, are limited to
specific scenarios such as between choices with the same value. Here we present
a normative framework for modeling decision confidence that is generalizable to
various tasks and experimental setups. We further drive the implications of our
model from both theoretical and experimental points of view. Specifically, we show
that our model maps to the planning as an inference framework where the objective
function is maximizing the gained reward and information entropy of the policy.
Moreover, we validate our model on two different psychophysics experiments
and show its superiority over other approaches in explaining subjects’ confidence
reports 1 .

1 Introduction

Self-assessment of one’s choices, i.e., decision confidence, plays a key role in long-term decision-
making and learning [1]. This assessment helps the decision maker improve their model of the
outside world and consequently gain higher utility in the future [2, 3]. Due to this critical role,
confidence has been the topic of many theoretical and experimental decision neuroscience studies.
However, primarily focused on in perceptual decision-making experiments, confidence is mainly
mathematically defined only for scenarios where different choices have the same potential reward. In
these situations, based on some perceptual cues, the goal is to pick the “correct” choice instead of all
other equally “incorrect” ones. Consequently, confidence is defined as the probability of choosing
the correct option [1, 4]. In these setups, perception confidence, i.e., “what is the probability that my
observation was correct?” and decision confidence, “what is the probability that I made the correct
decision?” are inseparable because the choices do not differ in value.

In the real world, though, different actions lead to various potential rewards, and this variation in
reward could influence confidence in decisions, differentiating it from perception confidence. A
rustling sound is more likely to be because of the wind rather than a predator approaching. Still,
everyone becomes more vigilant when hearing that sound as one of the possibilities is potentially
life-threatening despite being unlikely. Moreover, everyone would be confident about the rationality

1The majority of this research was done while the first author was an intern at the Allen Institute.
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of this decision. Notably, most experiments where different choices vary in value, known as value-
based decision-making, do not involve uncertainty in perception [5]. These works are mostly about
memory retrieval and valuation of different objects and do not study the interaction between value
and perceptual uncertainty [6]. Here, we present a normative framework to formally define and
assess decision confidence in a general scenario involving uncertainty about the outside world, prior
knowledge of the decision maker about the world, and different utility functions for available choices.
We model decision confidence as “probability of making the best decision”. In mathematical language,
decision confidence is the probability of being optimal over a sequence of states and actions given the
policy.

We further show that our approach to modeling subjects’ confidence in their decision equals to
planning as inference framework [7, 8]. This framework maps to a reinforcement learning agent
whose objective function is to jointly maximize the reward and the information entropy of the policy
(also called maximum entropy reinforcement learning) [9, 10]. Moreover, we validate our framework
by testing it on two different experiments on confidence evaluation and explaining its implications
[11, 5].

2 Modelling Background and Problem Definition

Markov Decision Processes are graphical models used for optimal sequential decision-making
in artificial agents. Recently, these frameworks have been applied successfully in modeling the
behavior of subjects across various decision-making tasks and species in cognitive neuroscience
[12, 13, 14, 15].

2.1 Fully and Partially Observable Markov Decision Processes

Formally, a Markov Decision Process (MDP) is a tuple (S,A, T,R) describing a Markovian system
where S is the finite set of states, A is the finite set of actions, T = p(s′|a, s) is the transition function
between states, and R is a bounded function representing the reward of each action in each state,
r(s, a). The goal of an MDP agent is to come up with the recipe of action selection, called policy, to
maximize its total reward within horizon H . As the system is Markovian, each policy can be defined
as a probability distribution of actions given the state, shown by π(a|s). The optimal policy π∗ is the
policy that attains the goal of the agent:

π∗ = argmax
π

E(st,at)∼π(at|st)

[
H∑
t=1

r(s, at)

]
. (1)

The optimal policy can be obtained in polynomial time in the size of the state space, e.g., by using
dynamic programming algorithms.

In most real-world situations, however, the environment is only partially observable, making the
agent uncertain about the current state of the world. Partially Observable MDP (POMDP) models
these situations by adding the concepts of observation, observation function, and the belief state to the
MDP framework [16]. POMDP is formally defined as a tuple (S,A,Z, T, P,R) where S, A, T and
R have the same definition as MDP. Z is the finite set of observations. In addition, P = p(z|s, a) is
the observation function representing the probability of each observation, given the state and chosen
action. A POMDP agent does not know the current state of the environment. Therefore, starting from
a prior, called initial belief state b1, it updates the posterior probability distribution over the states
with each observation and action:

bt(s) ∝ p(zt|s, at−1)
∑
s′∈S

p(s|s′, at−1)bt−1(s
′). (2 ≤ t ≤ H) (2)

In a POMDP, each policy can be represented as a mapping from belief states to a probability
distribution over actions, i.e., π(a|b) with the optimal policy π∗ being the mapping that maximizes
the expected total reward:

π∗ = argmax
π

E(bt,at)∼π(at|bt)

[
H∑
t=1

∑
s∈S

bt(s)r(s, at)

]
= argmax

π
E(bt,at)∼π(at|bt)

[
H∑
t=1

r(bt, at)

]
(3)
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where r(bt, at) =
∑

s∈S bt(s)r(st, at) is the expected reward of belief state st if the agent choose
action at.

POMDP can be viewed as a fully observable MDP with the state space of the belief state space of the
original environment. Therefore, the optimal policy can be obtained in polynomial time in the size
of the belief state. Since the belief state is a probability distribution over states, its space’s size is
exponential in the size of the state space. This means that transforming the POMDP to an MDP is not
helpful unless the number of states is extremely low (less than 10) or the belief state can always be
represented by a distribution of a few parameters. An example of the latter case is Kalman-filter-like
environments where the belief state can always be represented with a Gaussian distribution with two
parameters of µt and σt.

2.2 Models of confidence in Cognitive Neuroscience

One of the applications of POMDPs and similar Bayesian frameworks is modeling the behavior
“perceptual decision making” where the subject should select the “correct” choice based on some
sensory observations to get reward [17]. As the term “correct” suggests, the reward function is
symmetrical among different choices. In some of these studies, subjects also report their confidence
in their choice. Numerous experiments have demonstrated that trained subjects perform similarly to
an optimal agent such as POMDP. Moreover, their confidence in their choice closely matches the
probability of choosing the correct option, i.e., the posterior probability of the most probable choice
[1, 18] (or the sum of belief states that leads to the most probable choice). This close match is also
called Bayesian confidence hypothesis [19]. Notably, due to reward symmetry in these situations,
perception confidence, modeled as the belief about the hidden state, is inseparable from decision
confidence, which would be the belief about the decision. More specifically, these experiments cannot
flesh out the interactions between value, perception, and confidence and cannot test theoretical models
for these interactions.

There are a few confidence experiments with asymmetries in the reward function. Models and
methods of these studies, however, are all descriptive/statistical, e.g., positive correlation between
confidence report and reward value [20, 21, 11]. Therefore, as opposed to normative models, these
methods do not explain the reason behind the relationship of confidence with perception, prior, and
rewards in a systematic and generalizable manner. Moreover, some experimental and theoretical
works have studied “value-based confidence” in the context of “value-based decision making” where
the task is to choose an object between offered options [22, 6, 5]. There is no perceptual ambiguity
in these studies, and the variance in response is primarily due to the variability of the valuation of
objects at different time points based on memory [6].

Finally, note that the optimality assumption in proposed models, such as the Bayesian confidence
hypothesis, does not necessarily imply that the subject’s confidence and performance are equal on
average. As opposed to an AI POMDP agent, the subject is unaware of the exact generative functions
of the environment (S, T , and P ). The internal world model of the subject is built and learned
by training. Therefore, the type and amount of training and feedback and the subject’s capability
and motivation in creating the accurate internal world model affect confidence. However, given the
internal model, the behavior is optimal, e.g., the perception confidence follows the maximum belief
state [18, 19]. We will explain this in more detail in our empirical evaluation and discussions.

2.3 Problem definition

We aim to formally define and test a normative framework that explains the interaction of perception
and reward/value with the subject’s confidence about their decision. Before presenting the model,
we discuss a thought experiment as the motivation. This experiment consists of a set of trials, each
of which begins with the presentation of a Gabor filter tilted left or right. The subject is asked to
report their perception of the direction of the Gabor filter (left or right) and their confidence in their
decision. Choosing the incorrect direction leads to no reward. Moreover, if correct, the direction left
produces a reward 10 times the reward of the direction right. In an example trial, the subject believes
the direction is right with a 0.7 probability. Assuming they want to gain a higher reward, they will
choose the direction left due to the higher expected value, namely 0.3 versus 0.7. However, their
perception confidence or “probability of choosing the correct/rewarding direction” is 0.3. On the
other hand, their confidence in their decision,“likelihood of making the best decision” is probably
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higher than 0.5 (because they chose it). Notably, while being higher than 0.5, their confidence in
this trial is likely lower than in trials where they think the stimulus direction is left. However, from
the strict optimality point of view, the decision confidence is 1 in both cases. Therefore, while a
strictly optimal framework like POMDP offers a normative model of confidence (by explaining why
confidence equals 1 through the lens of optimality), such a model is not aligned with reality.

Our goal is to systematically define and test decision confidence that includes all main aspects of
decision-making, including reward, priors, and perceptual cues (observations) from the perspective
of an optimal probabilistic decision-maker that is also aligned with reality. Notably, heuristics that
combine reward and belief, such as the ratio of expected values of different actions, might work, but
they are totally arbitrary and do not generalize to different tasks. We are looking for a normative
model that explains why such a relationship exists between confidence and task parameters in a
generalizable fashion.

3 Model

To formally model the decision confidence, we use the idea of optimality in the POMDP framework,
where optimality is a binary variable that reflects receiving the maximum reward. The probability of
optimality describes a subject’s confidence or internal sense of whether their decision was optimal.
This can be viewed as an agent choosing actions to maximize their total reward, modeled by a
POMDP, and later evaluating the optimality of their decision.

Notably, the decision-making process might involve multiple actions. Therefore, what we re-
fer to as “decision” is, in fact, a sequence of actions, given an observation after each action
a1, z2, a2, z3, . . . , aH which is called trajectory τ . As the agent knows the observation function
and the system is Markovian, this trajectory could also be expressed with belief states instead of
observations:

τ = a1, b2, a2, b3, . . . , aH (4)

Consequently, the probability of observing trajectory τ in an optimal agent is p(τ |O = 1, b1). This
probability should be maximum for a trajectory that is generated by the optimal policy π∗.

With strict interpretation of optimality, only trajectories that are generated from the optimal policy
π∗ are optimal. This means that confidence is 1 for these trajectories and 0 for others. This “hard”
definition of optimality punishes all non-optimal trajectories the same, meaning that a trajectory
generated by a suboptimal policy is considered as non-optimal as a trajectory with the minimum
possible outcome. This is not ideal—especially when the agents are humans, as humans are inherently
suboptimal.

Given the fact that the system is Markovian and each policy is a mapping from belief states to
actions, the probability of optimality can be expressed for each action given the belief state, i.e.,
p(ot = 1|at, bt) (Fig. 1, left plot). With this representation, the probability of optimality for the
whole trajectory can be expressed as p(o1:H = 1|τ). Consequently, the probability of a trajectory
being optimal is:

p(τ |o1:H) ∝ p(τ, o1:H) = p(b0)

H∏
t=0

p(ot = 1|bt, at)p(bt+1|bt, at). (5)

If the belief state dynamics is deterministic, i.e., each action in each state leads to exactly one state
and one observation, we would have:

p(τ |o1:H) ∝ I(p(τ) ̸= 0)

H∏
t=0

p(ot = 1|bt, at). (6)

A high probability of optimality for a given belief state and action pair should reflect a higher reward
for that pair of belief state and action (as higher optimality denotes a higher reward). Optimality
should then be defined so that the total probability of optimality reflects the total reward sum. To
transit between this total probability of optimality product and total reward sum, the probability of
optimality for a given belief state and action is set to the exponentiation of the reward of the same
belief state and action:

p(ot|bt, at) = er(bt,at) (7)
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Figure 1: Left: Graphical model of the framework that measures the probability of making the
optimal decision as confidence. Right: Experimental setup of a perceptual decision making task with
varying prior and reward distribution (picture from [11]).

To make p(ot|bt, at) between 0 and 1, we can make all rewards negative by subtracting the maximum
possible reward from them.

Notably, the above choice still looks arbitrary as there are many other functions that satisfy the
constraints of our problem. Beyond being an intuitive way to relate a probability and a sum, if
optimality is defined for an agent as it is in equation 7, then the agent will jointly maximize the total
reward and the information entropy of the policy, which is also why our framework is a normative
model. This result can be shown by deriving the policy from the optimal trajectory as defined above.
One way to derive such a policy is to approximate p(τ |o1:H). If the approximation of p(ot = 1|at, bt)
is expressed with policy π(at|bt), the approximation of optimal trajectory will be:

p̂(τ) = p(b0)

H∏
t=0

p(bt+1|bt, at)π(at|bt). (8)

and the desired policy π(at|bt) can be obtained by minimizing the KL-divergence (maximizing
negative KL-divergence) between the approximate and true distributions:

−DL(p̂(τ)||p(τ |o1:T )) = Eτ∼p̂(τ)

[
H∑
t=0

r(bt, at)− log π(at|bt)

]

=

H∑
t=0

E(bt,at)∼p̂(bt,at) [r(bt, at) +H(π(at|bt))]

(9)

This derivation is known as “planning as inference” in the literature [7, 8], and equivalent of soft
Q-learning on the belief state [9, 10]. Moreover, these equations also show that our definition of the
probability of optimality works even when the dynamics of the belief state are stochastic.

3.1 Interpretation

According to our model, the agent makes decisions strictly optimally, like a POMDP. Its evaluation
of optimality, however, allows for other trajectories through the concept of soft optimality. We only
derived that policy of confidence judgment to demonstrate better why exponentiation of reward
(equation 7) is a reasonable choice. This self-assessment is, to some degree, similar to inverse
reinforcement learning. Notably, entropy regularization has been proven to be a practical approach in
inverse reinforcement learning too [9]. In this approach, the evaluator allows some suboptimality
to consider noises and hidden information. Such allowance in our confidence model considers
imperfect learning of the environment or possible trial-to-trial changes in the computations. For
example, arousal level affects perception and, consequently, performance. While in each trial, the
most rewarding action should be chosen based on the received information, the evaluation should
consider variation in the quality of this information gathering, e.g., “What if this decision was made
under a low arousal level?” Maximum Entropy regularization is an agnostic approach to these
variations and confounding factors.
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Notably, the regularization usually accompanies a parameter β with a positive value, and
p(ot|bt, at) = eβ(bt,at) (β ≥ 0) still reflects the monotonic relationship between confidence (proba-
bility of being optimal) and the accumulated reward. We did not use that parameter in our equations
for simplicity, and the fact that such an extra free parameter did not improve our fits to experimental
data. However, with the extra parameter β, this model also include the hard optimality as β → inf .

3.2 Using the model on experimental data

Our framework proposes a confidence model for any sequential decision-making task under uncer-
tainty. Specifically:

confidence ∝
H∏
t=1

p(ot|bt, at) =
H∏
t=1

eEst [r(st,at)] (10)

when the trajectory of the subject is τ = a1, b2, a2, b3, . . . , aH in a given trial. Fitting this equation
to a subject’s reported confidence could be extremely computationally expensive. One of the main
reasons behind such computational cost is the belief state, with a space size exponential in the original
state space size in the most general cases. Another reason is the need for normalization, which
requires the calculation of the probability of optimality for all possible trajectories. In practice,
however, fitting confidence is not intractable due to the simplicity of models of perception and the
existing experimental setups. First, behavioral and even neural data on perception have been shown
to be accurately modeled with Gaussian distributions. Second, in the current experimental setups,
the dynamics of the task (transition function) are often very simple, and the number of actions is
very minimal, e.g., one action of choosing one of the options after a perceptual cue. As a result, the
belief state can always be expressed with a Gaussian distribution with two parameters of mean and
variance. In other words, bt could often replaced with two one-dimensional parameters of µt and σ2

t .
Finally, if the task has only one step of action selection, which is often the case, the confidence is
simply proportional to eEs[r(s,a)] where a is the chosen action. While this is convenient in terms of
fitting, it brings another challenge. Any monotonic function of reward as the probability of optimality
aligns it with the maximum total reward concept (instead of the exponential we used in equation 7
to map summation to product). For example, one convenient heuristic is the ratio of the expected
reward of different actions, i.e., confidence ∝ Es[r(s, a)]. Although this is arbitrary, we tested this
intuitive definition of confidence, called “expected value ratio”, and compared it to our definition of
confidence on experimental data.

4 Results

We tested our model in two experiments, each focusing on different aspects and potential issues of
confidence modeling. The first experiment was a perceptual decision-making task with asymmetric
priors and rewards [11]. We focused on the interaction of reward and perception with confidence
in our fits and analyses. The second experiment was a value-based decision-making task with no
perceptual ambiguity [23], in which we tested our definition of optimality and compared our results
with “expected value ratio” as a confidence hypothesis. To make our results more readable, we call
our confidence model, “soft optimality” decision confidence.

4.1 Perceptual Decision Making Task with varying priors and rewards

Experiment: This experiment was designed to study the interaction of reward and priors with
perceptual confidence [11]. In this experiment, 10 subjects were shown a Gabor filter tilted left
or right and asked to report their perception of the direction of the Gabor filter (left or right) and,
subsequently, their confidence in their perception (low or high) (as seen in Fig. 1, right plot). The
difficulty of the trials (the extremity of the orientation of the Gabor filters) was constant across trials
and was fitted to each subject before the main experiment to have approximately 70% accuracy. Each
subject completed different sessions of this task where the prior probability distribution and the
reward distribution for correction choices across the two directions were varied (prior probability was
either 3:1, 1:1, or 1:3; payoffs were either 2:4, 3:3, or 4:2). The subjects were told the exact prior
and reward distribution before each session and every 50 trials during the session. Each session was
completed on separate days, with the fully symmetric trials being completed first, followed by the
asymmetric trials in a random order. Each session consisted of 700 trials, the first 100 of which were
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Table 1: AIC values for the fit to all confidence models in perceptual decision-making task

Model 1 2 3 4 5

Perception 1350.81 ± 42.17 1668.53 ± 2.98 1763.63 ± 16.18 1302.93 ± 15.63 1441.89 ± 3.19
Soft Optimality 1199.72 ± 0.38 1819.12 ± 20.12 1674.94 ± 3.02 2056.63 ± 40.63 2309.59 ± 32.36
Observation 1316.56 ± 22.86 1675.12 ± 6.84 1673.77 ± 3.03 1302.93 ± 15.63 1441.89 ± 3.19
Expected Value Ratio 1346.6 ± 40.16 1668.48 ± 1.82 1695.27 ± 7.89 1295.91 ± 13.51 1441.34 ± 2.37

Model 6 7 8 9 10

Perception 1383.24 ± 6.86 1670.72 ± 5.89 1948.82 ± 52.65 1777.82 ± 32.36 1368.61 ± 1.29
Soft Optimality 1827.91 ± 22.73 1889.75 ± 20.14 1655.49 ± 10.5 1656.61 ± 6.59 1358.02 ± 1.07
Observation 1368.84 ± 3.38 1682.17 ± 12.09 1748.28 ± 10.26 1673.23 ± 18.8 1366.24 ± 1.47
Expected Value Ratio 1376.47 ± 4.98 1673.96 ± 6.71 1875.34 ± 42.0 1723.66 ± 25.62 1384.2 ± 1.99

Table 2: Rate/Probability of each reporting high confidence in each subject and each model’s
prediction for the trials with value asymmetry in the perceptual decision making task

Model 1 2 3 4 5 6 7 8 9 10

Experiment 80.28 53.16 49.33 21.96 28.37 25.37 46.84 57.65 42.43 75.87
Perception 60.78 48.58 37.17 16.22 26.93 17.57 51.13 29.77 26.34 68.1
Soft Optimality 79.29 68.72 52.74 61.96 69.84 55.78 68.42 50.17 47.0 69.5
Observation 63.35 55.52 65.06 16.22 26.93 23.34 55.99 43.62 38.82 68.43
Expected Value Ratio 61.06 49.17 43.4 16.89 27.42 18.82 51.76 32.77 29.69 83.87

discarded from analysis. Subjects received rewards of $0-$20 based on their performance. Notably,
the subjects were explicitly instructed to report their confidence in the direction of the stimulus. In
other words, they were explicitly requested to report their perception confidence. More details can be
found in the original paper of this study [11].

Fitting and Comparison: First, we built each subject’s model with a POMDP based on their choices.
This POMDP contained 2 (hidden) states, each representing one of the directions. The perception of
the subject (observation function) was modeled as a Gaussian distribution. Observations came from
N (−1, σ2

z) and N (1, σ2
z) from direction left and right respectively. Notably, the actual generative

process of observations could be different from the learned model by the subject [18]. Therefore,
while observations were sampled from N (±1, σ2

z), the subject’s internal model was N (±1, σ2
sz). σ

2
z

is called external observational noise. σ2
sz is the internal observational noise. Using the POMDP

framework, the choice in each trial was obtained by sampling from the true generative process (with
external noise), updating the belief based on the prior and learned observation function (with internal
noise), and finally, picking the direction with highest expected reward by combining belief and the
reward of each direction.

The external observational noise was first fit to each subject’s choices in symmetric trials through
gradient descent. Only in asymmetrical trials would the internal observational noise impact the
subject’s choice. Therefore, the internal observational noise was fit to the subject’s choices in a
subset of the trials with prior distribution asymmetries using a grid search and a maximum likelihood
estimation with a Bernoulli likelihood function. The prior distribution was set to the actual prior
value communicated to the subjects. Therefore, our model had only two free parameters in the fitting
process, i.e., internal and external noise.

Based on the noise parameters obtained from the choice data, we could predict the subject’s confidence
in each trial according to different confidence models. The main two models were soft optimality
confidence (ours) and perception confidence, which is the belief about the choice. We also included
two more models. One was the observation likelihood (belief but without considering the prior),
which we called observation confidence. The other model was the expected value ratio, as discussed
before. For each confidence model, the confidence criterion, the threshold at which confidence is
binarized into “low” or “high”, was fit to the subjects’ confidence reports in trials with asymmetric
prior and fully symmetric trials (same subset of trials that we obtained noise parameters from).
This fitting process included a grid search and a maximum likelihood estimation with a Bernoulli
likelihood function.
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Table 3: AIC values for the fit to all confidence models with an additional parameter accounting for
the choice bias

Model 1 2 3 4 5

Perception 1364.92 ± 32.82 1670.7 ± 3.61 1774.34 ± 21.38 1301.69 ± 12.47 1443.22 ± 4.41
Soft Optimality 1201.72 ± 0.65 1818.99 ± 16.09 1676.09 ± 4.47 2072.39 ± 42.81 2336.31 ± 77.72
Expected Value Ratio 1364.15 ± 33.0 1674.23 ± 2.88 1669.71 ± 12.56 1315.26 ± 17.07 1433.92 ± 11.62

Model 6 7 8 9 10

Perception 1386.16 ± 12.54 1699.3 ± 31.19 1938.9 ± 41.8 1767.18 ± 19.07 1371.14 ± 2.06
Soft Optimality 1828.37 ± 19.27 1972.15 ± 93.6 1657.1 ± 7.11 1659.87 ± 5.6 1360.43 ± 1.84
Expected Value Ratio 1379.42 ± 9.61 1669.33 ± 23.49 1866.07 ± 29.56 1709.11 ± 16.48 1385.87 ± 3.81

We tested the four mentioned models on the trials that had an asymmetry in the value distribution,
which were not used to fit any of the parameters of these models. Notably, the model’s values/rewards
of actions were set to the values communicated to the subjects and were not free parameters. The
AIC value ranges in table 1 are the results of fitting the model 10 times on randomly shuffled trials.
The bolded values are the lowest AIC scores for a given subject, factoring in the range of uncertainty
found in the average process across 10 trials. Moreover, table 2 shows the rate/probability of high-
confidence reports by each subject and the prediction of the models in these trials (asymmetrical
values; averaged over the 10 runs). Comparing these predictions to the actual high-confidence rate is
not statistically reliable but more intuitive to humans.

As shown in table 1, our decision confidence model (soft optimality) was a better fit for five subjects
compared to the perceptual confidence model. This is especially important because the subjects were
explicitly instructed to report their perception confidence, yet half reported their confidence in choice.
To be more precise, half could not override the assessment mechanism of their decisions. Importantly,
adding the other two models (observation and expected value ratio) did not change our result. In fact,
they strengthened our claim. The AIC value of our model often differs more significantly from the
other three models. In other words, when our model performs better, it usually outperforms others
significantly (and vice versa). This shows that the phenomenon we are observing is not an artifact of
misuse of statistical tests (e.g., test’s assumptions not holding) or fitting a powerful function.

We also got the same results while considering a choice bias in subjects towards one of the directions
(as seen in table 3). We modeled this bias by adding a free parameter to the prior of each subject.
We did not include the observation model as a comparison for these results because the observation
model does not make use of a subject’s prior distribution in its confidence computation. All subjects’
behavior that our model fit best originally were also best explained by our model after the addition of
the bias parameter.

4.2 Value Based Decision Making Task

To further test our soft-optimality assumption, especially compared to the expected value ratio
heuristic, we applied our model to value-based decision making experiment [23].

Experiment: In this experiment, 33 subjects first did a rating task where they were shown pictures
of different foods in succession and were asked to rate, on a sliding scale, how much they would
want to eat that food at the end of the experiment (as seen in Fig. 2, left plot). After rating each food
once, they were shown each food again and asked to rate it a second time to account for noise in
their subjective assessment of the food’s value. They were not told they would have to rate each food
twice, so this didn’t affect their initial rating of the food or allow them to try to memorize their first
rating when rating a food for the second time. Subsequently, they were asked to do a decision-making
task where they were presented with pictures of two of the foods they had previously rated and had to
select which of the two they would rather eat and rate their confidence in their selection on a sliding
scale. A “correct” decision was defined as a decision in which the subject chose the food object that
they had rated higher on average between the two rating trials. Further task details are available in
the original paper [23].

Fitting and Comparison: To generate predictions of subjects’ confidence for the trials in this
experiment, we used their average rating of a food during the rating trials to be an estimate of their
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Figure 2: Left: Experimental setup of a value-based decision task with rating and decision trials
(picture from [23]). Middle: Visual demonstration of AIC values for the soft optimality model
versus the expected value ratio model on the value-based decision making task. The red dashed
line represents equal AIC values. Right: As the quantile value difference increases, soft optimality
predicts a rate of confidence increase closer to the experimental rate as compared to the rate predicted
by the expected value method.

Table 4: AIC values by subject for different confidence prediction models on the value-based decision
making task

Model 1 2 3 4 5 6 7 8 9 10 11

Expected Value Ratio 258.87 224.61 219.06 589.85 210.31 333.47 206.60 202.14 190.56 799.15 219.69
Soft Optimality 216.79 225.63 220.58 212.84 210.84 118.28 206.40 218.32 191.94 224.71 219.48

Model 12 13 14 15 16 17 18 19 20 21 22

Expected Value Ratio 185.37 261.71 297.92 220.79 223.33 215.82 260.02 417.31 199.57 229.26 199.56
Soft Optimality 200.20 221.03 219.84 219.07 223.21 218.58 214.67 223.19 200.84 228.74 199.30

Model 23 24 25 26 27 28 29 30 31 32 33

Expected Value Ratio 207.01 215.36 104.43 343.86 220.60 185.43 484.97 436.96 276.38 76.54 593.16
Soft Optimality 230.68 219.77 105.06 228.51 220.16 206.52 230.81 227.34 215.55 71.99 228.66

expected value of reward for a given option during the choice tasks. We then used this expected value
of the belief state (where the belief state is their hypothesis as to which of the two choices is the
“correct” choice) in our soft optimality equation and normalized this value to map our confidence
prediction to the sliding scale that subjects use to report their confidence in their decision.

To assess our model’s ability to predict subjects’ confidence reporting behavior, we compared the
fit of our soft optimality model to the fit of the expected value ratio model (as seen in Table 4 and
Fig. 2, middle plot). Notably, since we used the values obtained from the rating section, none
of the models have any free parameters. The additional two models used for comparison in the
perceptual decision-making experiment couldn’t be used as metrics of comparison in this task as
there was no perceptual component, which is a requirement of using the observation and perception
models. On average, our soft optimality outperformed the expected value model with an average
AIC value of 206.65 across all subjects as compared to an average AIC value of 282.11. The soft
optimality model was also a better fit for the majority of the subjects; it best explained 21 out of the
33 subjects’ confidence reporting behavior. Moreover, the difference in AIC values is significantly
larger in subjects whose behavior is better explained by our model (soft optimality) as demonstrated
in Fig. 2, middle plot. We also compared the relationship between the difference in the value of
the offered choices and the subject’s confidence (relative to their minimum confidence level, i.e.
confidence offset, for normalization across all subjects) with the predictions of the two models. Our
method better predicts the rate at which the subjects’ confidence will correspondingly increase (Fig.
2, right plot). Validating our model on this data set strengthens our conviction that it can generalize
across multiple types of common decision paradigms and that it can be descriptive of more subjects
than other comparable Bayesian approaches. Moreover, it further confirms the practicality of the
exponential function in explaining confidence as opposed to heuristics like the expected value ratio.
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5 Discussion

We present a normative framework that measures “decision confidence” and captures its interaction
with reward, perception, and prior. Our model is essentially planning as inference framework,
developed and discussed before [7, 10]. Our main contribution here is connecting this framework
to the confidence judgment in humans. Notably, soft reinforcement learning has been used to fit
subjects’ choices in decision-making before. However, those were actual decisions in the context
of exploration-exploitation or imperfect rationality. We used this approach in action evaluation. In
fact, according to our model, actions themselves follow strict optimality (modeled by a POMDP). We
validated our results on two different experiments from different groups. Both datasets are publicly
available and accessible in their corresponding papers [11, 23]. Our analysis code is also available at
https://github.com/ameliamj/decision-confidence-model.

Current experiments, mostly including only 2 choices and 1 step of action selection, are insufficient
to flesh out different aspects of confidence and its models. We believe the generalizability of our
framework makes it a great candidate for testing and modeling confidence in more complicated
setups. Future experiments could go in multiple directions. One example is confidence assessment
in a sequence of actions instead of one action. One important aspect of our model, which is not
present in other models and even most experiments, is the ability to assess confidence in a sequence
of actions (trajectory). Multiple common experimental setups in the field, such as two-step task for
humans [24] and even maze navigation for rodents can be used to study confidence of a sequence of
actions (whole decision) if confidence assessment is added to them. Another example direction is
confidence assessment in multiple choices. Two-choice tasks are too simple to distinguish between
various models. Therefore, some researchers have started focusing on confidence assessment on
multiple choices. For example, one study has shown that the difference between the probability of the
top two choices explains confidence better than the posterior probability of the most likely state when
three choices are presented [5]. In that study, the reward was the same for all options. It could also be
illuminating to test confidence assessment when the rewards of different choices are not equal.

Confidence expression is an important factor in society and affects individuals’ interactions. Under-
privileged individuals often suffer from low confidence, which may further hurt them in their role
in their community. Therefore, we believe accurate estimation of confidence and comparing it with
actual performance will reduce the societal gaps and promote fairness. However, computational
models of confidence and, in general human behavior are very recent. Therefore, no impactful
decision should be made based on these models (e.g., in job applications) until they are tested
extensively in numerous controlled setups.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the last paragraph of our introduction we outline the scope of what we are
going to do in this paper and then in the following sections we complete all of the objectives
that we’ve outlined in the introduction
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: In our results section we discuss the limitations of our model through our
discussion of how many subjects’ behavior the model is most explanaotry for compared to
other Bayesian models. We also discuss limitations of scaling of the model in the background
section of the paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: There are full explanations for our theoretical results and the references were
provide also include detailed theoretical proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: We provide a lot of detail on the equations that we used to get our results and
the fitting methods that we used for these equations and both of the datasets we used are
freely accessible so one should have all of the information that they need to replicate results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Both of the data sets that we used are freely accessible and the code that we
used is attached in supplementary material and clearly commented, providing sufficient
instruction to reproduce our results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The results section is clear on what splits of the data were used for training and
testing the model, which parameters were were fitting, and how these parameters were fit.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For the main experimental results that had stochasticity in the fitting procedures
for them, uncertainty bars are shown in the tables to show the variability in fitting across
different runs of the model.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: The model that we ran wasn’t incredibly computationally expensive; cumula-
tively, all of the results could be reproduced in a couple of hours on a normal laptop so it
wasn’t relevant to mention in the main paper for sake of reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have viewed the NeurIPS Code of Ethics and our paper conforms to it in
every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The societal impacts of the work preformed is discussed in the discussion
section of the main paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our model does not have a high risk for misuse as it is more in the realm of
basic research.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original creators of the 2 open data sets that we use in are experiments are
properly credited in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Code in included and is well documented so that other people can understand
how to use it.
Guidelines:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: The instructions that were communicated to human subjects and the details
about compensation for these human subjects are communicated as best as we know them
from the original papers where we got the data sets from.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: While we used data from human subjects for the main results of this paper, we
didn’t not conduct these experiments ourselves and so were not part of the ethical review
process for these experiments. The papers we took these open data sets from didn’t describe
any potential harms for the study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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